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Abstract

The Hard Thresholding Pursuit algorithm for sparse recovery is revisited using a new
theoretical analysis. The main result states that all sparse vectors can be exactly recovered
from compressive linear measurements in a number of iterations at most proportional to
the sparsity level as soon as the measurement matrix obeys a certain restricted isometry
condition. The recovery is also robust to measurement error. The same conclusions are
derived for a variation of Hard Thresholding Pursuit, called Graded Hard Thresholding
Pursuit, which is a natural companion to Orthogonal Matching Pursuit and runs without
a prior estimation of the sparsity level. In addition, for two extreme cases of the vector
shape, it is shown that, with high probability on the draw of random measurements, a fixed
sparse vector is robustly recovered in a number of iterations precisely equal to the sparsity
level. These theoretical findings are experimentally validated, too.

Key words and phrases: compressive sensing, uniform sparse recovery, nonuniform sparse
recovery, random measurements, iterative algorithms, hard thresholding.
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1 Introduction

This paper deals with the standard compressive sensing problem, i.e., the reconstruction of
vectors x ∈ CN from an incomplete set of m� N linear measurements organized in the form
y = Ax ∈ Cm for some matrix A ∈ Cm×N . It is now well known that if x is s-sparse (i.e., has
only s nonzero entries) and if A is a random matrix whose numberm of rows scales like s times
some logarithmic factors, then the reconstruction of x is achievable via a variety of methods.
The `1-minimization is probably the most popular one, but simple iterative algorithms do
provide alternative methods. We consider here the hard thresholding pursuit (HTP) algorithm
[6] as well as a novel variation and we focus on the number of iterations needed for the
reconstruction. This reconstruction is addressed in two settings:
∗S. F. and J.-L. B. partially supported by NSF (DMS-1120622), P. H. by Simons Foundation (grant 208766)
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• An idealized situation, where the vectors x ∈ CN are exactly sparse and where the
measurements y ∈ Cm are exactly equal to Ax. In this case, the exact reconstruction of
x ∈ CN is targeted.

• A realistic situation, where the vectors x ∈ CN are not exactly sparse and where the
measurements y ∈ Cm contain errors e ∈ Cm, i.e., y = Ax + e. In this case, only an
approximate reconstruction of x ∈ CN is targeted. Precisely, the reconstruction error
should be controlled by the sparsity defect and by the measurement error. The sparsity
defect can be incorporated in the measurement error if y = Ax + e is rewritten as
y = AxS + e′ where S is an index set of s largest absolute entries of x and e′ := AxS + e.

We shall mainly state and prove our results in the realistic situation. They specialize to the
idealized situation simply by setting e′ = 0. In fact, setting e′ = 0 inside the proofs would
simplify them considerably.

Let us now recall that (HTP) consists in constructing a sequence (xn) of s-sparse vectors,
starting with an initial s-sparse x0 ∈ CN — we take x0 = 0 — and iterating the scheme1

Sn := index set of s largest absolute entries of xn−1 + A∗(y −Axn−1),(HTP1)

xn := argmin{‖y −Az‖2, supp(z) ⊆ Sn},(HTP2)

until a stopping criterion is met. It had been shown [10] that, in the idealized situation, exact
reconstruction of every s-sparse x ∈ CN is achieved in s iterations of (HTP) with y = Ax

provided the coherence of the matrix A ∈ Cm×N satisfies µ < 1/(3s) (note that this condition
can be fulfilled when m � s2). Exact and approximate reconstructions were treated in [6],
where it was in particular shown that every s-sparse x ∈ CN is the limit of the sequence
(xn) produced by (HTP) with y = Ax provided the 3sth restricted isometry constant of the
measurement matrix A ∈ Cm×N obeys δ3s < 1/

√
3 ≈ 0.577 (note that this condition can be

fulfilled when m � s ln(N/s)). As a reminder, the kth restricted isometry constant δk of A is
defined as the smallest constant δ ≥ 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all k-sparse z ∈ CN .

In fact, it was shown in [6] that the convergence is achieved in a finite number n̄ of iterations.
In the idealized situation, it can be estimated as

(1) n̄ ≤

⌈
ln(
√

2/3‖x‖2/ξ)
ln(1/ρ3s)

⌉
, ρ3s :=

√
2δ2

3s

1− δ2
3s

< 1, ξ := min
j∈supp(x)

|xj |.

This paper establishes that the number of iterations can be estimated independently of the
shape of x: under a restricted isometry condition, it is at most proportional to the sparsity s,

1exact arithmetic is assumed and, among several candidates for the index set of largest absolute entries, the
smallest one in lexicographic order is always chosen

2



see Theorem 5 and a robust version in Theorem 6. This is reminiscent of the work of T. Zhang
[15] on orthogonal matching pursuit (OMP), see also [7, Theorem 6.25] where it is proved that
n̄ ≤ 12s provided that δ13s < 1/6.

However, (HTP) presents a significant drawback in that a prior estimation of the sparsity s is
required to run the algorithm, while (OMP) does not (although stopping (OMP) at iteration 12s

does require this estimation). We therefore consider a variation of (HTP) avoiding the prior
estimation of s. We call it graded hard thresholding pursuit (GHTP) algorithm, because the
index set has a size that increases with the iteration. Precisely, starting with x0 = 0, a
sequence (xn) of n-sparse vectors is constructed according to

Sn := index set of n largest absolute entries of xn−1 + A∗(y −Axn−1),(GHTP1)

xn := argmin{‖y −Az‖2, supp(z) ⊆ Sn},(GHTP2)

until a stopping criterion is met. For (GHTP), too, it is established that a restricted isometry
condition implies that the number of iterations needed for robust reconstruction is at most
proportional to the sparsity s, see Theorem 8.

One expects the number of (GHTP) iterations needed for s-sparse recovery to be exactly equal
to s, though. Such a statement is indeed proved, but in the nonuniform setting rather than
in the uniform setting (i.e., when successful recovery is sought with high probability on the
draw of random measurements for a fixed x ∈ CN rather than for all x ∈ CN simultaneously)
and in two extreme cases on the shape of the s-sparse vector to be recovered. The first case
deals with vectors that are ‘flat’ on their support: robust nonuniform recovery is guaranteed
with m � s ln(N) Gaussian measurements, see Proposition 9. The second case deals with
vectors that are decaying exponentially fast on their support: robust nonuniform recovery is
guaranteed with m � max{s, ln(N)} Gaussian measurements or with m � s ln(N) Fourier
measurements, see Proposition 10. This is an improvement (attenuated by the extra shape
condition) on uniform recovery results based on the restricted isometry property that require
m � s ln(N/s) Gaussian measurements or (currently) m � s ln4(N) Fourier measurements.

To conclude, the (HTP) and (GHTP) algorithms are tested numerically and benchmarked
against the (OMP) algorithm. Their performance is roughly similar in terms of success rate,
with different behaviors mostly explained by the shape of the vectors to be recovered. In terms
of number of iterations, however, (HTP) does perform best, owing to the fact that an a priori
knowledge of the sparsity s is used to run the algorithm (which also provides a convenient
stopping criterion). It also seems that (GHTP) always requires less iterations than (OMP).
The empirical observations that ‘flat’ vectors are least favorable, coupled with the theoretical
findings of Sections 3 and 5, support the beliefs that uniform recovery via (HTP) is achievable
in much less iterations than the upper bound cs of Theorem 5 and that nonuniform recovery
via (GHTP) is achievable in exactly s iterations whatever the shape of the vector. Finally, the
numerical part ends with an experimental study of the influence of the measurement error.
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Throughout the paper, we make use of the following notation:

• x∗ ∈ RN+ is the nonincreasing rearrangement of a vector x ∈ CN , i.e.,

x∗1 ≥ x∗2 ≥ . . . ≥ x∗N ≥ 0

and there exists a permutation π of {1, . . . , N} such that x∗j = |xπ(j)| for all j ∈ {1, . . . , N};

• S is the support or an index set of s largest absolute entries of a vector x ∈ CN ;

• xT is the restriction of a vector x ∈ CN to an index set T — depending on the context, it
is interpreted either as a vector in CT or as a vector in CN ;

• T is the complementary set of an index set T , i.e., T = {1, . . . , N} \ T ;

• T∆T ′ is the symmetric difference of sets T and T ′, i.e., T∆T ′ = (T \ T ′) ∪ (T ′ \ T );

• ρs, τs are quantities associated to the sth restricted isometry constant δs < 1 via

(2) ρs =

√
2δ2
s

1− δ2
s

, τs =

√
2

1− δs
+

√
1 + δs

1− δs
.

2 Preliminary Results

This section collects the key facts needed in the subsequent analyses of (HTP) and (GHTP).
It also includes a discussion on appropriate stopping criteria.

2.1 Extensions of previous arguments

The arguments used in [6] to prove the convergence of the sequence (xn) produced by (HTP)
in the idealized situation, say, relied on the exponential decay of ‖x− xn‖2, precisely

‖x− xn‖2 ≤ ρ3s‖x− xn−1‖2, n ≥ 1,

where ρ3s < 1 provided δ3s < 1/
√

3. This followed from two inequalities derived as results of
(HTP1) and (HTP2), namely

‖xSn‖2 ≤
√

2δ2
3s ‖x− xn−1‖2,(3)

‖x− xn‖2 ≤

√
1

1− δ2
2s

‖xSn‖2.(4)

For the analyses of (HTP) and (GHTP), similar arguments are needed in the more general
form below.
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1. Consequence of (HTP1)-(GHTP1).
If x ∈ CN is s-sparse, if y = Ax + e for some e ∈ Cm, if x′ ∈ CN is s′-sparse, and if T is
an index set of t ≥ s largest absolute entries of x′ + A∗(y −Ax′), then

(5) ‖xT ‖2 ≤
√

2δ2
s+s′+t ‖x− x′‖2 +

√
2‖
(
A∗e

)
S∆T
‖2.

Indeed, with S := supp(x), we first notice that

‖
(
x′ + A∗A(x− x′) + A∗e

)
T
‖22 ≥ ‖

(
x′ + A∗A(x− x′) + A∗e

)
S
‖22.

Eliminating the contribution on S ∩ T gives

‖
(
x′ + A∗A(x− x′) + A∗e

)
T\S‖2 ≥ ‖

(
x′ + A∗A(x− x′) + A∗e

)
S\T ‖2.

The left-hand side satisfies

‖
(
x′ + A∗A(x− x′) + A∗e

)
T\S‖2 = ‖

(
(A∗A− I)(x− x′) + A∗e

)
T\S‖2,

while the right-hand side satisfies

‖
(
x′ + A∗A(x− x′) + A∗e

)
S\T ‖2 ≥ ‖xS\T ‖2 − ‖

(
(A∗A− I)(x− x′) + A∗e

)
S\T ‖2.

Therefore, we obtain

‖xS\T ‖2 ≤ ‖
(
(A∗A− I)(x− x′) + A∗e

)
T\S‖2 + ‖

(
(A∗A− I)(x− x′) + A∗e

)
S\T ‖2

≤
√

2 ‖
(
(A∗A− I)(x− x′) + A∗e

)
T∆S
‖2

≤
√

2 ‖
(
(A∗A− I)(x− x′)

)
T∆S
‖2 +

√
2 ‖
(
A∗e

)
T∆S
‖2

≤
√

2 δs+s′+t‖x− x′‖2 +
√

2 ‖
(
A∗e

)
T∆S
‖2,(6)

where the last step used (3.8) of [6]. The resulting inequality is the one announced in (5).

2. Consequence of (HTP2)-(GHTP2).
If x ∈ CN is s-sparse, if y = Ax + e for some e ∈ Cm, if T is an index set of size t, and if
x′ is a minimizer of ‖y −Az‖2 subject to supp(z) ⊆ T , then

(7) ‖x− x′‖2 ≤
√

1

1− δ2
s+t

‖xT ‖2 +
1

1− δs+t
‖
(
A∗e

)
T
‖2.

Indeed, the vector x′ is characterized by the orthogonality condition
(
A∗(y−Ax′)

)
T

= 0

(in other words, by the normal equations), therefore

‖(x− x′)T ‖22 = 〈(x− x′)T , (x− x′)T 〉 = 〈
(
x− x′ −A∗(y −Ax′)

)
T
, (x− x′)T 〉

≤ |〈
(
(I−A∗A)(x− x′)

)
T
, (x− x′)T 〉|+ |〈

(
A∗e

)
T
, (x− x′)T 〉|

≤ ‖
(
(I−A∗A)(x− x′)

)
T
‖2‖(x− x′)T ‖2 + ‖

(
A∗e

)
T
‖2‖(x− x′)T ‖2

≤ δs+t‖x− x′‖2‖(x− x′)T ‖2 + ‖
(
A∗e

)
T
‖2‖(x− x′)T ‖2,(8)
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where the last step used (3.8) of [6]. After dividing through by ‖(x− x′)T ‖2, we obtain

‖(x− x′)T ‖2 ≤ δs+t‖x− x′‖2 + ‖
(
A∗e

)
T
‖2.

It then follows that

‖x− x′‖22 = ‖(x− x′)T ‖22 + ‖(x− x′)T ‖
2
2 ≤

(
δs+t‖x− x′‖2 + ‖

(
A∗e

)
T
‖2
)2

+ ‖xT ‖
2
2,

in other words P (‖x− x′‖2) ≤ 0, where the quadratic polynomial P is defined by

P (z) = (1− δ2
s+t)z

2 − 2δs+t‖
(
A∗e

)
T
‖2 z − ‖

(
A∗e

)
T
‖22 − ‖xT ‖

2
2.

This implies that ‖x− x′‖2 is smaller than the largest root of P , i.e.,

‖x− x′‖2 ≤
δs+t‖

(
A∗e

)
T
‖2 +

√
‖
(
A∗e

)
T
‖22 + (1− δ2

s+t)‖xT ‖22
1− δ2

s+t

≤
(1 + δs+t)‖

(
A∗e

)
T
‖2 +

√
(1− δ2

s+t)‖xT ‖2
1− δ2

s+t

.

This is the inequality announced in (7).

Remark 1. The full restricted isometry property is not needed to derive (5) and (7). The
restricted isometry constants only appear in (6) and (8), where ‖

(
(I − A∗A)(x − x′)

)
U
‖2 is

bounded for U = T∆S and U = T . This is easier to fulfill than the restricted isometry property
if supp(x), supp(x′), and T are all included in a fixed index set, as will be the case in Section 5.

From inequalities (5) and (7), we deduce the decay of the sequences
(
‖x− xn‖2

)
n≥0

for (HTP)
and

(
‖x− xn‖2

)
n≥s for (GHTP).

Corollary 2. Let x ∈ CN be s-sparse and let y = Ax + e for some e ∈ Cm. If (xn) is the
sequence produced by (HTP), then

(9) ‖x− xn‖2 ≤ ρ3s‖x− xn−1‖2 + τ2s‖e‖2 for any n ≥ 1.

If (xn) is the sequence produced by (GHTP), then

(10) ‖x− xn‖2 ≤ ρs+2n−1‖x− xn−1‖2 + τs+n‖e‖2 for any n ≥ s.

Proof. We consider (HTP) first. Applying (5) to x′ = xn−1 and T = Sn gives

‖xSn‖2 ≤
√

2δ2
3s‖x− xn−1‖2 +

√
2‖(A∗e)S∆Sn‖2

and applying (7) to T = Sn and x′ = xn gives

‖x− xn‖2 ≤

√
1

1− δ2
2s

‖xSn‖2 +
1

1− δ2s
‖(A∗e)Sn‖2.
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Combining these two inequalities, while using δ2s ≤ δ3s, yields

‖x− xn‖2 ≤

√
2δ2

3s

1− δ2
3s

‖x− xn−1‖2 +

(√
2

1− δ2
2s

+
1

1− δ2s

)
‖(A∗e)S∪Sn‖2.

In view of ‖(A∗e)S∪Sn‖2 ≤
√

1 + δ2s‖e‖2 (see e.g. (3.19) in [6]), we recognize (9) with the values
of ρ3s and τ2s given in (2).

Let us now consider (GHTP). Applying (5) to x′ = xn−1 and T = Sn for n ≥ s gives

‖xSn‖2 ≤
√

2δ2
s+2n−1‖x− xn−1‖2 +

√
2‖(A∗e)S∆Sn‖2

and applying (7) to T = Sn and x′ = xn gives

‖x− xn‖2 ≤
√

1

1− δ2
s+n

‖xSn‖2 +
1

1− δs+n
‖(A∗e)Sn‖2.

Combining these two inequalities, while using δs+n ≤ δs+2n−1, yields

‖x− xn‖2 ≤

√
2δ2
s+2n−1

1− δ2
s+2n−1

‖x− xn−1‖2 +

(√
2

1− δ2
s+n

+
1

1− δs+n

)
‖(A∗e)S∪Sn‖2.

In view of ‖(A∗e)S∪Sn‖2 ≤
√

1 + δs+n‖e‖2, we recognize (10) with the values of ρs+2n−1 and
τs+n given in (2).

2.2 Additional arguments

While the above argument probed only the closeness of xn to x, the following lemmas examine
the indices of nonzero entries of x that are correctly captured in the support sets produced by
(HTP) and (GHTP). They show how many iterations are necessary to increase the number of
correct indices by a specified amount. The first lemma concerns (HTP).

Lemma 3. Let x ∈ CN be s-sparse and let (Sn) be the sequence of index sets produced by
(HTP) with y = Ax + e for some e ∈ Cm. For integers n, p ≥ 0, suppose that Sn contains the
indices of p largest absolute entries of x. Then, for integers k, q ≥ 1, Sn+k contains the indices
of p+ q largest absolute entries of x, provided

(11) x∗p+q > ρk3s‖x∗{p+1,...,s}‖2 + κ3s‖e‖2,

where the constant κ3s depends only on δ3s. For instance, δ3s < 1/3 yields κ3s ≤ 5.72.

Proof. Let π be the permutation of {1, 2, . . . , N} for which |xπ(j)| = x∗j for all j ∈ {1, 2, . . . , N}.
Our hypothesis is π({1, . . . , p}) ⊆ Sn and our aim is to prove that π({1, . . . , p + q}) ⊆ Sn+k.
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In other words, we aim at proving that the
∣∣(xn+k−1+A∗(y−Axn+k−1))π(j)

∣∣ for j ∈ {1, . . . , p+q}
are among the s largest values of

∣∣(xn+k−1 + A∗(y − Axn+k−1))i
∣∣ for i ∈ {1, . . . , N}. With

supp(x) ⊆ S, card(S) = s, it is the enough to show that

(12) min
j∈{1,...,p+q}

∣∣(xn+k−1 + A∗(y −Axn+k−1))π(j)

∣∣ > max
`∈S

∣∣(xn+k−1 + A∗(y −Axn+k−1))`
∣∣.

We notice that, for j ∈ {1, . . . , p+ q} and ` ∈ S,∣∣(xn+k−1 + A∗(y −Axn+k−1))π(j)

∣∣ ≥ |xπ(j)| −
∣∣(−x + xn+k−1 + A∗(y −Axn+k−1))π(j)

∣∣
≥ x∗p+q −

∣∣((A∗A− I)(x− xn+k−1) + A∗e
)
π(j)

∣∣,∣∣(xn+k−1 + A∗(y −Axn+k−1))`
∣∣ =

∣∣(−x + xn+k−1 + A∗(y −Axn+k−1))`
∣∣

=
∣∣((A∗A− I)(x− xn+k−1) + A∗e

)
`

∣∣.
Therefore, (12) will be shown as soon as it is proved that, for all j ∈ {1, . . . , p+ q} and ` ∈ S,

(13) x∗p+q >
∣∣((A∗A− I)(x− xn+k−1) + A∗e

)
π(j)

∣∣+
∣∣((A∗A− I)(x− xn+k−1) + A∗e

)
`

∣∣.
The right-hand side can bounded by

√
2
∥∥((I−A∗A)(x− xn+k−1) + A∗e

)
{π(j),`}

∥∥
2

≤
√

2
∥∥((I−A∗A)(x− xn+k−1)

)
{π(j),`}

∥∥
2

+
√

2
∥∥(A∗e){π(j),`}

∥∥
2

≤
√

2 δ2s+2‖x− xn+k−1‖2 +
√

2
√

1 + δ2‖e‖2

≤
√

2 δ3s

(
ρk−1

3s ‖x− xn‖2 +
τ2s

1− ρ3s
‖e‖2

)
+
√

2(1 + δ2s)‖e‖2,

where (9) was used k−1 times in the last step. Using (7) and the assumption that π({1, . . . , p}) ⊆
Sn, we derive
√

2
∥∥((I−A∗A)(x− xn+k−1) + A∗e

)
{π(j),`}

∥∥
2

≤
√

2 δ3sρ
k−1
3s

(
1√

1− δ2
2s

‖xSn‖2 +
1

1− δ2s
‖(A∗e)Sn‖2

)
+

(√
2 δ3sτ2s

1− ρ3s
+
√

2(1 + δ2s)

)
‖e‖2

≤ ρk3s‖xπ({1,...,p})‖2 +

(√
2 δ3sρ

k−1
3s

√
1 + δs

1− δ2s
+

√
2 δ3sτ2s

1− ρ3s
+
√

2(1 + δ2s)

)
‖e‖2

≤ ρk3s‖x∗{p+1,...,s}‖2 + κ3s‖e‖2,

where the constant κ3s is determined by

κ3s =

√
2(1 + δ3s)

1− δ3s
+

√
2 δ3sτ3s

1− ρ3s
.

Therefore, (13) is proved as soon as condition (11) holds. The proof is completed by noticing
that δ3s ≤ 1/3 yields ρ3s ≤ 1/2, τ3s ≤ 2

√
3, and finally κ3s ≤ 14/

√
6.
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For (GHTP), an analog of Lemma 3 is needed in the form below.

Lemma 4. Let x ∈ CN be s-sparse and let (Sn) be the sequence of index sets produced by
(GHTP) with y = Ax + e for some e ∈ Cm. For integers n ≥ s and p ≥ 0, suppose that Sn

contains the indices of p largest absolute entries of x. Then, for integers k, q ≥ 1, Sn+k contains
the indices of p+ q largest absolute entries of x, provided

(14) x∗p+q > ρks+2n+2k‖x∗{p+1,...,s}‖2 + κs+2n+2k‖e‖2,

where the constant κs+2n+2k depends only on δs+2n+2k.

Proof. Given the permutation π of {1, 2, . . . , N} for which |xπ(j)| = x∗j for all j ∈ {1, . . . , N}, our
hypothesis is π({1, . . . , p}) ⊆ Sn and our aim is to prove that π({1, . . . , p+ q}) ⊆ Sn+k. For this
purpose, we aim at proving that the

∣∣(xn+k−1 +A∗(y−Axn+k−1))π(j)

∣∣ for j ∈ {1, . . . , p+ q} are
among the n+k largest values of

∣∣(xn+k−1+A∗(y−Axn+k−1))i
∣∣, i ∈ {1, . . . , N}. Since n+k ≥ s,

it is enough to show that they are among the s largest values of
∣∣(xn+k−1 +A∗(y−Axn+k−1))i

∣∣,
i ∈ {1, . . . , N}. The rest of the proof duplicates the proof of Lemma 3 modulo the change
imposed by (10) for the indices of δ and κ.

2.3 Stopping the (HTP) and (GHTP) algorithms

The stopping criterion, which is an integral part of the algorithm, has not been addressed yet.
We take a few moments to discuss this issue here. For (HTP), the natural stopping criterion2

is Sn = Sn−1, since the algorithm always produce the same vector afterwards. Moreover,
under the condition δ3s < 1/

√
3,

1. if Sn = Sn−1 occurs, then robustness is guaranteed, since xn = xn−1 substituted in (9)
yields ‖x− xn−1‖2 ≤ ρ3s‖x− xn−1‖2 + τ2s‖e‖2, i.e.,

‖x− xn−1‖2 ≤
τ2s

1− ρ3s
‖e‖2;

2. and Sn = Sn−1 does occur provided ‖e‖2 < 4[τ2s/(1 − ρ3s)]x
∗
s. Indeed, for ‖e‖2 > 03 and

for n large enough to have ρn−1
3s ‖x‖2 ≤ [τ2s/(1− ρ3s)] ‖e‖2, the inequality (9) applied n− 1

times implies that ‖x− xn−1‖2 ≤ ρn−1
3s ‖x‖2 + [τ2s/(1− ρ3s)] ‖e‖2 ≤ 2[τ2s/(1− ρ3s)] ‖e‖2. In

turn, for j ∈ supp(x) and ` 6∈ supp(x), the inequalities

|xn−1
j | ≥ |xj | − |(x− xn−1)j | ≥ x∗s − 2[τ2s/(1− ρ3s)] ‖e‖2 > 2[τ2s/(1− ρ3s)] ‖e‖2,

|xn−1
` | = |(x− xn−1)`| ≤ 2[τ2s/(1− ρ3s)] ‖e‖2

show that Sn−1 = supp(x). The same reasoning gives Sn = supp(x), hence Sn = Sn−1.
2again, exact arithmetic is assumed and the lexicographic rule to break ties applies
3in the case e = 0, we have xn−1 = x for some n ≥ 1 (see (1)), hence xn = x, and in particular Sn−1 = Sn
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For (GHTP), a stopping criterion not requiring any estimation of s or ‖e‖2 seems to be lost. It
is worth recalling that iterative algorithms such as CoSaMP [12], IHT [2], or HTP [6] typically
involve an estimation of s and that optimization methods such as quadratically constrained
`1-minimization typically involve an estimation of ‖e‖2 — unless the measurement matrix
satisfies the `1-quotient property, see [14]. Here, we settle for a stopping criterion requiring
an estimation of either one of s or ‖e‖2, precisely (GHTP) is stopped either when n = 4s or
when ‖y − Axn‖2 ≤ d′‖e‖2 for some constant d′ ≥ 2.83, say. Indeed, under the condition
δ9s < 1/3, robustness is guaranteed from Theorem 8 by the fact that ‖x − xn̄‖2 ≤ d‖e‖2 for
some n̄ ≤ 4s and some d ≤ 2.45. Thus, in the alternative n = 4s,

‖x− xn‖2 ≤ ρ4s−n̄
9s ‖x− xn̄‖2 +

τ9s

1− ρ9s
‖e‖2 ≤

(
d+

τ9s

1− ρ9s

)
‖e‖2 ≤ d′′‖e‖2

and in the alternative ‖y −Axn‖2 ≤ d′‖e‖2 (which is guaranteed to occur for some n ≤ n̄ by
virtue of ‖y −Axn̄‖2 ≤

√
1 + δ9s ‖x− xn̄‖2 ≤

√
1 + δ9s d‖e‖2),

‖x− xn‖2 ≤
1√

1− δ9s
‖A(x− xn)‖2 ≤

1√
1− δ9s

(‖y −Axn‖2 + ‖e‖2) ≤ d′ + 1√
1− δ9s

‖e‖2 ≤ d′′‖e‖2,

where d′′ := max{d + τ9s/(1 − ρ9s), (d
′ + 1)/

√
1− δ9s} ≤ 9.38. We point out that, according to

the result of [15], a similar stopping criterion involving either one of s or ‖e‖2 can be used
for (OMP). This makes the resemblance between (GHTP) and (OMP) even more compelling.
Their empirical performances will be compared in Section 6.

3 Uniform Recovery via Hard Thresholding Pursuit

This section is dedicated to the main results about (HTP), namely that sparse recovery is
achieved in a number of iterations at most proportional to the sparsity level, independently
of the shape of the vector to be recovered. The results are uniform in the sense that the same
measurement matrix allows for the recovery of all s-sparse vectors simultaneously. For clarity
of exposition, we first state and prove a result in the idealized situation — only the realistic
situation is considered thereafter.

Theorem 5. If the restricted isometry constant of the matrix A ∈ Cm×N obeys

δ3s ≤
1√
5
,

then every s-sparse vector x ∈ CN is recovered from the measurement vector y = Ax ∈ Cm

via a number n̄ of iterations of (HTP) satisfying

n̄ ≤ c s.

The constant c ≤ 3 depends only on δ3s. For instance, δ3s ≤ 1/3 yields c ≤ 2.
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Proof. Let π be the permutation of {1, 2, . . . , N} for which |xπ(j)| = x∗j for all j ∈ {1, 2, . . . , N}.
Our goal is to prove that supp(x) ⊆ Sn̄ for n̄ ≤ 3s, hence (HTP2) ensures that Axn̄ = Ax and
xn̄ = x follows from δ3s < 1. For this purpose, we shall consider a partition Q1 ∪Q2 ∪ . . . ∪Qr,
r ≤ s, of supp(x) = π({1, . . . , s}). Lemma 3 enables to argue repeatedly that, if Q1 ∪ . . . ∪Qi−1

has been correctly captured, then a suitable number ki of additional (HTP) iterations captures
Q1 ∪ . . .∪Qi−1 ∪Qi. The remaining step is just the estimation of k1 + . . .+ kr. Let us set q0 = 0

and let us define the sets Q1, . . . , Qr inductively by

(15) Qi = π({qi−1 + 1, . . . , qi}), qi := maximum index ≥ qi−1 + 1 such that x∗qi >
1√
2
x∗qi−1+1.

We notice that x∗qi+1 ≤ x∗qi−1+1/
√

2 for all i ∈ {1, . . . , r − 1}. With the artificial introduction of
Q0 = ∅ and k0 = 0, we now prove by induction on i ∈ {0, . . . , r} that

(16) Q0 ∪Q1 ∪ . . . ∪Qi ⊆ Sk0+k1+...+ki ,

where k1, . . . , kr are defined, with ρ := ρ3s < 1, as

(17) ki :=

⌈
ln
(
2(card(Qi) + card(Qi+1)/2 + · · ·+ card(Qr)/2

r−i)
)

ln(1/ρ2)

⌉
.

For i = 0, the result holds trivially. Next, if (16) holds for i − 1, i ∈ {1, . . . , r}, Lemma 3 (with
e = 0) guarantees that (16) holds for i, provided

(18) (x∗qi)
2 > ρ2ki

(
‖xQi‖22 + ‖xQi+1‖22 + · · ·+ ‖xQr‖22

)
.

In view of (x∗qi)
2 > (x∗qi−1+1)2/2 and of

‖xQi‖22 + ‖xQi+1‖22 + · · ·+ ‖xQr‖22
≤ (x∗qi−1+1)2card(Qi) + (x∗qi+1)2card(Qi+1) + · · ·+ (x∗qr−1+1)2card(Qr)

≤ (x∗qi−1+1)2

(
card(Qi) +

1

2
card(Qi+1) + · · ·+ 1

2r−i
card(Qr)

)
,

we verify that condition (18) is fulfilled thanks to the definition (17) of ki. This concludes
the inductive proof. We derive that the support π({1, . . . , s}) of x is recovered in a number of
iterations at most

n̄ =
r∑
i=1

ki ≤
r∑
i=1

(
1 +

ln
(
2(card(Qi) + card(Qi+1)/2 + · · ·+ card(Qr)/2

r−i)
)

ln(1/ρ2)

)

= r +
r

ln(1/ρ2)

r∑
i=1

1

r
ln
(
2(card(Qi) + card(Qi+1)/2 + · · ·+ card(Qr)/2

r−i)
)
.

Using the concavity of the logarithm, we obtain

ln(1/ρ2)
n̄− r
r
≤ ln

(
r∑
i=1

2

r

(
card(Qi) + card(Qi+1)/2 + · · ·+ card(Qr)/2

r−i))

= ln

(
2

r

(
card(Q1) + (1 + 1/2)card(Q2) + · · ·+ (1 + 1/2 + · · ·+ 1/2r−1)card(Qr)

))
≤ ln

(
4

r

(
card(Q1) + card(Q2) + · · ·+ card(Qr)

))
= ln

(
4s

r

)
.
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Since ln(4x)/x ≤ ln(4) for x ≥ 1, we deduce that

ln(1/ρ2)
n̄− r
s
≤ ln (4s/r)

s/r
≤ ln(4),

and we subsequently obtain

n̄ ≤ r +
ln(4)

ln(1/ρ2)
s ≤

(
1 +

ln(4)

ln(1/ρ2)

)
s =

ln(4/ρ2)

ln(1/ρ2)
s.

This is the desired result with c = ln(2(1 − δ2
3s)/δ

2
3s)/ ln((1 − δ2

3s)/(2δ
2
3s)). We observe that

δ3s ≤ 1/
√

5 yields c ≤ ln(8)/ ln(2) = 3 and that δ3s ≤ 1/3 yields c ≤ ln(16)/ ln(4) = 2. The proof
is complete.

The approach above does not allow for the reduction of the number of iterations below c s.
Indeed, if the s-sparse vector x ∈ CN has nonzero entries xj = µj for µ ∈ (0, 1/2), then each
set Qi consists of one element, so there are s of these sets, and n̄ =

∑s
i=1 ki ≥ s. However, such

a vector whose nonincreasing rearrangement decays exponentially fast is highly compressible
— applying Theorem 6 turns out to be more appropriate (see Remark 7). For other types of
sparse vectors, the number of iterations can be significantly lowered. We give two examples
below. In each of them, the partition involves a single set Q1. This corresponds to invoking (1).

Sparse vectors whose nonincreasing rearrangement decays slowly. For s-sparse vectors x ∈ CN

satisfying x∗j = 1/jα for all j ∈ {1, . . . , s} and for some α ≥ 0 (‘flat’ vectors are included with
the choice α = 0), the number of iterations is at most proportional to ln(s). Indeed, we have

‖x‖22
(x∗s)

2
=

1 + · · ·+ 1/s2α

1/s2α
≤ s

1/s2α
= s2α+1,

and it follows from (1) that

n̄ ≤

⌈
ln(
√

2/3 sα+1/2)

ln(1/ρ3s)

⌉
≤ cδ3s,α ln(s).

Gaussian vectors. In numerical experiments, the nonzero entries of an s-sparse vector g ∈ CN

are often taken as independent standard Gaussian random variables gj , j ∈ S. In this case,
with probability at least 1− ε, the vector g is recovered from y = Ag with a number of (HTP)
iterations at most proportional to ln(s/ε). Indeed, we establish below that

P
(
g∗s <

√
π

8

ε

s

)
≤ ε

2
,(19)

P
(
‖g‖22 >

3π

2

s

ε

)
≤ ε

2
.(20)

Thus, with failure probability at most ε, we have g∗s ≥
√
π/8 ε/s and ‖g‖2 ≤

√
3π/2

√
s/ε.

It follows from (1) that the number of iterations necessary to recover g satisfies

n̄ ≤

⌈
ln((2s/ε)3/2)

ln(1/ρ3s)

⌉
=

⌈
3 ln(2s/ε)

2 ln(1/ρ3s)

⌉
≤ cδ3s ln(s/ε).
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To obtain (19), with g denoting a standard Gaussian random variable and with t :=
√
π/8 ε/s,

we write

P(g∗s < t) = P(|gj | < t for some j ∈ S) ≤ sP(|g| < t) = s

∫ t

−t

exp(−u2/2)√
2π

du ≤ s
√

2

π
t = ε/2.

To obtain (20), with u ∈ (0, 1/4) to be chosen later and with t := (3π/2)s/ε, we write

P(‖g‖22 > t) = P

∑
j∈S

g2
j > t

 ≤ E

(
exp

(
u
∑
j∈S

g2
j

))
exp(ut)

=

∏
j∈S

E
(

exp
(
ug2

j

))
exp(ut)

=

(
(1− 2u)−1/2

)s
exp(ut)

.

Using (1− 2u)−1/2 = (1 + 2u/(1− 2u))1/2 ≤ (1 + 4u)1/2 ≤ exp(2u) for u ∈ (0, 1/4), we derive

P(‖g‖22 > t) ≤ exp(2us− ut) = exp

(
−us

(
3π

2ε
− 2

))
=
ε

2
,

where we have chosen us = ln(2/ε)/(3π/(2ε)− 2), so that u ≤ us < 1/4 when ε < 1/2.

We now state the extension of Theorem 5 to the realistic situation. We need to assume that the
measurement error is not too large compared with the smallest nonzero absolute entry of the
sparse vector — such a condition (quite common in the literature, see e.g. [11, Theorem 3.2]
or [9, Theorem 4.1]) is further discussed in Subsection 6.3.

Theorem 6. If the restricted isometry constant of the matrix A ∈ Cm×N obeys

δ3s ≤
1

3
,

then the sequence (xn) produced by (HTP) with y = Ax + e ∈ Cm for some s-sparse x ∈ CN

and some e ∈ Cm with ‖e‖2 ≤ γ x∗s satisfies

‖x− xn̄‖2 ≤ d‖e‖2, n̄ ≤ c s.

The constants c ≤ 3, d ≤ 2.45, and γ ≥ 0.079 depend only on δ3s.

Proof. Let π be the permutation of {1, 2, . . . , N} for which |xπ(j)| = x∗j for all j ∈ {1, 2, . . . , N}.
As before, we partition supp(x) = π({1, . . . , s}) as Q1 ∪ Q2 ∪ . . . ∪ Qr, r ≤ s, where the Qi
are defined as in (15). With Q0 = ∅ and k0 = 0, we prove by induction on i ∈ {0, . . . , r} that
Q0 ∪Q1 ∪ . . . ∪Qi ⊆ Sk0+k1+...+ki , where k1, . . . , kr are defined, with ρ := ρ3s < 1, by

(21) ki :=

⌈
ln
(
16(card(Qi) + card(Qi+1)/2 + · · ·+ card(Qr)/2

r−i)
)

ln(1/ρ2)

⌉
.

The induction hypothesis holds trivially for i = 0. Next, if it holds for i− 1, i ∈ {1, . . . , r}, then
Lemma 3 guarantees that it holds for i, provided

(22) x∗qi > ρki
√
‖xQi‖22 + ‖xQi+1‖22 + · · ·+ ‖xQr‖22 + κ3s‖e‖2.
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With the choice γ := (2
√

2 − 1)/(4κ3s), we have κ3s‖e‖2 ≤ κ3sγx
∗
s ≤ (1/

√
2 − 1/4)x∗qi−1+1.

Moreover, in view of x∗qi > x∗qi−1+1/
√

2 and of

√
‖xQi‖22 + ‖xQi+1‖22 + · · ·+ ‖xQr‖22 ≤ x

∗
qi−1+1

√
card(Qi) +

1

2
card(Qi+1) + · · ·+ 1

2r−i
card(Qr),

we verify that (22) is fulfilled thanks to the definition (21) of ki. This concludes the induction.
In particular, the support π({1, . . . , s}) of x is included in Sn̄, where n̄ can be estimated (using
similar arguments as before) by

n̄ =
r∑
i=1

ki ≤ c s, c :=
ln(16/ρ2)

ln(1/ρ2)
.

It follows from (HTP2) that ‖y −Axn̄‖2 ≤ ‖y −Ax‖2 = ‖e‖2. In turn, we derive that

‖x− xn̄‖2 ≤
1√

1− δn̄
‖A(x− xn̄)‖2 ≤

1√
1− δcs

(
‖y −Axn̄‖2 + ‖e‖2

)
≤ 2√

1− δcs
‖e‖2 =: d‖e‖2.

We note that δ3s ≤ 1/3 yields c ≤ 3, then d ≤
√

6, and finally γ ≥ (4−
√

2)
√

3/56.

Remark 7. When the vector x is not exactly s-sparse, we denote by S an index set of its s
largest absolute entries. Writing y = Ax + e as y = AxS + e′ with e′ := AxS + e, Theorem 6
guarantees that, under the restricted isometry condition δ3s ≤ 1/3,

‖x− xn̄‖2 ≤ ‖xS‖2 + ‖xS − xn̄‖2 ≤ ‖xS‖2 + d‖e′‖2, n̄ ≤ c s,

provided ‖e′‖2 ≤ γ x∗s. Let us now assume that e = 0 for simplicity. With S1, S2, . . . denoting
index sets of s largest absolute entries of xS , of next s largest absolute entries of xS , etc., we
notice that

‖e′‖2 = ‖AxS‖2 ≤
∑
k≥1

‖AxSk
‖2 ≤

√
1 + δs

∑
k≥1

‖xSk
‖2.

In particular, vectors whose nonincreasing rearrangement decays as x∗j = µj for µ ∈ (0, 1/2)

satisfy ‖AxS‖2 ≤ cδsµs+1, so that ‖e′‖2 ≤ γ x∗s holds for small enough µ. Taking ‖xS‖2 ≤ c′µs+1

into account, too, the reconstruction bound becomes ‖x − xn̄‖2 ≤ c′′δsµ
s+1. As a matter of fact,

the same bound is valid if s is replaced by a smaller value t (even t = 1), so the reconstruction
error becomes quite satisfactory after a relatively small number c t of iterations.

4 Uniform Recovery via Graded Hard Thresholding Pursuit

This section contains the main result about (GHTP) in the uniform setting, namely the fact
that the reconstruction of all s-sparse vectors is achieved under a restricted isometry condition
in a number of iterations at most proportional to s. This is comparable to the main result
about (HTP), but we recall the added benefits that (GHTP) does not need an estimation of
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the sparsity to run and that the stopping criterion involves an estimation of either one of the
sparsity or the measurement error — the only other such algorithm we are aware of is (OMP).
In passing, we note that (in both uniform and nonuniform settings) the number of (GHTP)
iterations for s-sparse recovery cannot be less than s, since t < s iterations only produce t-
sparse vectors. We prove the result directly in the realistic situation and we invite the reader
to weaken the restricted isometry condition in the idealized situation.

Theorem 8. If the restricted isometry constant of the matrix A ∈ Cm×N obeys

δ9s ≤
1

3
,

then the sequence (xn) produced by (GHTP) with y = Ax + e ∈ Cm for some s-sparse x ∈ CN

and some e ∈ Cm with ‖e‖2 ≤ γ x∗s satisfies

‖x− xn̄‖2 ≤ d‖e‖2, n̄ ≤ c s.

The constants c ≤ 4, d ≤ 2.45, and γ ≥ 0.079 depend only on δ9s.

Proof. Let π be the permutation of {1, 2, . . . , N} for which |xπ(j)| = x∗j for all j ∈ {1, 2, . . . , N}.
Our goal is to show that supp(x) = π({1, . . . , s}) ⊆ Sn̄ for some n̄ ≤ 4s. The arguments are
very similar to the ones used in the proof of Theorem 5, except for the notable difference that
the first s iterations are ignored. We still partition π({1, . . . , s}) as Q1 ∪ Q2 ∪ . . . ∪ Qr, r ≤ s,
where the Qi are defined as in (15), and we prove by induction on i ∈ {0, . . . , r} that

(23) Q0 ∪Q1 ∪ . . . ∪Qi ⊆ Ss+k0+k1+...+ki ,

where Q0 = ∅, k0 = 0, and k1, . . . , kr are defined, with ρ := ρ9s ≤ 1/2, by

(24) ki :=

⌈
ln
(
16(card(Qi) + card(Qi+1)/2 + · · ·+ card(Qr)/2

r−i)
)

ln(1/ρ2)

⌉
.

Based on arguments already used, we observe that
r∑
i=1

ki ≤
ln(4/ρ2)

ln(1/ρ2)
s ≤ 3s.

We now note that (23) holds trivially for i = 0. Next, if (23) holds for i− 1, i ∈ {1, . . . , r}, then
Lemma 4 guarantees that (23) holds for i, provided

(25) x∗qi > ρki
√
‖xQi‖22 + ‖xQi+1‖22 + · · ·+ ‖xQr‖22 + κ9s‖e‖2,

since ρs+2(s+k1+...+ki−1)+2ki ≤ ρ9s. With γ := (2
√

2 − 1)/(4κ9s) ≥ (4 −
√

2)
√

3/56, we verify that
(25) is fulfilled thanks to the definition (24) of ki. This concludes the induction. In particular,
the support π({1, . . . , s}) of x is included in Sn̄ with n̄ = s+ k1 + . . .+ kr ≤ 4s. We derive that
‖y −Axn̄‖2 ≤ ‖y −Ax‖2 = ‖e‖2 from (HTP2), and then

‖x− xn̄‖2 ≤
1√

1− δn̄
‖A(x− xn̄)‖2 ≤

1√
1− δ4s

(
‖y −Axn̄‖2 + ‖e‖2

)
≤ 2√

1− δ9s
‖e‖2,

which is the desired result with d = 2/
√

1− δ9s ≤
√

6.
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5 Nonuniform Recovery via Graded Hard Thresholding Pursuit

In this section, we demonstrate that s-sparse recovery via exactly s iterations of (GHTP)
can be expected in the nonuniform setting, i.e., given an s-sparse vector x ∈ CN , a random
measurement matrix allows for the recovery of this specific x with high probability. Precisely,
we obtain results in two extreme cases: when the nonincreasing rearrangement of the sparse
vector does not decay much and when it decays exponentially fast. Proposition 9 covers the
first case, suspected to be the least favorable one — see Subsection 6.2. The result and its proof
have similarities with the work of [13], which was extended to incorporate measurement error
in [9]. The result is stated directly in this realistic situation, and it is worth pointing out its
validity for all measurement errors e ∈ Cm simultaneously.

Proposition 9. Let λ ≥ 1 and let x ∈ CN be an s-sparse vector such that x∗1 ≤ λx∗s.
If A ∈ Rm×N is a (normalized) Gaussian random matrix with

m ≥ Cs ln(N),

then it occurs with probability at least 1 − 2N−c that, for all e ∈ Cm with ‖e‖2 ≤ γ x∗s, the
sequences (Sn) and (xn) produced by (GHTP) with y = Ax + e satisfy, at iteration s,

Ss = supp(x) and ‖x− xs‖2 ≤ d ‖e‖2.

The constants γ and d depend only on λ, while the constant C depends on γ and c.

Proof. The result is in fact valid if (normalized) Gaussian random matrices are replaced by
matrices with independent subgaussian entries with mean zero and variance 1/m. One part
of the argument relies on the fact that, for a fixed index set S of size s,

(26) P(‖A∗SAS − I‖2→2 > δ) ≤ 2 exp(−c′δ2m)

provided m ≥ C ′s/δ2, with c′, C ′ depending only on the subgaussian distribution (see e.g. [7,
Theorem 9.9], which leads to the improvement [7, Theorem 9.11] of [1, Theorem 5.2] in terms
of dependence of constants on δ). Another part of the argument relies on the fact that, for a
vector v ∈ CN and an index ` ∈ {1, . . . , N}, with a` denoting the `th column of the matrix A,

(27) P (|〈a`,v〉| > t‖v‖2) ≤ 4 exp
(
−c′′t2m

)
for a constant c′′ depending only on the subgaussian distribution (see e.g. [7, Theorem 7.27]
in the case v ∈ RN ). With S := supp(x), let us now define, for n ∈ {1, . . . , s}, two random
variables χn and ζn as

χn :=
[
(xn−1 + A∗(y −Axn−1))S

]∗
n
,

ζn :=
[
(xn−1 + A∗(y −Axn−1))S

]∗
1
,
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i.e., χn is the nth largest value of |(xn−1 + A∗A(x − xn−1))j | when j runs through S and ζn is
the largest value of |(xn−1 + A∗A(x − xn−1))`| when ` runs through S. We are going to prove
that, with high probability, Sn ⊆ S for all n ∈ {1, . . . , s}, which follows from χn > ζn for all
n ∈ {1, . . . , s}. The failure probability of this event is

P := P (∃n ∈ {1, . . . , s} : ζn ≥ χn and (χn−1 > ζn−1, . . . , χ1 > ζ1))

≤ P
(
‖A∗S∪{`}AS∪{`}− I‖2→2 > δ for some ` ∈ S

)
(28)

+
s∑

n=1

P
(
ζn ≥ χn, (χn−1 > ζn−1, . . . , χ1 > ζ1), (‖A∗S∪{`}AS∪{`}− I‖2→2 ≤ δ for all ` ∈ S)

)
,(29)

where the constant δ = δλ is to be chosen later. According to (26) , the term in (28) is bounded
by 2(N − s) exp(−c′δ2m) since a proper choice of C (depending on λ through δ) guarantees
that m ≥ C ′(s + 1)/δ2. Let us turn to the term in (29) and let us use the shorthand P′(E) to
denote the probability of an event E intersected with the events (χn−1 > ζn−1, . . . , χ1 > ζ1)

and (‖A∗S∪{`}AS∪{`} − I‖2→2 ≤ δ for all ` ∈ S), which are assumed to hold below. On the one
hand, with T s−n+1 ⊆ S representing an index set corresponding to s − n + 1 smallest values
of |(xn−1 + A∗(y −Axn−1))j | when j runs through S, we notice that

χn ≥
1√

s− n+ 1
‖(xn−1 + A∗(y −Axn−1))T s−n+1‖2

≥ 1√
s− n+ 1

(
‖xT s−n+1‖2 − ‖((A∗A− I)(x− xn−1))T s−n+1‖2 − ‖(A∗e)T s−n+1‖2

)
.

Then, since the condition χn−1 > ζn−1 yields Sn−1 ⊆ S, we obtain

‖((A∗A− I)(x− xn−1))T s−n+1‖2 ≤ ‖(A∗SAS − I)(x− xn−1)‖2 ≤ δ‖x− xn−1‖2.

We also use the inequality ‖(A∗e)T s−n+1‖2 ≤
√

1 + δ ‖e‖2 to derive

χn ≥
1√

s− n+ 1

(
‖xT s−n+1‖2 − δ‖x− xn−1‖2 −

√
1 + δ‖e‖2

)
.

On the other hand, since Sn−1 ⊆ S, we have

ζn = max
`∈S
|(A∗(y −Axn−1))`| ≤ max

`∈S
|(A∗A(x− xn−1))`|+ max

`∈S
|(A∗e)`|

≤ max
`∈S
|〈a`,A(x− xn−1)〉|+

√
1 + δ‖e‖2.

It follows that

P′ (ζn ≥ χn)

≤ P′
(

max
`∈S
|〈a`,A(x− xn−1)〉| ≥ 1√

s− n+ 1

(
‖xT s−n+1‖2 − δ‖x− xn−1‖2

)
− 2
√

1 + δ‖e‖2
)

≤ P′
(

max
`∈S
|〈a`,A(x− xn−1)〉| ≥ δ√

s
‖x− xn−1‖2

)
,
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where the last step will be justified by the inequality

1√
s− n+ 1

‖xT s−n+1‖2 − 2
√

1 + δ‖e‖2 ≥
2δ√

s− n+ 1
‖x− xn−1‖2.

In order to fulfill this inequality, we remark that ‖xT s−n+1‖2 ≥
√
s− n+ 1x∗s, that ‖e‖2 ≤ γ x∗s,

and, thanks to the extension of (7) mentioned in Remark 1, that

‖x− xn−1‖2 ≤
1√

1− δ2
‖x

Sn−1‖2 +
1

1− δ
‖(A∗e)Sn−1‖2 ≤

√
s− n+ 1√

1− δ2
x∗1 +

√
1 + δ

1− δ
‖e‖2

≤
√
s− n+ 1

(
λ√

1− δ2
x∗s +

√
1 + δ γ

1− δ
x∗s

)
,

so that it is enough to choose δ then γ (depending on λ) small enough to have

1− 2
√

1 + δ γ ≥ 2δ

(
λ√

1− δ2
+

√
1 + δ γ

1− δ

)
.

Taking ‖A(x− xn−1)‖2 ≤
√

1 + δ ‖x− xn−1‖2 into account, we obtain

(30) P′ (ζn ≥ χn) ≤ P′
(

max
`∈S
|〈a`,A(x− xn−1)〉| ≥ δ√

1 + δ
√
s
‖A(x− xn−1)‖2

)
.

Let us now remark that the condition χ1 = [(A∗ASx + A∗e)S ]∗1 > ζ1 = [(A∗ASx + A∗e)S ]∗1
implies that the random set S1 (corresponding to the largest value of A∗SASx + ASe) depends
only on the random submatrix AS , so that the random vector x1 = A†

S1y depends only on AS ,
too; then, since x1 is supported on S1 ⊆ S, the condition χ2 = [(x1 +A∗AS(x−x1) +A∗e)S ]∗2 >

ζ2 = [(x1 + A∗AS(x− x1) + A∗e)S ]∗1 implies that the random set S2 (corresponding to the two
largest values of x1

S + A∗SAS(x − x1) + A∗Se) depends only on the random submatrix AS , so
that the random vector x2 = A†

S2y depends only on AS , too; and so on until we infer that
the random vector xn−1, supported on Sn−1 ⊆ S, depends only on AS , and in turn so does
A(x− xn−1). Exploiting the independence of A(x− xn−1) and of the columns a` for ` ∈ S, the
estimate (27) can be applied in (30) to yield

P′ (ζn ≥ χn) ≤
∑
`∈S

P
(
|〈a`,A(x− xn−1)〉| ≥ δ√

1 + δ
√
s
‖A(x− xn−1)‖2

)

≤ 4(N − s) exp

(
− c′′δ2m

(1 + δ)s

)
.

Altogether, the failure probability P satisfies

P ≤ 2(N − s) exp(−c′δ2m) + 4s(N − s) exp

(
− c′′δ2m

(1 + δ)s

)
≤ 2(N − 1) exp(−c′δ2m) +N2 exp

(
− c′′δ2m

(1 + δ)s

)
.
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In particular, we have χs > ζs, and in turn Ss = S, with failure probability at most P . Then,
since ‖A∗SAS − I‖2→2 ≤ δ with failure probability given in (26), we also have

‖x− xs‖2 ≤
1√

1− δ
‖A(x− xs)‖2 ≤

1√
1− δ

(‖y −Axs‖2 + ‖y −Ax‖2) ≤ 2√
1− δ

‖e‖2,

which is the desired result with d = 2/
√

1− δ. The resulting failure probability is bounded by

2N exp(−c′δ2m) +N2 exp

(
− c′′δ2m

(1 + δ)s

)
≤ 2N2 exp

(
−
c′′′δ m

s

)
≤ 2N−c,

where the last inequality holds with a proper choice of the constant C in m ≥ Cs ln(N).

The previous result is limited by its nonapplicability to random partial Fourier matrices. For
such matrices, the uniform results of the two previous sections — or any recovery result based
on the restricted isometry property — do apply, but the restricted isometry property is only
known to be fulfilled with a number of measurements satisfyingm ≥ cs ln4(N). This threshold
can be lowered in the nonuniform setting by reducing the power of the logarithm. This is
typically achieved via `1-minimization (see [4, Theorem 1.3], [3, Theorem 1.1], or [8, V”3]), for
which the successful recovery of a vector does not depend on its shape but only on its sign
pattern. We establish below a comparable result for (GHTP): fewer measurements guarantee
the high probability of nonuniform s-sparse recovery via exactly s iterations of (GHTP). There
is an additional proviso on the vector shape, namely its nonincreasing rearrangement should
decay exponentially fast. This is admittedly a strong assumption, but possible improvements
in the proof strategy (perhaps incorporating ideas from Proposition 9) suggest that the result
could be extended beyond this class of sparse vectors for Fourier measurements. Incidentally,
for this class of vectors, it is striking that the number of Gaussian measurements can be
reduced even below the classical reduction (see [5, Theorems 1.2 and 1.3]) of the constant c in
m ≈ cs ln(N/s) when passing from the uniform to the nonuniform setting.

Proposition 10. Let µ ∈ (0, 1) and let x ∈ CN be an s-sparse vector such that x∗j+1 ≤ µx∗j for
all j ∈ {1, . . . , s− 1}. If A ∈ Rm×N is a (normalized) Gaussian random matrix with

m ≥ max{Cs,C ′ ln(N)},

or if A ∈ Cm×N is a (normalized) random partial Fourier matrix with

m ≥ C ′′s ln(N),

then it occurs with probability at least 1 − 2N−c that, for all e ∈ Cm with ‖e‖2 ≤ γ x∗s, the
sequences (Sn) and (xn) produced by (GHTP) with y = Ax + e satisfy, at iteration s,

Ss = supp(x) and ‖x− xs‖2 ≤ d ‖e‖2.

The constants C, γ, and d depend only on µ, while the constants C ′ and C ′′ depend on µ and c.
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Proof. The result would also be valid if (normalized) Gaussian random matrices were replaced
by (normalized) subgaussian random matrices and if (normalized) random partial Fourier
matrices were replaced by (normalized) random sampling matrices associated to bounded
orthonormal systems. We recall (see [7, chapter 12] for details) that a bounded orthonormal
system is a system (φ1, . . . , φN ) of functions, defined on a set D endowed with a probability
measure ν, that satisfy, for some constant K ≥ 1,

(31) sup
t∈D
|φj(t)| ≤ K and

∫
D
φk(t)φ`(t)dν(t) = δk,`

for all j, k, ` ∈ {1, . . . , N}. The normalized random sampling matrix A ∈ Cm×N associated to
(φ1, . . . , φN ) has entries

Ak,` =
1√
m
φ`(tk), k ∈ {1, . . . ,m}, ` ∈ {1, . . . , N},

where the sampling points t1, . . . , tm ∈ D are selected independently at random according to
the probability measure ν. For instance, the random partial Fourier matrix corresponds to
the choices D = {1, . . . , N}, ν(T ) = card(T )/N for all T ⊆ {1, . . . , N}, and φk(t) = exp(i2πkt), in
which case K = 1. The argument here relies on the fact (see [7, Theorem 12.12]) that, for a
fixed index set S of size s,

(32) P(‖A∗SAS − I‖2→2 > δ) ≤ 2s exp

(
−3δ2m

8K2s

)
.

Let π be the permutation of {1, 2, . . . , N} for which |xπ(j)| = x∗j for all j ∈ {1, 2, . . . , N} and
let Πn denote the set π({1, 2, . . . , n}) for each n ∈ {1, . . . , N}. Let δ = δµ > 0 be chosen small
enough to have 2δ/

√
1− δ2 ≤ (1− µ)

√
1− µ2/3 — for reason that will become apparent later.

Invoking (26) and (32) for the sets Πs ∪ {k}, k 6∈ Πs, ensures that

(33) ‖A∗Πs∪{k}AΠs∪{k} − I‖2→2 ≤ δ.

In the Gausian case, provided m ≥ Cµs, this holds with failure probability at most

2(N − s) exp(−cµm) ≤ 2N exp(−cµC ′µ,c ln(N)) ≤ 2N−c

where C ′µ,c is chosen large enough. In the Fourier case, this holds with failure probability at
most

2(N − s)s exp
(
−cµm

s

)
≤ 2N2 exp(−cµC ′′µ,c ln(N)) ≤ 2N−c

where C ′′µ,c is chosen large enough. We are going to prove by induction that Sn = Πn for all
n ∈ {0, 1, . . . , s}. The result holds trivially for n = 0. To increment the induction from n− 1 to
n, n ∈ {1, . . . , s}, we need to show that

min
j=1,...,n

|(xn−1 + A∗(y −Axn−1))π(j)| > max
`=n+1,...,N

|(xn−1 + A∗(y −Axn−1))π(`)|.
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We observe that for j ∈ {1, . . . , n} and ` ∈ {n+ 1, . . . , N},

|(xn−1 + A∗(y −Axn−1))π(j)| ≥ |xπ(j)| − |((A∗A− I)(x− xn−1) + A∗e)π(j)|
≥ x∗n − |((A∗A− I)(x− xn−1))π(j)| − |(A∗e)π(j)|,

|(xn−1 + A∗(y −Axn−1))π(`)| ≤ |xπ(`)|+ |((A∗A− I)(x− xn−1) + A∗e)π(`)|
≤ x∗n+1 + |((A∗A− I)(x− xn−1))π(`)|+ |(A∗e)π(`)|.

Hence, it is enough to prove that, for all j ∈ {1, . . . , n} and ` ∈ {n+ 1, . . . , N},

(34) x∗n > x∗n+1+|((A∗A−I)(x−xn−1))π(j)|+|(A∗e)π(j)|+|((A∗A−I)(x−xn−1))π(`)|+|(A∗e)π(`)|.

For any k ∈ {1, . . . , N}, using the the induction hypothesis and (33), we obtain

(35) |((A∗A− I)(x− xn−1))k| ≤ ‖(A∗Πs∪{k}AΠs∪{k} − I)(x− xn−1)‖2 ≤ δ‖x− xn−1‖2.

Moreover, in view of the extension of (7) mentioned in Remark 1, we have

(36) ‖x− xn−1‖2 ≤
1√

1− δ2
‖xΠn−1

‖2 +
1

1− δ
‖(A∗e)Πn−1‖2.

Combining (35) and (36) gives, for any k ∈ {1, . . . , N},

|((A∗A− I)(x− xn−1))k|+ |(A∗e)k| ≤
δ√

1− δ2
‖xΠn−1

‖2 +
δ

1− δ
‖(A∗e)Πn−1‖2 + |(A∗e)k|

≤ δ
√

1− δ2
√

1− µ2
x∗n +

1

1− δ
‖(A∗e)Πs∪{k}‖2,

where we have used ‖xΠn−1
‖22 ≤ (x∗n)2(1 + µ2 + · · ·+ (µ2)s−n) ≤ (x∗n)2/(1− µ2) in the last step.

Using also the estimate imposed by (33) for the maximal singular value of AΠs∪{k} in

‖(A∗e)Πs∪{k}‖2 ≤
√

1 + δ ‖e‖2 ≤
√

1 + δ γ x∗s ≤
√

1 + δ γ x∗n,

we arrive at

|((A∗A− I)(x− xn−1))k|+ |(A∗e)k| ≤

(
δ

√
1− δ2

√
1− µ2

+

√
1 + δ γ

1− δ

)
x∗n.

Taking the fact that x∗n+1 ≤ µx∗n into account, we observe that (34) is fulfilled as soon as

1 > µ+
2δ

√
1− δ2

√
1− µ2

+
2
√

1 + δ γ

1− δ
.

The latter holds with the choice of δ made at the beginning and then with an appropriate
choice of γ (depending only on µ). At this point, we have justified inductively that Sn = Πn

for all n ∈ {1, . . . , s}, hence in particular that Ss = Πs = supp(x). To conclude the proof, we
remark that (GHTP2) yields ‖y − Axs‖2 ≤ ‖y − Ax‖2 = ‖e‖2 and we also use the estimate
imposed by (33) for the minimal singular value of AΠs to derive

‖x− xs‖2 ≤
1√

1− δ
‖A(x− xs)‖2 ≤

1√
1− δ

(‖y −Axs‖2 + ‖y −Ax‖2) ≤ 2√
1− δ

‖e‖2.

The constant d := 2/
√

1− δ depends only on µ.
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6 Numerical experiments

This section provides some empirical validation of our theoretical results. We focus on the
performances of (HTP), (GHTP), and its natural companion (OMP). All the tests were carried
out for Gaussian random matrices A ∈ Rm×N with m = 200 and N = 1000. We generated
100 such random matrices. To assess the influence of the decay in the nonincreasing rear-
rangement of s-sparse vectors x ∈ RN to be recovered, we tested ‘flat’ vectors with x∗j = 1 for
j ∈ {1, . . . , s}, ‘linear’ vectors with x∗j = (s + 1 − j)/s for j ∈ {1, . . . , s}, and Gaussian vectors
whose s nonzero entries are independent standard normal random variables. We generated
10 such vectors per matrix. All these experiments can be reproduced by downloading the
associated MATLAB files from the authors’ webpages.

6.1 Frequency of successful recoveries

We present here a comparison between (HTP), (GHTP), and (OMP) in terms of successful
recovery — this complements the experiments of [6] where (HTP) was compared to basis
pursuit, compressive sampling matching pursuit, iterative hard thresholding, and normalized
iterative hard thresholding. The natural stopping criterion Sn = Sn−1 was used for (HTP),
and we used the criterion4 [supp(x) ⊆ Sn or ‖x− xn‖2/‖x‖2 < 10−4] for (GHTP) and (OMP).
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Figure 1: Frequency of success for (HTP), (GHTP), and (OMP) using Gaussian measurements

Figure 1 suggests that no algorithm consistently outperforms the other ones, although (GHTP)
is always marginally better than (OMP). The shape of the vector to be recovered has a strong
influence on the success rate, in contrast with basis pursuit whose success depend only on the
sign pattern.

4the true sparse solution is available in this experiment, unlike in a practical scenario
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6.2 Number of iterations and indices correctly captured

We now focus on the information provided by our experiments in terms of number of iterations
needed for the recovery of a sparse vector and in terms of number of indices from the true sup-
port correctly captured in the active sets as a function of the iteration count. First, Figure 2
displays the maximum over all our trials for the number n̄(s) of iterations needed for s-sparse
recovery as a function of s in the sparsity regions where recovery is certain (see Figure 1).
With this indicator, (HTP) is the best algorithm — thanks to the fact that a prior knowledge
of s is exploited. For this algorithm, no notable difference seems to result from the vector
shape (but remember that it did influence the success rate), so the upper bound n̄(s) ≤ c s

from Theorem 5 is likely to be an overestimation to be replaced by the bound n̄(s) ≤ c ln(s),
which is known to be valid for ‘flat’ vectors. As for (GHTP) and (OMP), we observe that the
vector shape influences the regions (predicted by Propositions 9 and 10) of s-values for which
n̄(s) = s and that (GHTP) generally requires fewer iterations than (OMP), probably thanks to
the fact that incorrectly selected indices can be rejected at the next (GHTP) iteration (however,
this complicates speed-ups based on QR-updates).
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Figure 2: Number of iterations for (HTP), (GHTP), and (OMP) using Gaussian measurements

Next, Figures 3, 4, and 5 display the number i(n) of indices from the true support that are
correctly captured in the active set Sn as a function of the iteration count n. We point out that
these figures do not reflect the worst case anymore, but instead they present an average over
all successful recoveries. Once again, (HTP) is the superior algorithm because several correct
indices can be captured at once. For (GHTP) and (OMP), the ideal situation corresponds to
the selection of correct indices only, i.e., i(n) = n for all n ≤ s. This seems to occur for small
sparsities, with larger regions of validity for vectors whose nonincreasing rearrangements
decay quickly. This is an encouraging fact since i(n) = n has been justified for all n ≤ s in the
proof of Proposition 9 for the least favorable case of ‘flat’ vectors. For these vectors, Figure 5
also reveals that, even in the region where s-sparse recovery via (GHTP) and (OMP) is certain,
the recovery is sometimes achieved in more than s iterations.
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(b) Recovery via (GHTP)

0 10 20 30 40 50 600

5

10

15

20

25

30

35

40

45

50

Number of iterations

Nu
m

be
r o

f c
or

re
ct

 in
di

ce
s

Gaussian vectors  OMP

 

 
s=50
s=45
s=40
s=35
s=30
s=25
s=20

(c) Recovery via (OMP)

Figure 3: Number of support indices of Gaussian vectors correctly captured by the active set as
a function of the iteration count for (HTP), (GHTP), and (OMP) using Gaussian measurements
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Figure 4: Number of support indices of linear vectors correctly captured by the active set as a
function of the iteration count for (HTP), (GHTP), and (OMP) using Gaussian measurements
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Figure 5: Number of support indices of flat vectors correctly captured by the active set as a
function of the iteration count for (HTP), (GHTP), and (OMP) using Gaussian measurements
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6.3 Robustness to measurement error

Our final experiment highlights the effect of the measurement error e ∈ Cm on the recovery
via (HTP), (GHTP), and (OMP) of sparse vectors x ∈ CN acquired through y = Ax + e ∈ Cm.
For a sparsity set to 25, with other parameters still fixed at m = 200 and N = 1000, the test
was carried out on ‘linear’ and ‘flat’ s-sparse vectors. For an error level η varying from 0 to 5

by increment of 0.01, we generated 100 Gaussian matrices A, then 10 instances of a random
support S and a Gaussian noise vector e normalized by ‖e‖2 = η x∗s, and we run the three
algorithms on the resulting 1000 measurement vectors per error level. After the algorithms
exited, we averaged the number of indices from the true support correctly caught, as well
as the reconstruction error measured in `2-norm. Under restricted isometry conditions, the
proofs of Theorems 6 and 8 guarantee that all indices are correctly caught provided η is below
some threshold η∗. This phenomenon is apparent in Figure 6 (abscissa: η = ‖e‖2/x∗s, ordinate:
card(S ∩ S]), where S] is the support of the output x] of the algorithm). The figure also shows
that the threshold is approximately the same for the three algorithms and that it is higher
for ‘flat’ vectors. For ‘linear’ vectors, the value η∗ ≈ 0.1 does not differ too much from the value
γ ≈ 0.079 obtained in Theorems 6 and 8. Once the threshold is passed, we also notice that
(HTP) catches fewer correct indices than (GHTP) and (OMP), probably due to the fact that it
produces index sets of smaller size.
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Figure 6: Number of indices correctly captured as a function of the measurement error
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Figure 7: Reconstruction error as a function of the measurement error
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In terms of reconstruction error, Figure 7 (abscissa: η = ‖e‖2/x∗s, ordinate: ‖x − x]‖2/x∗s)
displays transitions around the same values η∗ as Figure 6. Although the ratio ‖x−x]‖2/‖e‖2
of reconstruction error by measurement error increases after the threshold, it does not rule
out a robustness estimate of the type ‖x− x]‖2 ≤ d ‖e‖2 valid for all e ∈ Cm with an absolute
constant d (this is established in [6] for (HTP) under a restricted isometry constant), since
the prospective estimate is intuitively easier to satisfy when ‖e‖2 becomes larger. We finally
notice that (HTP) delivers lower reconstruction errors than (GHTP) and (OMP), probably due
to the smaller index set involved in the final orthogonal projection.
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