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Abstract

We consider the problem of recovering fusion frame sparse signals from incomplete measure-
ments. These signals are composed of a small number of nonzero blocks taken from a family of
subspaces. First, we show that, by using a-priori knowledge of a coherence parameter associated
with the angles between the subspaces, one can uniformly recover fusion frame sparse signals
with a significantly reduced number of vector-valued (sub-)Gaussian measurements via mixed
ℓ1/ℓ2-minimization. We prove this by establishing an appropriate version of the restricted isom-
etry property. Our result complements previous nonuniform recovery results in this context,
and provides stronger stability guarantees for noisy measurements and approximately sparse
signals. Second, we determine the minimal number of scalar-valued measurements needed to
uniformly recover all fusion frame sparse signals via mixed ℓ1/ℓ2-minimization. This bound is
achieved by scalar-valued subgaussian measurements. In particular, our result shows that the
number of scalar-valued subgaussian measurements cannot be further reduced using knowledge
of the coherence parameter. As a special case it implies that the best known uniform recovery
result for block sparse signals using subgaussian measurements is optimal.

1 Introduction

Compressive sensing [7, 16, 19, 24] predicts that sparse signals can be recovered from incomplete and
possibly noisy measurements via efficient algorithms. The linear measurement process is typically
described via random matrices. For instance, Gaussian random matrices provide optimal recovery
guarantees in the sense that m ≥ Cs log(N/s) measurements are necessary and sufficient to recover
any s-sparse vector in dimension N via ℓ1-minimization and other recovery algorithms [8, 31].

Often signals possess more structure than just plain sparsity. In the block sparsity model
[17, 18] one assumes that a signal consists of blocks, of which only a few are nonzero. This model is
strongly related to (and can in fact be viewed as special case of) the joint sparsity model [21, 22, 26],
where one considers a signal consisting of several “channels” (such as the three color channels of
an RGB image) and assumes that nonzeros coefficients appear at the same location within each of
the channels. A generalization of the block sparsity model is the group sparsity model where the
groups of nonzero coefficients are allowed to overlap [3, 34].

In [6], a refinement of the block sparsity model was introduced which is related to the concept
of fusion frames. In the fusion frame sparsity model we assume that the signal is block sparse and,
in addition, lies in

H = {x = (xj)
N
j=1 : xj ∈Wj , ∀j ∈ [N ]} ⊂ RdN ,
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i.e., every nonzero block xj of the signal is assumed to lie in a certain k-dimensional subspaceWj of
Rd. The collection of these subspaces may form a fusion frame (although this is not strictly required
for our theory). Fusion frames generalize frames [11] and were first introduced in [9] under the name
of ‘frames of subspaces’ (see also the survey [10]). They allow to analyze signals by projecting them
onto multidimensional subspaces and for stable reconstruction from these projections.

In this paper we study uniform recovery of fusion frame sparse signals using random linear
measurements. We are particularly interested in determining whether one can reduce the number
of measurements needed for recovery if one knows that the subspaces are incoherent. We measure
the coherence with the parameter

λ = max
i̸=j

∥PiPj∥2→2,

where Pi is the orthogonal projection onto the subspaceWi. This parameter, which was introduced
in [6], is a measure of the mutual orthogonality of the subspaces (note that λ = 0 means that all
subspaces are orthogonal to each other).

In the first part of the paper, we consider a measurement model in which we take scalar-valued
linear measurements of the signal, i.e., we observe a vector y of m′ measurements of the form

y = Φx (1)

where Φ ∈ Rm′×dN . This recovery problem was studied, among others, in [18, 20, 36]. As we recall
in Section 2.1, it is essentially known that one can uniformly recover every s-sparse signal in H in
a stable and robust manner from m′ subgaussian measurements using mixed ℓ1/ℓ2-minimization,
provided that m′ & s log(N/s) + sk. Our first main result, stated in Theorem 2.4, shows that this
is optimal : if one can recover every s-sparse vector in H from the linear measurements in (1) via
mixed ℓ1/ℓ2-minimization, then m′ & s log(N/s) + sk measurements are necessary. In particular
this shows that the number of scalar subgaussian measurements cannot be further reduced by using
a-priori knowledge of the coherence of the subspaces Wj .

In the second part of the paper, we consider a more natural measurement model in which one
takes vector-valued measurements. In this model we observe m measurements of the form

y = (yi)
m
i=1 =

 N∑
j=1

aijxj

m

i=1

, yi ∈ Rd.

In the vector-valued measurement model, one expects the coherence of the subspaces Wj to play
a significant role. To see this, note that if the spaces Wj are mutually orthogonal, then a single
measurement is sufficient to recover the signal. Indeed, in this case xj = a−1

j Pjy. This suggests
that fewer measurements are necessary when the subspaces are close to being orthogonal.

In [6] the first results concerning the reconstruction of fusion frame sparse signals from vector-
valued measurements via mixed ℓ1/ℓ2-minimization were obtained. In particular, a fusion frame
version of the well-known restricted isometry property (RIP) [8], [24, Chapter 6] was introduced and
it was shown that is implied by the classical RIP. As a consequence, a signal that is s-sparse in this
fusion frame model can be recovered from m ≥ Cs log(N/s) Gaussian vector-valued measurements,
which corresponds to taking the measurement coefficients aij to be Gaussian. This bound does not
take the coherence of the subspaces Wj into account. A different analysis in [6] based on the block-
coherence of the measurement matrix yields the desired dependence in λ, but this type of analysis
cannot provide the optimal scaling of the measurements in terms of the sparsity. A decrease of the
number of measurements when λ decreases was also observed in an average case analysis in [6],
where the non-zero coefficients are chosen at random according to a certain model, similarly as in
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[21]. Recently in [2], a nonuniform recovery result valid for a fixed fusion frame sparse signal and
Bernoulli measurements was shown, which requires fewer measurements as λ decreases and at the
same time exhibits linear scaling in terms of the sparsity (up to logarithmic factors). The proof
proceeds by an adaptation of the golfing scheme invented by D. Gross [27], see also [24, Chapter 12].

The second main result of this paper, Theorem 3.2, guarantees uniform recovery of sparse
vectors via ℓ1/ℓ2-minimization using a small number of vector-valued (sub)gaussian measurements.
Our recovery guarantee exhibits improved stability in the presence of noise and under approximate
sparsity when compared to the non-uniform recovery result in [2]. Contrary to the earlier results in
[6], the required number of measurements simultaneously decreases with λ and shows linear scaling
in terms of the signal sparsity up to logarithmic factors. We establish this result by showing that
a subgaussian matrix satisfies the fusion restricted isometry property with high probability. Our
proof of the latter result relies heavily on a recent tail bound for suprema of second order chaos
processes [28]. In the final section of the paper we give a lower bound on λ and use this to compare
a necessary condition on the number of measurements needed for uniform sparse recovery via mixed
ℓ1/ℓ2-minimization with the sufficient condition in Theorem 3.2. These conditions do not match,
however, and we leave it as an interesting open problem to close the gap between the two.
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1.1 Block sparsity and fusion frames

We consider signals x = (xj)
N
j=1 ∈ RdN , where the components xj ∈ Rd are vectors themselves. We

say that x is s-sparse if it is s-sparse in the block sense [17], i.e., ∥x∥0 ≤ s, where

∥x∥0 = card{j ∈ [N ] : xj ̸= 0}.

Here, and in the following [N ] := {1, 2, . . . , N}. We refine this block sparsity model in the following
way. Given a collection of N subspaces Wj ⊂ Rd with dim(Wj) = k, j ∈ [N ], we require that the
components xj of a vector x are contained in Wj for all j ∈ [N ], that is, x is contained in the space

H = {x = (xj)
N
j=1 : xj ∈Wj , ∀j ∈ [N ]} ⊂ RdN .

Accordingly, for any s ∈ [N ] we denote the s-sparse vectors in H by

Hs = {x ∈ H : ∥x∥0 ≤ s}.

Often, vectors are only approximately sparse. In order to measure how close a given vector is to
the set of sparse vectors we introduce the error of best s-term approximation in ℓ2,1 of a vector x
as

σs(x)1 := inf
∥z∥0≤s

∥x− z∥2,1, (2)

where

∥x∥2,1 =
N∑
j=1

∥xj∥2. (3)
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We call vectors with small σs(x)1 approximately sparse or compressible.
In what follows, it will be important to introduce a parameter that measures how much the

subspaces Wj deviate from a collection of orthogonal subspaces. Let Pj : Rd → Rd denote the
orthogonal projection onto the subspace Wj ⊂ Rd. We define the coherence λ of (Wj)

N
j=1 by

λ = max
i̸=j

∥PiPj∥2→2, (4)

where ∥ · ∥2→2 denotes the operator norm. Let θ
(1)
ij ≤ θ

(2)
ij ≤ . . . ≤ θ

(k)
ij be the principal angles

between Wi and Wj . The cosines of the principal angles coincide with the singular values of PiPj
(see e.g. [35]) so that

λ = max
i̸=j

cos θ
(1)
ij . (5)

In order to explain the terminology fusion frame sparsity model, we recall that the collection
(Wj)

N
j=1 of subspaces is called a fusion frame if there are constants 0 < A ≤ B < ∞ (called frame

bounds) and certain weights vj > 0, j ∈ [N ], such that

A∥x∥22 ≤
N∑
j=1

v2j ∥Pjx∥22 ≤ B∥x∥22 for all x ∈ Rd. (6)

The special case that all subspaces Wj are one-dimensional, i.e., Wj = span{fj} and vj = ∥fj∥2
reduces to the situation of classical frames [11]. We refer to [10] for more information on fusion
frames. Although our work, as well as [2, 6], is strongly motivated by fusion frames, we emphasize
that our results below do not assume that the subspaces Wj satisfy the fusion frame property (6).

2 Sparse recovery using scalar-valued measurements

In this section we consider the recovery of sparse vectors from scalar-valued linear measurements.
That is, we assumed that we are given a vector y of m′ measurements

y = Φx (7)

where Φ ∈ Rm′×dN . Our goal is to recover a sparse x ∈ H from these measurements. This problem
can be formulated as the optimization program

(L0) x̂ = argminx∈H∥x∥0 subject to Φx = y.

which is NP-hard. Following [6, 21, 22, 38], we instead use the convex program

(L2,1) x̂ = argminx∈H∥x∥2,1 subject to Φx = y,

where the ∥ · ∥2,1-norm is defined in (3). We shall refer to this program as either mixed ℓ1/ℓ2-
minimization or ℓ2,1-minimization. This problem can be solved efficiently.

Similarly to the situation in classical compressive sensing, there are alternative methods avail-
able to recover sparse signals. We mention in particular the ‘block’ versions of matching and
orthogonal matching pursuit studied in [18]. In this paper we concentrate exclusively on ℓ2,1-
minimization.
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2.1 A sufficient condition for uniform recovery

Let us first review the known uniform recovery results using random scalar measurements. The
results are phrased in terms of the following restricted isometry constants on Hs, the set of s-sparse
vectors in H. If Wj = Rd for all j ∈ [N ], then our definition coincides with the block restricted
isometry constants introduced in [20].

Definition 2.1. The restricted isometry constant of Φ ∈ Rm′×dN on Hs is the smallest constant
θs ≥ 0 satisfying

(1− θs)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + θs)∥x∥22, for all x ∈ Hs.

The following result is essentially [20, Theorem 2]. It also follows from the proof of [6, Theorem
4.4] (simply replace AI by Φ there).

Theorem 2.2. Suppose that the RIP constant θ2s of Φ on Hs satisfies θ2s <
√
2− 1. For x ∈ H,

let noisy measurements y = Φx + e be given with ∥e∥2 ≤ η. Let x̂ be the solution of the ℓ2,1-
minimization program

min
z∈H

∥z∥2,1 subject to ∥Φz− y∥2 ≤ η.

Then

∥x− x̂∥2 ≤ C1
σs(x)1√

s
+ C2η,

and
∥x− x̂∥2,1 ≤ C1σs(x)1 + C2

√
sη,

where the constants C1, C2 > 0 only depend on θ2s.

Since Hs can be viewed as a union of
(
N
s

)
subspaces of dimension sk, the next result follows

from general bounds on restricted isometry constants of subgaussian matrices acting on unions of
subspaces. We refer to [4, Theorem 3] and [14, Corollary 5.4] for details.

Theorem 2.3. If Φ is an m′ × dN random matrix with independent, α-subgaussian rows, then
P(θs ≥ θ) ≤ ε if

m′ & α4θ−2max{s log(eN/s) + sk, log(ε−1)}. (8)

As a particular consequence of Theorems 2.2 and 2.3, if m′ satisfies (8), then with probability
at least 1− ε we can robustly recover any s-sparse vector x ∈ H exactly via ℓ2,1-minimization from
m′ scalar-valued subgaussian measurements. One may wonder whether it is possible to decrease
this number of measurements if the subspaces Wj are incoherent. In the following section we will
show that the answer is negative: one needs at least m′ & s log(eN/s)+sk measurements to recover
every s-sparse vector exactly via ℓ2,1-minimization. Note that this also implies that the condition
on m′ in Theorem 2.3 is essentially optimal.

2.2 A necessary condition for uniform recovery

In this section, we investigate the minimal number of scalar-valued measurements required for
uniform recovery of sparse signals via ℓ2,1-minimization. We follow the method used in [23, 24] to
establish the minimal number of measurements needed for sparse recovery via ℓ1-minimization in
classical compressed sensing.
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Theorem 2.4. Let Φ ∈ Rm′×dN and let (Wj)
N
j=1 be a collection of subspaces in Rd with dim(Wj) =

k. If every 4s-sparse vector x ∈ H is a minimizer of minz∈H ∥z∥2,1 subject to Φz = Φx, then

m′ ≥ c1s log

(
N

c2s

)
+ c3sk (9)

where c1 ≈ 0.46, c2 = 32 and c3 ≈ 0.18.

In the proof of Theorem 2.4 we use the following combinatorial lemma (see e.g. [24, Lemma
10.12] for a proof).

Lemma 2.5. Given integers s < N , there exists an n ∈ N such that

n ≥
(
N

8s

)s
(10)

and subsets I1, . . . , In of [N ] such that each Ii has cardinality 2s and

card(Ii ∩ Iℓ) < s whenever i ̸= ℓ.

2.2.1 Covering and packing numbers

In the proof of Theorem 2.4 we use some covering number estimates. Recall the following standard
terminology. Let T be a subset of a metric space (X, d). For t > 0, the covering number N (T, d, t) is
defined as the smallest integerN such that T can be covered with balls B(xℓ, t) = {x ∈ X, d(x, xℓ) ≤
t}, xℓ ∈ T , ℓ ∈ [N ], i.e.,

T ⊂
N∪
ℓ=1

B(xℓ, t). (11)

The packing number P(T, d, t) is defined, for t > 0, as the maximal integer P such that there are
points xℓ ∈ T , ℓ ∈ [P], which are t-separated, i.e., d(xℓ, xk) > t for all k, ℓ ∈ [P], k ̸= ℓ. If X = Rn
is a normed vector space and the metric d is induced by a norm ∥ · ∥ via d(u, v) = ∥u − v∥, then
we also write N (T, ∥ · ∥, t) and P(T, ∥ · ∥, t). Next we state a variation of a well-known covering
number bound, see e.g. [33, Lemma 4.16].

Lemma 2.6. Let ∥ · ∥ be any norm on Rn and let U = {x ∈ Rn : 1
2 ≤ ∥x∥ ≤ 2}. For any t > 0,(

2

t

)n
−
(

1

2t

)n
≤ N (U, ∥ · ∥, t) ≤ P(U, ∥ · ∥, t). (12)

Proof. For the first inequality, let {x1, . . . , xN } ⊂ U be a minimal set satisfying (11). Let B be the
unit ball with respect to ∥ · ∥ and let vol be the Euclidean volume on Rn. Then

Nvol(tB) ≥ vol

( N∪
ℓ=1

B(xℓ, t)

)
≥ vol(U) = vol(2B)− vol(B/2).

Since vol(tB) = tnvol(B), we have N tnvol(B) ≥ 2nvol(B) − (1/2)nvol(B). This yields N ≥
(2/t)n − (1/2t)n as desired. The second inequality is standard, see e.g. [24, Lemma C.2].

We will also use the following standard estimate, see e.g. [24, Proposition C.3] for a proof.
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Lemma 2.7. Let ∥ · ∥ be any norm on Rn and let U be a subset of the unit ball B = {x ∈ Rn :
∥x∥ ≤ 1}. Then for any t > 0,

N (U, ∥ · ∥, t) ≤ P(U, ∥ · ∥, t) ≤
(
1 +

2

t

)n
. (13)

Moreover, we will need the Gilbert-Varshamov bound from coding theory [25, 39].

Lemma 2.8. (Gilbert-Varshamov bound) Let A1, . . . , Al be sets, each consisting of q elements. Let
dH be the Hamming distance on A1 × · · · ×Al. Then, for any t ∈ [l],

P(A1 × · · · ×Al, dH , t) ≥
ql∑t−1

i=0

(
l
i

)
(q − 1)i

.

2.2.2 Proof of Theorem 2.4

First recall that we restrict our attention to the set

H = {x = (xi)
N
i=1 : xi ∈Wi, ∀i ∈ [N ]} ⊂ RdN .

Let Φ|H be the restriction of Φ to H and consider the quotient space

X := H / ker Φ|H = {[x] := x+ ker Φ|H, x ∈ H},

which is equipped with the quotient norm

∥[x]∥ := inf
v∈ker Φ|H

∥x− v∥2,1, x ∈ H.

Let BX be the unit ball of X with respect to this norm. Given a 4s-sparse vector x ∈ H, we notice
that every vector z = x − v with v ∈ ker Φ|H satisfies Φz = Φx. Thus, the assumption of the
theorem gives ∥[x]∥ = ∥x∥2,1.
Next we pack the spherical shells Si = {y ∈ Wi :

1
2s ≤ ∥y∥2 ≤ 2

s} of the subspaces Wi. Since
dim(Wi) = k, Lemma 2.6 yields that we can find such a packing with packing distance of 1/s where

P(Si, ∥ · ∥2, 1/s) ≥ 2k − (1/2)k =: q. (14)

For each i, fix a packing set Ti of Si with this cardinality. Now let I1, . . . , In be the sets introduced
in Lemma 2.5, and for each j ∈ [n] define the set of 2s-sparse vectors with support set from Ij

T (Ij) := {x ∈ H : supp(x) = Ij , xi ∈ Ti for i ∈ Ij}.

It is clear that for each j, the total number of vectors in T (Ij) is at least q2s. We wish to find

a large enough subset of each T (Ij), say T̂ (Ij), such that any two distinct vectors x,y ∈ T̂ (Ij)
satisfy card{i : xi ̸= yi} ≥ s. Lemma 2.8, applied with l = 2s and t = s, says that there exists such
a subset T̂ (Ij) satisfying

card(T̂ (Ij)) ≥
q2s∑s−1

i=0

(
2s
i

)
(q − 1)i

≥ q2s

22sqs
≥ (q/4)s.

Let us define the set

V =

n∪
j=1

T̂ (Ij).
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We claim that the set {[x] : x ∈ V} is a 1-separated subset of the scaled unit ball 4BX . Observe
that a vector x ∈ V is supported on some Ij , j ∈ [n], of cardinality 2s. Therefore,

∥[x]∥ = ∥x∥2,1 =
∑
i∈Ij

∥xi∥2 ≤ 2s · 2
s
= 4,

since xi ∈ Si. We now distinguish between two cases. First assume that x,y ∈ V both belong to
the same set T̂ (Ij) for some j. Then we know that card{i : xi ̸= yi} ≥ s holds. Whenever xi ̸= yi,
we have ∥xi − yi∥2 ≥ 1/s since xi, yi ∈ Ti. Hence,

∥[x]− [y]∥ = ∥[x− y]∥ = ∥x− y∥2,1 =
∑

i:xi ̸=yi

∥xi − yi∥2 ≥ s · 1
s
= 1.

The second equality holds since x−y is 4s-sparse. For the case that x ∈ T̂ (Ij) and y ∈ T̂ (Iℓ) with
j ̸= ℓ, observe that x − y is 4s-sparse and the symmetric difference of the support sets satisfies
card(Ij △ Iℓ) ≥ 2s. It follows that

∥[x]− [y]∥ = ∥[x− y]∥ = ∥x− y∥2,1 ≥
∑

i∈Ij△Iℓ

(∥xi∥2 + ∥yi∥2) ≥ 2s · 1

2s
= 1,

since xi, yi ∈ Si. This proves our claim that V separates 4BX by 1 and card(V) ≥ n(q/4)s. The
space X has dimension r := Rank(Φ) ≤ m′. Applying Lemma 2.7 with 4BX , this implies that
n(q/4)s ≤ 9r ≤ 9m

′
. In view of (10), we obtain for k ≥ 1

9m
′ ≥

(
N

8s

)s(2k − (1/2)k

4

)s
≥
(
N

32s

)s(3

2

)ks
,

since 2k−(1/2)k ≥ (3/2)k for k ≥ 1. Taking the logarithm on both sides gives the desired result.

3 Sparse recovery using vector-valued measurements

We now consider the problem of recovering a fusion frame sparse vector x = (xj)
N
j=1 ∈ H from

vector-valued measurements. Our model consists of taking m linear combinations, i.e.,

y = (yi)
m
i=1 =

 N∑
j=1

aijxj

m

i=1

, yi ∈ Rd.

The coefficient matrix A = (aij)i∈[m],j∈[N ] ∈ Rm×N is called the measurement matrix in this context.
From a mathematical perspective, we can view the vector-valued measurement scheme as a special
case of (7) as follows. To the matrix A we associate the Kronecker product AI := A ⊗ Id, which
can be represented as a block matrix AI = (aijId)i∈[m],j∈[N ] ∈ Rdm×dN , where Id is the identity
matrix of size d× d. With this notation we can concisely formulate our measurement scheme as

y = AIx. (15)

Even though (15) is a special case of (7), we remark that it is appropriate to consider m (rather
than m′ = md) as the number of measurements, since this represents the number of performed
measurement operations.

Our goal is to recover a sparse x ∈ H from these measurements. Analogously to the case of
scalar-valued measurements, we do this using the ℓ2,1-minimization program

(L2,1) x̂ = argminx∈H∥x∥2,1 subject to AIx = y,

where the ∥ · ∥2,1-norm is defined in (3).
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3.1 A nonuniform recovery result

Before giving details on the main uniform recovery result of this paper, we recall a result from
[2] where the first and third named author considered the recovery of a fixed sparse signal from
random measurements.

Recall that a random variable ξ is called α-subgaussian if P(|ξ| > t) ≤ 2 exp(−t2/2α2). The
entries Aij = ξij of an m ×N α-subgaussian matrix A are independent, mean-zero, variance one,
α-subgaussian random variables. Examples of 1-subgaussian matrices are the standard Gaussian
matrix, whose entries are independent standard Gaussian random variables, and the Bernoulli
matrix, whose entries are independent random variables taking the values ±1 with equal probability.

Theorem 3.1. Let (Wj)
N
j=1 ⊂ Rd be k-dimensional subspaces with coherence λ ∈ [0, 1] and fix

x ∈ H. Let A ∈ Rm×N be a Bernoulli or Gaussian matrix and assume that

m ≥ C(1 + λs) logβ(Nsk) log(ε−1). (16)

Let noisy measurements y = AIx + e be given with ∥e∥2 ≤ η
√
m. Let x̂ be the solution of the

convex optimization problem

min
x∈H

∥x∥2,1 subject to ∥AIx− y∥2 ≤ η
√
m.

Then with probability at least 1− ε,

∥x− x̂∥2 ≤ C1σs(x)1 + C2

√
sη, (17)

where we recall that σs(x)1 is the error of best s-term approximation (2). The constants C,C1, C2 >
0 are universal. Here β = 1 in the Bernoulli case and β = 2 in the Gaussian case.

The condition ∥e∥2 ≤ η
√
m is natural for a vector e = (ej)

m
j=1. For instance, it is implied by

the bound ∥ej∥2 ≤ η for all j ∈ [m]. Theorem 3.1 implies exact sparse recovery via the equality
constrained ℓ2,1-minimization problem (L2,1) when x is s-sparse and η = 0. The required sufficient
numberm of samples in (16) decreases essentially linearly with λ. Furthermore, the exponent β = 2
in the Gaussian case is likely not optimal, but presently there is no better estimate available.

3.2 Main result

Our uniform recovery result using subgaussian vector-valued measurements reads as follows.

Theorem 3.2. Let A ∈ Rm×N be an α-subgaussian matrix and let (Wj)
N
j=1 ⊂ Rd be k-dimensional

subspaces with coherence λ ∈ [0, 1]. Assume that

m ≥ Cα4max{(log2(s) + λs)(k + log(N)), log(ε−1)}. (18)

Then with probability at least 1 − ε, (L2,1) recovers all s-sparse x from y = AIx. Moreover, with
probability at least 1− ε, every vector x ∈ H is approximated by a minimizer x̂ of

min
z∈H

∥z∥2,1 subject to

∥∥∥∥ 1√
m
AIz− y

∥∥∥∥
2

≤ η

with y = 1√
m
AIx+ e and ∥e∥2 ≤ η in the sense that

∥x− x̂∥2 ≤ C1
σs(x)1√

s
+ C2η and ∥x− x̂∥2,1 ≤ C1σs(x)1 + C2

√
sη,

where the constants C1, C2 > 0 are universal.
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Remark 3.3. In Section 5.1, we show that the term λs in (18) is almost optimal under special
conditions on the orientation of the subspaces. However, we believe that the linear factor k in
(18) is suboptimal. It is shown in Remark 4.5 that it is not possible to remove this factor with the
methods we use to prove our result. As it is now, this factor can be ignored in the range k . log(N).
Also note that in the special case of classical frames, k = 1, so that the factor of k in the number
of measurements vanishes.

The assumption that the dimensions of the subspaces Wj are all equal is not necessary in
Theorem 3.2, and can be relaxed to max1≤j≤N dim(Wj) ≤ k in the general case.

Let us briefly compare Theorem 3.2 to earlier uniform recovery results in the literature. In
the conference paper [1], the first and third named authors announced a preliminary version of
Theorem 3.2. They followed a similar approach as pursued in the present paper but could only
provide the condition

m & k
√
λs2 + s log4(Nd)

on the sufficient number of measurements for uniform recovery with subgaussian matrices. The-
orem 3.2 improves on the dependence in λ, k and s and on the number of logarithmic factors.
As we noted earlier, it was shown in [6] that m & s log(N/s) measurements are sufficient for re-
covery of fusion frame sparse signals using many random measurement ensembles. This result
is obtained by showing that if the underlying measurement matrix A satisfies the classical RIP,
then for an arbitrary collection of subspaces (Wj)

N
j=1 in Rd, the associated matrix AI satisfies the

FRIP, see Remark 4.6. The paper [6] also analyzes recovery via an adapted version of the co-
herence of the measurement matrix A ∈ Rm×N having ℓ2-normalized columns a1, . . . , aN , defined
as µf := maxj ̸=k |⟨aj , ak⟩|∥PjPk∥. A fusion frame s-sparse signal x can be recovered exactly via
ℓ2,1-minimization if s < (1 + µ−1

f )/2 [6, Theorem 3.5]. Clearly, µf ≤ λµ, where µ is the standard
version of the coherence, µ := maxj ̸=k |⟨aj , ak⟩|. For matrices A with near-optimal coherence of the
order µ ∼ c/

√
m, we conclude that fusion frame s-sparse signals can be recovered from m ≥ Cλ2s2

measurements. This bound shows a better scaling in λ but a quadratic, and hence not optimal,
scaling in s.

4 Proof of Theorem 3.2

To prove Theorem 3.2 we follow a by now classical approach [8, 24] to analyze sparse recovery for
various algorithms via the restricted isometry property (RIP). The following version of the RIP,
which is appropriate in the context of the vector-valued measurement model (15), was introduced
in [6].

Definition 4.1. Let A ∈ Rm×N and (Wj)
N
j=1 be a collection of subspaces in Rd. The fusion

restricted isometry constant δs of A is the smallest constant such that

(1− δs)∥x∥22 ≤ ∥AIx∥22 ≤ (1 + δs)∥x∥22, for all x ∈ Hs. (19)

We loosely say that A satisfies the fusion restricted isometry property (FRIP) if it has small fusion
restricted isometry constants.

Notice that δs(A) is exactly equal to θs(AI), which was introduced in Definition 2.1. In this
section we prove Theorem 4.4 which gives a sufficient condition under which an (appropriately
scaled) subgaussian matrix satisfies the FRIP. In combination with Theorem 2.2 (applied with
Φ = 1√

m
AI), this implies Theorem 3.2.
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We first collect some ingredients for the proof of Theorem 4.4. Given an m × n matrix A we
let ∥A∥2→2 and ∥A∥F denote its operator and Frobenius norm, respectively. If A is a set of m× n
matrices, then we define the radii of A in these norms by

d2→2(A) = sup
A∈A

∥A∥2→2, dF (A) = sup
A∈A

∥A∥F .

We let γ2(A, ∥ · ∥2→2) denote the γ2-functional of A. We do not give a precise definition of this
quantity (see [15, 28] for more information), but recall that it can be estimated by an entropy
integral (see e.g. [37, Section 1.2])

γ2(A, ∥ · ∥2→2) .
∫ d2→2(A)

0
log1/2(N (A, ∥ · ∥2→2, u)) du. (20)

To estimate the right hand side, we will use below that for any c, κ > 0 (see e.g. [24, Lemma C.9]),∫ κ

0
log1/2(c/u) du ≤ κ log1/2

(ec
κ

)
. (21)

The most important ingredient for our proof is the following tail bound for suprema of second order
chaos processes from [28]. We state here a sharpened version from [15, Theorem 6.5]. To this end,
we introduce the ψ2-norm of a random variable ξ as

∥ξ∥ψ2 := inf{C > 0 : E[exp(ξ2/(2C2))] ≤ 2}.

A random variable ξ is subgaussian if and only if ∥ξ∥ψ2 is finite.

Theorem 4.2. Let A be a set of m × n matrices. Suppose that ξ1, . . . , ξn are independent, real-
valued, mean-zero random variables, let ξ = (ξ1, . . . , ξn) and set ∥ξ∥ψ2 = maxi ∥ξi∥ψ2. Then there
are constants c, C > 0 such that for any u ≥ 1,

P
(
sup
A∈A

∣∣∣∥Aξ∥22 − E∥Aξ∥22
∣∣∣ ≥ C∥ξ∥2ψ2

(
γ22(A, ∥ · ∥2→2) + dF (A)γ2(A, ∥ · ∥2→2)

)
+ c∥ξ∥2ψ2

(√
udF (A)d2→2(A) + ud22→2(A)

))
≤ e−u. (22)

In the proof of Theorem 4.4 we use the following special case of the dual Sudakov inequality
([32], see also [29, Section 3.3]).

Lemma 4.3. Let ∥·∥ be any norm on Rn. If g denotes an n-dimensional standard Gaussian vector,
then

sup
u>0

u log1/2(N (Bn
2 , ∥ · ∥, u)) ≤ E∥g∥.

We are now prepared to present our result.

Theorem 4.4. Let (Wj)
N
j=1 ⊂ Rd be k-dimensional subspaces with coherence λ. Let A be an

m×N α-subgaussian matrix and let δs be the fusion restricted isometry constant of 1√
m
AI. Then

P(δs ≥ δ) ≤ ε provided that

m ≥ Cα4δ−2max{(log2(s) + λs)(k + log(N)), log(ε−1)}. (23)

11



Proof. From the definition of the fusion restricted isometry constant we have

δs = sup
x∈Ds,N

∣∣∣∣ 1m∥AIx∥22 − ∥x∥22
∣∣∣∣ = 1

m
sup

x∈Ds,N

∣∣∥AIx∥22 − E∥AIx∥22
∣∣ ,

where
Ds,N = {x = (xj)

N
j=1 ∈ H : ∥x∥0 ≤ s, ∥x∥2 ≤ 1}.

The relation E∥AIx∥22 = m∥x∥22 follows easily by noticing that the entries ξij of A are independent
random variables and all have mean zero and variance 1. Now observe that

AIx =
∑

i∈[m],j∈[N ]

ξijQijx,

where Qij := Eij(Id) denotes the m × N block matrix with block (i, j) equal to Id and all other
blocks zero. We define the matrix Vx ∈ Rmd×mN whose columns are Qijx for i ∈ [m], j ∈ [N ], i.e.,

Vx = (Q11x|Q12x| . . . |QmNx) ∈ Rmd×mN .

Then AIx = Vxξ where ξ = (ξij) is a subgaussian vector of length mN and we can write

δs =
1

m
sup

x∈Ds,N

∣∣∥Vxξ∥22 − E∥Vxξ∥22
∣∣ .

We will deduce the result by applying (22) to the supremum on the right hand side. For this purpose
we first calculate γ2({Vx : x ∈ Ds,N}, ∥ · ∥2→2) and the radii of {Vx : x ∈ Ds,N} in the operator
and Frobenius norms. Consider x,y ∈ Ds,N and set z = x−y, so that Vz = Vx−Vy. Observe that
V ∗
z Vz is a block diagonal matrix with the same N ×N block (⟨zj , zℓ⟩)j∈[N ],ℓ∈[N ] repeating m times.

This first of all shows that

∥Vz∥2F = Tr(V ∗
z Vz) = m

N∑
j=1

∥zj∥22

and in particular the radius in the Frobenius norm satisfies dF ({Vx : x ∈ Ds,N}) =
√
m. Moreover,

∥Vz∥22→2 = ∥V ∗
z Vz∥2→2 = ∥(⟨zj , zℓ⟩)j∈[N ],ℓ∈[N ]∥2→2 =: ∥Bz∥2→2.

We split Bz in two parts. Let Dz be the N ×N diagonal matrix with ∥zj∥22 as diagonal elements
and set Cz = Bz −Dz. By the triangle inequality, we obtain

∥(⟨zj , zℓ⟩)j∈[N ],ℓ∈[N ]∥2→2 ≤ ∥Dz∥2→2 + ∥Cz∥2→2 ≤ ∥Dz∥2→2 + ∥Cz∥F

= max
j∈[N ]

∥zj∥22 +
(∑
j ̸=ℓ

⟨zj , zℓ⟩2
)1/2

≤ max
j∈[N ]

∥zj∥22 +
(∑
j ̸=ℓ

λ2∥zj∥22∥zℓ∥22
)1/2

≤ max
j∈[N ]

∥zj∥22 + λ

N∑
j=1

∥zj∥22.

This shows that the radius in the operator norm satisfies d2→2({Vx : x ∈ Ds,N}) ≤
√
1 + λ.

Moreover, if we set ∥z∥2,∞ = maxj∈[N ] ∥zj∥2 then

∥Vz∥2→2 ≤ ∥z∥2,∞ +
√
λ∥z∥2.

12



Combining this with (20),

γ2({Vx : x ∈ Ds,N}, ∥ · ∥2→2) .
∫ ∞

0
log1/2(N ({Vx : x ∈ Ds,N}, ∥ · ∥2→2, u)) du

≤
∫ ∞

0
log1/2(N (Ds,N , ∥ · ∥2,∞ +

√
λ∥ · ∥2, u)) du. (24)

Let ∆ = {(x,x) : x ∈ Ds,N} ⊂ Ds,N ×Ds,N and define

∥(x,y)∥∗ = ∥x∥2,∞ + λ∥y∥2 ((x,y) ∈ Ds,N ×Ds,N ).

Then,
N (Ds,N , ∥ · ∥2,∞ +

√
λ∥ · ∥2, u) = N (∆, ∥ · ∥∗, u) ≤ N (Ds,N ×Ds,N , ∥ · ∥∗, u).

Now, if N1 is a u-net for Ds,N in the ∥ · ∥2,∞-norm and N2 is a u-net for Ds,N in the
√
λ∥ · ∥2-norm,

then N1 ×N2 is a 2u-net for Ds,N ×Ds,N in the ∥ · ∥∗-norm. Therefore,

N (Ds,N ×Ds,N , ∥ · ∥∗, u) ≤ N (Ds,N , ∥ · ∥2,∞, u/2)N (Ds,N ,
√
λ∥ · ∥2, u/2).

Combining these observations with (24), we obtain

γ2({Vx : x ∈ Ds,N}, ∥ · ∥2→2)

.
∫ ∞

0
log1/2

(
N (Ds,N , ∥ · ∥2,∞, u/2)N (Ds,N ,

√
λ∥ · ∥2, u/2)

)
du

≤ 2

∫ 1

0
log1/2(N (Ds,N , ∥ · ∥2,∞, u)) du

+ 2
√
λ

∫ 1

0
log1/2(N (Ds,N , ∥ · ∥2, u)) du, (25)

where in the final estimate we used that the ∥ · ∥2,∞ and ∥ · ∥2-diameters of Ds,N are equal to 1.
The second integral can be estimated via the volumetric estimate in Lemma 2.7. It implies that

N (Ds,N , ∥ · ∥2, u) ≤
∑

S⊂[N ],|S|=s

N ({x ∈ Ds,N : supp(x) = S}, ∥ · ∥2, u)

≤
(eN
s

)s(
1 +

2

u

)sk
, (26)

where we used that the dimension of {x ∈ Ds,N : supp(x) = S} is sk, and find using (21)∫ 1

0
log1/2(N (Ds,N , ∥ · ∥2, u)) du . s1/2 log1/2(eN/s) + (sk)1/2.

We now compute the first entropy integral on the right-hand side of (25). Since we are now
considering the ∥ · ∥2,∞ instead of the ∥ · ∥2-norm we expect that s does not play a role in this part.
We use the dual Sudakov inequality to verify this. For every 1 ≤ j ≤ N we let Uj : Rk →Wj ⊂ Rd
be the matrix with columns consisting of an orthonormal basis of Wj . Define U : RkN → H by
U = (U1, . . . , UN ), then U∗U = IkN . We consider the norm on RkN given by

∥x∥2,∞,U = ∥Ux∥2,∞

13



Let g be a kN -dimensional standard Gaussian vector. By Lemma 4.3,

sup
u>0

u log1/2(N (Ds,N , ∥ · ∥2,∞, u)) ≤ sup
u>0

u log1/2(N (BkN
2 , ∥ · ∥2,∞,U, u))

. E∥g∥2,∞,U = E∥Ug∥2,∞.

Since U∗
j Uj = Ik for all 1 ≤ j ≤ N , we see that

E∥Ug∥2,∞ = E max
1≤j≤N

∥Ujgj∥2

≤ max
1≤j≤N

E∥gj∥2 + E max
1≤j≤N

∣∣∣∥gj∥2 − E∥gj∥2
∣∣∣,

where gj denotes the j-th k-dimensional block of g. Clearly, for all 1 ≤ j ≤ N , E∥gj∥2 ≤
(E∥gj∥22)1/2 = k1/2. Moreover, observe that the function x 7→ ∥x∥2 is 1-Lipschitz. Therefore,
the concentration inequality for Lipschitz functions of Gaussian vectors (see e.g. [5, Theorem 5.5])
implies that ∣∣∣∥gj∥2 − E∥gj∥2

∣∣∣
is 1-subgaussian and therefore

E max
1≤j≤N

∣∣∣∥gj∥2 − E∥gj∥2
∣∣∣ . log1/2N.

Using these estimates we find for any 0 < κ ≤ 1,∫ 1

κ
log1/2(N (Ds,N , ∥ · ∥2,∞, u)) du . (k1/2 + log1/2N)

∫ 1

κ
u−1 du

= (k1/2 + log1/2N) log(κ−1).

By our earlier calculation (26) and (21),∫ κ

0
log1/2(N (Ds,N , ∥ · ∥2,∞, u)) du

≤
∫ κ

0
log1/2(N (Ds,N , ∥ · ∥2, u)) du

≤
∫ κ

0
s1/2 log1/2(eN/s) + (sk)1/2 log1/2

(
1 +

2

u

)
du

≤ κs1/2 log1/2(eN/s) + (sk)1/2κ log1/2(3eκ−1).

Combining these two estimates for κ = s−1/2, we find∫ 1

0
log1/2(N (Ds,N , ∥ · ∥2,∞, u))

. 1
2(k

1/2 + log1/2N) log(s) + log1/2(eN/s) + k1/2 log1/2(3es1/2).

Collecting our estimates we arrive at

γ2({Vx : x ∈ Ds,N}, ∥ · ∥2→2)

. (λs)1/2 log1/2(eN/s) + (λsk)1/2 + (k1/2 + log1/2N) log(s)
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+ log1/2(eN/s) + k1/2 log1/2(s).

By applying (22) with these estimates shows that δs ≤ δ with probability 1− ε if

m ≥ Cα4δ−2max{(log2(s) + λs)(k + log(N)), log(ε−1)}.

Remark 4.5. Let us compare the lower bound on the number of required measurements in (23)
to the requirement for nonuniform recovery stated in Theorem 3.1. Note that m scales in the same
way in λ, s and N as in (16) (and better in ε). However, the scaling in k is now linear instead of
logarithmic. We conjecture that it is possible to remove the dependence on k altogether. We note
here, however, that it is not possible to deduce a positive answer using Theorem 4.2. Indeed, the
diagonal projection is a contraction for the operator norm and therefore, using the notation from
the proof of Theorem 4.4, we have for any 1 ≤ j∗ ≤ N ,

∥zj∗∥22 ≤ max
j∈[m]

∥zj∥22 = ∥Dz∥2→2 ≤ ∥Bz∥2→2 = ∥Vz∥22→2.

Since the unit ball of Wj∗ is embedded in Ds,N , we conclude by the majorizing measures theorem
[37] and by identifying Wj∗ with Rk that

γ2({Vx : x ∈ Ds,N}, ∥ · ∥2→2) ≥ γ2(B
k
2 , ∥ · ∥2) & E sup

x∈Bk
2

⟨x, g⟩ = E∥g∥2 &
√
k.

In other words, the linear scaling of m in k in (23) is an inevitable consequence of the application of
Theorem 4.2 (although the just deduced lower bound does not exclude that a possible refinement
of our method leads to a bound where k only appears as an additive term). Note that if the
dimensions of the subspaces Wj are not equal, then this argument shows that

γ2({Vx : x ∈ Ds,N}, ∥ · ∥2→2) & max
1≤j≤N

dim(Wj).

Remark 4.6. One can show that the fusion restricted isometry constant δs is always bounded by
the classical restricted isometry constant δ̃s [6, Proposition 4.3]. In particular, in the context of
Theorem 4.4 this implies that P(δs ≥ δ) ≤ ε if

m ≥ Cα4δ−2max{s log(N/s), log(ε−1)},

since under this condition P
(
δ̃s(

1√
m
A) ≥ δ

)
≤ ε (see e.g. [24, Theorem 9.2]). This condition is

better than the result in Theorem 4.4 if the coherence λ is close to 1.

5 A lower bound on the coherence parameter

In the most favorable scenario, where the coherence λ is (close to) zero, Theorem 4.4 implies that
with high probability one can recover any s-sparse signal in a stable and robust manner using (L2,1)
and a number of measurements which scales only logarithmically in the sparsity s and the number
of subspaces N . This scenario occurs, for example, if W1, . . . ,WN are (nearly) orthogonal lines
in Rd (and N ≤ d). However, if N > d/k then one can no longer pick N orthogonal subspaces
k-dimensional subspaces in Rd, so that λ = 0 is impossible. In this section we investigate what the
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best result is that can be extracted from Theorem 4.4 by establishing a lower bound on λ in terms
of the dimensional parameters k, d and N .

To derive a quantitative lower bound on λ we relate it to optimal packings of Grassmannian
manifolds. Let G(k,Rd) denote the real Grassmannian manifold, the collection of all k-dimensional
subspaces of Rd. We consider the following metric on G(k,Rd). Given V,W ∈ G(k,Rd) and their
principle angles θ(1) ≤ θ(2) ≤ . . . ≤ θ(k), the spectral distance between V and W is given by

ds(V,W ) := min
ℓ

sin θ(ℓ) = sin θ(1).

The metric ds is directly related to the coherence parameter λ. Indeed, by (5),

λ2 = max
i̸=j

(
cos θ

(1)
ij

)2
= max

i̸=j

(
1−

(
sin θ

(1)
ij

)2)
= 1−min

i̸=j
d2s(Wi,Wj). (27)

Thus, finding a sharp lower bound for λ is equivalent to finding a set X = (Wj)
N
j=1 in G(k,Rd)

with maximal packing diameter

packds(X ) := min
i ̸=j

ds(Wi,Wj).

The following upper bound for the packing diameter appears in [13, Corollary 4.2]. Theorem 5.1
is a direct consequence of a packing diameter bound for the chordal distance [12, Corollary 5.2].
Recall that a subspace packing is called equi-isoclinic if all the principal angles between all pairs of
subspaces are identical [30].

Theorem 5.1. If X is a set of N subspaces in G(k,Rd), then

pack2ds(X ) ≤ (d− k)

d

N

N − 1
. (28)

If the bound is attained, then X is equi-isoclinic.

Optimal packings do not always exist, and for some parameter choices of N, d, k it is not known
whether they exist. It is shown in [30, Theorem 3.5] that the maximum number of equi-isoclinic
k-dimensional subspaces in Rd cannot be greater than

1

2
d(d+ 1)− 1

2
k(k + 1) + 1. (29)

Let us now state a lower bound on the parameter λ. By combining (27) and (28) we obtain

λ2 ≥ 1− (d− k)

d

N

N − 1
=
kN − d

dN − d
. (30)

When k = 1, this bound gives a lower bound on the coherence µ of N ℓ2-normalized vectors in Rd,
which is known as the Welch bound.

5.1 Comparison with a necessary condition for sparse recovery

Taking Φ = AI and m
′ = md in Theorem 2.4 shows that one needs at least

m & s

d
log(N/s) +

sk

d
(31)
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vector-valued measurements to recover every 4s-sparse vector in H exactly using (L2,1). Since (31)
does not involve the coherence parameter λ, it is not immediately clear how to compare this result
with the sufficient conditions for sparse recovery in Theorems 3.1 and 4.4. By (30),

λ2 ≥ kN − d

dN − d
.

Thus, in the most favorable case (assuming N is large), λ ∼
√
k/d. In this situation, according to

Theorem 3.2

m &
(
log2(s) + s

√
k

d

)
(k + log(N))

is sufficient for uniform recovery with a Bernoulli matrix. Note that there is a gap between this
condition and the necessary condition (31). We leave it as an interesting open problem to close
this gap.
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