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Abstract. This paper addresses the problem of quality inspection of
regular textured surfaces as, e.g., encountered in industrial woven fab-
rics. The motivation for developing a novel approach is to utilize the
template matching principle for defect detection in a way that does not
need any particular statistical, structural or spectral features to be calcu-
lated during the checking phase. It is shown that in this context template
matching becomes both feasible and effective by exploiting the so-called
discrepancy measure as fitness function, leading to a defect detection
method that shows advantages in terms of easy configuration and low
maintenance efforts.

1 INTRODUCTION

This paper is motivated by the demand for performant, highly discriminative
and still easy to configure visual defect detection algorithms.

In literature one can find statistical, structural, model-based or filtering ap-
proaches for optical quality inspection. See, e.g., Xie[29] or Kumar[17] for a sur-
vey. Statistical approaches rely on histograms and first or second order statistics
of the intensity image. Features like mean, variance, median, entropy, inertia or
contrast can be computed from such statistics. See, e.g., Haralick[13], Ng[25].
Structural approaches, see, e.g., Mirmehdi et al.[20], are based on the princi-
ple of defining a structural element and finding its spatial distribution applying
morphological operations. Fractal-based methods [10] exploit the concept of frac-
tal dimension as characteristic of textures. Markov Random Fields [9] rely on
probabilistic models of the spatial dependencies of the intensity values. Filtering
methods aim at characterizing textures by informative spatial or spectral fea-
tures. Typical examples are approaches based on wavelets [7] or Gabor filters [4].
Approaches based on TEXEM models [30] consider textures as superposition of
texture elements in order to represent the texture under consideration.

As a further approach we introduce and study template matching in the con-
text of quality inspection of regular textured surfaces as for instance encountered
in industrial woven fabrics (sieves, airbag hose, textiles for automotive interior
etc.). The goal is to utilize the template matching principle for defect detection
in a way that does not need any particular statistical, structural or spectral
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features to be calculated. It will be shown that this goal can be achieved by
exploiting the so-called discrepancy measure as fitness function.

This paper is structured as follows. Section 2 discusses whether template
matching is an appropriate approach for detecting defects in regular textures. In
this context the following three aspects are addressed: a) choice of appropriate
dissimilarity measure in Section 3, b) design of an algorithm for matching test
patches with a reference in Section 4, and c) specification of a discriminative rule
for detecting defect candidates in Section 5. This Section proposes a RANSAC
inspired algorithm for realizing this template matching concept. The next Section
contains experimental evaluations on woven fabrics to show the stability and
performance of the algorithm. The conclusion, Section 7, outlines future research
potentials.

2 TEMPLATE MATCHING FOR TEXTURE
ANALYSIS

In quality inspection a sensed image I is scanned by a sliding window with
varying center (i, j). This sliding window crops a test image patch T(i,j) ⊆ I
that has to be analysed whether it indicates a defect or not. Template match-
ing requires a notion of (dis-)similarity d that measures to which extent the
test patch, T(i,j), matches a given reference image, R. We call the resulting
map Θd(i, j) = d(T(i,j), R|T(i,j)

) the (dis-)similarity map induced by the (dis-)-
similarity measure d, R|T(i,j)

denotes the restriction of R to the set of pixels of
T(i,j).

One way to define a (dis-)similarity map is based on applying a distance
measure to extracted features as for example interest points which are widely
used in Computer Vision [1, 19]. In this case the dissimilarity measure is defined
as a metric in the corresponding feature vector space. The question whether
feature-based (dis-)similarity concepts for template matching are reliable or not
depends on the number and the distinctiveness of the available feature points.
Particularly, for textures, standard methods for template matching usually fail
because of the lack of sufficiently distinctive and reproducible feature points.
Therefore, generally speaking, the usage of feature points for texture analysis is
not recommendable.

Measuring the (dis-)similarity directly by applying a (dis-)similarity mea-
sure d to the images as sets of (ordered) intensity values is an alternative to
the feature-based similarity approach. Such a (dis-)similarity based approach re-
quires a) to choose an appropriate dissimilarity measure (Section 3), b) to choose
the size of the test patch, c) to define a matching concept (Section 4), and d) to
specify a rule how to distinguish defect from defect-free samples (Section 5).

The choice of the test patch size is crucial for the inspection of periodic and
quasi-periodic textures. A too small size might cause undesired registration arte-
facts whereas a too large size causes unnecessary processing time. The optimal
size is closely related to the estimation of the length of the repetitive pattern.
However window size estimation is not the topic of this paper and therefore the
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window size is always calculated with an existing software tool which is based
on a modified algorithm of Lizarraga-Morales et al.[18].

The main question is whether and under which circumstances a (dis-)similarity
based template matching approach is appropriate to allow a discriminative anal-
ysis of defects. The reason why this approach might lead to serious problems is
not clearly analysed in the literature so far. This paper contributes to giving an
answer to this analysis and, at the same time, to opening up a new approach
that mitigates problems inherently induced by commonly used (dis-)similarity
measures.

3 CHOICE OF APPROPRIATE DISSIMILARITY
MEASURE

This section focusses on the adequateness of similarity measures in the context of
defect detection. First of all, let us point out that commonly used (dis-)similarity
measures induce the occurrence of local extrema as artefacts. Particularly it can
be shown that commonly used (dis-)similarity measures like L2 norm, mutual
information, cross-correlation, Bhattacharyya measure[3] or Kullback-Leibler di-
vergence measure[16] are likely to lead to artefacts in terms of local extrema that
corrupt the resulting (dis-)similarity map Θd. For details see Moser et al.[23]. As
an alternative measure we suggest to exploit Weyl’s concept of discrepancy [28],
which was introduced in order to measure irregularities of distributions [2, 15].
Due to Moser[22] let us propose

‖I‖D := max
{

max
0≤k≤n,0≤l≤m

{ k∑
i=0

l∑
j=0

I(i,j)
}
, max
0≤k≤n,0≤l≤m

{ k∑
i=0

l∑
j=0

I(n−i,j)
}
, (1)

max
0≤k≤n,0≤l≤m

{ k∑
i=0

l∑
j=0

I(i,n−j)
}
, max
0≤k≤n,0≤l≤m

{ k∑
i=0

l∑
j=0

I(n−i,n−j)
}}
,

(I(0,0) := 0) as an extension of Weyl’s discrepancy measure to image data with
an image I of the width n and the height m . The indexed variables k and l
indicate the current partial sum. Note that (1) can be efficiently computed in
O(n ·m) by using integral images, see Moser[22].

The interesting point about this is that based on Weyl’s discrepancy con-
cept distance measures can be constructed that guarantee desirable registration
properties: (R1) the measure vanishes if and only if the lag vanishes, (R2) the
measure increases monotonically with an increasing lag, and (R3) the measure
obeys a Lipschitz condition that guarantees smooth changes also for patterns
with high frequencies.

4 TEMPLATE MATCHING BY REGISTRATION

This section discusses a recently outlined template matching algorithm [5]. It is
state-of-the art to process a test image by specifying a so-called sliding window
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for consecutively cropping image patches and comparing them to reference data.
Usually the reference image data are chosen to have the same size as the sliding
window.

In this paper we concentrate on textures with regular or nearly regular pat-
terns. Examples for this kind of regular textures are woven fabrics as e.g. for
automotive interiors, industrial sieves, air-bag hoses, etc. Different localizations
of the sliding window yield patches having different offsets with respect to the
repetitive pattern. By this the resulting patches are varying in their appearance,
although they refer to the same reference pattern. This effect can be interpreted
in terms of translational misalignment. As discussed in Section 3 such a mis-
alignment might lead to undesirable artefacts when applying commonly used
similarity measures.

The basic idea of Bouchot et al.[5] is to make the usual reference-test image
matching more flexible by allowing registration on a larger reference image that
covers multiple periods of the repetitive pattern. To avoid the before mentioned
artefacts the approach introduces the discrepancy norm as similarity measure
and, thereby, fitness function for the registration. At the same time the enlarged
reference image size can be chosen also to capture variations in appearance due to
other effects like changes in illumination or admissible variations in production.

Mathematically speaking, given a test patch T the registration step aims at
identifying optimal transformation parameters ξ = (ξ∗1 , . . . , ξ

∗
k) that minimize

the match given by

dT (ξ) = d
(
Hξ(T ), R|Hξ(T )

)
(2)

where d denotes an appropriate dissimilarity measure, R represents the chosen
defect-free reference, T the actual patch of a test image, H is a parametrized
transformation model (in our case translations) and R|Hξ(T ) denotes the sub-
region of the reference which is specified by the pixel coordinates of the trans-
formed test patch Hξ(T ). To allow only translational transformations is no re-
striction for usage in an in-line inspection system of endless material where the
camera position is fixed and no rotations and scale variations occur. However
with a more complex transformation model also other variations can be covered.
In this context it has to be noticed that discrepancy norm is also able to cope
with small rotations as demonstrated in Moser[22].

Two drawbacks keep the algorithm of Bouchot et al.[5] from industrial usage.
Firstly the window size has to be manually chosen, which is now done with a
modified algorithm of Lizarraga-Morales et al.[18]. Secondly although the com-
putational costs are below exhaustive transformation parameters search, they
are still too high for usage in an in-line inspection system. To improve speed,
this paper adds a statistical level set analysis of the (dis-)similarity map Θd,
gathered on the defect free reference image as a preprocessing step. Through
this a threshold for a RANSAC like global optimization algorithm can be esti-
mated, which accelerates the decision if a patch is defect free or not drastically
(from minutes to fractions of a second, on Matlab with a standard PC). This
is in strong contrast to the brute-force registration principle used in Bouchot et
al.[5].
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5 DISCRIMINATIVE RULE FOR DETECTING
DEFECT CANDIDATES

A defect can be excluded if registration parameters ξ can be found that reduce
the dissimilarity (2) between the test image T with a defect-free reference patch
from R below some threshold θ.

The threshold θ can be determined from the cumulative distribution function
of dissimilarity values generated by applying defect-free patches to the reference.
For example θ can be defined as q-quantile. The lower q the more sensitive the
detection, but also the higher the expected rate of pseudo-defects. Its optimal
choice depends on the texture characteristics and the type of defects under con-
sideration.

In order to turn this principle into a computational rule for detecting defect
candidates let us consider a RANSAC like algorithm. Randomized Sampling
Consensus (RANSAC)[12] is a common method to fit models into noisy data by
constructing candidate models out of random samples and choosing the model
with the best fit. Given a test patch T the problem is to find a position ξ ∈ R
for which dT (ξ) ≤ θ. The key idea of the proposed approach is to randomly
compare the test patch to different positions on the reference image and choose
the best position to start a local optimization. Suppose that T is defect-free,
and let denote F the set of defect-free patches. The probability αθ = P (dT (ξ) ≤
θ|T ∈ F) to randomly choose a position ξ ∈ R with dT (ξ) ≤ θ can be estimated
as ratio between the area of the level set λθ = {ξ ∈ R|dT (ξ) ≤ θ} and the area
of the reference image R.

Let denote {ξ1, . . . , ξk} a sequence of k independent random trials and con-
sider the conditional error probability ε = ε{ξi},θ = P

(
minki=1 dξi > θ |T ∈ F

)
that all trials yield positions outside λθ. Then, we obtain ε{ξi},θ = (1− αθ)k.
Starting with a probability ps = 1− ε, e.g., ps = 0.995, the estimated number k
of trials amounts to

k = ln(1− ps)/ ln(1− αθ). (3)

Therefore, we obtain the rule:

“If a position ξ ∈ R with match dissimilarity dT (ξ) ≤ θ is found with at most k
trials given by (3), then the test patch T is considered defect-free, otherwise a

defect candidate.”

This rule can be modified by taking a maximal number of local optimization
iterations into account in order to accelerate the evaluation. Computational ex-
periments showed that the quasi-Newton BFGS method is a reasonable choice
for the local optimizer[6].

6 EVALUATION

The applicability of the proposed approach is demonstrated on the basis of de-
fect samples of regular textures taken from the TILDA database and industrial
applications of the involved research institutes.
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Figure 1 depicts three types of defects: a) high contrast structural defects
spreading over many repetitive pattern units, see Figures 1(a) and 1(c), b) more
challenging contrast structural defects spreading over many repetitive pattern
units in Figures 1(e), 1(g), 1(i) and 1(k), and low contrast defects affecting only a
small number of repetitive pattern units in Figure 1(m), 1(o), 1(q) and 1(s). Each
image is shown in two versions, the test image and the output of the algorithm,
which was not thresholded. The reference images which hold about four to five
periods of the original pattern are not depicted. The structure in the output
images indicates the number of steps in the search for the best matches due to
the coarse-to-fine approach outlined above. For example, Figures 1(a) and 1(c)
took less steps than in the other images. What also can be observed is that
the defect positions are not always precise. This effect originates from the block
processing working principle of the algorithm: if a defect is not fully covered by
a single block, the position cannot be located precisely. In future versions this
misalignment can be compensated by an additional registration.

These examples of various defect types may demonstrate the potential of the
proposed approach also to detect low contrast defects. With a MATLAB imple-
mentation on a standard PC the evaluation on one test image of size 756× 512
took fractions of a second. This shows that the proposed approach is computa-
tionally feasible.

STABILITY Stability analysis is performed on a set of 20 test images. For each
test image the algorithm output is split into blocks with window size equal to the
length of the period. This is also the finest scale of the coarse-to-fine approach.
We choose ps = 0.9999 and θ = 1.5σ + µ, where µ and σ denote the mean
and standard deviation of the discrepancy values computed from dissimilarity
maps of 10 randomly chosen patches from the according reference image. For this
configuration we observe an average αθ of 0.2 which lead to a range of [26, 88]
for k pattern comparisons. A block is marked as belonging to a defective region
if more than 50 % of its pixels are defective according to the rule of Section 5.

Since the aim of the stability analysis is to show the repeatability of the re-
sults, every image is processed 100 times and a defect probability pi is calculated
for each block. In the worst case this probability is 0.5, which means that no
clear decision can be made whether the block is defective or not. Therefore as
measurement of the stability the entropy Hi = pi(1 − pi) is calculated on each
block. For the whole test set of 20 images and 7735 blocks this leads to a mean
entropy of 0.0036 bit, which demonstrates the high stability of the algorithm
despite the random working principle.

PERFORMANCE In the current state of development the proposed algo-
rithm is not supposed to outperform any state-of-the art textile defect detection
algorithm. It is rather thought as demonstration on how a novel dissimilarity
measure can open up new possibilities in this application context. Nevertheless
a comparison with current state-of-the art algorithms in the application field of
textile defect detection was done. The evaluation is based on the work of Tolba
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(a) D11 01 T (b) D11 01 O (c) D11 02 T (d) D11 02 O

(e) L25 01 T (f) L25 01 O (g) L26 01 T (h) L26 01 O

(i) C2R2E1N15 T (j) C2R2E1N15 O (k) C2R2E2N7 T (l) C2R2E2N7 O

(m) AB RC 01 T (n) AB RC 01 O (o) D02 02 T (p) D02 02 O

(q) D04 01 T (r) D04 01 O (s) L05 01 T (t) L05 01 O

Fig. 1. Examples of the applicability test on textile defect images. For each example
the test image (T) as well as the output (O) of the algorithm is shown. Reference images
are not shown. The algorithm output is for illustration purposes not thresholded.
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et al.[27]. These authors directly compare several state-of-the art algorithms
by calculating a performance measure called Percentage of Correct Detection
(PCD)

PCD = (1− (FAR+ FRR))× 100 (4)

out of the False Acceptance Rate (FAR) and False Rejection Rate (FRR) re-
ported in papers of the algorithm designers. The performance for our algorithm
is evaluated on the above mentioned test set of 20 images using hand-labelled
ground truths and the same decision rule as in the stability analysis. This leads
to a PCD of 96.1 %. Table 1 summarizes the best performing algorithms listed in

Method PCD (%) Reference

Decision Fusion 98.64 [27]

GLCM 97.09 [21]

GLCM + Gabor + wavelet packets (selected from 219 features) 96.90 [14]

Selected from Gabor and GLCM 96.90 [11]

Discrepancy Norm Based Template Matching 96.10 -

Clustering 91.60 [8]

Wavelet97 88.15 [7]

Local Binary Patterns 85.83 [26]
Table 1. Performance comparison of texture characterization approaches using Per-
centage of Correct Detection (PCD), for details see Tolba et al.[27]. The original Table
contains multiple entries per reference, here only the best performing ones are listed.
Furthermore the top performing method of Murino et al.[24] is skipped because it is a
pure classification algorithm without detection. The discrepancy norm based algorithm
can be compared with the class of Grey-Level Co-occurrence Matrices (GLCM) and
filter (Gabor, wavelet) based feature extraction algorithms.

Tolba et al.[27] together with our method. It shows up that the performance is in
the same class as a combination of Grey-Level Co-occurrence Matrices (GLCM)
and filter (Gabor, wavelet) based feature extraction algorithms. However in con-
trast to the work of Drimbarean and Whelan[11], who use a neural network
classifier, the proposed approach does not need any training, but only relies on
one sample image. Another issue with state-of-the art methods is the sometimes
expensive computation of features, as can be found in Karoui et al.[14], Monad-
jemi[21] and Tolba et al.[27]. The latter even suggest to outsource the feature
generation on FPGAs. Our proposed approach does not have the computational
complexity problem. Nevertheless it does not reach the detection performance of
other methods since the failure location is due to the block processing nature not
always precise. Therefore it cannot compete with highly tuned state-of-the-art
methods. To solve the location problem is a future research topic. Furthermore
it has to be mentioned that our approach is limited to regular or near regular
textures. Despite that the algorithm performs surprisingly good, having in mind
that it is a not yet optimized straight forward approach with only one sensitivity
configuration parameter for the coarse-to-fine working principle.



Discrepancy Norm as Fitness Function for Defect Detection 9

7 CONCLUSION

The template matching principle in the context of quality inspection of regular
textures has been addressed. The motivation was to come up with a method
that effectively can be implemented, shows distinctiveness also for low contrast
defects and still is easy to configure. The approach outlined only requires the
configuration of a sensitivity parameter which reduces the efforts of configura-
tion. Experimental results indicate its usefulness and motivate further research
to improve the defect localization. The approach outlined in this paper can also
be combined with other methods e.g. Decision Fusion [27] which remains future
research.
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