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Time-Varying Linear Systems
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Time-varying Linear SISO Systems
B Single-Input Single-Output Systems (SISO):

Linear time-varying SISO channels are described by operators of H : L2(R)→ L2(R) the form

(Hf )(t) =
∫∫

R×R
ηH(τ,ν) · f (t− τ)ei2πν t dνdτ =

∫∫
R×R

ηH(τ,ν)(MνTτ f )(t)dνdτ

with
− Spreading function: ηHR×R→ C
− Translation (time-shift) operator: (Tτ f )(t) = f (t− τ)

− Modulation (frequency shift): Mν (f )(t) = f (t)ei2πν t

Volker Pohl (TUM) | Time-Varying Linear Systems | CoSIP 2020 3



Time-varying Linear MIMO Systems
B Multiple-Input Multiple-Output Systems (MIMO):

Channels with N-inputs and M-outputs are characterized by operators H :
(
L2(R)

)N →
(
L2(R)

)M of the form

H

 f1
...

fN

=

 H1,1 · · · H1,N
... ...

HM,1 · · · HM,N

 f1
...

fN

=

 ∑
N
n=1 H1,nfn

...
∑

N
n=1 HM,nfn

 .

Each subchannel Hm,n is a TVL SISO system.
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Finite-dimensional TVL Channels
B The identification problem of TVL systems H :

(
L2(R)

)N →
(
L2(R)

)M can be reduced to a finite-dimensional

problem H :
(
CL
)N →

(
CL
)M

H

 x1
...

xN

=

 H1,1 · · · H1,N
... ...

HM,1 · · · HM,N

 x1
...

xN

=

 ∑
N
n=1 H1,nxn

...
∑

N
n=1 HM,nxn

 .

wherein each sub-system Hn,m : CL→ CL has the form

Hm,nx =
L−1

∑
`=0

L−1

∑
k=0

ηm,n(k , `)M`Tkx = G(x)ηηη

with spreading coefficients {ηm,n(k , `)}L−1
k ,`=0, and with the translation operator T : CL→ CL and the modulation

operator M : CL→ CL given by

T :


x0
x1
...

xL−1

 7→


xL−1
x0
...

xL−2

 and M :


x0
x1
...

xL−1

 7→


x0

x1ei 2π

L ·1

...
xL−1ei 2π

L ·(L−1)


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Operator Paley–Wiener spaces
B Set of all linear operators CL→ CL is spanned by time-frequency shifts M`Tk

L (CL) =

{
H =

L−1

∑
k=0

L−1

∑
`=0

η(k , `)M`Tk : η(k , `) ∈ C for all (k , `) ∈ ZL×ZL

}

B SISO Operator Paley–Wiener space: For Λ⊂ ZL×ZL

OPW (Λ) = span
{

M`Tk : (k , `) ∈ Λ
}

B MIMO Operator Paley–Wiener space: For ΛΛΛ = {Λm,n}M,N
m,n=1 with

Λm,n ∈ ZL×ZL

OPW (ΛΛΛ) = {H : Hm,n ∈OPW (Λm,n)}

τ
τmaxT

1
TL

ν

νmax
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Identification under linear side constraints

Volker Pohl (TUM) | Time-Varying Linear Systems | CoSIP 2020 7



Identification – SISO
Definition (Identifiable)
The space OPW (Λ) is identifiable if and only if there exists an identifier c ∈ CL such that for each H ∈OPW (Λ) the
equation

y = Hc = ∑
(k ,`)∈Λ

η(k , `)M`Tk c = G(c)ηηη

is uniquely solvable for ηηη ∈ CΛ.

Remark
G(c) is Gabor matrix of size L×L2

G(c) =
[
M0T0 c ,M0T1 c , · · · ,ML−1TL−1 c

]
Theorem (Identificaltion of SISO Channels)
The space OPW (Λ) is identifiable if and only if |Λ| ≤ L.
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Identification – MIMO
Definition (Identifiable MIMO)
The space OPW (ΛΛΛ) is identifiable if and only if there exist vectors c = (c1,c2, . . . ,cN) ∈ (CL)N such that for each
H ∈OPW (ΛΛΛ) the map H 7→ y = Hc is injective.

Theorem (Identification of MIMO Channels)
The space OPW (Λ) is identifiable if and only if

N

∑
n=1
|Λm,n| ≤ L for every m = 1, . . . ,M .

Assumptions
• Subchannels Hm,n and their time-frequency components ηm,n(k , `) are independent
• Information about one channel does not help to identify another.
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Linear Constrains Between Spreading Coefficients
B Channels H in OPW (Λ)⊂L (CL):

y = Hc = ∑
(k ,`)∈Λ

η(k , `)M`Tk c = G(c)ηηη

B OPW (Λ) is identifiable if |Λ| ≤ L.

B Assume linear relations between the spreading coefficients are known

∑
k ,`

αk ,`η(k , `) = β for some αk ,`,β ∈ C

Intuition/Question
• Let Aηηη = b be a given set of M ≥ 1 linear independent side constraints.
• Let OPWA,b(Λ) be the set of all H ∈OPW (Λ) which satisfy these side constraints.
• OPWA,b(Λ) is identifiable if and only if |Λ| ≤ L + M?
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Linear Relations between Time-Frequency Components
B In the SISO case, linear relations between the spreading coefficients of the channel are expressed by

b = Aηηη

B Including the equation for channel identification yields[
y
b

]
=

[
G(c)

A

]
ηηη

→ More equations for the same number of unknowns should help to identify the channel.

Theorem (One linear side constraint)
Let H ∈OPW (Λ) with Λ⊂ ZL×ZL with |Λ|= L + 1 and let a ∈ CL+1, a 6= 0. There there exists a c ∈ CL so that[

G(c)|Λ
a∗

]
is invertible. Thus the channel coefficients ηηη are identifiable.
Moreover, the set of all such identifiers c constitute a dense open subset of CL.
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More Side Constrains
Lemma (No general solution for more than one side constraint)
Let H ∈OPW (Λ) with Λ⊂ ZL×ZL with |Λ|> L + 1. There exist matrices A of size (|Λ|−L)×|Λ| with A 6= 0 such that
there is no c ∈ CL such that the matrix [

G(c)|Λ
A

]
has full rank.

Theorem (Sufficient condition for identifiably)
Let H ∈OPW (Λ) with Λ ∈ ZL×ZL of size |Λ|= R > L. Assume that there exists a subset Λ̃⊂ Λ of size L so that

(i) τj(Λ) = τj(Λ̃) whenever τj(Λ) 6= 0.

(ii) ind(τ ′) 6= ind(τ(Λ)) for every L-tubel τ ′ � τ(Λ̃) of size L different from τ(Λ).
Given any full spark matrix A of size (R−L)×R, then there exists an identifier c ∈ CL so that the R×R matrix[

G(c)|Λ
A

]
is invertible. Moreover, the set of all such identifiers c constitute a dense open subset of CL.
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Signal Transmission over
Unidentified Channels
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Motivation
B Two step procedure for data transmission over frequency-selective channels

1. Estimate (identify) the channel H ∈H ⊂L (CL).
2. Transmit data x from a certain data set X ⊂ CL. Data recovery at the receiver using estimated channel.

B In time-varying channels, this procedure has to repeated regularly, to update channel state information.

B In rapidly changing channels, two step procedure becomes more and more inefficient.

Transmission through unidentified channel

B Combine channel identification and signal recovery.
B Transmission scheme y = H(x + c) with
− H ∈H ⊂L (CL) is a unknown channel from a known subset H .
− x ∈X is the data signal from a certain data set X ⊂ CL.
− c ∈ CL is a pilot signal (designed based on the knowledge of H and X ).

Problem
Find (necessary and/or sufficient) conditions on H and X such that there exists a pilot c ∈ CL such that every
x ∈X can uniquely be recovered form y = H(x + c) for any unknown channel H ∈H .
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Relation to Blind Deconvolution

B H = OPW (Λ) with Λ{(0,0),(1,0), . . . ,(L,0)} ⊂ ZL×ZL

y = Hc =
L−1

∑
k=0

η(k ,0)Tk x

B Recover x ∈X ∈ CL and ηηη from y (without knowing η).
B x and ηηη assumed to be sparse.

τ
τmaxT

1
TL

ν

νmax
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Conditions for Data Recovery and/or Channel Identification
Natural Conditions
(I) Identifiability of H : The map H 7→ Hc is injective on H .

(R) Recovery condition for known channel: Every H ∈H is injective on X .

Subsets of CL

H c = {Hc : H ∈H } : All possible output vectors for the pilot c.

H X = {Hx : H ∈H , x ∈X } : Possible output of arbitrary data vector in X .

Further Conditions
(i) span{H c}∩ span{H X }= {0} : Isolate Hc and Hx from the channel output y = H(c + x).

(ii) H(X + c)∩H′(X + c) for every H 6= H′ in H : Identify H from y = H(c + x) with unknown x ∈X .

(iii) H(x + c) = H′(x′+ c) implies x = x′ : Guarantees exact recovery of x ∈X but not identification H

(i)
(I)

=⇒ (ii)
(R)

=⇒ (iii)
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Degrees of Freedom

B H = OPW (Λ)⊂L (CL) is a linear subspace of dimension |Λ|.
B Assume X ⊂ CL is a linear subspace of dimension K .

B Counting degrees of freedom, we must have

|Λ|+ K ≤ L and |Λ| ≤ L . (1)

as a necessary condition for exact recovery of H ∈H and x ∈X .

B Without identifying H, we may get K > L−|Λ| =⇒ how?

B When we get equality in (1)?
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Example: 1-Dimensional Signal Space
B For a given (and known) Λ⊂ ZL×ZL, we consider the operator Paley–Wiener space

H = OPW (Λ) =
{

H = ∑
k ,`∈Λ

η(k , `)M`Tk : η(k , `) ∈ C
}
.⊂L (CL)

B Assume a 1–dimensional signal space X = span{v} ⊂ CL for some v ∈ CL.

B For x = u v ∈X , with u ∈ C, the received signal is

y = H(x + c) = u H(v) + H(c) = G(c)|Ληηη + u G(v)|Ληηη

B Separation of Hx and Hc from y =⇒ span{H c}∩ span{H v}= {0} =⇒ rang [G(c)|Λ]⊥ rang [G(v)|Λ].

For rang [G(v)|Λ] = span{a} is a 1-dimensional subspace, we have the following result.

Theorem
Let Λ⊂ ZL×ZL with 1≤ |Λ| ≤ L−1 and let a ∈ CL\{0} be arbitrary.
There exists a vector c ∈ CL such that the L×|Λ|+ 1 matrix [G(c)|Λ,a] has full rank.
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General Construction
B The set of all time-frequency shifts

{
M`Tk

}L−1
`,k=0 can be separated into L + 1 commutative subgroups

Gs =
{

M2rkTk : k = 0,1, . . . ,L−1
}
, s = 0,1, . . .L−1

GL =
{

Mk : k = 0,1, . . . ,L−1
}

B Each commutative subgroup Gs posses a set of common eigenvectors (i.e. the chirp sequences)

es(`) : ` = 0,1, . . . ,L−1

which forms on orthogonal basis for CL.

Theorem
Let Λ⊂ ZL×ZL such that there exists an s ∈ {0,1, . . . ,L} so that Λ⊂ Gs.
There exists a subspace X = span{es(1), . . . ,es(K )} ⊂ CL of dimension K = L−|Λ| and a c ∈ CL such that

span{H c}∩ span{H X }= {0}

and such that Conditions (I) and (R) are satisfied.
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Maximum Size of Data Subspace
B Given a subspace X of dimension K , it is desirable that the dimension of span{H X } is again K .

B For for a one-dimensional X = span{v}, we have dim(span{H X }) = rank(G(v)|Λ).

Question: Given a support set Λ⊂ ZL×ZL of H = OPW (Λ) with |Λ| ≤ L.
What is the minimum rank of G(v)|Λ for v varying in CL?

Theorem
Let L≥ 3 be an odd integer and Λ⊂ ZL×ZL with |Λ| ≤ L. Then

min
v∈CL\{0}

rank(G(v)|Λ)≤ N(Λ)

with
N(Λ) = 1 + min

s∈{0,1,...,L}
min

{
|I| : I ⊂ ZL×ZL with Λ⊂ I +Gs

}
,

and where I +Gs = {x + y : x ∈ I , y ∈ Gs}.
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Example with Unknown Channel Support
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Channel Model
B Time continuous Time-Varying-Linear SISO Channel H : L2(R)→ L2(R):

g(t) = (Hf )(t) =
∫∫

R×R
ηH(τ,ν) · f (t− τ)ei2πν t dνdτ =

∫∫
R×R

ηH(τ,ν)(MνTτ f )(t)dνdτ

B Time discrete Time-Varying-Linear SISO Channel H : L2(R)→ L2(R):

g(t) = (Hf )(t) =
K−1

∑
k=0

M−1

∑
`=0

ηH(k , `) · f (t−k∆τ)ei2π`∆ν t =
K−1

∑
k=0

M−1

∑
`=0

ηH(k , `) · f (t−kT )ei 2π

TL `t

B Rectification of the channel support region:
with ∆τ = T and ∆ν = 1

TL for some prime L≥ 5.

τ
τmaxT

1
TL

ν

νmax
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Transmitted Signal
B Transmitted signal: Delta train followed by a guard interval

f (t) =
2L−1

∑
m=0

xm δ (t−mT ) with xm =

{
data symbol : 0≤m ≤ L−1
0 : L≤m ≤ 2L−1

B Received signal:

1. Sampling at rate 1/T : gn = (Hf )(nT ), n = 0,1, . . . ,2L−1.

2. Add two consecutive blocks of length L: yn = gn + gn+L, n = 0,1, . . . ,L−1.

B Write in vector form:

y = Hx =
L−1

∑
`=0

L−1

∑
k=0

η(k , l)M`Tkx (2)

with x = (x0, . . . ,xL−1)T and y = (x0, . . . ,xL−1)T and with H ∈OPW (Λ).

Remark: Using a periodic weighted delta train

f (t) = ∑
p∈Z

2L−1

∑
m=0

xm δ (t−mT −pLT )

results in a similar expression as in (2) but requires periodic data.
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Transmission Scheme
B Aim: We want to transmit a message γγγ = {γ1, . . . ,γQ} ⊂ C of size Q ≤ L over the channel H ∈OPW (Λ) and

recover γγγ at the receiver without knowing H and without knowing the channel support Λ in advance.

B Data symbols: The data symbols a sum of a pilot and the actual message

x = c +
Q

∑
q=1

γq eq

with the pilot signal c which is chosen to be an Alltop sequence and eq are particular chirp sequences

c(n) =
1√
L

exp

(
i
2π

L
n3
)

and emL+r (n) =
1√
L

exp

(
i
2π

L

[
r + mn + rn2]) , n ∈ ZL

B Received signal:
y = Hx =

L−1

∑
`=0

L−1

∑
k=0

η(k , l)M`Tkx = G(x)ηηη = G(c)ηηη + Us = ΦΦΦ

(
ηηη

s

)
(3)

with a L×2L2 measurement matrix ΦΦΦ = [G(c) , U] and a sparse vector s = f (ηηη ,γγγ).

B Recovery of the message: Solve CS problem (3), then determine γγγ = g(ηηη ,s).
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Compressive Sampling Problem

B Compressive Sampling Problem of size L×2L2

y = ΦΦΦ

(
ηηη

s

)
with

∣∣supp(ηηη ,s)T ∣∣≤ (1 + Q) |Λ|

Lemma
The coherence of the measurement matrix ΦΦΦ = [G(c) , U] is upper bounded by µ(ΦΦΦ)≤ 2√

L
.

Remark: Welsh bound is 1√
L+1

.

Theorem
Let H ∈OPW (Λ)⊂L (CL) be an unknown channel with unknown support set Λ where L≥ 5 is a prime number. For

Q ≤
√

L
4 |Λ|

−1

any message γγγ ∈ CQ can be transmitted over H and recovered at the receiver.
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Numerical Experiment

• L = 307
• OMP
• average over 100 channels (random

support, Gaussian coefficients)
• red line: 1% rel. error
• simulation much better than bound
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Summary
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Current and Future Work

B Identification of SISO and MIMO TVL Channels:

− Identification of stochastic channels and stochastic sequences
− Conditions on support of the covariance of the spreading function η .
− Linear side constraints in terms of covariance.

B Transmission over Unidentified Channels:

− Stochastic encoding, RIP
− Scheme which maximum transmission rate
− Continuous time setting
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