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Time-Varying Linear Systems
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Time-varying Linear SISO Systems

> Single-Input Single-Output Systems (SISO):
Linear time-varying SISO channels are described by operators of H : L2(R) — L2(R) the form

— // Nu(z,v)-f(t—1) 2TVl qydr = // nu(t,v) M, T.f)(t)dvdr
RxR RxR

with
— Spreading function: nyR xR — C
f(t—1)

— Translation (time-shift) operator: (T.f)(t) =
— () i2nvt

— Modulation (frequency shift): My, (f) (t)
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Time-varying Linear MIMO Systems

> Multiple-Input Multiple-Output Systems (MIMO):
Channels with N-inputs and M-outputs are characterized by operators H : (LZ(R))N — (LZ(R))M of the form

f Hi1 -+ Hin 7 YN Hinfy
H . = E : . = :
n Hy1 -+ Hun fn YN Huynfy
Each subchannel Hp, , is a TVL SISO system.
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Finite-dimensional TVL Channels

> The identification problem of TVL systems H : (LZ(R))N — (LZ(R))M can be reduced to a finite-dimensional
problem H : ((CL)N — (CL)M

N
X4 Hii - Hin X4 Y n—1H1nXp
HI : | = : : | = :
N
XN Hyv1 -+ Hun XN Y 1 HunXn

wherein each sub-system H, , : Ct — Ct has the form

L—1L-1

Hoox =Y Y nma(k, () MT x = G(x)n
(=0 k=0

with spreading coefficients {nm n(k.,¢) ;é_elw and with the translation operator T : Ct — Ct and the modulation

operator M : Ct — Ct given by

Xo XL Xo X0
12T
X1 X0 Xq Xq el T
T: _ > _ and M: . —>
127
XL—1 X2 XL x;_qei L (L=1)
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Operator Paley—Wiener spaces

> Set of all linear operators C- — C" is spanned by time-frequency shifts M‘T*

L—1L—1
Z(ch = {H =Y Y n(k,o)MT* . n(k,0) e Clorall (k,¢) € Z, x ZL}
=0 (=0

Vmax
> SISO Operator Paley—Wiener space: For A C Z; x Z;
OPW(A) = span{MéTk . (k,0) € /\} /
> MIMO Operator Paley—Wiener space: For A = {/\,T,,n}%,':’:1 with Y
/\m’n ~ ZL X ZL
OPW(A)={H:Hp,c OPW(Amn)} Sl
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|dentification under linear side constraints
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|dentification — SISO

Definition (ldentifiable)
The space OPW(A) is identifiable if and only if there exists an identifier ¢ € Ct such that for each H € OPW/(A) the

equation
y=Hc= Y n(k)MTc=G(c)n
(k,0)eN
is uniquely solvable for n € CN.

Remark
G(c) is Gabor matrix of size L x L2

G(c) = [M°T°c ,M°T'c,--- .M TH T ]

Theorem (Identificaltion of SISO Channels)
The space OPW(A) is identifiable if and only if |\| < L.
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|dentification — MIMO

Definition (Identifiable MIMO)
The space OPW(A) is identifiable if and only if there exist vectors ¢ = (¢1,Cz,...,cn) € (CH)N such that for each
H € OPW(A) the map H — y = Hc is injective.

Theorem (ldentification of MIMO Channels)
The space OPW(A) is identifiable if and only if

N
Y [Amal <L foreverym=1,....M.

n=1

Assumptions

 Subchannels Hp,, , and their time-frequency components 1, n(k, ¢) are independent
* Information about one channel does not help to identify another.
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Linear Constrains Between Spreading Coefficients

> Channels Hin OPW(N) C .#(C*):
y=Hc= Y n(k )MT“c=G(c)n
(k,O)en
> OPW(A) is identifiable if |A| < L.
> Assume linear relations between the spreading coefficients are known

Y axen(k,t)=B  forsome oy, B eC
Py

Intuition/Question

» Let An = b be a given set of M > 1 linear independent side constraints.
* Let OPWa p(A) be the set of all H € OPW(A) which satisfy these side constraints.
* OPWAa (N) is identifiable if and only if |A| < L+ M?
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Linear Relations between Time-Frequency Components

> In the SISO case, linear relations between the spreading coefficients of the channel are expressed by
b=An

> Including the equation for channel identification yields
y | _ | G(c)
RSk
— More equations for the same number of unknowns should help to identify the channel.

Theorem (One linear side constraint)
LetH € OPW(A) with A C Z x Z with |A| = L+1 and leta € Ct™1, a # 0. There there exists a ¢ € Ct so that

[ G(c)[n ]

a*

is invertible. Thus the channel coefficients N are identifiable.
Moreover, the set of all such identifiers ¢ constitute a dense open subset of CL.
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More Side Constrains

Lemma (No general solution for more than one side constraint)
LetH € OPW(A) with N C Z; x Z; with |\| > L+ 1. There exist matrices A of size (|\| — L) x |A| with A # 0 such that
there is no ¢ € Ct such that the matrix

{ G(c)|a ]

A

has full rank.

Theorem (Sufficient condition for identifiably)
LetH € OPW(A) with N € Z; x Z of size |\| = R > L. Assume that there exists a subset N C \ of size L so that

(i) Ti(A) = ti(A) whenever Ti(\) # 0.
(ii) ind(7') # ind(T(A)) for every L-tubel T < t(A) of size L different from t(A).
Given any full spark matrix A of size (R — L) x R, then there exists an identifier ¢ € C* so that the R x R matrix

{ G(K)!/\ ]

is invertible. Moreover, the set of all such identifiers ¢ constitute a dense open subset of Ct.
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Signal Transmission over
Unidentified Channels
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Motivation

> Two step procedure for data transmission over frequency-selective channels

1. Estimate (identify) the channel H € J# c .Z(Ch).
2. Transmit data x from a certain data set .2~ C C'. Data recovery at the receiver using estimated channel.

> In time-varying channels, this procedure has to repeated regularly, to update channel state information.
> In rapidly changing channels, two step procedure becomes more and more inefficient.

Transmission through unidentified channel

> Combine channel identification and signal recovery.

> Transmission scheme y = H(x + ¢) with
— He o7 c £(Ch) is a unknown channel from a known subset 7.
— X € 2 is the data signal from a certain data set 2" c C".
— ¢ € Clis a pilot signal (designed based on the knowledge of .%# and Z).

Problem
Find (necessary and/or sufficient) conditions on .s# and 2" such that there exists a pilot ¢ € Ct such that every

x € 2 can uniquely be recovered form y = H(x + ¢) for any unknown channel H € 7.
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Relation to Blind Deconvolution

> A = OPW(A) with A{(0,0),(1,0),...,(L,0)} C Zy x Z1

L—1

y=Hc=) n(k,0)T"x
k=0

> Recover x € 2 € Ct and n from y (without knowing 7).
> X and 1 assumed to be sparse.
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Conditions for Data Recovery and/or Channel Identification

Natural Conditions

(I) Identifiability of .7#”: The map H +— Hc is injective on 7.
(R) Recovery condition for known channel: Every H € 7 is injective on 2.

Subsets of Ct
Hc={Hec : He 7} . All possible output vectors for the pilot c.

H X ={Hx : He s, xe 2} : Possible output of arbitrary data vector in 2.
Further Conditions

(i) span{sZc}Nspan{# 2 } = {0} . Isolate He and Hx from the channel output y = H(c + x).

(i) H(Z +c)nNH (2 +c) forevery H£AH in 52 : Identify H from y = H(c + x) with unknown x € .2".

(i) H(x+c)=H(x'+c) implies x = X’ : Guarantees exact recovery of x € 2" but not identification H

() -2 iy B i
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Degrees of Freedom

> # = OPW(A) C Z(Ch) is a linear subspace of dimension |A|.
> Assume 2  C Clis a linear subspace of dimension K.
> Counting degrees of freedom, we must have

IN+K<L and A < L.

as a necessary condition for exact recovery of H € 77 and x € 2.
> Without identifying H, we may get K > L — |A| = how?
> When we get equality in (1)?
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Example: 1-Dimensional Signal Space
> For a given (and known) A C Z; x Z;, we consider the operator Paley—Wiener space

H = OPW(A) = {H = ¥ n(k,OMT : n(k,0) € cc}. c.2(ch
ke

> Assume a 1—dimensional signal space 2" = span{v} C C’ for some v € C’.
> For x =uv € 2, with u € C, the received signal is

y =H(x+c)=uH(v)+H(c) =G(c)|an +uG(v)|an

> Separation of Hx and He from y = span{.7’c} Nspan{ v} = {0} = rang[G(c)|p] L rang [G(V)|A].

For rang [G(v)|pr] = span{a} is a 1-dimensional subspace, we have the following result.

Theorem

Let N C Z; x Z; with1 < |\ < L—1 and leta € C\{0} be arbitrary.
There exists a vector ¢ € Ct such that the L x || +1 matrix [G(c)|a,a] has full rank.
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General Construction

> The set of all time-frequency shifts {M‘T# }é?:o can be separated into L + 1 commutative subgroups

Gs={MP*T*: k=0,1,...,L—1},

s=0,1,...L—1
G ={M:k=0.1,....L—1}

> Each commutative subgroup ¥s posses a set of common eigenvectors (i.e. the chirp sequences)

es((): £=0,1,...,L—1
which forms on orthogonal basis for CL.
Theorem

Let N C Z; x Z; such that there exists an s € {0,1,...,L} so that A C 9.

There exists a subspace 2 = span{es(1),...,es(K)} C Ct of dimension K = L— || and a ¢ € C* such that

span{.7Zc} Nspan{# 2 } = {0}
and such that Conditions () and (R) are satisfied.
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Maximum Size of Data Subspace

> Given a subspace 2" of dimension K, it is desirable that the dimension of span{.7# 2"} is again K.
> For for a one-dimensional .2" = span{v}, we have dim (span{.7# .2 }) = rank (G(V)|a).

Question: Given a support set A C Z; x Z; of 5 = OPW(A) with |A] < L.
What is the minimum rank of G(v)|, for v varying in C-?

Theorem
Let L > 3 be an odd integer and N C Z; x Z with |\| < L. Then

min rank (G(v)[p) < N(A)
vech\ {0}
with

NN =1+ min min{|/] : 1CZixZe with ANC 1+,
se{0,1,...,L}

and where |+9s={x+y : xel, y € 9s}.
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Example with Unknown Channel Support
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Channel Model

> Time continuous Time-Varying-Linear SISO Channel H : L2(R) — L2(R):

g(t) = (Hf) (1) = / [ mn(E.v)- ft—)e™ dvdr = / [ (e V) (M) (D dvae

> Time discrete Time-Varying-Linear SISO Channel H : L3(R) — L?(R):

—1 M—1 K—1M—1
g(t) = Z Z Mk, £) - £(t — KAT) e2FAV = Z Z nu(k,€) - f(t — KT) e T
Vmax
> Rectification of the channel support region:
with At = T and Av = - for some prime L > 5.
[
%
1
7L
. . . T Tmax
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Transmitted Signal

> Transmitted signal: Delta train followed by a guard interval

2L—1
_ , | datasymbol : 0<m<L[—1
f(t)_n;OXmS(t—mT) with xm_{ 0 < m<ol_1

> Received signal:
1. Sampling at rate 1/T: gn=(Hf)(nT), n=0,1,...,2L—1.
2. Add two consecutive blocks of length L:  y,=9gn+9ni1, n=0,1,...,L—1.

> Write in vector form:
L—1L—1

y=Hx=Y Y n(k )HMT"x (2)
£=0 k=0

with X = (Xo,...,Xx_1)T and 'y = (xo,...,x._1)T and with H € OPW(A).

Remark: Using a periodic weighted delta train
21 —1

f(ty=Y Y Xxmd(t—mT—pLT)

peZ m=0

results in a similar expression as in (2) but requires periodic data.
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Transmission Scheme

> Aim: We want to transmit a message ¥y = {n,...,Ya} C C of size Q < L over the channel H € OPW(A) and
recover ¥ at the receiver without knowing H and without knowing the channel support A in advance.

> Data symbols: The data symbols a sum of a pilot and the actual message

Q
X=Cc-+ quq
g=1

with the pilot signal ¢ which is chosen to be an Alltop sequence and ey are particular chirp sequences

1 2 1 2
c(n) = NG exp <iTnn3> and ep . (n)= NG exp <1T7r [r+mn-+ rn2]> : nez;
) (3)

> Received signal:

n 3

L—1L—1
y=Hx=Y Y n(k,)MTx=G(x)n = G(c)n+Us=9 (
{=0 k=0

with a L x 2.2 measurement matrix ® = [G(c) , U] and a sparse vector s = f(1, ¥).
> Recovery of the message: Solve CS problem (3), then determine ¥ = g(n,s).
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Compressive Sampling Problem

> Compressive Sampling Problem of size L x 212
— ¢ 17 : T
y= s with  |supp(n,s)" | < (1+Q)|Al

Lemma
The coherence of the measurement matrix ® = [G(c) , U] is upper bounded by p1(®) < \%

Remark: Welsh bound is ——

Ve
Theorem
LetH € OPW(A) C Z(Ch) be an unknown channel with unknown support set \ where L > 5 is a prime number. For
o< Yk _;
4[N

any message ¥ € C? can be transmitted over H and recovered at the receiver.
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Numerical Experiment

L =307
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Summary
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Current and Future Work

> ldentification of SISO and MIMO TVL Channels:
— Identification of stochastic channels and stochastic sequences

— Conditions on support of the covariance of the spreading function 7.

— Linear side constraints in terms of covariance.

> Transmission over Unidentified Channels:

— Stochastic encoding, RIP
— Scheme which maximum transmission rate
— Continuous time setting
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