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Abstract

Cortical networks are strongly recurrent, and neurons have intrinsic temporal dy-
namics. This sets them apart from deep feed-forward networks. Despite the
tremendous progress in the application of feed-forward networks and their theo-
retical understanding, it remains unclear how the interplay of recurrence and non-
linearities in recurrent cortical networks contributes to their function. The purpose
of this work is to present a solvable recurrent network model that links to feed
forward networks. By perturbative methods we transform the time-continuous, re-
current dynamics into an effective feed-forward structure of linear and non-linear
temporal kernels. The resulting analytical expressions allow us to build optimal
time-series classifiers from random reservoir networks. Firstly, this allows us to
optimize not only the readout vectors, but also the input projection, demonstrat-
ing a strong potential performance gain. Secondly, the analysis exposes how the
second order stimulus statistics is a crucial element that interacts with the non-
linearity of the dynamics and boosts performance.

1 Introduction

Trained neural networks today form an integral component of data science. Widely used approaches
comprise deep neural networks (LeCun, 2015) that typically employ time-independent mappings by
hierarchical structures with mostly feed-forward connections. In contrast, recurrent neural networks,
which follow more closely their biological counterparts in the brain, have units with intrinsic tem-
poral dynamics that allow natural processing of time-dependent stimuli. The interplay of recurrence
and non-linearity in such networks renders their analysis challenging. There is large interest in un-
derstanding the basis for their computational abilities. Reservoir computing, as originally introduced
via Echo State Networks (Jaeger, 2001) and Liquid State Machines (Maass et al., 2002), is one ap-
proach that takes recurrence of connections and temporal dynamics into account. Signals are here
mapped into a high dimensional space spanned by a large number of typically randomly connected
neurons, on which a linear readout is trained. The network thereby acts like a kernel in a support
vector machine (Vapnik, 1998; Cortes and Vapnik, 1995). The training can be combined with a feed-
back of the readout signal to effectively modify also the recurrent connections (Sussillo and Abbott,
2009; DePasquale et al., 2018). The gradient of an arbitrary loss function for these models can be
computed memory efficiently via ordinary differential equations (Chen et al., 2018). Although re-
current models lately have become more and more complex (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014; Collins et al., 2016), they remain highly similar to simple reservoirs in terms of the
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Figure 1: Binary classification with recurrent dynamics. (a) A neural network with random connec-
tivityW is stimulated with an input x(t) via an input vector u (left). A linear readout with weights v
transforms the high dimensional state into a scalar quantity z(t). (b) Time course of sample stimuli
(colored thin curves) from two different classes (red, blue; thick curves: class average). In this ex-
ample, classes differ mainly in fluctuations. (c) Responses of the network follow high-dimensional
trajectories (colored curves, only two dimensions y1, y2 shown for conceptual clarity). At readout
time T , the samples form clouds of states, indicated by points in the readout time plane. Classifica-
tion places a decision plane between the classes. The margin κ is the smallest distance between the
states and the plane.

learned neural representations (Maheswaranathan et al., 2019). Furthermore, it has been extensively
studied how the performance of the reservoir depends on the properties of the recurrent connec-
tivity; the edge of chaos has been found as a global indicator of good computational properties
(Bertschinger et al., 2005; Toyoizumi and Abbott, 2011). However, the interplay of recurrence and
non-linearities may, depending on the statistical features of the input data, offer optimal settings that
are not described by such global parameters alone.

We here set out to systematically analyze the kernel properties of recurrent time-continuous net-
works in a binary time series classification task. We show how the high-dimensional and non-linear
transformation implemented by the network can be used to selectively extract differences in the
statistics between a pair of input classes. To this end, we analyze the mapping between the input
data distribution and the shape and linear separation of the resulting network states, which uniquely
determine the optimal readout projection. In state-of-the-art reservoir computing, the projection of
the stimuli into the network is mostly carried out with random weights. To the contrary, we here
show that the classification performance crucially depends on the input projection; random projec-
tions consistently lead to significantly sub-optimal performance, whereas an optimal input projection
exploits the mode landscape of the reservoir to obtain an advantageous configuration of the resulting
distribution of network states. We derive a method to jointly optimize both projections in a system
of linear units and generalize these results to non-linear networks. To this end, we employ a per-
turbative approach that transforms the non-linear recurrent network into an effective feed-forward
structure. The analytical expressions expose how the network dynamics separates a priori linearly
non-separable time-series. We find that even weak non-linearities can significantly boost the separa-
bility of network states if the linear separability of the stimuli is low.

2 Setup

We consider a reservoir model shown in figure 1(a): A time-dependent input function x(t) is pro-
jected into the N -dimensional neuron space with input projection u ∈ R

N . This signal reverberates
in the network through continuous interactions via recurrent connections W ∈ R

N×N as well as
sustained external stimulation, leading to a neural trajectory y(t) ∈ R

N that is described by the
first-order differential equation (Sompolinsky et al., 1988)

(τ∂t + 1) yi(t) =
∑

j

Wijφ(yj(t)) + uix(t), (1)

where φ is the (non-linear) gain function of the neurons. The network activity is read out linearly by
the one-dimensional projection z(t) = vTy(t), obtained with readout vector v ∈ R

N . We here con-

sider fixed realizations of i.i.d. weightsWij ∼ N (0, g
2

N ) denoting the connections from neurons j to
neurons i and aim towards a joint optimization of input and readout projections u and v, respectively.
In general, the existence of optimal projection vectors allows one to first define and second study
the performance of the recurrent reservoir itself. Thus, common methods for optimizing recurrent
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connectivity can be combined with our algorithm to study and improve the kernel properties of a
reservoir network, eliminating variability of performance caused by sub-optimal input and readout
projections.

Consider inputs from two classes +, − defined by their underlying statistics, for example their
mean trajectories and fluctuations, as shown in figure 1(b). The network transforms the differences
across classes into distinct sets of network states y±(t), which form extended clouds in state space
due to intra-class variability (figure 1(c)). For classification, the network space is divided by a
hyperplane into one region for each class. Position and orientation of this plane are modified by
the training algorithm of the readout projection v, the hyperplane’s normal vector. The margin,
the distance between the plane and the sample state closest to it, is hereby a typical optimization
objective (Vapnik, 1998; Cortes and Vapnik, 1995).

3 Linear Networks

To introduce the concepts, we first investigate the benefits of optimized input projections for linear
reservoirs, where φ(y) = y in equation (1). The linear equation of motion has the Green’s function
(Risken, 1996)

G(1)(t, t′) = H(t− t′) 1
τ
exp

[

− (I−W )
t− t′
τ

]

, (2)

where H is the Heaviside function. The state of neuron i at time point t is then given by

yi(t) =
∑

p

∫ ∞

−∞

dt′G
(1)
ip (t, t′)up x(t

′). (3)

The margin between classes of stimuli with class labels ζν ∈ ±1
κ(u, v) = min

ν
(ζνv

Tyu,ν), (4)

where v has unit length, constitutes a measure to be optimized to increase generalization perfor-
mance. We here denote by yu,ν the network response to stimulus xν projected via input vector u,
and we assumed that the separating hyperplane passes through the origin. This choice is adequate for
the stimulus set employed below. Shifting the plane off the origin can be accounted for by incorpo-
ration of a threshold. The margin κ depends on both the input projection u and the readout v. For a
given set of training data, its maximum is uniquely defined by the support vector machine algorithm
(Vapnik, 1998; Cortes and Vapnik, 1995). For the joint optimization of input and readout projections
we pursue here, we use this objective as the basis to derive analytically tractable approximations.

For generality of the optimal projection vectors and analytical insight, it is advisable to replace the
minimum function in equation (4) by a differentiable approximation, leading us to a soft margin
which takes into account not only the outliers, but all points weighted by their distance to the classi-
fication plane. This has the advantage to tolerate some outliers if this improves the distance for the
majority of samples that are closer to the plane. Here we use a soft margin of the form (Lange et al.,
2014)

κη(u, v) = −
1

η
ln
[

∑

ν

exp(−ηζνvTyu,ν)
]

. (5)

The control parameter η regulates the importance of distances of states close to and far from the
separating hyperplane. For η → ∞, we recover the margin κ = limη→∞ κη. For finite η, the
soft margin becomes less sensitive to the exact realizations of the network states than the margin
κ (equation (4)). We show in the supplementary material (section A.1) by Hölder’s inequality that
equation (5) is in fact concave in v; it thus possesses a unique maximum in v. As we presume
a large number of samples representing the distribution of stimuli, we can express the sum by an
expectation value with respect to the underlying probability distribution of ζνy

u,ν ,

κη(u, v)→ −
1

η
ln
〈

exp(−ηζνvTyu,ν)
〉

,

where we neglected an inconsequential offset. The soft margin κη has now the form of a scaled cu-
mulant generating function (Gardiner, 1985; Touchette, 2009); its Taylor expansion until the second
cumulant of ζνy

u,ν thus reads

κη(u, v) ≈ vTMu − 1

2
η vTΣu v, (6)
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where Mu
i := 〈ζνyu,νi 〉 is the average separation vector between the center of the clouds and the

decision plane and Σuij := 〈(ζνyu,νi ) (ζνy
u,ν
j )〉−Mu

i M
u
j the covariance matrix. The two terms have

counteracting effects on the soft margin. The decomposition of the soft margin into cumulants of
labeled network states shows a suppression of cumulants of order k by a factor 1

k! . It is also geomet-
rically plausible that lower order cumulants are more important than higher orders; they describe the
rough shape of the state clouds. Stopping after second order amounts to a Gaussian approximation
of the state clouds. Alternatively, one can regard equation (6) as classification by linear discriminant
analysis if the two sample classes are of equal size (Minasny, 2009); when further assuming Gaus-
sianity and equal variance of the two classes, this is identical to Fisher linear discriminant analysis.
From now on, the term soft margin will refer to equation (6).

Since a linear gain function φ(y) = y imposes a linear relationship between network inputs and out-
puts (equation (3)), each cumulant of the network state depends only on the corresponding cumulant
of the stimulus. Separation between the classes is thus linearly related to the difference between
mean stimuli of the two classes. In contrast, in non-linear networks higher order cumulants also
contribute to the separation between the classes.

Optimization of the soft margin can be done for arbitrary input signals. However, since equation (6)
only depends on the mean and covariance of network outputs, it is sufficient for linear networks
to regard stimuli as coming from a Gaussian distribution. As an example, in the following the
stimuli are furthermore taken as step-wise constant, accounting for a finite temporal resolution ∆t
that would typically appear in a practical application. We therefore replace the dependence on the

stimulus time t′ in the Green’s function by the index n, where tn = n∆t, defining G
(1)
ipn(t) :=

∫ tn+1

tn
G

(1)
ip (t, t′) dt′. Without loss of generality we can assume the distribution of stimuli to be of

the form

x± ∝ N (±µ, ψ ± χ), (7)

where µ ∈ R
T/∆t and ψ, χ ∈ R

T/∆t×T/∆t. A potential offset in the mean could be absorbed by a
corresponding threshold in equations (4) - (6) and different covariances C± are included by setting
ψ := 1

2 (C
+ + C−) and χ := 1

2 (C
+ − C−). It is straightforward to then compute the average

separation at time T

Mu
i =

∑

p,n

G
(1)
ipn(T )upµn

and the covariance
Σuij =

∑

n,m,p,q

G
(1)
ipn(T )G

(1)
jqm(T )upuq ψnm.

The soft margin (equation (6)) is thus quadratic in both the input projection u and the readout vector
v and therefore simple to optimize with respect to either of them. Hereby, we require both projection
vectors to be normalized. For the readout, this ensures a meaningful calculation of the margin. For
the input projection, this fixes the amplitude of the driving signal (cf. section 4 and supplementary
material (section A)). A constrained optimization follows with the method of Lagrange multipliers
by computing the stationary points of

L(u, v) :=κη(u, v) + λu(‖u‖2 − 1) + λv(‖v‖2 − 1) (8)

with λu/v < 0 (see supplementary material, section A.3). This equation can be maximized by
alternating fixed-point iteration. In case µ = 0, the soft margin is a quadratic form and finding
the optimal projection vectors reduces to an eigenvalue problem. A detailed description of the
optimization process is given in the supplementary material, section A.

Figure 2 shows the increase in soft margin by optimizing the input projection u in the linear reservoir.
Inspecting the time span just prior to the readout time point T exposes the high sensitivity of the
soft margin to the readout time point (Figure 2a). The global optimum may thus be reached at some
intermediate time point, prior to the end of the stimulus; it is possible that later steps of the stimuli
counteract the separation or disturb the favorable orientation of the state clouds. On average over
many sets of stimuli, however, the soft margin increases towards late readout times (Figure 2b), indi-
cating that the reverberating activity of the network can effectively be used to accumulate evidence.
Networks closer to instability with longer time constants or a time-integrated readout may therefore
be beneficial for the performance, particularly in the example shown in section 5. Qualitatively, the
dominance of the more recent past of the stimulus, however, prevails. An average over stimuli of the
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Figure 2: Optimization of the input and readout projections in a reservoir of linear units. (a) Random

network with N = 100 neurons, τ = 0.25 and fixed connectivity W (Wij ∼ N (0, g
2

N ), g = 0.9) is

stimulated by step-wise constant stimuli with a mean separation of µ = 1
2 (x+(t)− x−(t)) (orange,

right scale). The soft margin (left scale) when stimulated with a random input projection, but readout
vector optimized according to equation (6) (blue: analytical solution (equation (3)), black dashed:
simulation result (Gewaltig and Diesmann, 2007)) with η = 10 is shown alongside the combined
optimization using 30 optimization steps of input and readout projection at readout time T (red).
(b) The same network is stimulated with 250 random stepwise constant signals with optimized (red)
and 250 random (blue) input projections each. The corresponding readout projection is chosen
optimally in either case. The soft margins, averaged over stimuli, are shown for both cases. Colored
area marks the standard deviations of κη with respect to random input projections averaged over
stimuli. (c) At readout times T = 1 and T = 9, the optimal input projections of the samples used in
(b) are decomposed into eigenmodes of the reservoir. Histograms show the average absolute weight
ωα of the modes corresponding to an eigenvalue λα; real part determines the time constant τα of the
mode. (d) Soft margin for varying input projection u that has the given angle on the abscissa to the
optimal direction u∗ at readout time T = 9; u is oriented within a randomly chosen hyperplane.

decomposition ωα = wT
αu of the optimal input projections into eigenmodes wα of the connectivity,

wT
α W = λαw

T
α , is shown in Figure 2(c). The information projected on each mode thereby decays

exponentially with time constant τα = τ
(

1−Re(λα)
)−1

. Pronounced contributions of modes with
short time constants at both early and late readout times emphasize the importance of the recent past
of the stimulus for classification. Perturbing the input projection u into random directions shows
that the optimal direction is sharply defined (Figure 2(d)).

4 Non-linear Networks

Classification by a linear system fails when stimuli become linearly inseparable, because the map-
ping of the stimulus into the state space of the network can only perform a linear transformation.
The introduction of a non-linear activation function qualitatively changes this result. Interpreting
the processing in the network as a kernel functional, the space it belongs to is thus extended: to lead-
ing order in a perturbative expansion, the mapping changes from a linear functional to a quadratic
functional; that is, a functional in which pairs of time points of the input signal contribute to the net-
work output at any given point in time. These non-linear interactions render the system sensitive to
class-specific characteristics also in higher order cumulants. The soft margin therefore profits from
more contributions to the distance M and covariance Σ of the state clouds. The approach therefore
elucidates which statistical features of the input data can be used by the network, thus opening a
door to link and compare reservoir computing to feature-based approaches of classification.

We focus on the case where the neural gain function is explored only in a confined area around a
working point, where the non-linearity remains small, so we expand the gain function as φ(y) ≃
y + αy2 + O(y3) with a small, positive parameter 0 ≤ α ≪ 1, and a small or vanishing initial
condition for y. In the context of biological neural networks, the gain function represents the non-
linearity experienced by a single synaptic input on the background noise caused by the other inputs.
It is formally ontained by a Gram-Chalier expansion; an expansion in the non-Gaussian cumulants
of a nearly Gaussian distributed input. (Dahmen et al., 2016) and (Farkhooi and Stannat, 2017) have
explored such expansions for binary networks and found that even the linear order provides a good
approximation of the recurrent dynamics, as soon as the number of inputs per neuron is on the order
of 50 − 100. For conceptual clarity, we here focus on the simpler case of a rate network, but more
elaborate methods are also conceivable. The corresponding Green’s function for the network can be
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derived from a perturbation expansion of the corresponding network dynamics in orders of α as

y(t) = y(0)(t) + αy(1)(t) +O(α2). (9)

Inserting the ansatz (equation (9)) into equation (1) separates the solution into different orders of α.
The zeroth order,

(τ∂t + 1) y
(0)
i (t)−

∑

j

Wijy
(0)
j (t) = uix(t) +O(α), (10)

recovers the linear system, solved by equation (3). Corrections to the dynamics can be found in
higher orders in α. With use of equation (10), the differential equation (equation (1)) with terms up
to first order in α simplifies as

(τ∂t + 1) y
(1)
i (t)−

∑

j

Wijy
(1)
j (t) =

∑

j

Wij(y
(0)
j (t))2. (11)

The first non-linear correction to the linear dynamics obeys the same differential equation as the

linear one, with the linear solution entering the inhomogeneity in the place of uix(t). Thus, y(1)

follows with the Green’s function G(1) (equation (2)) and equation (11) as

αy
(1)
i (t) = α

∑

i′,j

∫ ∞

−∞

dt′G
(1)
ii′ (t, t

′)Wi′j

[

y
(0)
j (t′)

]2

=:
∑

p,q

∫ ∞

−∞

ds

∫ ∞

−∞

ds′G
(2)
ipq(t, s, s

′)upuq x(s)x(s
′), (12)

where we defined the second order Green’s functionG(2) and y
(0)
j (t′) is the zeroth order solution of

equation (10) given by equation (3). At this order, the reservoir thus maps the input by a bi-linear
functional kernel to the output. Concerning the validity of the approximation, it must be noted that,
whereas the solution of the linear system remains well-defined also in the linearly unstable regime,
the perturbative solution of the non-linear system built thereof (equations (9) - (12)) in that case
suffers from exponentially growing modes. Therefore, we do not consider chaotic networks in our
analysis, restricting the variance of connectivity weights to g < 1.

Figure 3(a) shows that the first order correction in α approximates the dynamics of the full system

quite well. For small α, the network is linearly stable: the eigenvalues λ̃ of the linearized connec-

tivity (see supplementary material, section A.2) W̃ij = Wij(1 + 2αyj(t)) fulfill max(Re(λ̃)) < 1
(Figure 3a, right inset). Consequently, the difference between the linear and non-linear system is
not large. Yet, we will show that the non-linearity has a considerable impact on the separability of
inputs where the linear theory alone fails to separate the stimuli.

Given the Green’s functions G(1) and G(2), the expected distance and covariance required for eval-
uation of the soft margin in equation (6) can be computed using

ζνy
u,ν
i =

∑

p,n

G
(1)
ipn(T )up ζνx

ν
n +

∑

p,q,m,n

G
(2)
ipqnm(T )upuq ζνx

ν
nx

ν
m. (13)

The distance M between the state clouds thereby receives O(α) contributions from the first two
cumulants of the stimuli, whereas the covariance Σ receives corrections up to O(α2) from stimulus
cumulants up to fourth order. Although O(α2) corrections to Σ form only a small modification
to the covariance that is otherwise determined up to O(α), this term is essential to guarantee its
positive definiteness. A consistent calculation of network state cumulants is therefore required for a
stable optimization algorithm. It is easy to show that all orders in α of both M and Σ are affected
by Gaussian distributed stimuli. The latter is therefore the minimal example to expose cumulant-
mixing based on non-linearities. Contributions from higher order cumulants of stimuli would not
show qualitatively different effects.

Equation (8) can thus be expressed with help of equation (13). As in the linear case it is bi-linear
in v, but due to Σ it now contains terms with third and fourth power in u. By the bi-linearity in
v, the readout projection is determined as in the linear case, only with additional contributions to
the covariance matrix and distance vector. The optimization of the input projection, by contrast,
is more challenging. The higher powers of u impede a direct solution. In our analysis, the most

6



Figure 3: Responses and soft margins in a network with small non-linearity α. (a) First order ap-
proximation O(α) of the dynamics (red) and linear response (black dashed). Simulation shown in

blue. Left inset shows a zoom in, right inset shows time evolution of maxα(Re(λ̃α)) for simula-
tion (blue) and O(α) approximation (red) of the nonlinear reservoir together with maxα(Re(λα))
(black dashed) of the linear reservoir. (b) Soft margins κη for random (stars) and optimized input
projections u (dots) for one example network realization; both cases use optimized readout projec-
tion v with respect to equation (8). Linear system on x-axis, non-linear system on y-axis. Vertical
and horizontal colored lines at position of optimized solution provided as a guide. Gray line is the
angle bisector. Colors indicate ‖µ‖, the strength of linear separability of the underlying stimulus
distribution, where ‖µ‖ ∈ {0.19, 0.30, 0.52, 0.76, 1.0} from violet to yellow. Both ψ and χ are held
constant with eigenvalues of ψ ± χ in the range [0.3, 2.2]. Same parameters as in figure 2, but with
α = 0.05 for the non-linear system.

reliable optimization scheme proved to be searching for a direct solution to ∂uL(u, v) = 0 given
by equation (8) with an appropriate initial guess. More details and pseudocode can be found in the
supplementary material (section A.3).

How much the choice of the input projection affects the soft margin can be observed in figure 3(b).
The input and readout projections are optimized separately for a linear and a non-linear network; they
take on different optimal values for the two reservoirs. A benefit of optimizing the input projection
in the linear reservoir only occurs for increasing strength in the mean class difference µ. For small
µ, the optimal direction is dominated by the one that minimizes the effect of the noise, while for
larger µ, the stimulus direction aligns such as to maximize the mean separation of the output of the
network. The situation is clearly different in the non-linear reservoir even for the weak non-linearity
considered here: At low linear separabilities of inputs, the optimization of the input projection in the
non-linear reservoir yields a strong relative improvement in separability of outputs, indicated by the
soft margin. For linearly well separable classes the relative improvement with respect to the linear
reservoir shrinks, while the absolute improvement stays rather constant. Close to the information
theoretic optimum of perfectly separable classes considered in the dataset application in section 5,
the benefit of non-linearities becomes negligible. The superior performance of the weakly non-linear
system with respect to the linear system vanishes for all input separabilities if input projections are
not optimized: For random input projections, the performance in the non-linear reservoir is on
average only slightly better, and sometimes even worse, than in the linear reservoir. The random
input projections accumulate along the identity line in figure 3(b), with a center of mass slightly in
the upper area.

In summary, while the weak non-linear corrections to the linear dynamics as used here do not exploit
the full computational power non-linearities can exert, the presented routine allows us to inspect the
potential of this framework that is not apparent in classical reservoir computing with random input
projections.

5 Application to ECG5000 dataset

We conclude the analysis with an application to a univariate temporal classification dataset. This
serves as a proof-of-concept to demonstrate the effects of the optimization on a real-world problem
and can be regarded as a check that real data do not generally contain structural obstacles that were
not covered in the theoretical considerations. To raise the method from the proof-of-concept level,
the performance should be systematically checked on a broader set of problems as done for state
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Table 1: Quality measures for the application of the optimization scheme to ECG5000. Soft margin
κη (left) and accuracy (right) for optimized and 50 random input projections, averaged over 20
different network realizations.

κη, linear κη, non-linear accuracy, linear accuracy, non-linear

random u 0.182± 0.015 0.183± 0.015 (91.7± 0.6)% (91.7± 0.7)%
optimized u 0.383± 0.026 0.384± 0.026 (97.3± 0.4)% (97, 3± 0.4)%

of the art time series classifiers (Bagnall et al., 2017; Wang et al., 2017), which we leave for future
work.

We here restrict the preprocessing of the data to a minimum. In this spirit, also the free parameters
η and τ are chosen appropriately, but not optimally. The focus lies solely on a comparison between
random and optimized input projections. This comparison is based on the classification soft margin
and accuracy in a fixed reservoir configuration. We can then observe the effect of the optimization
routine on the separation and covariance of the state clouds.

The examined dataset is ECG5000, which is publicly available at the UCR Time Series Classification
archive (Chen et al., 2015), containing 5000 electrocardiograms of single heartbeat recordings. The
classes separate between five categories of healthy and diseased heartbeats. For a binary classifica-
tion, we use only samples from the two largest classes, so that we obtained a training set consisting
of 354 samples and a testing set of 4332 samples. All stimuli were shifted and scaled to provide
classes with means ±µ with ‖µ‖ = 1; higher order cumulants changed accordingly. This scaling
of inputs is only performed for conceptual clarity, allowing identical network parameters as in the
previous task. Likewise, one could adapt the value of α according to the stimulus strength. Further-
more, for maximal performance, a trained threshold can replace the centering of data. As a measure
of linear separability, we relate the difference of the class means to the covariance in the direction
of separation. This yields a ratio ‖µ‖2

/
√
µTψµ = 2.6, which is much higher than for the artificial

stimuli analyzed in figure 3, where the corresponding measure ranges between 0.19 and 0.98.

All results presented here use the same parameters as in figure 2 and figure 3.

The summary of the results in table 1, which contains averaged results over 20 different initializa-
tions of the recurrent connectivity, makes evident that a maximized soft margin is accompanied by
increased accuracies. The optimized input projections outperformed all randomly chosen ones both
with respect to soft margin and accuracy. Because of the close to perfect linear separability of the
data, the increase of soft margins and accuracies from the linear to the non-linear reservoir is very
small (see supplementary material, section ??). These results are as theoretically expected from fig-
ure 3(b) for linearly well separable data. An application to a broader set of real world data would be
required to quantify the performance increase in terms of accuracy also in the case of linearly less
separable stimuli.

A visualization of the optimization in figure 4 shows the increase of distance between the classes
before and after optimization (a, b), gradually increasing with the optimization step (c). The projec-
tions being optimized for T = 10, the two classes become distinguishable only shortly before this
readout time point (d). The variance along the readout direction η

2v
TΣuv is hereby rather constant,

while the main deviations occur due to the separation. Increasing η can be used to enforce smaller
dispersion of the state clouds (see supplementary material, section ??). The enlarged range in be-
tween the class centers with low probability density for network states of either class facilitates a
better generalization to unknown data.

6 Discussion

We present an analytical approach of unrolling recurrent non-linear networks by use of a perturbative
expansion. The conceptual insight of this step lies in a simplification of the reverberating neuronal
dynamics into an effective feed-forward structure. This approach, which involves the first and sec-
ond order Green’s function of the system, extends naturally from linear networks to non-linear ones.
The reformulation of the classification margin as a partly concave soft margin, which has a sim-
ilar form as a free energy, facilitates the derivation of closed-form expressions to be maximized.
The joint optimization of stimulus projection and readout vector leads to a significant increase in
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Figure 4: Network state distribution for random and optimal input projection. (a) Random input
projections: Colored histogram shows the network state distribution for both classes in direction
of the separating hyperplane’s normal vector (average over 50 input projections). Light and dark
outlined histograms correspond to the input vectors with the best and worst accuracies among the
drawn samples, respectively. All network states are based on O(α)-predictions of the dynamics.
(b) Optimized input projection: Histogram of the network state distribution (based on the simulated
responses). (c) Evolution of distance and covariance contribution to the soft margin κη over the
first 10 optimization steps at readout time. Height of the shaded area corresponds to the resulting
κη, illustrating the difference between the two terms in equation (6). (d) Evolution of distance and
covariance contribution to κη over simulation time for optimized input vector u. Height of the
shaded area corresponds to the soft margin (negative where covariance contribution (red) exceeds
distance contribution (blue) and positive otherwise). Same network and parameters as in figure 3.

classification performance by tuning the network state distribution towards a trade-off between low
variability along the direction of separation and high absolute separation. This increase of separabil-
ity is in particular observable even in only weakly non-linear networks when the linear separability
of the stimuli is low. The effect can be fully explained by the second order Green’s function that
makes the reservoir sensitive to classification features in the second order stimulus statistics. We find
that the effect of higher statistical orders of the data are suppressed by powers in the perturbation
parameter, the non-linearity of the neuronal dynamics. But also the classification performance of the
linearly well separable dataset ECG5000 profits significantly from the optimization. The framework
presents a stepping stone towards a systematic understanding of information processing by recurrent
random networks.
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Broader impact

The main motivation of this work is to provide conceptual insight. Analytically unrolling recurrent
dynamics into a (functional) Taylor series, where coefficients are given by Green’s functions, is
a versatile approach that may be used as a general purpose scheme to analyze recurrent networks
and to optimize reservoir computing. This expansion reveals how the non-linear interactions and
recurrence pick up higher order correlations in the input statistics, quantifying how non-linear net-
works provide a richer feature space than linear ones. We consider the presented application as a
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proof-of-principle for optimized processing of complex time series data. The presented application
to health-related data (heartbeat classification) hints at possible societal consequences by providing
better diagnostic tools.
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A Supplementary material

A.1 Convexity of the soft-margin

The soft margin κη (equation (5)) is concave in v; this follows directly from the linear appearance of
v in the exponent of the exponential function with Hoelder’s inequality. Hoelder’s inequality states
for two non-negative sequences gk, hk ≥ 0 and for α+ β = 1 that

∑

k

(gk)
α(hk)

β ≤ (
∑

k

gk)
α(
∑

k

hk)
β . (14)

We here follow a modified version of the argument in (Goldenfield, 1992). It therefore follows for
α+ β = 1 that

κη(u, αv1 + βv2) = −
1

η
ln

P
∑

ν=1

exp
(

α
[

− η ζν
(

vT1 y
u,ν

)]

+ β
[

− η ζν
(

vT2 y
u,ν

)]

)

= −1

η
ln

P
∑

ν=1

exp
(

− η ζν
(

vT1 y
u,ν

)

)α

exp
(

− η ζν
(

vT2 y
u,ν

)

)β

Hoelder

≥ −1

η
ln

[

P
∑

ν=1

exp
(

− η ζν
(

vT1 y
u,ν

)

)

]α [ P
∑

ν=1

exp
(

− η ζν
(

vT2 y
u,ν

)

)

]β

= ακη(u, v1) + βκη(u, v2).

A.2 Linearized connectivity

The effective connectivity W̃ is obtained from linearizing around the network’s time evolution as

(τ∂t + 1) (yi(t) + δyi(t)) =
∑

j

Wij((yj(t) + δyj(t)) + α(yj(t) + δyj(t))
2) + uix(t)

⇒ (τ∂t + 1)δyi(t) =
∑

j

Wij(1 + 2αyj(t)) δyj(t) +O(δy2)

and approximating the non-linear system by an equivalent linear one with connectivity W̃ij =
Wij(1 + 2αyj(t)). The evolution of the system becomes unstable when the real part of an eigen-

value λ̃α of the effective matrix W̃ exceeds 1. The time evolution of maxα(Re(λ̃α)) displayed in
Figure 3(a) for the full system and the O(α) approximation assures the stability of the solution and
the quality of the approximation.

A.3 Constrained optimization with Lagrange multipliers

We need to optimize equation (8)

L(u, v) := κη(u, v) + λu(‖u‖2 − 1) + λv(‖v‖2 − 1),

where κη takes the form of equation (6). Although the mathematical structure of equation (6) is
simple, the optimization of the expression may present a few pitfalls. In this section, we describe in
detail how to find the projection vectors given the first four moments of the stimuli.

The linear system can be understood as a special case of the non-linear system, where some con-
tributions to the soft margin and its gradients vanish. Therefore, we will distinguish the types of
reservoir kernels only where they are relevant.

A.4 Prerequisites

The numerical results of the optimization slightly depend on the value of the control parameter η of
the soft margin that has to be fixed. In our examples, with η = 10 the soft margin showed already
very similar extrema as the margin. Smaller values correspond to softer margins. In practice, a
good choice of η can be obtained by comparing for different η the optimized readout vector and
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accuracies for responses of some reservoir to an arbitrary stimulation. This procedure is fast and
reliable since finding the readout vector for some η is only a quadratic problem. Furthermore, an
analysis of the time evolution of the soft margin for random input projections can be used as in
figure 2(b) to achieve a good estimate of a suitable τ . It can be chosen such that the soft margin
for random stimuli just entered a saturating phase, so that there is not much improvement expected.
Extended phases of saturation, however, are a sign of forgetting of early parts of the stimuli in the
network and should be avoided.

The main procedure then consists of an alternating optimization of the input and readout projections.
Thereby, we denote L(u|v) as the objective function for input optimization, given v, and L(v|u)
analogously. The resulting algorithm (slightly simplified) is given as pseudocode in algorithm 1.

Algorithm 1 Optimization of equation (8) using Lagrange multipliers.

1: COMPUTE(
∑

nG
(1)
ipnx

ν
n,

∑

n,mG
(2)
ipqnmx

ν
nx

ν
m)

2: for set of initial u do
3: repeat
4: procedure OPTIMIZE INPUT(L(u|v))
5: if ‖µ‖ = 0 then
6: OPTIMIZE(κη ←

∑

p,q upuq(m1pq − σ0pq)) ⊲ eigenvalue problem

7: else if κη far from saturated then
8: OPTIMIZE(κη ←

∑

p upm0p +
∑

p,q upuq(m1pq − σ0pq)) ⊲ quadratic problem

9: else
10: OPTIMIZE(κη ← ∑

p upm0p +
∑

p,q upuq(m1pq − σ0pq) −
∑

p,q,r upuqurσ1pqr −
∑

p,q,r,s upuqurusσ2pqrs)
11: end if
12: end procedure
13: procedure OPTIMIZE READOUT(L(v|u))
14: if ‖µ‖ = 0 and α = 0 then
15: OPTIMIZE(κη ← − 1

2ηv
T(Σ0 +Σ1)v) ⊲ eigenvalue problem

16: else
17: OPTIMIZE(κη ← vT(M0 +M1)− 1

2ηv
T(Σ0 +Σ1)v) ⊲ quadratic problem

18: end if
19: end procedure
20: until κη saturated
21: end for

A.5 Optimization of the input projection

The determination of the input projection for fixed readout vector is best conducted, depending on
the situation, by one of three methods for non-linear kernels and one of two methods for linear ones.
The quantities

m0p =
∑

i,n

G
(1)
ipn vi〈ζνxνn〉

m1pq =
∑

i,n,m

G
(2)
ipqnm vi〈ζνxνnxνm〉

σ0pq =
∑

i,j,
n,m

1

2
η G

(1)
ipnG

(1)
jqm vivj(〈xνnxνm〉 − 〈ζνxνn〉〈ζνxνm〉)

σ1pqr =
∑

i,j,
n,m,o

1

2
η (G

(1)
ipnG

(2)
jqrmo +G

(2)
iqrmoG

(1)
jpn) vivj(〈xνnxνmxνo〉 − 〈ζνxνn〉〈ζνxνmxνo〉)

σ2pqrs =
∑

i,j,
n,m,o,l

1

2
η G

(2)
ipqmnG

(2)
jrsol vivj(〈xνnxνmxνoxνl 〉 − 〈ζνxνnxνm〉〈ζνxνoxνl 〉),
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where G(2) is the O(α) correction of the Green’s function G(1) for linear kernels and µ = 〈ζνxνn〉,
ψ = 〈xνnxνm〉 − 〈ζνxνn〉〈ζνxνm〉 and χ = 〈ζνxνnxνm〉 constitute the cumulants in the notation (equa-
tion (7)) used in the main text. This notation is introduced here and in section A.6 for legibility,
although a memory-efficient implementation will compute only products of Green’s functions with

stimuli xν (for example, G(2)ipqν =
∑

n,mG
(2)
ipqnmx

ν
nx

ν
m), which then compose the above abbrevia-

tions by performing the averages over ν. With these abbreviations, the dependence of the soft margin
on the input projection becomes independent of the length of the input and reads

κη =
∑

p

upm0p +
∑

p,q

upuqm1pq −
∑

p,q

upuqσ0pq −
∑

p,q,r

upuqurσ1pqr −
∑

p,q,r,s

upuqurusσ2pqrs.

Preparations for optimization in non-linear systems

In the non-linear case, it is advisable to take a few precautions to reduce computation time and
enhance performance. The determination of the optimal input projection u given a fixed readout
projection v should in the first few, but at least one, iterations neglect terms of O(α) and higher in
the covariance Σu. In these steps, the soft margin is not strictly optimized, but the result still yields
a good initial guess for the full problem. The advantage of this procedure is that the computation is
much faster and more likely to achieve a solution near the optimum rather than some local extremum.
In the first steps, the direction of the projection vector u typically changes rapidly and the quadratic
part alone often has a maximum near the optimum of the full soft margin, as the neglected terms are
at least O(α). In the readout optimization, the problem is in general quadratic in case of both linear
and non-linear dynamics, so there is no need to make further simplifications.

Furthermore, the soft margin is not necessarily convex in u in the non-linear case and sometimes
exhibits plateaus over iteration steps. We therefore recommend to use a small number of initial
projection vectors, optimize them over a few steps as described below, and then proceed with the
best one after these steps.

Case A.

The simplest case arises if ‖µ‖ = 0, since then m0, σ1 and σ2 vanish, if one neglects the O(α) con-
tributions in the non-linear case as discussed above. For normalized input projections, equation (6)
is then maximized by the eigenvector corresponding to the smallest eigenvalue of σ0 −m1.

Case B.

In the general case where ‖µ‖ 6= 0, it is, as mentioned before, sometimes helpful to ignore the
part related to σ1 and σ2 of the soft margin in the non-linear case to obtain a good guess of the
input projection that maximizes equation (8). Since m1, σ1 and σ2 vanish when α = 0, the same
procedure applies in the linear case. The objective then reads

L(u|v)→ uTm0 + uTm1u− uTσ0u+ λu(u
Tu− 1),

so u and λu are found using

∂uL = 0⇒ 2(σ0 −m1 − λuI)u = m0, (15)

∂λu
L = 0⇒ uTu− 1 = 0. (16)

These equations have many solutions, but for a maximum we further require negative definiteness
of ∂2uL|λu

. From this condition follows that λu < min{σ |σ is eigenvalue of σ0 − m1}. Then,
σ0 −m1 − λuI is symmetric and invertible and, from solving the first condition for u and inserting
in the second, we get

1

4
(mT

0 (σ0 −m1 − λuI)−1(σ0 −m1 − λuI)−1m0) = 1. (17)

The term on the left hand side is positive, has poles around the eigenvalues of σ0 −m1 and deviates
only slightly from 0 for λu ≪ min{σ |σ is eigenvalue of σ0 −m1}. A bisection is therefore best
suited to determine λu and thereby u using equation (15). This also avoids running into an undesir-
able solution where ‖u‖ → 0 and λu → −∞. However, the poles have only a very small width and
the determination of eigenvalues and inverse matrices is accompanied by numerical uncertainties.
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Therefore, the upper bound on λu is found best as the smallest value within a window of a small
width ε around the smallest eigenvalue, where the term on the left hand side exceeds one. Although
this corresponds to a fine-tuning of the Lagrange parameter λu with a sensitive dependence of the
left hand term in equation (17) on the exact used eigenvalues, the soft margins corresponding to
the obtained solutions remained robust against neglecting near-vanishing, and therefore numerically
uncertain, eigenvalues in the summation. Components of the input projection in these directions are
neutralized by their eigenvalues in equation (8).

Case C.

If the system is non-linear and a good initial guess for the input projection is available, predefined
solvers, such as the fsolve function implemented in numpy (Oliphant, 2006), typically find good
solutions for the Lagrange conditions, which are in this case

2(σ0pq −m1pq − λuIpq)uq + (σ1pqr + σ1qrp + σ1rpq)uqur

+(σ2pqrs + σ2qrsp + σ2rspq + σ2spqr)uqurus = m0p,

uTu = 1.

The first guess should be the solution from the previous iteration step. Only if the soft margin
reduces by the found solution, a new guess should be computed neglecting σ1 and σ2. For this
comparison, it is important to make sure the projection vectors are properly normalized. Although
this is ensured by the Lagrange condition, the actual lengths of the returned vectors slightly deviate
from one because of the fine-tuning of the Lagrange parameters. If the soft margin found near that
solution still decreases, we decided to use the new solution anyway as a restart-point. The readout
vector optimization then improves the soft margin again.

A.6 Optimization of the readout projection

The optimization of the readout projection is structurally the same as for the input projection, only
the objective function is in general bi-linear in v. The abbreviations used here are

M0i =
∑

p,n

G
(1)
ipn up〈ζνxνn〉

M1i =
∑

p,q,
n,m

G
(2)
ipqnm upuq〈ζνxνnxνm〉

Σ0ij =
∑

p,q,
n,m

G
(1)
ipnG

(1)
jqm upuq(〈xνnxνm〉 − 〈ζνxνn〉〈ζνxνm〉)

Σ1ij =
∑

p,q,r,
n,m,o

(G
(1)
ipnG

(2)
jqrmo +G

(2)
iqrmoG

(1)
jpn)upuqur(〈xνnxνmxνo〉 − 〈ζνxνn〉〈ζνxνmxνo〉)

+
∑

p,q,r,s,
n,m,o,l

G
(2)
ipqmnG

(2)
jrsol upuqurus(〈xνnxνmxνoxνl 〉 − 〈ζνxνnxνm〉〈ζνxνoxνl 〉).

The objective function to maximize is then

L(v|u)→ vT(M0 +M1)−
1

2
ηvT(Σ0 +Σ1)v + λv(v

Tv − 1).

Only if the system is linear and the mean stimulus difference µ is vanishing, this becomes an eigen-
value problem and the optimal readout vector v is the eigenvector corresponding to the smallest
eigenvalue of Σ0 (compare case A). Otherwise, the Lagrange parameter follows from a bisection
using the conditions

∂vL = 0⇒ (η(Σ0 +Σ1)− 2λvI)v =M0 +M1, (18)

∂λv
L = 0⇒ vTv − 1 = 0. (19)

From negative definiteness, λv <
1
2 min{σ |σ is eigenvalue of η(Σ0+Σ1)} follows as upper bound

on λv (compare case B).
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