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WP1: The (approximate) Common Eigenvector Problem

Consider an M-dimensional antenna array and let h ∈ CM
be the

corresponding (random) channel vector with covariance Σ. Consider a family
of beamforming vectors U = {u1, . . . ,uM}. The covariance matrix of the

channel in the beam-space domain is Σ̃ = UHΣU.

If U is the matrix of eigenvectors of Σ, then Σ̃ is diagonal. For typical
propagation scenarios, the diagonal elements are quite “sparse”.

Given a set of M ×M covariance matrices {Σk : k = 1, . . . ,K}, find a set of
beamforming vectors U = {u1, . . . ,uM} such that for all k the beam-space
beam-space domain covariances {UHΣkU : k = 1, . . . ,K} are “close to
diagonal” and the diagonals are “as sparse as possible”.

Main application: active channe sparsification (ACS) precoding in FDD
massive MIMO:
Khalilsarai, M.B., Haghighatshoar, S., Yi, X. and Caire, G., 2018. FDD massive

MIMO via UL/DL channel covariance extrapolation and active channel

sparsification. IEEE Transactions on Wireless Communications, 18(1), pp.121-135.
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WP2: Learning the Network Soft-Topology

In problems such as link scheduling in D2D communications (e.g., a high
density V2V scenario), or user-cell association in dense small cell
deployments, it is very helpful to know, for any two points x1 and x2 on the
network region (e.g., on the plane), the propagation loss function g(x1, x2) in
the case of isotropic antennas.

The scope of this WP2 is to develop Deep Learning techniques to predict the
pathloss function for general complicated topologies with blocking,
scattering, and diffraction.
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WP3: Efficient Multiband Splicing

In several applications (e.g., channel sounding, indoor localization) we wish
to obtain a high resolution estimation of the CIR.

Normally, the resolution of the estimation is limited by 1/W , where W is the
measurement bandwidth. E.g., high resolution channel sounders have
front-end bandwidth of 1GHz and more, and are therefore expensive.

Most communication systems (e.g., WiFi) have limited channel bandwidth,
but use multiple channel bands. We wish to pooling together multiple
narrowband measurements (spectrum “splicing”) to obtain the equivalent of
a very large measurement bandwidth and therefore high timing resolution CIR
estimation, with cheap commercial devices.
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Setting of Pathloss Function Prediction

A set of transmitter–receiver links in an urban
environment.

Pathloss = loss of signal strength
between a transmitter and receiver.

Radio map

Fixed transmitter location

Pathloss at all locations is R : R2 → R.

Examples

device to device cellular network
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Applications relying on Radio Maps

Device to device: link scheduling

Cellular network: cellular base station assignment

Additional applications:

fingerprint based localization

physical-layer security

power control in emerging systems

activity detection

CoSIP 2020 9 / 33



Goal: Estimate the Radio Map

Physical simulation is too slow −→ Use UNet instead.

Supervised learning:
Dataset = city maps with simulated radio maps.
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RadioMapSeer Dataset

700 maps from OpenStreetMap, converted to morphological images.

80 devices per map.

Simulated radio-maps (radio network planning software WinProp):
Dominant Path Model (DPM)
Intelligent Ray Tracing (IRT)

The obtained results are converted to gray level.
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Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.

Two network input scenarios

Only the city map and transmitter location is given

The city map and transmitter are given + some measurements.

Two map scenarios

The accurate map is given

A perturbed map is given
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Example: Accurate Map, No Measurements
(pathloss ∈ (−147dB,−47dB), l2 error= 2.18dB)

Ground truth Estimation
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Example: Missing Building, Measurements

Ground truth Estimation
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Ground truth Estimation
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Classification of Radio Map Estimation Methods

Data driven interpolation methods
(radial basis function interpolation, tensor completion, support vector
regression, matrix completion)

Model based predictions/simulations
(ray-tracing, dominant path model, and empirical model)
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RadioUNet vs Model Based Simulations

Run-time

Dominant path method ≈ 1sec

Intelligent ray tracing ≈ 10sec

RadioUNet ≈ 10−3sec
with accuracy

‖RadioUnet− Simulation‖2

‖Simulation‖2 ≈ 10−2
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RadioUNet vs Data Driven Interpolation Methods

Figure: Estimation error of the radio map reconstruction methods as a function of the
number of measurements. RadioUNetC has zero samples, and is given as a baseline.
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Service Area Classification

Classify if devices can receive wanted signal.

Classify if devices receive unwanted signal.
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RadioWNet
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Examples: Service Area Classification (PDF l2 error = 0.12)

Ground truth Estimation
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Future work

Dataset of sparse measurements.

Supervised data driven link scheduling.

Fingerprint based localization.

More...
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System Setup: Channel Model

OFDM pilot transmission from a user to a Base Station over M frequency
bands, each with N subcarriers.

The sparse channel impulse response (CIR): h(τ) =
∑K−1

k=0 ckδ(τ − τk)

Channel frequency response (CFR) over band m: h̃(m) ∈ CN where

h̃(m)
n =

K−1∑

k=0

cke
−j2πfm,nτk , n = −N−1

2 , . . . , N−1
2 ,

where fm,n is the frequency of the n-th subcarrier of the m-th band.

An example: indoor localization using raw WiFi pilot data

Use

WiFi 
route

Scatterer

Scatterer

d = To
F  c 

ToF = 
Delay of the 
LoS path

⌧0
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System Setup: Distorted Measurements

Carrier frequency offset, sampling frequency offset and packet detection delay
distort the received signal.

Phase-distorted and noisy received signal over band m:

y(m)
n = e−jφm,n h̃(m)

n + z(m)
n ,

where φm,n := 2πnfsδm + ψm is the affine phase distortion, where fs is the

subcarrier spacing, and z
(m)
n is the AWGN.

The expression of receiver pilot measurements over all bands:

y = Φh̃ + z

Φ ∈ CMN×MN is an unknown diagonal matrix, with unit-modulus entries.

Main Problem
Given the distorted measurements vector y, estimate the sparse CIR
h(τ) =

∑K−1
k=0 ckδ(τ − τk) and therewith the ToF plus the ranging distance.
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CIR Estimation via Phase Retrieval

Solution Idea

Estimate the CIR by applying a phase retrieval (PR) algorithm to the
magnitude of the measurements, i.e.

ui := |yi |2 = |h̃i |2 + z̃i , i = 0, . . . ,MN − 1.

In particular:

1 recover the CIR autocorrelation from the magnitude measurements.

2 recover the CIR from its estimated autocorrelation.

3 resolve ambiguities in the estimated CIR via handshaking.

CFR magnitude corresponds to the Fourier transform of the autocorrelation:

|h̃i |2 = F {R(ξ)} |f =fi , i = 0, . . . ,MN − 1

R(ξ) := h(τ)?h∗(−τ)|ξ =
K−1∑

k=0

K−1∑

`=0

ckc
∗
` δ(ξ−(τk−τ`)), ξ ∈ [−τmax, τmax].
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CIR Estimation via Phase Retrieval Cont’d

Step 1: Sparse Recovery of R(ξ)

The autocorrelation is sparse for K ∼ O(
√
MN).

Approximate R(ξ) on a dense, discrete grid

G = {ξ0, . . . , ξG−1} ⊂ [−τmax, τmax], G � MN.

Estimate the sparse discretized autocorrelation vector x using LASSO:

r? =minimize
r∈CG

1
2‖Ar − u‖2

2 + λ‖r‖1

subject to r = flip(r)∗,
(1)

where λ > 0 is a regularization scalar, flip(r) is the flipped version of r, and

[A]k,` = 1√
MN

e−j2πfkξ` , k = 0, . . . ,MN − 1, ` = 0, . . . ,G − 1.

The constraint ensures conjugate symmetry of the solution, as expected for R(ξ).
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CIR Estimation via Phase Retrieval Cont’d

In order to obtain exactly K(K+1)
2 -sparse solutions, we run a k-means Alg. on

the support of r?.

A Cluster of Coefficients
�b⇠1 b⇠10

br�1

br0

br1

Alternative methods such as superresolution can be used to obtain the sparse
autocorrelation, but are complex for large MN.

The corresponding coefficients are obtained using simple Least-Squares.

Eventually, the autocorrelation estimate is given as: R̂(ξ) =
∑

r̂iδ(ξ − ξ̂i )
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CIR Estimation via Phase Retrieval Cont’d

Step 2: Recovering the CIR h(τ) from the Autocorrelation Estimate

The autocorrelation support is the difference set of the support of the CIR.

D = ∆T = T − T (Minkowski subtraction)

D = {ξi}
K(K+1)

2

i=1 , T = {τk}K−1
k=0

We adopt a successive support and magnitude recovery to estimate the CIR
support {τk}K−1

k=0 up to a shift and conjugate reflection and the path gains

{ck}K−1
k=0 up to a global phase shift [1].

[1] G. Baechler, M. Kreković, J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Super

resolution phase retrieval for sparse signals,” arXiv preprint arXiv:1808.01961, 2018.
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CIR Estimation via Phase Retrieval Cont’d

Coefficient estimation: construct the matrix C ∈ RK×K such that

Ck,`
∆
=

{
0 k = `,

log |r̂s(k,`)| = log |ĉk |+ log |ĉ`| k 6= `.

Once we have ordered delays, the index s(k , `) is such that ξs(k,`) = τk − τ`.
Note that

∑K−1
`=0 Ck,` = (K − 2) log |ĉk |+

∑K−1
`=0 log |ĉ`| for

k = 0, . . . ,K − 1. Define β
∆
=
∑

k

∑
` Ck,` = 2(K − 1)

∑K−1
`=0 log |ĉ`|. For

K > 2, using these equations we can obtain |ĉk |, k = 0, . . . ,K − 1 as

log |ĉk | = 1
(K−2)

(∑K−1
`=0 Ck,` − β

2(K−1)

)
.
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CIR Estimation via Phase Retrieval Cont’d

Step 3: Resolving Ambiguities via Handshaking

The zero subcarrier in band m ∈ [M] only contains the constant phase error
term ψm with different signs at the transmitter and the receiver:

y
(m)
0,tx = h̃

(m)
0 e jψm + z

(m)
0,tx , y

(m)
0,rx = h̃

(m)
0 e−jψm + z

(m)
0,rx

Exchanging these measurements {y(m)
0,tx , y

(m)
0,rx}M−1

m=0 we have

y′m := y
(m)
0,txy

(m)
0,rx = (h̃

(m)
0 )2 + z′m,

which is an information used to resolve the ambiguities.
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CIR Estimation via Phase Retrieval Cont’d

Consider two hypotheses about the CIR corresponding to two possible ambiguities:
1 Time Shift: H1 : f+(τ ; τε) =

∑K−1
k=0 ĉkδ(τ − τ̂k − τε)

2 Time Shift + Time Reflection: H2 : f−(τ ; τε) =
∑K−1

k=0 ĉ∗k δ(τ + τ̂k − τ̂K−1 − τε)

Let p+(τε) = [F 2
+(f0,0; τε), . . . ,F

2
+(fM−1,0; τε)]T and p−(τε) = [F 2

−(f0,0; τε), . . . ,F
2
−(fM−1,0; τε)]T

denote squared frequency samples of the tentative solutions for a shift τε and define:

g(τε|H1) = ‖p+(τε)− y′‖2, g(τε|H2) = ‖p−(τε)− y′‖2

We select H1 over H2 if min
τε∈[0,τ̄ ]

g(τε|H1) < min
τε∈[0,τ̄ ]

g(τε|H2), and H2 over H1 otherwise.

In addition, the optimal value of the shift parameter τε is given by

τ?ε = arg min
τε

g(τε|Hi ),

where Hi is the winning hypothesis.

The time of flight is estimated as: T̂oF = τ̂0 = τ?ε .
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Simulation Results
We compare our method to Chronos [2].

M = 32 adjacent bands, each with N = 33 subcarriers

K = 3 propagation paths, with complex Gaussian gains and uniformly random delays

The ranging error is given by ed = |τ0 − τ̂0|c , with c being the speed of light.
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[2] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with a single WiFi

access point.” in NSDI, vol. 16, 2016, pp. 165-178.
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