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Overview

I Project Overview
I WP 0: Nonlinear Measurement Systems
I WP 1: Design of new Compression Matrices

WP 1: Multidimensional Training Design

WP 1: Identifiability
I WP 2 + 3: General Null Space Properties
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Application Example
Multidimensional Frequency Estimation
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Application Example
Multidimensional Frequency Estimation
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Low Rank Model and Sparse Representation –
CS using Model Structure as Side Constraints

Signal model:

=

y(t) = A(θ(0)) x(0)(t)

⇒

Sparse representation:

=

y(t) = A(θ) x(t)

February 13, 2020 | SPP 1798 DFG – CoSIP – Workshop, Aachen | 4 EXPRESS II Project



EXPRESS – From Analysis to System Design

Source K xK (t)

Source 2 x2(t)

Source 1 x1(t)

y1(t)

y2(t)

yM(t)

A

a(θ
1 )

a(θ2)

a(θ
K
)

EXPRESS I Model

Y = AX + N
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EXPRESS – From Analysis to System Design

Source K xK (t)

Source 2 x2(t)

Source 1 x1(t)

Linear mixing
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Nonlinear
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EXPRESS I Model EXPRESS II Model: Synthesis Network

Z = T {ΦA X} + N
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EXPRESS I and II Research Structure
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Nonlinear Measurement Systems
WP 0: structure of mixing Φ and nonlinearity T

February 13, 2020 | SPP 1798 DFG – CoSIP – Workshop, Aachen | 7 EXPRESS II Project



Nonlinear Measurement Systems

[1] Y. Yang, M. Pesavento, Z.-Q. Luo, und B. Ottersten, “Inexact Block Coordinate Descent Algorithms for Nonsmooth
Nonconvex Optimization,” IEEE Transactions on Signal Processing, 2019.

I Exact Block Successive Convex Approximation

minimize
P,Q,S

1
2
‖PQ + DS− Y‖2

F +
λ

2
(‖P‖2

F + ‖Q‖2
F) + µ‖S‖1

I Inexact Block Successive Convex Approximation

minimize
x

1
4

N∑
n=1

(
(aT

k x)2 − yn
)2

+ µ‖x‖1

[2] Y. Yang, M. Pesavento, Y.C. Eldar, B. Ottersten, “Parallel Coordinate Descent Algorithms for Sparse Phase
Retrieval,” IEEE ICASSP 2019, May 2019.

minimize
x

1
2

N∑
n=1

(
|aH

n x| − yn
)2

︸ ︷︷ ︸
loss, f (x)

+ µ ‖x‖1︸ ︷︷ ︸
regularization, g(x)
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Nonconvex Regularization

[3] Y. Yang, M. Pesavento, S. Chatzinotas, B. Ottersten, “Successive Convex Approximation Algorithms for Sparse
Signal Estimation with Nonconvex Regularizations,” IEEE JSTSP, Dec. 2018.

I Phase retrieval is a special case of the following general formulation:

(smooth, nonconvex) + (nonsmooth, convex)− (nonsmooth, convex)

I Difference-of-convex regularizer to promote sparse/unbiased estimate.
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Graphical LASSO with Laplacian Constraints

[4] T. Liu, M.-T. Hoang, Y. Yang and M. Pesavento, “A block Coordinate Descent Algorithm for Sparse Gaussian
Graphical Model Interference with Laplacian Constraints,” IEEE CAMSAP 2019, Dec. 2019.

min
X�0,W,γ

f (X) = − log det X + tr(SX) + ρ‖W‖1

s.t. X = diag(W1)−W + γI

Wii = 0, i = 1, ..., n

Wij = Wji ≥ 0, i = 1, ..., n; j = 1, ..., n

γ > 0

I ρ > 0: Regularization parameter
I W: Adjacency matrix
I γ: Positive diagonal loading factor
I X: Precision matrix, only an auxiliary variable
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Design of new Sensing Matrices
WP 1: structure of measurement system A
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Sensing Matrix Design via
Mutual Coherence Minimization (MCM)

I Question: how to design a sensing matrix with low mutual coherence?

mutual coherence µ(A) = max
j 6=k

|aH
j ak |

‖aj‖‖ak‖
I Mutual coherence minimization (MCM) can be formulated as

min
A∈CN×K

µ(A) = min
A∈CN×K

‖aj‖=1,∀j

‖AHA− IK‖2
∞

= min
Ã∈CN×K

|ÃH
Ã|2∞,off

I Ã ∈ CN×K : a matrix with unit-norm columns
I |A|2∞,off = max

j 6=k
|aj ,k |2: return the largest off-diagonal entry
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Proposed MCM Design Formulation

I Expanding |G|2 = |ÃH
Ã|2 (squared Gram-matrix), we have

|G|2 =

|ã
H
1 ã1|2 ... |ãH

1 ãK |2
... ...

...
|ãH

K ã1|2 ... |ãH
K ãK |2

 =

 1 ... |ãH
1 ãK |2

... ...
...

|ãH
K ã1|2 ... 1



BS with N antennas

K MSs each with single-antenna 

Precoding vectors

Channel vectors

Until Convergence
The sensing matrix design via MCM 

can be formulated as a K-user downlink 

precoding design problem
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Proposed Sequential MCM Approach (SMCM) [5]

I Step 0: Ã
(0) ∈ CN×K and β = max{ K−N

N(K−1) , 0}
I Step 2: repeat until a convergence is reached

I Step 2.1: Solve the k th sub-problem, k = 1, ... , K (Ã(n)
k = ã(n)

k (ã(n)
k )H )

V?k = max
Vk∈CN×N�0

tr{Ã(n)
k Vk} s.t. tr{Ã(n)

j Vk} ≤ β,∀j 6= k (Precoding update step)

I Step 2.2: Calculate EVD: V?k = RkΣk RH
k

I Step 2.3: Update k th column of Ã(n): ã(n)
k = [Rk ]σmax (Channel update step)

I Step 2.4: if |µ(Ã(n))− µ(Ã(n−1))|2 ≤ ε, stop.

[5] K. Ardah, M. Pesavento, and M. Haardt, “A novel sensing matrix design for compressed sensing via mutual
coherence minimization,” IEEE CAMSAP 2019, Dec. 2019
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Numerical Results

N = 16 and K = 64

[1] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei, “On optimization of the measurement matrix for
compressive sensing,” in Proc. 18th European Signal Processing Conference, Aug. 2010, pp. 427–431.
[2] C. Lu, H. Li, and Z. Lin, “Optimized projections for compressed sensing via direct mutual coherence minimization,”
Signal Processing, vol. 151, pp. 45 – 55, 2018.
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Multidimensional Training Design
WP 1: structure of measurement system A
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Channel Estimation in Hybrid Analog-Digital (HAD)
Millimeter-Wave Massive MIMO Systems

I Channel estimation in HAD massive MIMO systems is a challenging problem
I High channel dimension, low SNR before BF, and reduced No. of RF chains

Baseband 
Precoding

RF 
Precoding

RF Chain

RF Chain

Hybrid Analog-Digital Precoding

Phase-shifters

Total training times

-sparse matrix

Dictionaries

I LS channel estimation: hLS =
(
VT ⊗ UH)+

y⇒ TT TR ≥ MRMT
NR

I Exploiting the low-rank (sparse) nature of the millimeter-wave channel

y =
(
VT ĀT ⊗ UHĀR

)
d̄ + n = Qd̄ + n ∈ CTT TRNR

I µ(Q) = max{µ(VT ĀT),µ(UH ĀR)} ⇒ two independent sensing matrix design steps
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Open-Loop Training Design for Hybrid Analog-Digital
Massive MIMO Systems [6]

SMCM (offline design)SMCM (offline design)

, ,

[6] K. Ardah, B. Sokal, A. L. F. de Almeida, and M. Haardt, “Compressed sensing based channel estimation And
open-loop training design for hybrid analog-digital massive MIMO systems,” ICASSP 2020, May 2020 (accepted).
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Numerical Results

I System: MT = 128, NT = 8, MR = 32, NR = 8, TR = 4, P = 4

[1] J. Zhang, I. Podkurkov, M. Haardt, and A. Nadeev, “Channel estimation and training design for hybrid analog-digital
multicarrier single-user massive MIMO systems,” in Proc. 20th International ITG Workshop on Smart Antennas (WSA),
Mar. 2016
[2] J. Lee, G. Gil, and Y. H. Lee, “Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in
millimeter wave communications,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2370–2386, Jun. 2016.
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Identifiability for Sparse Nonuniform Linear
Arrays

WP 1: structure of measurement system A
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Identifiability for Sparse Nonuniform Linear Arrays
Signal Model

0 1 2 3 4 · · ·

· · ·

Linear Array

ω1

ω2

ω3

θ1θ2θ3

I Linear Array: set of M sensors located on
the x-axis at positions r ∈ ZM .

I N sources with Direction-Of-Arrivals (DOAs)
Θ = {θ1, ... , θN}.

I y ∈ CM is the signal that is received by
the M sensors: y = A(Θ) x
I x ∈ CN : emitted signal array,
I A(Θ) ∈ CM×N : array steering matrix with

columns

a(θ) = (e−iπr1·cos(θ), ... , e−iπrM ·cos(θ))>, θ ∈ Θ.

Goal: Given y, (uniquely) estimate θ1, ... , θN .
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Identifiability for Sparse Nonuniform Linear Arrays
The Ambiguity Problem in Subspace-based DOA-Estimation

Consider the linear array r = (0, 1, 3, 4)> and the DOAs Θ = [0°, 60°, 90°, 120°].

The array steering matrix A(Θ) is rank deficient with rank (A(Θ)) = 3:

A(Θ) =
(
a(0° ), a(60° ), a(90° ), a(120° )

)
=


1 1 1 1
−1 −i 1 i
−1 i 1 −i
1 1 1 1

 .

Definition. For a linear array r ∈ RM with M sensors, the (sorted) vector of n ≤ M
DOAs Θ = [θ1, ... , θn] is ambiguous, if ρa = rank (A(Θ)) < n.

⇒ Ambiguities are roots of the M ×M minors of the steering matrix A(Θ).
I Every M ×M minor is a generalized Vandermonde determinant (GVD).
I The quotient of a GVD and the classical Vandermonde determinant is given

by the Schur polynomial. ⇒ Search roots of the Schur polynomial.
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Identifiability for Sparse Nonuniform Linear Arrays
Finding Ambiguities

(Semi-standard) Young tableaux yield the following representation of the Schur
polynomial, where α`m ∈ Z.

sλ(Θ) =
n∑
`=1

e iσ` , σ` =
M∑

m=1

−α`mπ cos(θm) (mod 2π) ∀` ∈ [n]. (1)

⇒ Ambiguities =̂ Roots of sλ(Θ).
Let r ∈ ZM be an integer linear array. In order to find ambiguities:
I Enumerate all n SSYTs corresponding to r ∈ ZM .
I Consider e iσ` to be roots of unity and use vanishing sums of roots of unity to

search for roots of (1).

Can be formulated as a mixed-integer program (MIP)!

Lemma. Each solution of the MIP corresponds to an ambiguity of the linear
array r ∈ ZM .

[7] T. Fischer, F. Matter, M. Pesavento, M. E. Pfetsch, “Ambiguities in DOA Estimation for Linear Arrays,” Preprint,
unpublished
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General Null Space Properties
WP 2: structure of representation x

WP 3: structure of sparsity x(t)
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General Null Space Properties – Motivation
Uniform Recovery using an NSP

Uniform recovery using a null space property (NSP):

min {‖x‖0 : Ax = Ax (0), x ∈ Rn}, (P0)

min {‖x‖1 : Ax = Ax (0), x ∈ Rn}. (P1)

Characterization when the optimal solution of the nonconvex exact recovery
problem (P0) and its convex relaxation (P1) coincide.

Known NSPs:
I Sparse (nonnegative) vectors, low-rank (psd) matrices, block-sparse vectors.
I A general framework that subsumes most of the existing NSPs for settings

without side constraints [Juditsky et al. ’14].

Goal: A general framework for uniform (sparse) recovery under side constraints
using NSPs.
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General Null Space Properties
A Framework for Sparse Recovery under Side Constraints

I Let X , E be finite-dimensional Euclidean spaces and C ⊆ X with 0 ∈ C.
I Consider a linear sensing map A : X → Rm, and a linear representation map

B : X → E .
I Define D := {Bx : x ∈ C} ⊆ E , consider a norm ‖·‖ on E .
I Let P be a set of linear maps on E , with a real weight ν(P) ≥ 0 and a linear

map P : E → E for all P ∈ P . Define Ps = {P ∈ P : ν(P) ≤ s}.

For s ≥ 0, an element x ∈ C is s-sparse⇔ ∃ P ∈ P with ν(P) ≤ s and PBx = Bx .

For a given right-hand side b ∈ R, the generalized recovery problem now reads

min {‖Bx‖ : Ax = b, x ∈ C}.

Importantly: By using the set C any side constraint (e.g., nonnegativity, positive
semidefiniteness, integrality) can be incorporated into the recovery.
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A Generalized Framework for Sparse Recovery under
Side Constraints – Main Result

Theorem
Suppose that some technical assumptions are satisfied. Let A be a linear sensing
map and s ≥ 1. Then the following statements are equivalent.

(i) Every s-sparse x (0) ∈ C is the unique solution of minx∈C {‖Bx‖ : Ax = Ax (0)}.
(ii) For all v ∈ (N (A) ∩ (C + (−C))) with Bv 6= 0 and all P ∈ Ps:

PBv ∈ D ⇒ ∀ v (1), v (2) ∈ C with v = v (1) − v (2) : ‖PBv (1)‖ − ‖PBv (2)‖ + ‖PBv‖ > 0.

⇒ General NSP for uniform (sparse) recovery under side constraints.

For example, new NSPs for the following settings can be obtained.
I (Positive semidefinite) Block-diagonal matrices, and
I Nonnegative Block-linear vectors.

[8] J. Heuer, F. Matter, M. E. Pfetsch, T. Theobald, “Block-sparse Recovery of Semidefinite Systems and Generalized
Null Space Conditions,” July 2019, [arXiv:1907.09442].
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Conclusions

We have exploited structure in many ways:

I Design of parallel algorithms,
I System design, i.e., design of sensing matrices with small coherence,
I Ambiguity properties for linear arrays,
I Sparse recovery under side constraints with an NSP.
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