CA 1340/7-1 Phase II: From Massive MIMO to Massive Wireless Networks

Co-Pls: G. Caire, G. Kutyniok, G. Wunder Co-workers: R. Levie, C. Yapar, M. Barzegar Khalilsarai

Technische Universität Berlin, Freie Universität Berlin

CoSIP Retreat Aachen, February 2020

Outline

Project Overview

Outline

Project Overview

Pathloss Function Prediction

WP1: The (approximate) Common Eigenvector Problem

- Consider an *M*-dimensional antenna array and let $\mathbf{h} \in \mathbb{C}^M$ be the corresponding (random) channel vector with covariance $\boldsymbol{\Sigma}$. Consider a family of beamforming vectors $\mathbf{U} = {\mathbf{u}_1, \ldots, \mathbf{u}_M}$. The covariance matrix of the channel in the beam-space domain is $\widetilde{\boldsymbol{\Sigma}} = \mathbf{U}^H \boldsymbol{\Sigma} \mathbf{U}$.
- If **U** is the matrix of eigenvectors of Σ , then $\widetilde{\Sigma}$ is diagonal. For typical propagation scenarios, the diagonal elements are quite "sparse".
- Given a set of M × M covariance matrices {Σ_k : k = 1,..., K}, find a set of beamforming vectors U = {u₁,..., u_M} such that for all k the beam-space beam-space domain covariances {U^HΣ_kU : k = 1,..., K} are "close to diagonal" and the diagonals are "as sparse as possible".

 Main application: active channe sparsification (ACS) precoding in FDD massive MIMO: Khalilsarai, M.B., Haghighatshoar, S., Yi, X. and Caire, G., 2018. FDD massive MIMO via UL/DL channel covariance extrapolation and active channel sparsification. IEEE Transactions on Wireless Communications, 18(1), pp.121-135.

WP2: Learning the Network Soft-Topology

- In problems such as link scheduling in D2D communications (e.g., a high density V2V scenario), or user-cell association in dense small cell deployments, it is very helpful to know, for any two points x_1 and x_2 on the network region (e.g., on the plane), the propagation loss function $g(x_1, x_2)$ in the case of isotropic antennas.
- The scope of this WP2 is to develop Deep Learning techniques to predict the pathloss function for general complicated topologies with blocking, scattering, and diffraction.

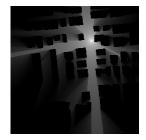
WP3: Efficient Multiband Splicing

- In several applications (e.g., channel sounding, indoor localization) we wish to obtain a high resolution estimation of the CIR.
- Normally, the resolution of the estimation is limited by 1/W, where W is the measurement bandwidth. E.g., high resolution channel sounders have front-end bandwidth of 1GHz and more, and are therefore expensive.
- Most communication systems (e.g., WiFi) have limited channel bandwidth, but use multiple channel bands. We wish to pooling together multiple narrowband measurements (spectrum "splicing") to obtain the equivalent of a very large measurement bandwidth and therefore high timing resolution CIR estimation, with cheap commercial devices.

Multiband Spectrum Splicing

A set of transmitter-receiver links in an urban environment.

Pathloss = loss of signal strength between a transmitter and receiver.

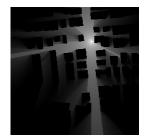


A set of transmitter-receiver links in an urban environment.

Pathloss = loss of signal strength between a transmitter and receiver.

Radio map

- Fixed transmitter location
- Pathloss at all locations is $R : \mathbb{R}^2 \to \mathbb{R}$.

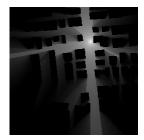


A set of transmitter-receiver links in an urban environment.

Pathloss = loss of signal strength between a transmitter and receiver.

Radio map

- Fixed transmitter location
- Pathloss at all locations is $R : \mathbb{R}^2 \to \mathbb{R}$.



Examples

A set of transmitter-receiver links in an urban environment.

Pathloss = loss of signal strength between a transmitter and receiver.

Radio map

- Fixed transmitter location
- Pathloss at all locations is $R : \mathbb{R}^2 \to \mathbb{R}$.

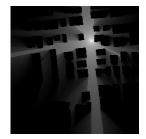
Examples device to device

A set of transmitter-receiver links in an urban environment.

Pathloss = loss of signal strength between a transmitter and receiver.

Radio map

- Fixed transmitter location
- Pathloss at all locations is $R : \mathbb{R}^2 \to \mathbb{R}$.



Examples device to device

cellular network

Applications relying on Radio Maps

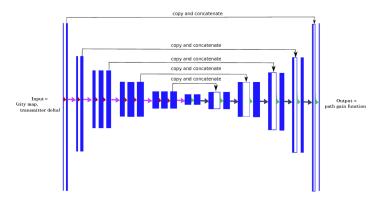
- Device to device: link scheduling
- Cellular network: cellular base station assignment

Additional applications:

- fingerprint based localization
- physical-layer security
- power control in emerging systems
- activity detection

Goal: Estimate the Radio Map

Physical simulation is too slow \longrightarrow Use UNet instead.



Supervised learning:

Dataset = city maps with simulated radio maps.

RadioMapSeer Dataset

- 700 maps from **OpenStreetMap**, converted to **morphological images**.
- 80 devices per map.
- **Simulated radio-maps** (radio network planning software *WinProp*): Dominant Path Model (DPM) Intelligent Ray Tracing (IRT)
- The obtained results are converted to gray level.

Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.

Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.

Two network input scenarios

- Only the city map and transmitter location is given
- The city map and transmitter are given + some measurements.

Different Settings of RadioUNet

Deep learning radio map estimator: RadioUNet.

Two network input scenarios

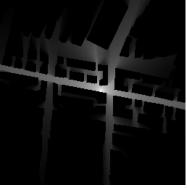
- Only the city map and transmitter location is given
- The city map and transmitter are given + some measurements.

Two map scenarios

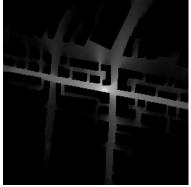
- The accurate map is given
- A perturbed map is given

Example: Accurate Map, No Measurements $(pathloss \in (-147dB, -47dB), l_2 error = 2.18dB)$

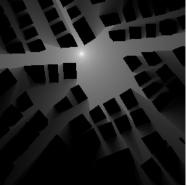
Ground truth



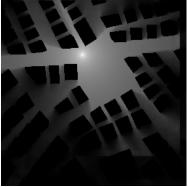
Estimation



Example: Accurate Map, No Measurements (pathloss $\in (-147dB, -47dB)$, $l_2 \text{ error} = 2.18dB$)



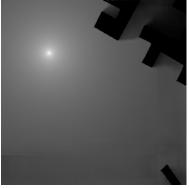
Estimation



Example: Accurate Map, No Measurements (pathloss $\in (-147dB, -47dB)$, $l_2 \text{ error} = 2.18dB$)

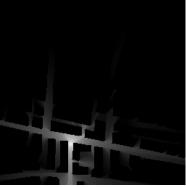
Ground truth

Estimation

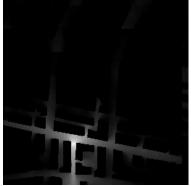


Example: Accurate Map, No Measurements $(pathloss \in (-147dB, -47dB), l_2 error = 2.18dB)$

Ground truth



Estimation



Example: Accurate Map, No Measurements $(pathloss \in (-147dB, -47dB), l_2 \text{ error} = 2.18dB)$

Ground truth

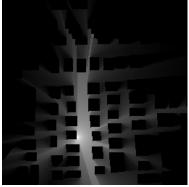
Estimation

Example: Accurate Map, No Measurements $(pathloss \in (-147dB, -47dB), l_2 error = 2.18dB)$

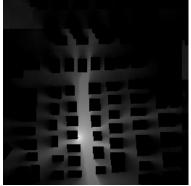
Estimation

Example: Accurate Map, No Measurements $(pathloss \in (-147dB, -47dB), l_2 error= 2.18dB)$

Ground truth

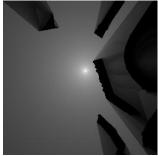


Estimation

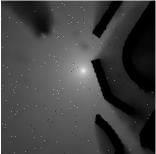


Example: Missing Building, Measurements

Ground truth



Estimation



Example: Missing Building, Measurements

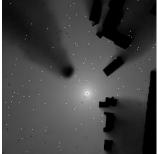
Ground truth

Estimation

Example: Missing Building, Measurements

Ground truth

Estimation



Classification of Radio Map Estimation Methods

• Data driven interpolation methods

(radial basis function interpolation, tensor completion, support vector regression, matrix completion)

Classification of Radio Map Estimation Methods

- Data driven interpolation methods (radial basis function interpolation, tensor completion, support vector regression, matrix completion)
- Model based predictions/simulations

(ray-tracing, dominant path model, and empirical model)

RadioUNet vs Model Based Simulations

Run-time

 $\bullet\,$ Dominant path method \approx 1sec

RadioUNet vs Model Based Simulations

Run-time

- Dominant path method \approx 1sec
- Intelligent ray tracing \approx 10sec

RadioUNet vs Model Based Simulations

Run-time

- Dominant path method \approx 1sec
- Intelligent ray tracing \approx 10sec
- RadioUNet $\approx 10^{-3}$ sec with accuracy

$$\frac{\left\|\mathrm{RadioUnet}-\mathrm{Simulation}\right\|^2}{\left\|\mathrm{Simulation}\right\|^2}\approx 10^{-2}$$

RadioUNet vs Data Driven Interpolation Methods

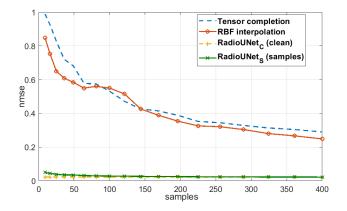
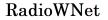


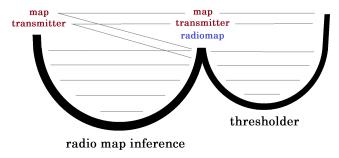
Figure: Estimation error of the radio map reconstruction methods as a function of the number of measurements. RadioUNet $_{\rm C}$ has zero samples, and is given as a baseline.

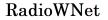
Service Area Classification

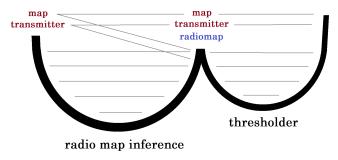
- Classify if devices can receive wanted signal.
- Classify if devices receive unwanted signal.

RadioWNet

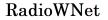


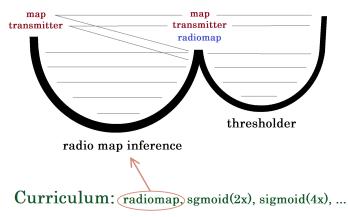




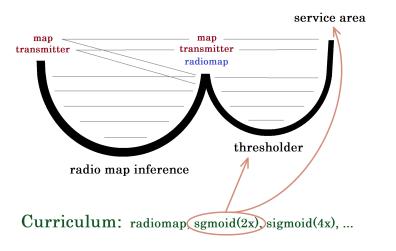


Curriculum: radiomap, sgmoid(2x), sigmoid(4x), ...

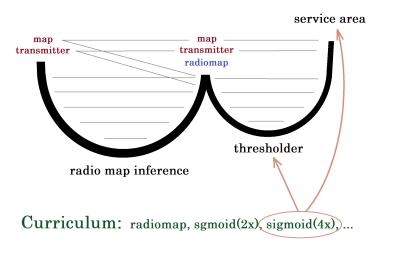




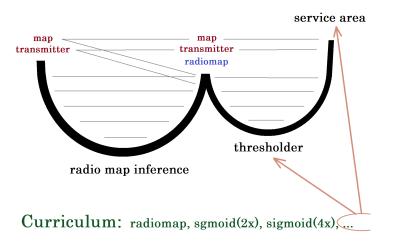
RadioWNet



RadioWNet



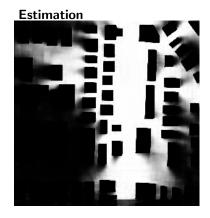
RadioWNet



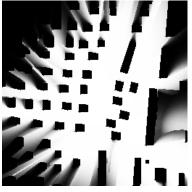
Ground truth

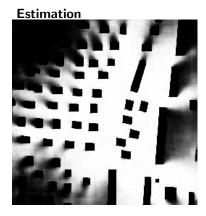
Estimation

Ground truth



Ground truth





• Dataset of sparse measurements.

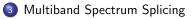
- Dataset of sparse measurements.
- Supervised data driven link scheduling.

- Dataset of sparse measurements.
- Supervised data driven link scheduling.
- Fingerprint based localization.

- Dataset of sparse measurements.
- Supervised data driven link scheduling.
- Fingerprint based localization.
- More...

Outline

Project Overview



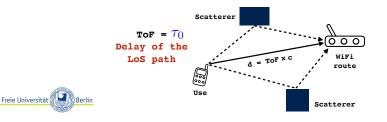
System Setup: Channel Model

- OFDM pilot transmission from a <u>user</u> to a <u>Base Station</u> over <u>M</u> frequency bands, each with <u>N</u> subcarriers.
- The sparse channel impulse response (CIR): $h(\tau) = \sum_{k=0}^{K-1} c_k \delta(\tau \tau_k)$
- Channel frequency response (CFR) over band m: $\tilde{\mathbf{h}}^{(m)} \in \mathbb{C}^N$ where

$$\tilde{\mathbf{h}}_{n}^{(m)} = \sum_{k=0}^{K-1} c_{k} e^{-j2\pi f_{m,n}\tau_{k}}, \ n = -\frac{N-1}{2}, \dots, \frac{N-1}{2},$$

where $f_{m,n}$ is the frequency of the *n*-th subcarrier of the *m*-th band.

• An example: indoor localization using raw WiFi pilot data



System Setup: Distorted Measurements

- Carrier frequency offset, sampling frequency offset and packet detection delay distort the received signal.
- Phase-distorted and noisy received signal over band *m*:

$$\mathbf{y}_n^{(m)} = e^{-j\phi_{m,n}} \tilde{\mathbf{h}}_n^{(m)} + \mathbf{z}_n^{(m)},$$

where $\phi_{m,n} := 2\pi n f_s \delta_m + \psi_m$ is the affine phase distortion, where f_s is the subcarrier spacing, and $\mathbf{z}_n^{(m)}$ is the AWGN.

• The expression of receiver pilot measurements over all bands:

$$\mathbf{y} = \mathbf{\Phi} \tilde{\mathbf{h}} + \mathbf{z}$$

 $\mathbf{\Phi} \in \mathbb{C}^{MN \times MN}$ is an unknown diagonal matrix, with unit-modulus entries.

Main Problem

Given the **distorted measurements** vector **y**, estimate the **sparse** CIR $h(\tau) = \sum_{k=0}^{K-1} c_k \delta(\tau - \tau_k)$ and therewith the ToF plus the ranging distance.

Solution Idea

Estimate the CIR by applying a **phase retrieval (PR)** algorithm to the **magnitude** of the measurements, i.e.

$$\mathbf{u}_i := |\mathbf{y}_i|^2 = |\mathbf{\tilde{h}}_i|^2 + \mathbf{\tilde{z}}_i, \quad i = 0, \dots, MN - 1.$$

In particular:

- recover the <u>CIR autocorrelation</u> from the magnitude measurements.
- ecover the <u>CIR</u> from its estimated autocorrelation.
- I resolve ambiguities in the estimated CIR via handshaking.
 - CFR magnitude corresponds to the Fourier transform of the autocorrelation:

$$\begin{split} |\tilde{\mathbf{h}}_{i}|^{2} &= \mathcal{F}\left\{R(\xi)\right\}|_{f=f_{i}}, i=0,\dots,MN-1\\ R(\xi) &:= h(\tau) \star h^{*}(-\tau)|_{\xi} = \sum_{k=0}^{K-1} \sum_{\ell=0}^{K-1} c_{k} c_{\ell}^{*} \delta(\xi - (\tau_{k} - \tau_{\ell})), \ \xi \in [-\tau_{\max}, \tau_{\max}]. \end{split}$$

- Step 1: Sparse Recovery of $R(\xi)$
- The autocorrelation is sparse for $K \sim \mathcal{O}(\sqrt{MN})$.
- Approximate $R(\xi)$ on a dense, discrete grid

$$\mathcal{G} = \{\xi_0, \dots, \xi_{G-1}\} \subset [-\tau_{\max}, \tau_{\max}], \quad G \gg MN.$$

• Estimate the sparse discretized autocorrelation vector **x** using LASSO:

$$\mathbf{r}^{\star} = \underset{\mathbf{r} \in \mathbb{C}^{G}}{\text{minimize}} \quad \frac{1}{2} \|\mathbf{A}\mathbf{r} - \mathbf{u}\|_{2}^{2} + \lambda \|\mathbf{r}\|_{1}$$

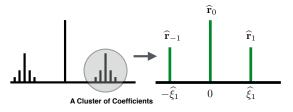
subject to $\mathbf{r} = \text{flip}(\mathbf{r})^{*}$, (1)

where $\lambda > 0$ is a regularization scalar, flip(r) is the flipped version of r, and

$$[\mathbf{A}]_{k,\ell} = \frac{1}{\sqrt{MN}} e^{-j2\pi f_k \xi_\ell}, \quad k = 0, \dots, MN - 1, \ \ell = 0, \dots, G - 1.$$

• The constraint ensures conjugate symmetry of the solution, as expected for $R(\xi)$. Freie Universität Berlin COSIP

• In order to obtain exactly $\frac{K(K+1)}{2}$ -sparse solutions, we run a k-means Alg. on the support of \mathbf{r}^* .



- Alternative methods such as superresolution can be used to obtain the sparse autocorrelation, but are complex for large *MN*.
- The corresponding coefficients are obtained using simple Least-Squares.
- Eventually, the autocorrelation estimate is given as: $\widehat{R}(\xi) = \sum \widehat{r}_i \delta(\xi \widehat{\xi}_i)$

- Step 2: Recovering the CIR $h(\tau)$ from the Autocorrelation Estimate
- The autocorrelation support is the difference set of the support of the CIR.

 $\mathcal{D} = \mathbf{\Delta} \mathcal{T} = \mathcal{T} - \mathcal{T}$ (Minkowski subtraction)

$$\mathcal{D} = \{\xi_i\}_{i=1}^{\frac{K(K+1)}{2}}, \quad \mathcal{T} = \{\tau_k\}_{k=0}^{K-1}$$

• We adopt a successive support and magnitude recovery to estimate the CIR support $\{\tau_k\}_{k=0}^{K-1}$ up to a **shift** and **conjugate reflection** and the path gains $\{c_k\}_{k=0}^{K-1}$ up to a **global phase shift** [1].

[1] G. Baechler, M. Kreković, J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, "Super resolution phase retrieval for sparse signals," arXiv preprint arXiv:1808.01961, 2018.

 Algorithm 1 CIR Support Estimation

 1: Input: Estimated autocorrelation support $\widehat{D} = \{\widehat{\xi}_i\}_{i=1}^{\frac{K(K+1)}{2}}$

 2: Initialize the sets $\mathcal{X}_2 = \{0, \widehat{\xi}_1\}$ and $\mathcal{P}_2 = \widehat{D} \setminus \mathcal{X}_2$.

 3: for k = 2 to K - 1 do

 4: Select $\widehat{\xi}_i \in \mathcal{P}_k$ such that $\{\mathcal{X}_k \cup \widehat{\xi}_i\} - \{\mathcal{X}_k \cup \widehat{\xi}_i\} \subseteq \widehat{D}$

 5: $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \widehat{\xi}_i$

 6: $\mathcal{P}_{k+1} = \widehat{D} \setminus \mathcal{X}_{k+1}$

 end

 7: $\mathcal{X}_K \leftarrow \mathcal{X}_K - \min\{\mathcal{X}_K\}$ \triangleright Shift the solution set such that $\min\{\mathcal{X}_K\} = 0$.

 8: Output: $\widehat{\mathcal{T}} = \mathcal{X}_K$

• Coefficient estimation: construct the matrix $\bm{C} \in \mathbb{R}^{\mathcal{K} \times \mathcal{K}}$ such that

$$\mathbf{C}_{k,\ell} \triangleq \begin{cases} 0 & k = \ell, \\ \log |\widehat{r}_{s(k,\ell)}| = \log |\widehat{c}_k| + \log |\widehat{c}_\ell| & k \neq \ell. \end{cases}$$

Once we have ordered delays, the index $s(k, \ell)$ is such that $\xi_{s(k,\ell)} = \tau_k - \tau_\ell$. Note that $\sum_{\ell=0}^{K-1} \mathbf{C}_{k,\ell} = (K-2) \log |\widehat{c}_k| + \sum_{\ell=0}^{K-1} \log |\widehat{c}_\ell|$ for $k = 0, \ldots, K-1$. Define $\beta \triangleq \sum_k \sum_\ell \mathbf{C}_{k,\ell} = 2(K-1) \sum_{\ell=0}^{K-1} \log |\widehat{c}_\ell|$. For K > 2, using these equations we can obtain $|\widehat{c}_k|$, $k = 0, \ldots, K-1$ as

$$\log |\widehat{c}_k| = \frac{1}{(K-2)} \left(\sum_{\ell=0}^{K-1} \mathbf{C}_{k,\ell} - \frac{\beta}{2(K-1)} \right).$$

• Step 3: Resolving Ambiguities via Handshaking

 The zero subcarrier in band m ∈ [M] only contains the constant phase error term ψ_m with different signs at the transmitter and the receiver:

$$\mathbf{y}_{0,tx}^{(m)} = \tilde{\mathbf{h}}_{0}^{(m)} e^{j\psi_{m}} + \mathbf{z}_{0,tx}^{(m)}, \quad \mathbf{y}_{0,rx}^{(m)} = \tilde{\mathbf{h}}_{0}^{(m)} e^{-j\psi_{m}} + \mathbf{z}_{0,rx}^{(m)}$$

• Exchanging these measurements $\{\mathbf{y}_{0,tx}^{(m)},\mathbf{y}_{0,rx}^{(m)}\}_{m=0}^{M-1}$ we have

$$\mathbf{y}'_m := \mathbf{y}_{0,tx}^{(m)} \mathbf{y}_{0,tx}^{(m)} = (\tilde{\mathbf{h}}_0^{(m)})^2 + \mathbf{z}'_m,$$

which is an information used to resolve the ambiguities.

- Consider two hypotheses about the CIR corresponding to two possible ambiguities:
 Time Shift: H₁: f₊(τ; τ_ϵ) = Σ^{K-1}_{k=0} c_kδ(τ τ̂_k τ_ϵ)
 Time Shift + Time Reflection: H₂: f₋(τ; τ_ϵ) = Σ^{K-1}_{k=0} c^{K-1}_kδ(τ + τ̂_k τ̂_{K-1} τ_ϵ)
- Let $\mathbf{p}_+(\tau_{\epsilon}) = [F_+^2(f_{0,0};\tau_{\epsilon}),\ldots,F_+^2(f_{M-1,0};\tau_{\epsilon})]^T$ and $\mathbf{p}_-(\tau_{\epsilon}) = [F_-^2(f_{0,0};\tau_{\epsilon}),\ldots,F_-^2(f_{M-1,0};\tau_{\epsilon})]^T$ denote squared frequency samples of the tentative solutions for a shift τ_{ϵ} and define:

$$egin{aligned} \mathsf{g}(au_\epsilon|\mathcal{H}_1) = \|\mathbf{p}_+(au_\epsilon) - \mathbf{y}'\|_2, \quad \mathsf{g}(au_\epsilon|\mathcal{H}_2) = \|\mathbf{p}_-(au_\epsilon) - \mathbf{y}'\|_2. \end{aligned}$$

- We select H_1 over H_2 if $\min_{\tau_{\epsilon} \in [0, \tilde{\tau}]} g(\tau_{\epsilon} | H_1) < \min_{\tau_{\epsilon} \in [0, \tilde{\tau}]} g(\tau_{\epsilon} | H_2)$, and H_2 over H_1 otherwise.
- $\bullet\,$ In addition, the optimal value of the shift parameter τ_ϵ is given by

$$au_{\epsilon}^{\star} = rgmin_{ au_{\epsilon}} g(au_{\epsilon}|H_{i}),$$

where H_i is the winning hypothesis.

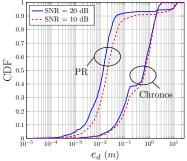
• The time of flight is estimated as:

$$\widehat{\mathsf{ToF}} = \widehat{\tau}_0 = \tau_\epsilon^\star.$$

Simulation Results

• We compare our method to Chronos [2].

- M = 32 adjacent bands, each with N = 33 subcarriers
- K = 3 propagation paths, with complex Gaussian gains and uniformly random delays
- The ranging error is given by $e_d = | au_0 \widehat{ au}_0|c$, with c being the speed of light.



[2] D. Vasisht, S. Kumar, and D. Katabi, "Decimeter-level localization with a single WiFi access point." in NSDI, vol. 16, 2016, pp. 165-178.

Questions?