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aDepartment of Knowledge-based Mathematical Systems, Altenbergerstr. 69, A-4040 Linz,
Austria;

bSoftware Competence Center Hagenberg, Softwarepark 21, A-4232 Hagenberg, Austria

ABSTRACT

In this paper we introduce a novel algorithm for automatic fault detection in textures. We study the problem of
finding a defect in regularly textured images with an approach based on a template matching principle.

We aim at registering patches of an input image in a defect-free reference sample according to some admissible
transformations. This approach becomes feasible by introducing the so-called discrepancy norm as fitness function
which shows particular behavior like a monotonicity and a Lipschitz property. The proposed approach relies
only on few parameters which makes it an easily adaptable algorithm for industrial applications and, above all,
it avoids complex tuning of configuration parameters.

Experiments demonstrate the feasibility and the reliability of the proposed algorithms with textures from
real-world applications in the context of quality inspection of woven textiles.
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1. INTRODUCTION

Texture Analysis is a broad area in image vision and understanding. Many applications have been recently
developed which are used in different domains. Some authors are interested in finding errors in seismic data1

in order to help geologist finding breaks in geological structures. It is for them of prime importance to detect
any discontinuities in the patterns they get in order to avoid expensive further analysis. Texture analysis is also
needed in mechanical engineering where one wants to find out how a material reacts to a given force. This is
known as strain analysis2.

In this paper we are more interested in automatic quality control. These applications have been an intense
research area in the past decades. Indeed one can find as many good algorithms as applications. We refer the
reader to3–6 for some examples. However, it seems that all of the proposed approaches suffer of painful drawbacks
such as learning a particular texture or type of defect, decreasing the adaptability of the methods. Therefore we
introduce a novel method for automatic inspection of the quality of texture which is based on template-matching
and optimization. We claim our method to be at least as reliable as other ones for regularly textured surfaces,
with the advantage that it does not need any particular optimized features to be calculated, allowing it to easily
adapt itself to new unknown textures of a certain class. Constraining our method to work only on regularly
textured surfaces does not strongly affect its relevance as many industrial applications (industrial textile, airbag
hose, paper, ...) create such regular textures.

However all template matching methods need a similarity measure to be minimized. We propose to use the
discrepancy norm as it has been proven to be monotonic and Lipschitz-continuous with respect to shifting7, at
least for positive signals. Finding translational parameters is done using standard optimization methods. Finally
we added a coarse-to-fine approach to accelerate the efficiency of the algorithm.
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This paper is articulated as follows. In Section 2 we first recall the problem we are aiming to solve and
describe some state-of-the-art approaches with their advantages and drawbacks in a systematic way. Then we
motivate the main contribution of this paper in Section 4 by introducing a naive approach which calculates local
dissimilarity in order to assess the quality of a textile. This first guess gave us the idea to locally optimize the
registration to avoid artifacts. Finally after giving some experimental results, conclusion and future works are
given in Section 5.

2. PROBLEM STATEMENT AND RELATED WORK

Before we introduce our methods we want to first introduce the problem we are aiming to solve and then explain
how the known methods will fail at this task.

2.1 Problem statement

In this paper we are aiming to solve the following (general) problem:

Given an image flow of a fabric, can we tell if there are any defects in the finished product? If yes the location
of the defect should be given.

This statement describes two problems. The first one is to find whether an image contains a defect or not. The
second one is to tell where this defect is actually located in the input image. The problem stated is independent
of the types of defect that can occur. Indeed some researchers try to find a defect by looking for a particular
pattern. Song et al.5 for instance, try to detect cracks, and only cracks, in textures. Even if these systems
are reliable for a given kind of defect, they need quite a lot of effort to adapt themselves to new or unexpected
defects.

In this paper we concentrate our effort on regularly textured surfaces as they are the one we would encounter
on many industrial applications such as airbag hose fabrics or paper mills for instance. Moreover, texture
inspection should be done differently whether we analyze regular or stochastic textures.

2.2 Related work

According to different recent surveys8, 9 the different methods for automatic inspection of textured surfaces can
be divided into several categories. The most common approaches are based on statistics. For instance some
authors10 try to calculate features such as range, means, deviation or median value out of histograms. Then
these features are compared to a database to tell whether we have already encountered the input we are currently
analyzing.

While histograms are a mean to analyze first order statistics, one might prefer to study second order statistics.
The Gray Level Co-occurrence Matrix (GLCM) helps us for this. It was first introduced by Haralick11 and
represents the dependency between two pixel intensities over the whole image. The GLCM are then compared
using a set a computed features such as its inertia, mean value or entropy, for instance.

However even if first and second order statistics are easy to understand, they are weak against small trans-
formations. Added to this, one should make a smart guess of which features should be computed and which one
should not, eventually putting away some information.

Another idea is to filter an input image with some well chosen filters and to get useful information out of it.
Spatial domain12 , frequency domain4 or mixed spatial and frequency domain13 have been studied. Unfortunately,
it seems hard to find the perfect filters one should use. Indeed, if one wishes to define a framework as general as
possible, many different filters should be used, making this approach unsuitable for general cases.

Other methods have been developed. Structural approaches14 for instance, seem to have good results for a
chosen type of defect. However, as the structural element should be adapted for this given type, it is hard without
post processing to get a general framework out of it. Moreover, as the defects are found using morphological
operations, the whole process can be time consuming.

The last type of approaches is called model-based and include fractal methods15 as well as Markov Random
Fields16 or Texem17. They basically work as a novelty detection and need first to be taught what they should
repeatedly see.



3. TEMPLATE-BASED APPROACH

While the above described methods suffer from different problems, we introduce a novel method for fault detection
based on template-matching which turns out to rely only on a few parameters making it simple to apply. After
reviewing shortly in Section 3.1 what are the main template-based methods in pattern recognition and their
drawbacks for their use in texture analysis, we describe our new approach and give some results of experiments.

3.1 Template Matching Methods

Template matching have been in the last decades used in the context of pattern recognition. They all work in a
similar way. Some features are detected (for instance Harris keypoints18) and described with a feature vector19–21.
These descriptors are then matched to a database or to a reference pattern. However in order to be reliable,
such methods have some constraints. There should be enough features to describe a given object, and those key
points should be distinctive enough which is not guaranteed for the textures we wish to analyze. Here we want
to detect different kinds of defects which will have different characteristics, making the matching process harder.
Finally we would like to add that some defects will not generate any features which makes them invisible to any
feature-based methods.

3.2 Our approach

While feature-based template-matching methods have been widely used in computer vision22, 23, textured surface
analysis is still left aside from the community. Here we investigate the use of a naive sliding window approach
to assess the defectiveness of a given pixel. We propose an algorithm which is somehow similar to Baudrier
et al.24 . While the authors calculate a so-called Local Dissimilarity Map (LDMap) for the purpose of binary
image classification, we propose an approach based on an LDMap to compute a local defectiveness map for
defect analysis. That means that for each pixel, we consider a neighboring patch of the size of a given reference
pattern, and calculate the (dis-)similarity (i.e. norm, distance, any metric or (dis-)similarity measure) between
the reference and the current sliding window patch. Formally speaking, if I denotes an input frame, represented
as an M ×N matrix, and g is a single reference pattern of size m× n, then we have

∀1 ≤ i ≤ M, ∀1 ≤ j ≤ N,LDMap(i, j) = d(Aij , g) (1)

where we have d representing any (dis-)similarity metric (e.g. L2 norm, discrepancy norm, Bhattacharyya
measure25 or Kullback-Leibler divergence26) and Aij is the local patch of size m× n centered at (i, j).

(a) Surface of an airbag hose (b) LDMap of 1(a) with L2
norm

(c) LDMap of 1(a) with discrep-
ancy norm

Figure 1. Local Defectiveness Map (LDMap) computed on an image of an airbag hose using either the Euclidean norm
1(b) or the discrepancy norm 1(c) which improves the contrast around the defect.

Figure 1 shows the result of the computation of the LDMap on an image of an airbag hose containing a defect
on the right side of it. The lighter pixels denote the most dissimilarity between the reference pattern∗ and the

∗The reference pattern was chosen manually to cover between one and two defect-free pattern of the image. This could
be done automatically for instance by studying the Fourier domain of the repetitive pattern like in Xie and Guan27 .



(a) Surface of a woven textile (b) Detected failures of 2(a)
based on the L2 norm

(c) Detected failures of 2(a)
based on the discrepancy norm

(d) Surface of an airbag hose (e) Detected failures of 2(d)
based on the L2 norm

(f) Detected failures of 2(d)
based on the discrepancy norm

Figure 2. Defect detection in textile and airbag hose production after a threshold on the computed LDMap with either
the L2 or the discrepancy norm. Threshold of DN images is 0.8 and of L2 0.7, with normalized values between 0 and 1.

current local window. On the L2 based LDMap 1(b) one sees that the brighter parts cover almost the whole
resulting image whereas the discrepancy norm computation on Figure 1(c) yields results with more contrast.
On both images the defect appears much brighter, and therefore more distinctive than the rest.

Figure 2 goes one step further and shows the results of overlapping both input images with (global) thresholds
of the LDMap. The discrepancy norm based defect detection (Figures 2(c) and 2(f)) yields better results than
the ones obtained with a classic L2 norm (Figures 2(b) and 2(e)). Indeed, the defects are better localized and one
sees less artifacts in the defect free regions. However with this approach, some defects are discarded (particularly
in Figure 2(f)) and we do not make use of interesting properties of the discrepancy norm like monotonicity and
Lipschitz behavior for autocorrelation7. We will give in the next section an optimized variant making full use of
these properties.

4. TEMPLATE MATCHING BASED DEFECT DETECTION

This section holds the main contribution of our paper, which refines the previous naive approach by using
standard optimization techniques.

4.1 General Description of our Approach

In the last section we described a way of calculating an LDMap. Its pseudo code is shown in Algorithm 1. The
additional Statement 13 improves the contrast in the LDMap by taking the minimum of defectiveness values on
a neighborhood of δ pixels. In this case Statements 3 to 13 are equivalent to the following optimization problem:

α(i, j) = min
f∈V (i,j,δ)

‖f − g‖ (2)

where g represents the chosen defect-free reference and α designates the defectiveness of a pixel at location (i, j).
V (i, j, δ) represents a set of patches of the size of g, whose centers are located within δ pixels from (i, j). Then,



Algorithm 1 Local Defectiveness Map

1: function LDMap(referenceImage, defectImage(size M ×N))
2: extract m× n patch from referenceImage, where m× n covers 1-2 periods of pattern
3: for x = 0, n, 2 ∗ n, · · · ÷ (N − n) do
4: for y = 0,m, 2 ∗m, · · · ÷ (M −m) do
5: set position of m× n sliding window to (x, y) of defectImage
6: for all pixels p = (i, j) of sliding window do
7: center reference patch on pixel p
8: calculate discrepancy between sliding window and reference patch
9: enter dissimilarity value in (x, y) of resultImage

10: end for
11: end for
12: end for
13: aggregate temporary images with min-function in an area of δ pixels
14: binarize resultImage
15: return resultImage
16: end function.

in Statement 14 if α is higher then a threshold, the pixel at position (i, j) is labeled as defect, and defect-free
otherwise. Literally speaking, Equation (2) reads

If I can register the reference pattern in a small neighborhood of a given point, then there should not be any
defect at this considered point

The idea we introduce next tackles the converse problem. Instead of finding a perfect match within the input
image for the reference pattern, we try to register a small input sample into a larger reference defect-free pattern
by some transformation. Such idea is not completely new as it has already been used for surfaces of wafers27 or
ceramic tiles28, 29 which show special structures of orthogonal line segments. However, these algorithms can not
be adapted to cases where the textures are more complex. Because of its monotonicity property the discrepancy
norm (thereafter denoted as ‖ · ‖D ) is an appropriate candidate for modeling the fitness function for template
matching. This allows to reduce a full exhaustive search of quadratic complexity with respect to the diameter
of the sliding window by applying optimization techniques.

Now if we denote by f an input image, by Ai,j the patch of size m × n centered at pixel (i, j) and by g a
larger defect-free reference pattern then we determine the defectiveness at a pixel (i, j) by solving the following
optimization problem

α(i, j) = min
g̃∈G

‖Ai,j − g̃‖D, (3)

where G represents all possible m× n sub-windows of the reference pattern g.

Algorithm 2 is the pseudo code of Equation (3), which we will from now on refer to as OptLDMap algorithm.
By applying a gradient descent like algorithm we avoid exhaustive search for solving Equation (3), by which
super linear convergence can be achieved. In our experiments, see Figures 3, we apply a method outlined in Sub-
section 4.3 and 4.4 for which the number of image evaluations remains always below them of Algorithm 1. Note
that gradient descent optimization techniques require subpixel evaluation which is done by linear interpolation.

Experiments show further that the number of image evaluations are independent of the window size. This
seams reasonable since the test pattern is always aligned within one period in the reference image. The window
size is chosen to contain two periods of the pattern which can be automatically determined by methods such as
proposed by Xie and Guan27.



Algorithm 2 Basic OptLDMap

1: function OptLDMap(referenceImage, defectImage(size M ×N))
2: input reference image
3: for x = 0, n, 2 ∗ n, · · · ÷ (N − n) do
4: for y = 0,m, 2 ∗m, · · · ÷ (M −m) do
5: set position of m× n sliding window to (x, y) of defectImage
6: repeat
7: transform sliding window content with H to referenceImage
8: calculate discrepancy between sliding window and area in referenceImage
9: recalculate transformation H to minimize discrepancy

10: until optimum with some ε is reached
11: enter minimum distance in resultImage for the area of the sliding window
12: end for
13: end for
14: binarize resultImage
15: return resultImage
16: end function.

4.2 Transformation

The optimization problem described in Equation (3) can be extended to a more general registration by introducing
a set H of admissible transformations, leading to

α(i, j) = min
g̃∈G,τ∈H

‖Ai,j − τ(g̃)‖D. (4)

More general transformations allow to model different variations in the appearance of the analyzed textures. For
instance blurring is caused by vibration of the conveyor, scale changes appear with variations in the working
distance. Even projective transformations can be used if the products surface is not necessarily perpendicular
to the camera. For simplicity we restrict the transformation to translation only which is also the most common
case on production lines.

4.3 Optimization

We describe here the heart of the the OptLDMap algorithm, which is the optimization part. Motivated by its
mathematical properties and by the experiments from Section 3 we suggest to use the discrepancy norm as fitness
function for template-matching. Be aware that the discrepancy norm is a discrete mathematical concept which
requires the use of numerical differentiation methods and thereby appropriate optimization techniques which
are a future research topic. For this paper, as a starting point we apply a quasi Newton algorithm with a so-
called BFGS update proposed by Broyden30, 31 , Fletcher32 , Goldfarb33 and Shanno34 , which shows reasonable
convergence.

Motivated by the Lipschitz property of the discrepancy norm we apply a pre-optimization step based on the
DIRECT35, 36 algorithm which is especially designed for Lipschitz or near-Lipschitz continuous fitness-functions
in order to get a robust guess for the initialization of the gradient descent method.

It is worth mentioning that experiments on registering random patches of images show that after a given
number of DIRECT iterations the accuracy of the optimization does not change significantly. Therefore the
optimization procedure is build up of a constant number of DIRECT iterations followed by a gradient descent
search until the change of the step size falls below a certain threshold.

In the experiments on the TILDA database† we have found that six DIRECT iterations and a threshold of
0.2 yield reasonable results.

†Available from Universität Freiburg, Institut für Informatik, Lehrstuhl für Mustererkennung und Bildverarbeitung
(LMB).



4.4 Application

For defect detection applications an overlap of 10% is added to the OptLDMap to detect failures which could
appear on the border of the sliding window.

We further introduce a coarse-to-fine approach that adaptively refines the sliding window size as a function
of the defectiveness. While this improves the speed of the algorithm, it creates some overhead too. One of them
is that discrepancy values between different levels of recursion cannot be compared, since the window size is
different. Therefore the maximum discrepancy of each level is estimated on the reference image in advance and
all values of a level are normalized to these maxima.

In our experiments a recursion is started if the discrepancy value of a window exceeds the maximum discrep-
ancy of the level. The window size of each level decreases by a factor of two until the original window size m×n
is reached, since optimization below one period does not make sense. It is clear that the starting window size
and therefore the recursion depth is fixed by the size of the reference image. With this coarse-to-fine approach
we exploit the fact that defect-free patches are cheaper to process in terms of computation speed.

Figure 3 demonstrates the applicability of our approach on regularly textured surfaces taken from the TILDA
database and real world industrial examples. The images from the TILDA database cover different types of
failures on regularly textured images. The first column shows the input image, the second one illustrates the
result of OptLDMap as a defectiveness image. Brighter regions are more likely to be defect. The last column
depicts an overlay between the input and the thresholded defectiveness image. Figures 3(a) to 3(f) show the
result of a real world industrial texture inspection‡. Images from type of Figure 3(d) turn out to be challenging
since the defect is visually quite similar to the regular pattern.

Throughout the whole experiment the threshold is kept constant, only the window size has to be adapted to
the analysed texture.

5. CONCLUSION AND FUTURE WORK

We have introduced a novel algorithm used for defect detection in regularly textured surfaces which benefits from
the mathematical properties of Hermann Weyl’s discrepancy norm. The algorithm works with a reference image
and avoids complex tuning of configuration parameters. Indeed, only a window size and a binarization threshold
have to be adapted. In the future we aim at developing a completely parameter free approach by automatically
determining the optimal window size, for instance using spectral analysis, and the binary threshold value, by
statistical analysis.

Although the optimization of the discrepancy norm as fitness function has not yet been studied in depth the
results on a standardized texture database are very promising. We expect to improve the results in terms of
performance, reliability, distinctiveness and sensitivity by refining the optimization. As soon as this is done a
systematic comparison with state-of-the-art algorithms will be performed.
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