Time-Varying Linear Systems: Identification and Transmission through Unidentified Channels

Alihan Kaplan ${ }^{\dagger}$, Dae Gwan Lee*, Götz Pfander*, Volker Pohl ${ }^{\dagger}$

*Lehrstuhls für Wissenschaftliches Rechnen, Katholische Universität Eichstätt-Ingolstadt †Lehrstuhl für Theoretische Informationstechnik, Technische Universität, München

Outline

1. Introduction: Linear Time-Varying Systems
2. Identification under Side Constraints
3. Signal Transmission over Unidentified Channels
4. Example: Message Transmission with unknown Channel Support

Time-Varying Linear Systems

Time-varying Linear SISO Systems

\triangleright Single-Input Single-Output Systems (SISO):
Linear time-varying SISO channels are described by operators of $H: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ the form

$$
(\mathrm{H} f)(t)=\iint_{\mathbb{R} \times \mathbb{R}} \eta_{\mathrm{H}}(\tau, v) \cdot f(t-\tau) \mathrm{e}^{\mathrm{i} 2 \pi v t} \mathrm{~d} v \mathrm{~d} \tau=\iint_{\mathbb{R} \times \mathbb{R}} \eta_{\mathrm{H}}(\tau, v)\left(\mathrm{M}_{v} \mathrm{~T}_{\tau} f\right)(t) \mathrm{d} v \mathrm{~d} \tau
$$

with

- Spreading function: $\eta_{\mathrm{H}} \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$
- Translation (time-shift) operator: $\left(\mathrm{T}_{\tau} f\right)(t)=f(t-\tau)$
- Modulation (frequency shift): $\mathrm{M}_{v}(f)(t)=f(t) \mathrm{e}^{\mathrm{i} 2 \pi v t}$

Time-varying Linear MIMO Systems

\triangleright Multiple-Input Multiple-Output Systems (MIMO):
Channels with N-inputs and M-outputs are characterized by operators $\mathbf{H}:\left(L^{2}(\mathbb{R})\right)^{N} \rightarrow\left(L^{2}(\mathbb{R})\right)^{M}$ of the form

$$
\mathbf{H}\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{N}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{H}_{1,1} & \cdots & \mathrm{H}_{1, N} \\
\vdots & & \vdots \\
\mathrm{H}_{M, 1} & \cdots & \mathrm{H}_{M, N}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{N}
\end{array}\right)=\left(\begin{array}{c}
\sum_{n=1}^{N} \mathrm{H}_{1, n} f_{n} \\
\vdots \\
\sum_{n=1}^{N} \mathrm{H}_{M, n} f_{n}
\end{array}\right) .
$$

Each subchannel $H_{m, n}$ is a TVL SISO system.

Finite-dimensional TVL Channels

\triangleright The identification problem of TVL systems $\mathbf{H}:\left(L^{2}(\mathbb{R})\right)^{N} \rightarrow\left(L^{2}(\mathbb{R})\right)^{M}$ can be reduced to a finite-dimensional problem $\mathbf{H}:\left(\mathbb{C}^{L}\right)^{N} \rightarrow\left(\mathbb{C}^{L}\right)^{M}$

$$
\mathbf{H}\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{H}_{1,1} & \cdots & \mathbf{H}_{1, N} \\
\vdots & & \vdots \\
\mathbf{H}_{M, 1} & \cdots & \mathbf{H}_{M, N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right)=\left(\begin{array}{c}
\sum_{n=1}^{N} \mathbf{H}_{1, n} \mathbf{x}_{n} \\
\vdots \\
\sum_{n=1}^{N} \mathbf{H}_{M, n} \mathbf{x}_{n}
\end{array}\right) .
$$

wherein each sub-system $\mathbf{H}_{n, m}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{L}$ has the form

$$
\mathbf{H}_{m, n} \mathbf{x}=\sum_{\ell=0}^{L-1} \sum_{k=0}^{L-1} \eta_{m, n}(k, \ell) \mathbf{M}^{\ell} \mathbf{T}^{k} \mathbf{x}=\mathbf{G}(\mathbf{x}) \boldsymbol{\eta}
$$

with spreading coefficients $\left\{\eta_{m, n}(k, \ell)\right\}_{k, \ell=0}^{L-1}$, and with the translation operator $\mathbf{T}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{L}$ and the modulation operator $\mathbf{M}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{L}$ given by

$$
\mathbf{T}:\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{L-1}
\end{array}\right) \mapsto\left(\begin{array}{c}
x_{L-1} \\
x_{0} \\
\vdots \\
x_{L-2}
\end{array}\right) \quad \text { and } \quad \mathbf{M}:\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{L-1}
\end{array}\right) \mapsto\left(\begin{array}{c}
x_{0} \\
x_{1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{L} \cdot 1} \\
\vdots \\
x_{L-1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{L} \cdot(L-1)}
\end{array}\right)
$$

Operator Paley-Wiener spaces

\triangleright Set of all linear operators $\mathbb{C}^{L} \rightarrow \mathbb{C}^{L}$ is spanned by time-frequency shifts $\mathbf{M}^{\ell} \mathbf{T}^{k}$

$$
\mathscr{L}\left(\mathbb{C}^{L}\right)=\left\{\mathbf{H}=\sum_{k=0}^{L-1} \sum_{\ell=0}^{L-1} \eta(k, \ell) \mathbf{M}^{\ell} \mathbf{T}^{k}: \eta(k, \ell) \in \mathbb{C} \text { for all }(k, \ell) \in \mathbb{Z}_{L} \times \mathbb{Z}_{L}\right\}
$$

\triangleright SISO Operator Paley-Wiener space: For $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$

$$
O P W(\Lambda)=\operatorname{span}\left\{\mathbf{M}^{\ell} \mathbf{T}^{\kappa}:(k, \ell) \in \Lambda\right\}
$$

\triangleright MIMO Operator Paley-Wiener space: For $\boldsymbol{\Lambda}=\left\{\Lambda_{m, n}\right\}_{m, n=1}^{M, N}$ with $\Lambda_{m, n} \in \mathbb{Z}_{L} \times \mathbb{Z}_{L}$

$$
O P W(\boldsymbol{\Lambda})=\left\{\mathbf{H}: \mathbf{H}_{m, n} \in O P W\left(\Lambda_{m, n}\right)\right\}
$$

Identification under linear side constraints

Identification - SISO

Definition (Identifiable)

The space $\operatorname{OPW}(\Lambda)$ is identifiable if and only if there exists an identifier $\mathbf{c} \in \mathbb{C}^{L}$ such that for each $\mathbf{H} \in O P W(\Lambda)$ the equation

$$
\mathbf{y}=\mathbf{H} \mathbf{c}=\sum_{(k, \ell) \in \Lambda} \eta(k, \ell) \mathbf{M}^{\ell} \mathbf{T}^{k} \mathbf{c}=\mathbf{G}(\mathbf{c}) \boldsymbol{\eta}
$$

is uniquely solvable for $\boldsymbol{\eta} \in \mathbb{C}^{\wedge}$.
Remark
$\mathbf{G}(\mathbf{c})$ is Gabor matrix of size $L \times L^{2}$

$$
\mathbf{G}(\mathbf{c})=\left[\mathbf{M}^{0} \mathbf{T}^{0} \mathbf{c}, \mathbf{M}^{0} \mathbf{T}^{1} \mathbf{c}, \cdots, \mathbf{M}^{L-1} \mathbf{T}^{L-1} \mathbf{c}\right]
$$

Theorem (Identificaltion of SISO Channels)

The space $\operatorname{OPW}(\Lambda)$ is identifiable if and only if $|\Lambda| \leq L$.

Identification - MIMO

Definition (Identifiable MIMO)

The space $\operatorname{OPW}(\boldsymbol{\Lambda})$ is identifiable if and only if there exist vectors $\mathbf{c}=\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{N}\right) \in\left(\mathbb{C}^{L}\right)^{N}$ such that for each $\mathbf{H} \in \operatorname{OPW}(\boldsymbol{\Lambda})$ the $\operatorname{map} \mathbf{H} \mapsto \mathbf{y}=\mathbf{H c}$ is injective.
Theorem (Identification of MIMO Channels)
The space $\operatorname{OPW}(\Lambda)$ is identifiable if and only if

$$
\sum_{n=1}^{N}\left|\Lambda_{m, n}\right| \leq L \quad \text { for every } m=1, \ldots, M
$$

Assumptions

- Subchannels $\mathbf{H}_{m, n}$ and their time-frequency components $\eta_{m, n}(k, \ell)$ are independent
- Information about one channel does not help to identify another.

Linear Constrains Between Spreading Coefficients

\triangleright Channels H in $\mathrm{OPW}(\Lambda) \subset \mathscr{L}\left(\mathbb{C}^{L}\right)$:

$$
\mathbf{y}=\mathbf{H} \mathbf{c}=\sum_{(k, \ell) \in \Lambda} \eta(k, \ell) \mathbf{M}^{\ell} \mathbf{T}^{k} \mathbf{c}=\mathbf{G}(\mathbf{c}) \boldsymbol{\eta}
$$

$\triangleright \operatorname{OPW}(\Lambda)$ is identifiable if $|\Lambda| \leq L$.
\triangleright Assume linear relations between the spreading coefficients are known

$$
\sum_{k, \ell} \alpha_{k, \ell} \eta(k, \ell)=\beta \quad \text { for some } \quad \alpha_{k, \ell}, \beta \in \mathbb{C}
$$

Intuition/Question

- Let $\mathbf{A} \boldsymbol{\eta}=\mathbf{b}$ be a given set of $M \geq 1$ linear independent side constraints.
- Let $O P W_{\mathbf{A}, \mathbf{b}}(\Lambda)$ be the set of all $\mathbf{H} \in O P W(\Lambda)$ which satisfy these side constraints.
- $O P W_{\mathrm{A}, \mathrm{b}}(\Lambda)$ is identifiable if and only if $|\Lambda| \leq L+M$?

Linear Relations between Time-Frequency Components

\triangleright In the SISO case, linear relations between the spreading coefficients of the channel are expressed by

$$
\mathbf{b}=\mathbf{A} \boldsymbol{\eta}
$$

\triangleright Including the equation for channel identification yields

$$
\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{b}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{G}(\mathbf{c}) \\
\mathbf{A}
\end{array}\right] \boldsymbol{\eta}
$$

\rightarrow More equations for the same number of unknowns should help to identify the channel.
Theorem (One linear side constraint)
Let $\mathbf{H} \in O P W(\Lambda)$ with $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ with $|\Lambda|=L+1$ and let $\mathbf{a} \in \mathbb{C}^{L+1}, \mathbf{a} \neq 0$. There there exists a $\mathbf{c} \in \mathbb{C}^{L}$ so that

$$
\left[\begin{array}{c}
\mathbf{G}(\mathbf{c}) \mid \wedge \\
\mathbf{a}^{*}
\end{array}\right]
$$

is invertible. Thus the channel coefficients η are identifiable.
Moreover, the set of all such identifiers constitute a dense open subset of \mathbb{C}^{L}.

More Side Constrains

Lemma (No general solution for more than one side constraint)
Let $\mathbf{H} \in O P W(\Lambda)$ with $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ with $|\Lambda|>L+1$. There exist matrices \mathbf{A} of size $(|\Lambda|-L) \times|\Lambda|$ with $\mathbf{A} \neq 0$ such that there is no $\mathbf{c} \in \mathbb{C}^{L}$ such that the matrix

$$
\left[\begin{array}{c}
\left.\mathbf{G}(\mathbf{c})\right|_{\Lambda} \\
\mathbf{A}
\end{array}\right]
$$

has full rank.

Theorem (Sufficient condition for identifiably)

Let $\mathbf{H} \in \operatorname{OPW}(\Lambda)$ with $\Lambda \in \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ of size $|\Lambda|=R>L$. Assume that there exists a subset $\widetilde{\Lambda} \subset \Lambda$ of size L so that
(i) $\tau_{j}(\Lambda)=\tau_{j}(\widetilde{\Lambda})$ whenever $\tau_{j}(\Lambda) \neq 0$.
(ii) $\operatorname{ind}\left(\tau^{\prime}\right) \neq \operatorname{ind}(\tau(\Lambda))$ for every L-tubel $\tau^{\prime} \preceq \tau(\widetilde{\Lambda})$ of size L different from $\tau(\Lambda)$.

Given any full spark matrix \mathbf{A} of size $(R-L) \times R$, then there exists an identifier $\mathbf{c} \in \mathbb{C}^{L}$ so that the $R \times R$ matrix

$$
\left[\begin{array}{c}
\left.\mathbf{G}(\mathbf{c})\right|_{\Lambda} \\
\mathbf{A}
\end{array}\right]
$$

is invertible. Moreover, the set of all such identifiers constitute a dense open subset of \mathbb{C}^{L}.

Signal Transmission over Unidentified Channels

Motivation

\triangleright Two step procedure for data transmission over frequency-selective channels

1. Estimate (identify) the channel $\mathbf{H} \in \mathscr{H} \subset \mathscr{L}\left(\mathbb{C}^{L}\right)$.
2. Transmit data \mathbf{x} from a certain data set $\mathscr{X} \subset \mathbb{C}^{L}$. Data recovery at the receiver using estimated channel.
\triangleright In time-varying channels, this procedure has to repeated regularly, to update channel state information.
\triangleright In rapidly changing channels, two step procedure becomes more and more inefficient.

Transmission through unidentified channel

\triangleright Combine channel identification and signal recovery.
\triangleright Transmission scheme $\mathbf{y}=\mathbf{H}(\mathbf{x}+\mathbf{c})$ with
$-\mathbf{H} \in \mathscr{H} \subset \mathscr{L}\left(\mathbb{C}^{L}\right)$ is a unknown channel from a known subset \mathscr{H}.
$-\mathbf{x} \in \mathscr{X}$ is the data signal from a certain data set $\mathscr{X} \subset \mathbb{C}^{L}$.
$-\mathbf{c} \in \mathbb{C}^{L}$ is a pilot signal (designed based on the knowledge of \mathscr{H} and \mathscr{X}).

Problem

Find (necessary and/or sufficient) conditions on \mathscr{H} and \mathscr{X} such that there exists a pilot $\mathbf{c} \in \mathbb{C}^{L}$ such that every $\mathbf{x} \in \mathscr{X}$ can uniquely be recovered form $\mathbf{y}=\mathbf{H}(\mathbf{x}+\mathbf{c})$ for any unknown channel $\mathbf{H} \in \mathscr{H}$.

Relation to Blind Deconvolution

$\triangleright \mathscr{H}=\operatorname{OPW}(\Lambda)$ with $\Lambda\{(0,0),(1,0), \ldots,(L, 0)\} \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$

$$
\mathbf{y}=\mathbf{H} \mathbf{c}=\sum_{k=0}^{L-1} \eta(k, 0) \mathbf{T}^{k} \mathbf{x}
$$

\triangleright Recover $\mathbf{x} \in \mathscr{X} \in \mathbb{C}^{L}$ and $\boldsymbol{\eta}$ from \mathbf{y} (without knowing η).
$\triangleright \mathbf{x}$ and $\boldsymbol{\eta}$ assumed to be sparse.

Conditions for Data Recovery and/or Channel Identification

Natural Conditions

(I) Identifiability of \mathscr{H} : The map $\mathbf{H} \mapsto \mathbf{H c}$ is injective on \mathscr{H}.
(R) Recovery condition for known channel: Every $\mathbf{H} \in \mathscr{H}$ is injective on \mathscr{X}.

Subsets of \mathbb{C}^{L}

$$
\begin{array}{ll}
\mathscr{H} \mathbf{c}=\{\mathbf{H} \mathbf{c}: \mathbf{H} \in \mathscr{H}\} & : \text { All possible output vectors for the pilot } \mathbf{c} . \\
\mathscr{H} \mathscr{X}=\{\mathbf{H} \mathbf{x}: \mathbf{H} \in \mathscr{H}, \mathbf{x} \in \mathscr{X}\} & : \text { Possible output of arbitrary data vector in } \mathscr{X} .
\end{array}
$$

Further Conditions
(i) $\operatorname{span}\{\mathscr{H} \mathbf{c}\} \cap \operatorname{span}\{\mathscr{H} \mathscr{X}\}=\{0\} \quad$: Isolate $\mathbf{H c}$ and $\mathbf{H x}$ from the channel output $\mathbf{y}=\mathbf{H}(\mathbf{c}+\mathbf{x})$.
(ii) $\mathbf{H}(\mathscr{X}+\mathbf{c}) \cap \mathbf{H}^{\prime}(\mathscr{X}+\mathbf{c})$ for every $\mathbf{H} \neq \mathbf{H}^{\prime}$ in \mathscr{H} : Identify \mathbf{H} from $\mathbf{y}=\mathbf{H}(\mathbf{c}+\mathbf{x})$ with unknown $\mathbf{x} \in \mathscr{X}$.
(iii) $\mathbf{H}(\mathbf{x}+\mathbf{c})=\mathbf{H}^{\prime}\left(\mathbf{x}^{\prime}+\mathbf{c}\right)$ implies $\mathbf{x}=\mathbf{x}^{\prime} \quad$: Guarantees exact recovery of $\mathbf{x} \in \mathscr{X}$ but not identification \mathbf{H}

$$
(i) \xrightarrow{(\mathrm{I})}(i i) \xrightarrow{(\mathrm{R})}(i i i)
$$

Degrees of Freedom

$\triangleright \mathscr{H}=O P W(\Lambda) \subset \mathscr{L}\left(\mathbb{C}^{L}\right)$ is a linear subspace of dimension $|\Lambda|$.
\triangleright Assume $\mathscr{X} \subset \mathbb{C}^{L}$ is a linear subspace of dimension K.
\triangleright Counting degrees of freedom, we must have

$$
\begin{equation*}
|\Lambda|+K \leq L \quad \text { and } \quad|\Lambda| \leq L \tag{1}
\end{equation*}
$$

as a necessary condition for exact recovery of $\mathbf{H} \in \mathscr{H}$ and $\mathbf{x} \in \mathscr{X}$.
\triangleright Without identifying \mathbf{H}, we may get $K>L-|\Lambda| \Longrightarrow$ how?
\triangleright When we get equality in (1)?

Example: 1-Dimensional Signal Space

\triangleright For a given (and known) $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$, we consider the operator Paley-Wiener space

$$
\mathscr{H}=O P W(\Lambda)=\left\{\mathbf{H}=\sum_{k, \ell \in \Lambda} \eta(k, \ell) \mathbf{M}^{\ell} \mathbf{T}^{k}: \eta(k, \ell) \in \mathbb{C}\right\} \cdot \subset \mathscr{L}\left(\mathbb{C}^{L}\right)
$$

\triangleright Assume a 1-dimensional signal space $\mathscr{X}=\operatorname{span}\{\mathbf{v}\} \subset \mathbb{C}^{L}$ for some $\mathbf{v} \in \mathbb{C}^{L}$.
\triangleright For $x=u \mathbf{v} \in \mathscr{X}$, with $u \in \mathbb{C}$, the received signal is

$$
\mathbf{y}=\mathbf{H}(\mathbf{x}+\mathbf{c})=u \mathbf{H}(\mathbf{v})+\mathbf{H}(\mathbf{c})=\left.\mathbf{G}(\mathbf{c})\right|_{\wedge} \boldsymbol{\eta}+\left.u \mathbf{G}(\mathbf{v})\right|_{\wedge} \boldsymbol{\eta}
$$

\triangleright Separation of $\mathbf{H x}$ and $\mathbf{H c}$ from $\mathbf{y} \Longrightarrow \operatorname{span}\{\mathscr{H} \mathbf{c}\} \cap \operatorname{span}\{\mathscr{H} \mathbf{v}\}=\{0\} \Longrightarrow \operatorname{rang}\left[\left.\mathbf{G}(\mathbf{c})\right|_{\wedge}\right] \perp \operatorname{rang}\left[\left.\mathbf{G}(\mathbf{v})\right|_{\wedge}\right]$.

For rang $\left[\left.\mathbf{G}(\mathbf{v})\right|_{\wedge}\right]=\operatorname{span}\{\mathbf{a}\}$ is a 1-dimensional subspace, we have the following result.

Theorem

Let $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ with $1 \leq|\Lambda| \leq L-1$ and let $\mathbf{a} \in \mathbb{C}^{L} \backslash\{0\}$ be arbitrary.
There exists a vector $\mathbf{c} \in \mathbb{C}^{L}$ such that the $L \times|\Lambda|+1$ matrix $\left[\left.\mathbf{G}(\mathbf{c})\right|_{\Lambda}, \mathbf{a}\right]$ has full rank.

General Construction

\triangleright The set of all time-frequency shifts $\left\{\mathbf{M}^{\ell} \mathbf{T}^{k}\right\}_{\ell, k=0}^{L-1}$ can be separated into $L+1$ commutative subgroups

$$
\begin{aligned}
\mathscr{G}_{s} & =\left\{\mathbf{M}^{2 r k} \mathbf{T}^{k}: k=0,1, \ldots, L-1\right\}, \quad s=0,1, \ldots L-1 \\
\mathscr{G}_{L} & =\left\{\mathbf{M}^{k}: k=0,1, \ldots, L-1\right\}
\end{aligned}
$$

\triangleright Each commutative subgroup \mathscr{G}_{s} posses a set of common eigenvectors (i.e. the chirp sequences)

$$
\mathbf{e}_{s}(\ell): \ell=0,1, \ldots, L-1
$$

which forms on orthogonal basis for \mathbb{C}^{L}.

Theorem

Let $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ such that there exists an $s \in\{0,1, \ldots, L\}$ so that $\Lambda \subset \mathscr{G}_{s}$.
There exists a subspace $\mathscr{X}=\operatorname{span}\left\{\mathbf{e}_{s}(1), \ldots, \mathbf{e}_{s}(K)\right\} \subset \mathbb{C}^{L}$ of dimension $K=L-|\Lambda|$ and a $\mathbf{c} \in \mathbb{C}^{L}$ such that

$$
\operatorname{span}\{\mathscr{H} \mathbf{c}\} \cap \operatorname{span}\{\mathscr{H} \mathscr{X}\}=\{0\}
$$

and such that Conditions (I) and (R) are satisfied.

Maximum Size of Data Subspace

\triangleright Given a subspace \mathscr{X} of dimension K, it is desirable that the dimension of $\operatorname{span}\{\mathscr{H} \mathscr{X}\}$ is again K.
\triangleright For for a one-dimensional $\mathscr{X}=\operatorname{span}\{\mathbf{v}\}$, we have $\operatorname{dim}(\operatorname{span}\{\mathscr{H} \mathscr{X}\})=\operatorname{rank}\left(\left.\mathbf{G}(\mathbf{v})\right|_{\wedge}\right)$.

Question: Given a support set $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ of $\mathscr{H}=\operatorname{OPW}(\Lambda)$ with $|\Lambda| \leq L$.
What is the minimum rank of $\left.\mathbf{G}(\mathbf{v})\right|_{\Lambda}$ for \mathbf{v} varying in \mathbb{C}^{L} ?

Theorem

Let $L \geq 3$ be an odd integer and $\Lambda \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L}$ with $|\Lambda| \leq L$. Then

$$
\min _{\mathbf{v} \in \mathbb{C}^{\leq} \backslash\{0\}} \operatorname{rank}\left(\left.\mathbf{G}(\mathbf{v})\right|_{\Lambda}\right) \leq N(\Lambda)
$$

with

$$
N(\Lambda)=1+\min _{s \in\{0,1, \ldots, L\}} \min \left\{|I|: I \subset \mathbb{Z}_{L} \times \mathbb{Z}_{L} \text { with } \Lambda \subset I+\mathscr{G}_{s}\right\},
$$

and where $I+\mathscr{G}_{s}=\left\{x+y: x \in I, y \in \mathscr{G}_{s}\right\}$.

Example with Unknown Channel Support

Channel Model

\triangleright Time continuous Time-Varying-Linear SISO Channel $\mathrm{H}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$:

$$
g(t)=(\mathrm{H} f)(t)=\iint_{\mathbb{R} \times \mathbb{R}} \eta_{\mathrm{H}}(\tau, v) \cdot f(t-\tau) \mathrm{e}^{\mathrm{i} 2 \pi v t} \mathrm{~d} v \mathrm{~d} \tau=\iint_{\mathbb{R} \times \mathbb{R}} \eta_{\mathrm{H}}(\tau, v)\left(\mathrm{M}_{v} \mathrm{~T}_{\tau} f\right)(t) \mathrm{d} v \mathrm{~d} \tau
$$

\triangleright Time discrete Time-Varying-Linear SISO Channel H:L $L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$:

$$
g(t)=(\mathrm{H} f)(t)=\sum_{k=0}^{K-1} \sum_{\ell=0}^{M-1} \eta_{\mathrm{H}}(k, \ell) \cdot f(t-k \Delta \tau) \mathrm{e}^{\mathrm{i} 2 \pi \ell \Delta v t}=\sum_{k=0}^{K-1} \sum_{\ell=0}^{M-1} \eta_{\mathrm{H}}(k, \ell) \cdot f(t-k T) \mathrm{e}^{\mathrm{i} \frac{2 \pi}{T} \ell t}
$$

\triangleright Rectification of the channel support region: with $\Delta \tau=T$ and $\Delta v=\frac{1}{T L}$ for some prime $L \geq 5$.

Transmitted Signal

\triangleright Transmitted signal: Delta train followed by a guard interval

$$
f(t)=\sum_{m=0}^{2 L-1} x_{m} \delta(t-m T) \quad \text { with } \quad x_{m}= \begin{cases}\text { data symbol } & : 0 \leq m \leq L-1 \\ 0 & : L \leq m \leq 2 L-1\end{cases}
$$

\triangleright Received signal:

1. Sampling at rate $1 / T: \quad g_{n}=(\mathrm{H} f)(n T), n=0,1, \ldots, 2 L-1$.
2. Add two consecutive blocks of length $L: \quad y_{n}=g_{n}+g_{n+L}, n=0,1, \ldots, L-1$.
\triangleright Write in vector form:

$$
\begin{equation*}
\mathbf{y}=\mathbf{H} \mathbf{x}=\sum_{\ell=0}^{L-1} \sum_{k=0}^{L-1} \eta(k, l) \mathbf{M}^{\ell} \mathbf{T}^{k} \mathbf{x} \tag{2}
\end{equation*}
$$

with $\mathbf{x}=\left(x_{0}, \ldots, x_{L-1}\right)^{\mathrm{T}}$ and $\mathbf{y}=\left(x_{0}, \ldots, x_{L-1}\right)^{\mathrm{T}}$ and with $\mathbf{H} \in \operatorname{OPW}(\Lambda)$.

Remark: Using a periodic weighted delta train

$$
f(t)=\sum_{p \in \mathbb{Z}} \sum_{m=0}^{2 L-1} x_{m} \delta(t-m T-p L T)
$$

results in a similar expression as in (2) but requires periodic data.

Transmission Scheme

\triangleright Aim: We want to transmit a message $\boldsymbol{\gamma}=\left\{\gamma_{1}, \ldots, \gamma_{Q}\right\} \subset \mathbb{C}$ of size $Q \leq L$ over the channel $\mathbf{H} \in \operatorname{OPW}(\Lambda)$ and recover $\boldsymbol{\gamma}$ at the receiver without knowing \mathbf{H} and without knowing the channel support \wedge in advance.
\triangleright Data symbols: The data symbols a sum of a pilot and the actual message

$$
\mathbf{x}=\mathbf{c}+\sum_{q=1}^{Q} \gamma_{q} \mathbf{e}_{q}
$$

with the pilot signal \mathbf{c} which is chosen to be an Alltop sequence and \mathbf{e}_{q} are particular chirp sequences

$$
\mathbf{c}(n)=\frac{1}{\sqrt{L}} \exp \left(\mathrm{i} \frac{2 \pi}{L} n^{3}\right) \quad \text { and } \quad \mathbf{e}_{m L+r}(n)=\frac{1}{\sqrt{L}} \exp \left(\mathrm{i} \frac{2 \pi}{L}\left[r+m n+r n^{2}\right]\right), \quad n \in \mathbb{Z}_{L}
$$

\triangleright Received signal:

$$
\begin{equation*}
\mathbf{y}=\mathbf{H} \mathbf{x}=\sum_{\ell=0}^{L-1} \sum_{k=0}^{L-1} \eta(k, l) \mathbf{M}^{\ell} \mathbf{T}^{K} \mathbf{x}=\mathbf{G}(\mathbf{x}) \boldsymbol{\eta}=\mathbf{G}(\mathbf{c}) \boldsymbol{\eta}+\mathbf{U s}=\boldsymbol{\Phi}\binom{\boldsymbol{\eta}}{\mathbf{s}} \tag{3}
\end{equation*}
$$

with a $L \times 2 L^{2}$ measurement matrix $\boldsymbol{\Phi}=[\mathbf{G}(\mathbf{c}), \mathbf{U}]$ and a sparse vector $\mathbf{s}=f(\boldsymbol{\eta}, \boldsymbol{\gamma})$.
\triangleright Recovery of the message: Solve CS problem (3), then determine $\boldsymbol{\gamma}=g(\boldsymbol{\eta}, \mathbf{s})$.

Compressive Sampling Problem

\triangleright Compressive Sampling Problem of size $L \times 2 L^{2}$

$$
\mathbf{y}=\boldsymbol{\Phi}\binom{\boldsymbol{\eta}}{\mathbf{s}} \quad \text { with } \quad\left|\operatorname{supp}(\boldsymbol{\eta}, \mathbf{s})^{\mathrm{T}}\right| \leq(1+Q)|\Lambda|
$$

Lemma
The coherence of the measurement matrix $\boldsymbol{\Phi}=[\mathbf{G}(\mathbf{c}), \mathbf{U}]$ is upper bounded by $\mu(\Phi) \leq \frac{2}{\sqrt{L}}$.
Remark: Welsh bound is $\frac{1}{\sqrt{L+1}}$.

Theorem

Let $\mathbf{H} \in O P W(\Lambda) \subset \mathscr{L}\left(\mathbb{C}^{L}\right)$ be an unknown channel with unknown support set Λ where $L \geq 5$ is a prime number. For

$$
Q \leq \frac{\sqrt{L}}{4|\Lambda|}-1
$$

any message $\boldsymbol{\gamma} \in \mathbb{C}^{Q}$ can be transmitted over \mathbf{H} and recovered at the receiver.

Numerical Experiment

- $L=307$
- OMP
- average over 100 channels (random support, Gaussian coefficients)
- red line: 1% rel. error
- simulation much better than bound

Summary

Current and Future Work

\triangleright Identification of SISO and MIMO TVL Channels:

- Identification of stochastic channels and stochastic sequences
- Conditions on support of the covariance of the spreading function η.
- Linear side constraints in terms of covariance.
\triangleright Transmission over Unidentified Channels:
- Stochastic encoding, RIP
- Scheme which maximum transmission rate
- Continuous time setting

Related Publications

围 D．G．Lee，G．E．Pfander，V．Pohl，W．Zhou＂Identification of Channels with Single and Multiple Inputs and Outputs under Linear Constraints，＂Linear Algebra Appl．，vol． 581 （Nov．2019）， 435 － 470.

圁 D．G．Lee，G．E．Pfander，V．Pohl＂Signal transmission through an unidentified channel，＂ 13th Intern．Conf．on Sampling Theory and Applications（SampTA），Bordeaux，France，July 2019.

目 A．Kaplan，D．G．Lee，V．Pohl＂Message transmission through underspread time－varying linear channels，＂ 45th Intern．Conf．on Acoustics，Speech，and Signal Processing（ICASSP），Barcelona，Spain，May 2020

固 A．Kaplan，V．Pohl，D．G．Lee＂The Statistical Restricted Isometry Property for Gabor Systems＂，IEEE Statistical Signal Processing Workshop（SPP），Freiburg，Germany，June 2018， 45 － 49.

圁 D．G．Lee，G．E．Pfander，V．Pohl，W．Zhou＂Identification of multiple－input multiple－output channels under linear side constraints＇，＂43rd Intern．Conf．on Acoustics，Speech，and Signal Processing（ICASSP），Calgary，Canada， April 2018， 3889 － 3893.

