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WP1: The (approximate) Common Eigenvector Problem

o Consider an M-dimensional antenna array and let h € C" be the
corresponding (random) channel vector with covariance X. Consider a family
of beamforming vectors U = {uy,...,upy}. The covariance matrix of the
channel in the beam-space domain is T = UHzU.

o If U is the matrix of eigenvectors of X, then T is diagonal. For typical
propagation scenarios, the diagonal elements are quite “sparse”.

o Given a set of M x M covariance matrices {Xx : k=1,...,K}, find a set of
beamforming vectors U = {uy, ..., up} such that for all k the beam-space
beam-space domain covariances {U"E,U: k=1,... K} are “close to

diagonal” and the diagonals are “as sparse as possible”.

e Main application: active channe sparsification (ACS) precoding in FDD
massive MIMO:
Khalilsarai, M.B., Haghighatshoar, S., Yi, X. and Caire, G., 2018. FDD massive
MIMO via UL/DL channel covariance extrapolation and active channel
sparsification. IEEE Transactions on Wireless Communications, 18(1), pp.121-135.
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WP2: Learning the Network Soft-Topology

@ In problems such as link scheduling in D2D communications (e.g., a high
density V2V scenario), or user-cell association in dense small cell
deployments, it is very helpful to know, for any two points x; and x, on the
network region (e.g., on the plane), the propagation loss function g(xi, ) in
the case of isotropic antennas.

@ The scope of this WP2 is to develop Deep Learning techniques to predict the
pathloss function for general complicated topologies with blocking,
scattering, and diffraction.
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WP3: Efficient Multiband Splicing

@ In several applications (e.g., channel sounding, indoor localization) we wish
to obtain a high resolution estimation of the CIR.

@ Normally, the resolution of the estimation is limited by 1/W, where W is the
measurement bandwidth. E.g., high resolution channel sounders have
front-end bandwidth of 1GHz and more, and are therefore expensive.

@ Most communication systems (e.g., WiFi) have limited channel bandwidth,
but use multiple channel bands. We wish to pooling together multiple
narrowband measurements (spectrum “splicing”) to obtain the equivalent of
a very large measurement bandwidth and therefore high timing resolution CIR
estimation, with cheap commercial devices.
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Setting of Pathloss Function Prediction

A set of transmitter—receiver links in an urban
environment.

Pathloss = loss of signal strength
between a transmitter and receiver.
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Setting of Pathloss Function Prediction

A set of transmitter—receiver links in an urban
environment.

Pathloss = loss of signal strength
between a transmitter and receiver.

Radio map
@ Fixed transmitter location
o Pathloss at all locations is R : R — R.

Examples
device to device cellular network
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Applications relying on Radio Maps

@ Device to device: link scheduling

@ Cellular network: cellular base station assignment
Additional applications:

o fingerprint based localization

@ physical-layer security

@ power control in emerging systems

(]

activity detection
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Goal: Estimate the Radio Map

Physical simulation is too slow — Use UNet instead.

copy and concatenate

copy and concatenate

copy and concatenate

copy and concatenate

l mpy and concatenate
oy >bR -] i b oui-
ity path gain function
ranamitter delta)

h.

Supervised learning:
Dataset = city maps with simulated radio maps.
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RadioMapSeer Dataset

@ 700 maps from OpenStreetMap, converted to morphological images.
@ 80 devices per map.

e Simulated radio-maps (radio network planning software WinProp):
Dominant Path Model (DPM)
Intelligent Ray Tracing (IRT)

@ The obtained results are converted to gray level.
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Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.
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Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.

Two network input scenarios
@ Only the city map and transmitter location is given

@ The city map and transmitter are given 4+ some measurements.

Freie Universitat

Cosip ¥

e e 2 Y



Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.

Two network input scenarios

@ Only the city map and transmitter location is given

@ The city map and transmitter are given 4+ some measurements.
Two map scenarios

@ The accurate map is given

@ A perturbed map is given
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Example: Accurate Map, No Measurements
(pathloss € (—147dB, —47dB), h error= 2.18dB)

Ground truth Estimation
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Example: Accurate Map, No Measurements
(pathloss € (—147dB, —47dB), h error= 2.18dB)
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Example: Missing Building, Measurements

Ground truth

Estimation
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Example: Missing Building, Measurements

Ground truth

Estimation
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Classification of Radio Map Estimation Methods

o Data driven interpolation methods
(radial basis function interpolation, tensor completion, support vector
regression, matrix completion)
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Classification of Radio Map Estimation Methods

o Data driven interpolation methods
(radial basis function interpolation, tensor completion, support vector
regression, matrix completion)

@ Model based predictions/simulations
(ray-tracing, dominant path model, and empirical model)
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RadioUNet vs Model Based Simulations

Run-time

@ Dominant path method ~ 1lsec
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RadioUNet vs Model Based Simulations

Run-time
@ Dominant path method ~ 1lsec

@ Intelligent ray tracing ~ 10sec
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RadioUNet vs Model Based Simulations

Run-time
@ Dominant path method ~ 1lsec
@ Intelligent ray tracing ~ 10sec

@ RadioUNet ~ 10~ 3sec
with accuracy
|RadioUnet — Simulation||® N

||Simulation||?
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RadioUNet vs Data Driven Interpolation Methods

\\ — — ‘Tensor completion
Y —&—RBF interpolation
08Ff \\ RadioUNet , (clean) J
‘\ ——RadioUNet (samples)
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Figure: Estimation error of the radio map reconstruction methods as a function of the
number of measurements. RadioUNetc has zero samples, and is given as a baseline.
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Service Area Classification

o Classify if devices can receive wanted signal.
o Classify if devices receive unwanted signal.
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RadioWNet

RadioWNet

service area

map map
transmitter transmitter
radiomap

\

—

thresholder

radio map inference
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RadioWNet

RadioWNet
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map map
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\radiomap
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radio map inference
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RadioWNet

RadioWNet
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RadioWNet

RadioWNet

service area

map map
transmitter transmitter
\radiomap

thresholder

radio map inference
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Examples: Service Area Classification (PDF & error = 0.12)

Ground truth Estimation

e

Freie Universitat |

Cos|P N |}

e ez SV



Examples: Service Area Classification (PDF & error = 0.12)

Ground truth Estimation

LA

Freie Universitat i

CoSIP N

e ez SV



Examples: Service Area Classification (PDF & error = 0.12)

Ground truth Estimation

Freie Universitat |

Cos|P N

e ez SV
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Ground truth Estimation
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Future work

o Dataset of sparse measurements.
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@ Supervised data driven link scheduling.

Freie Universitat

(Cosip

e e 2

L)

21/33



Future work

@ Dataset of sparse measurements.
@ Supervised data driven link scheduling.

@ Fingerprint based localization.
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Future work

Dataset of sparse measurements.
Supervised data driven link scheduling.
Fingerprint based localization.

More...

Freie Universitat

e Ccosip ¥/

e e 2 VS



Outline
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System Setup: Channel Model

o OFDM pilot transmission from a user to a Base Station over M frequency
bands, each with N subcarriers.

@ The sparse channel impulse response (CIR): h(7) = kK:—01 ckd(T — %)

o Channel frequency response (CFR) over band m: h(m e CN where

K-1
n(m) _ —j 27 fm 0Tk _ N—1 N—1
hf,)—g cre moTkop= 054 A
k=0

where f, , is the frequency of the n-th subcarrier of the m-th band.

@ An example: indoor localization using raw WiFi pilot data

Scatterer -
ToF =70 e :ﬁl...
Delay of the

LoS path

Freie Universit:
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System Setup: Distorted Measurements

o Carrier frequency offset, sampling frequency offset and packet detection delay
distort the received signal.

@ Phase-distorted and noisy received signal over band m:
N )
where ¢p, = 2wnfs6y + Y is the affine phase distortion, where f; is the

subcarrier spacing, and zg,m) is the AWGN.

@ The expression of receiver pilot measurements over all bands:

y=®h+z

& c CMNXMN 55 an unknown diagonal matrix, with unit-modulus entries.

Main Problem

Given the distorted measurements vector y, estimate the sparse CIR
h(r)=>,_ _01 ckd(7 — 7«) and therewith the ToF plus the ranging distance.
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CIR Estimation via Phase Retrieval

Solution Idea

Estimate the CIR by applying a phase retrieval (PR) algorithm to the
magnitude of the measurements, i.e.

u; ;= |y,'|2= |ﬁ,’|2+i;, i=0,...,MN —1.
In particular:

@ recover the CIR autocorrelation from the magnitude measurements.
@ recover the CIR from its estimated autocorrelation.

© resolve ambiguities in the estimated CIR via handshaking.

o CFR magnitude corresponds to the Fourier transform of the autocorrelation:

i = F{R(&)}r=,i=0,...,MN — 1
K—1K-1

R(é) = ( )*h* |f - Z Z Ckcé (Tk Tg)), f S [_TmaxaTmax]~

Freie U k=0 ¢=0
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CIR Estimation via Phase Retrieval Cont’d

o Step 1: Sparse Recovery of R(¢)
@ The autocorrelation is sparse for K ~ O(v MN).
@ Approximate R(&) on a dense, discrete grid

g= {§0a s 7§G—1} C [—TmaXaTmax]v G > MN.
@ Estimate the sparse discretized autocorrelation vector x using LASSO:
r* =minimize 1||Ar—ul]2 + \|r
reCe 2” ||2 || ||1 (1)
subject to r = flip(r)*,

where A > 0 is a regularization scalar, flip(r) is the flipped version of r, and

[A]k,gzﬁe*ﬂ“fk&, k=0,...,MN -1, £=0,...,G—1.

@ The

Freie Universitat |

traint ensures conjugate symmetry of the solution, as expected for R(§).
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CIR Estimation via Phase Retrieval Cont’d

. K(K+1 .
@ In order to obtain exactly %—sparse solutions, we run a k-means Alg. on

the support of r*.

ro
/1:71 i‘\l
| Rt |
Jl il
=& 0 &1

A Cluster of Coefficients

@ Alternative methods such as superresolution can be used to obtain the sparse
autocorrelation, but are complex for large MN.

@ The corresponding coefficients are obtained using simple Least-Squares.

o Eventually, the autocorrelation estimate is given as: R(¢) =Y %6(¢ — &)

Freie Universita
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CIR Estimation via Phase Retrieval Cont’d

o Step 2: Recovering the CIR h(7) from the Autocorrelation Estimate
@ The autocorrelation support is the difference set of the support of the CIR.

D=AT =T —T (Minkowski subtraction)

K(K+1)

D={&} , T={n}¢

@ We adopt a successive support and magnitude recovery to estimate the CIR
support {Tk}f;()l up to a shift and conjugate reflection and the path gains
{ck}K=4 up to a global phase shift [1].

[1] G. Baechler, M. Krekovi¢, J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Super
resolution phase retrieval for sparse signals,” arXiv preprint arXiv:1808.01961, 2018.
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CIR Estimation via Phase Retrieval Cont’d

Algorithm 1 CIR Support Estimation

. Kk+)
Input: Estimated autocorrelation support D = {&;},_{
Initialize the sets X = {0,&,} and Py = D\Xs.
for k=2t K —1do N N
Select &; € P, such that {X, U&} — {X, U&} €D
X1 = X U&
Pri1 = D\Xpt1
end

D AWy

=

Xk Xg — min{Xx} > Shift the solution set such
R that min{Xx } = 0.
Output: 7 = X

*

o Coefficient estimation: construct the matrix C € RK*X such that
N k=1,
Cie = - N N
log [T5(k,¢)| = log |Ck| + log || k# 1.

Once we have ordered delays, the index s(k, £) is such that &y o) = T — 70
Note that S ' Ci o = (K — 2) log |G| + Sp ' log || for
k=0,...,K—1. Define 825, 3, Cisr=2(K —1) XK og |&]. For
K > 2, using these equations we can obtain |¢ck|, k=0,...,K —1 as

~ K-1
log |ci| = ﬁ ( =0 Cre— 2(KB—1)> :

cosip N
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CIR Estimation via Phase Retrieval Cont’d

o Step 3: Resolving Ambiguities via Handshaking

@ The zero subcarrier in band m € [M] only contains the constant phase error
term 1, with different signs at the transmitter and the receiver:

=R {2 i) = KPeie 15
@ Exchanging these measurements {y0 tX,yO ,l} ! we have

Yo = Yooy = (RS™)? + 2,

which is an information used to resolve the ambiguities.

Freie Universitat |
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CIR Estimation via Phase Retrieval Cont’d

@ Consider two hypotheses about the CIR corresponding to two possible ambiguities:
@ Time Shift: Hy: fi(;7) = Sor g &d(T — Tk — 7e)

@ Time Shift + Time Reflection: Hz : f_(7;7) = Sk  Sed(T + Tk — Tr—1 — Te)

o Let py(7) = [F2(fo0i7e)s- s F2(fu—1,0;7)]" and p_(7.) = [F2(fo0i Te)s-- - F2(fu—1,0i7c)]"
denote squared frequency samples of the tentative solutions for a shift 7. and define:

g(telHi) = [Ip+(7) = ¥'ll2,  g(7elH2) = [lp—(7e) — ¥'l|2

@ We select H; over Hy if min_ g(7|H1) < min_]g(Te\Hz)7 and H, over H; otherwise.

7e€[0,7] T €[0,7
@ In addition, the optimal value of the shift parameter 7 is given by
72 = argmin g(7|H;),
Te

where H; is the winning hypothesis.

o The time of flight is estimated as: | ToF = 7 = TX.

CoSIP N
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Simulation Results

@ We compare our method to Chronos [2].

o M = 32 adjacent bands, each with N = 33 subcarriers
o K = 3 propagation paths, with complex Gaussian gains and uniformly random delays

@ The ranging error is given by ey = |79 — Tp|c, with ¢ being the speed of light.
1 T T T T

091 onp TFPRAT T
0.8 1
0.7
0.6

Qo5

04] y |
03} -* Chronos |
02 |
01} H
0 (il - I L Il
105 107 10 102 100 10° 10!

eq (m)
[2] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with a single WiFi
access point.” in NSDI, vol. 16, 2016, pp. 165-178.
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