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Abstract. Fusion frames are generalizations of classical frames that provide a richer description
of signal spaces where subspaces are used in the place of vectors as signal building blocks. The main
idea of this work is to extend ideas from Compressed Sensing (CS) to a fusion frame setup. We
use a sparsity model for fusion frames and then show that sparse signals under this model can be
compressively sampled and reconstructed in ways similar to standard CS. In particular we invoke a
mixed `1/`2 norm minimization in order to reconstruct sparse signals. The novelty of our research
is to exploit an incoherence property of the fusion frame which allows us to reduce the number of
measurements needed for sparse recovery.
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1. Introduction. The problem of recovering sparse signals in RN from m < N
measurements has drawn a lot of attention in recent years [2, 3, 6]. Compressed
Sensing (CS) achieves such performance by using classical signal representations and
imposing a sparsity model on the signal of interest. The sparsity model, combined
with randomized linear acquisition, guarantees that non-linear reconstruction can be
used to efficiently and accurately recover the signal.

Fusion frames are recently emerged mathematical structures than can better cap-
ture the richness of natural and man-made signals compared to classically used rep-
resentations [5]. Fusion frames generalize frame theory by using subspaces in the
place of vectors as signal building blocks. For further information on motivations and
applications of fusion frames, we refer to [1].

In this paper, we extend the concepts of CS to fusion frames. We demonstrate that
a sparse signal in a fusion frame can be sampled using very few random projections
and exactly constructed using a convex optimization program. Our sparsity model
assumes that signals lie only in very few subspaces of the fusion frame. It is not
required that the signals are sparse within the subspace. For the reconstruction, a
mixed `1/`2 minimization is invoked.

2. Background on Fusion Frames. A fusion frame for Rd is a collection of
N subspaces Wj ⊂ Rd and associated weights vj that satisfies

A‖x‖2
2 ≤

N∑
j=1

v2
j ‖Pjx‖2

2 ≤ B‖x‖2
2

for all x ∈ Rd and for some universal fusion frame bounds 0 < A ≤ B < ∞, where
Pj ∈ Rd×d denotes the orthogonal projection onto the subspace Wj . For simplicity
we assume that the dimensions of the Wj are equal, dim(Wj) = k.

For a fusion frame (Wj)N
j=1, let us define the Hilbert space H as

H = {(xj)N
j=1 : xj ∈ Wj , ∀j ∈ [N ]} ⊂ Rd×N ,
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where we denote [N ] = {1, . . . , N}. The mixed `2,1-norm of a vector x ≡ (xj)N
j=1 ∈ H

is defined as

‖(xj)N
j=1‖2,1 ≡

N∑
j=1

‖xj‖2.

We note that the `2,2-norm coincides with the usual `2-norm of a block vector. Fur-
thermore, the ’`0-norm’ (which is actually not even a quasi-norm) is defined as

‖x‖0 = ]{j ∈ [N ] : xj 6= 0}.

We call a vector x ∈ H s-sparse, if ‖x‖0 ≤ s.

2.1. Sparse Recovery Problem. We take m linear combinations of an s-sparse
vector x0 = (x0

j )
N
j=1 ∈ H

y = (yi)m
i=1 =

 N∑
j=1

aijx
0
j

m

i=1

, yi ∈ Rd.

Let us denote the block matrices AI = (aijId)i∈[m],j∈[N ] and AP = (aijPj)i∈[m],j∈[N ]

that consist of the blocks aijId and aijPj respectively. Here Id is the identity matrix
of size d× d. Then we can formulate this measurement scheme as

y = AIx0 = APx0.

We can replace AI by AP since the relation Pjxj = xj holds for all j ∈ [N ]. We
wish to recover x0 from those measurements. This problem reduces to the following
optimization problem

(L0) x̂ = argminx∈H‖x‖0 s.t. APx = y.

The optimization problem (L0) is NP-hard. Instead we propose the following program

(L1) x̂ = argminx∈H‖x‖2,1 s.t. APx = y.

2.2. Relation with Previous Work. A special case of the sparse recovery
problem above appears when all subspaces coincide with the ambient space Wj = Rd

for all j. Then the problem reduces to the well studied joint sparsity setup [8] in which
all the vectors have the same sparsity structure.

Furthermore, our problem is itself a special case of block sparsity setup [7], with
significant additional structure that allows us to enhance existing results.

Finally in the case d = 1, the projections equal 1, and hence the problem reduces
to the classical recovery problem Ax = y with x ∈ RN and y ∈ Rm.

2.3. Incoherence Parameter. We define the parameter λ as a measure of the
coherence of the fusion frame subspaces as

λ = max
i 6=j

‖PiPj‖2→2, i, j ∈ [N ].

Note that ‖PiPj‖2→2 equals the largest absolute value of the cosines of the principle
angles between Wi and Wj . Observe that if the subspaces are all orthogonal to each
other, i.e. λ = 0, then only one measurement suffices to recover x0. This observation
suggests that fewer measurements are necessary when λ gets smaller. In this work
our goal is to provide a solid theoretical understanding of this observation.
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3. Nonuniform Sparse Recovery with Random Matrices. In this section
we study the nonuniform recovery from fusion frame measurements. Such a result
states that a fixed sparse signal can be recovered with high probability using a random
draw of the measurement matrix A ∈ Rm×N that has independent Rademacher entries
(±1 with equal probability) or Gaussian entries.

3.1. Notation. For matrices we use ‖ · ‖ to denote the spectral norm. We
also denote the `-th block column of the matrix AP by (AP)` = (ai`P`)i∈[m] and
the column submatrix restricted to S ⊂ [N ] by (AP)S = (aijPj)i∈[m],j∈S . Boldface
notation refers to block vectors and matrices throughout this paper. For a set S ⊂ [N ]
with card(S) = s, let PS denote the s×s block diagonal matrix with entries Pi, i ∈ S,
where Pi is the projection onto the subspace Wi. Given a vector z ∈ H, we define
sgn(z) ∈ RdN as

sgn(z)i =
{ zi

‖zi‖2 if ‖zi‖2 6= 0,
0 if ‖zi‖2 = 0.

3.2. Recovery Lemma. The following lemma gives a sufficient condition for
recovery based on an ”inexact dual vector”. It is a modified version (as in [4]) of
the standard method for establishing recovery via a ”dual certificate”. Below, A|H
denotes the restriction of a matrix A to H.

Lemma 3.1 (Inexact duality). Let A ∈ Rm×N and (Wj)N
j=1 be a fusion frame for

Rd and x ∈ H be with support S ⊂ [N ]. Assume that

‖[(AP)∗S(AP)S ]−1
|H ‖ ≤ 2 and max

`∈[N ]\S
‖(AP)∗S(AP)`‖ ≤ 1. (3.1)

Suppose there exist a block vector u ∈ RNd of the form u = AP
∗h with block vector

h ∈ Rmd such that

‖uS − sgn(xS)‖2 ≤ 1/4 and max
i∈[N ]\S

‖ui‖2 ≤ 1/4. (3.2)

Then x is the unique minimizer of ‖z‖2,1 subject to APz = APx.

3.3. Main Result. We state our theoretical result pertaining to the sparse re-
covery from fusion frame measurements.

Theorem 3.2. Let x ∈ H be s-sparse. Let A ∈ Rm×N be Rademacher or
Gaussian matrix and (Wj)N

j=1 be given with parameter λ ∈ [0, 1]. Assume that

m ≥ C(1 + λs) lnα(max{N, sd}) ln(ε−1), (3.3)

where C > 0 is a universal constant. Then with probability at least 1−ε, (L1) recovers
x from y = APx. (Here α = 1 in the Rademacher case and α = 2 in the Gaussian
case.)

3.4. Remarks. In summary, Theorem 3.2 states that if (3.3) is satisfied, one can
exactly recover an s sparse vector via (L1) program from its random measurements.
An additional log-factor appears in (3.3) for the Gaussian case, which we believe
can be removed. This result asserts that as the subspaces become closer to being
orthogonal, i.e., as λ decreases, the number of measurements decreases.

We are also able to prove stability of reconstruction with respect to noise on the
measurements and under passing to approximately sparse signals.
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3.5. Proof Ideas. Due to lack of space, we only present the main ideas of the
proof of Theorem 3.2. We note that complete results and proofs will appear in a
future paper of the authors which is in preparation. The proof relies on constructing
an inexact dual vector satisfying Condition (3.2) in Lemma 3.1. To this end, we use
the so-called golfing scheme due to Gross [9]. This method partitions the matrix AP

into submatrices and then define a candidate u in a recursive manner. We prove a
series of lemmas which invoke tools from the non-asymptotic random matrix theory
in order to verify that u satisfies the sufficient conditions.

The analysis of Condition (3.1) requires to obtain estimates on the conditioning
of the submatrix (AP)S associated to the support of the vector to be recovered. In
particular, we will give the full proof of this result which is a main ingredient of the
proof. It also shows how the parameter λ comes into play. First we introduce the
rescaled matrix ÃP = 1√

m
AP.

Proposition 3.3 (Conditioning of submatrix). Let A ∈ Rm×N be a measure-
ment matrix whose entries are i.i.d. Rademacher random variables εij and (Wj)N

j=1

be a fusion frame with parameter λ ∈ [0, 1]. Let S ⊂ [N ] with card(S) = s. If, for
δ ∈ (0, 1),

m ≥ 8
3
δ−2(1 + λs) ln(2sd/ε),

then the block matrix ÃP defined above satisfies ‖(ÃP)∗S(ÃP)S −PS‖ ≤ δ with prob-
ability at least 1− ε.

Proof. We can assume that S = [s] without loss of generality. Denote Y` =
1√
m

(ε`jPj)j∈S for ` ∈ [m] as the `-th block column vector of (ÃP)∗S . Observing that
E(Y`Y∗

` )j,k = E 1
m (ε`jPjε`kPk) = 1

mδjkPjPk, we have EY`Y∗
` = 1

mPS . Then we can
write

(ÃP)∗S(ÃP)S −PS =
m∑

`=1

(Y`Y`
∗ − EY`Y`

∗).

This is a sum of independent self-adjoint random matrices. To this end, we will use
the noncommutative Bernstein inequality due to Tropp [10, Theorem 1.4]. The block
matrices X` := Y`Y`

∗ − EY`Y`
∗ have mean zero. Moreover,

‖X`‖ = max
‖x‖2=1

∣∣∣∣〈Y`Y∗
`x,x〉 − 1

m
〈PSx,x〉

∣∣∣∣
≤ max

{
max
‖x‖2=1

‖Y∗
`x‖2

2 − min
‖x‖2=1

1
m
‖PSx‖2

2, max
‖x‖2=1

1
m
‖PSx‖2

2 − min
‖x‖2=1

‖Y∗
`x‖2

2

}
≤ max

{
‖Y∗

` ‖2,
1
m
‖PS‖2

}
= max

{
‖Y∗

` ‖2,
1
m

}
.

Here we used ‖PS‖ = 1. Let us bound the spectral norm of the block matrix Y∗
` .

We separate a vector x ∈ Rsd into s blocks of length d and denote it as x = (xi)s
i=1.

Then

‖Y∗
` ‖2 =

1
m

max
‖x‖2=1

∥∥∥∥∥
s∑

i=1

εiPixi

∥∥∥∥∥
2

=
1
m

max
‖x‖2=1

s∑
i,j=1

εiεj〈Pixi, Pjxj〉

≤ 1
m

max
‖x‖2=1

s∑
i,j=1

|〈PiPjxj , xi〉| ≤
1
m

max
‖x‖2=1

s∑
i,j=1

‖PiPj‖‖xi‖2‖xj‖2



NONUNIFORM SPARSE RECOVERY 5

≤ 1
m

max
‖x‖2=1

s∑
j=1

‖xj‖2
2 +

∑
i 6=j

‖PiPj‖
[
1
2
(‖xi‖2

2 + ‖xj‖2
2)
]

≤ 1
m

(1 + λs).

In the third inequality above, we used that ab ≤ 1
2 (a2 + b2) for a, b ∈ R. This implies

‖X`‖ ≤ 1
m (1 + λs). We denote Eii(A) ∈ Rsd×sd as the block matrix (consisting of

s × s blocks) with a single entry A ∈ Rd×d at the intersection of i-th row and i-th
column, and 0-matrix everywhere else. Furthermore,

EX2
` = E

(
Y`Y∗

`Y`Y∗
` +

1
m2

PS −Y`Y∗
`

1
m

PS −
1
m

PSY`Y∗
`

)

= E
1
m

Y`

 s∑
j=1

Pj

Y∗
` +

1
m2

PS − E(Y`Y∗
` )

1
m

PS −
1
m

PSE(Y`Y∗
` )

=
1

m2

s∑
i=1

Eii

Pi

 s∑
j=1

Pj

Pi

− 1
m2

PS .

In the first equality above, we used the independence of ε`j for j ∈ S and the fact
that ε2`j = 1. The variance parameter appearing in the noncommutative Bernstein
inequality is estimated as

σ2 :=

∥∥∥∥∥
m∑

`=1

E(X2
`)

∥∥∥∥∥ =
1
m

∥∥∥∥∥∥
s∑

i=1

Eii

Pi

 s∑
j=1

Pj

Pi

−PS

∥∥∥∥∥∥
≤ 1

m
max


∥∥∥∥∥∥

s∑
i=1

Eii

Pi

 s∑
j=1

Pj

Pi

∥∥∥∥∥∥ , ‖PS‖


=

1
m

max

max
i∈[s]

∥∥∥∥∥∥Pi

 s∑
j=1

Pj

Pi

∥∥∥∥∥∥ , 1

 .

The first inequality above is the triangle inequality. We further estimate, for any
i ∈ [s],∥∥∥∥∥∥Pi

 s∑
j=1

Pj

Pi

∥∥∥∥∥∥ =

∥∥∥∥∥∥
s∑

j=1

PiPjPi

∥∥∥∥∥∥ ≤
s∑

j=1

‖PiPj‖‖PjPi‖ ≤ 1 + λ2(s− 1).

Finally, we have

σ2 ≤ 1
m

(1 + λ2(s− 1)).

Then it holds, for δ ∈ (0, 1),

P
(
‖(ÃP)∗S(ÃP)S −PS‖ > δ

)
= P

(
‖

m∑
`=1

X`‖ > δ

)

≤ 2sd exp
(
− δ2m/2

1 + λ2(s− 1) + (1 + λs)δ/3

)
≤ 2sd exp

(
−3

8
δ2m

(1 + λs)

)
.

Bounding the right hand side by ε completes the proof.
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4. A Preliminary Uniform Recovery Result. In this section, we present
uniform recovery conditions for random matrices, i.e., once the random matrix is
chosen, then with high probability all sparse signals can be recovered using the same
matrix. One common way to study uniform recovery conditions is via the restricted
isometry property. The following definition for the restricted isometry property for
fusion frames was given in [1].

Definition 4.1 (Fusion RIP). Let A ∈ Rm×N and (Wj)N
j=1 be a fusion frame

for Rd. The fusion restricted isometry constant δs is the smallest constant such that

(1− δs)‖x‖2
2 ≤ ‖APx‖2

2 ≤ (1 + δs)‖x‖2
2

for all x ∈ H of sparsity ‖x‖0 ≤ s.
Boufounos et al. [1] also show that the condition δ2s < 1/3 is sufficient to guar-

antee uniform recovery. Our analysis of the fusion RIP constant yields the following
recovery result.

Theorem 4.2. Let A ∈ Rm×N be a random matrix with independent subgaussian
entries and (Wj)N

j=1 be given with dim(Wj) = k and parameter λ ∈ [0, 1]. Let δ ∈
(0, 1). Assume that

m ≥ Cδ−2k
√

λs2 + s ln4(max{N, d}) ln(2ε−1) (4.1)

where C > 0 is a universal constant. Then with probability at least 1 − ε, the fusion
RIP constant δs of 1√

m
AP satisfies δs ≤ δ.

In [1], it is proved that if the underlying random matrix A satisfies the clas-
sical RIP, then uniform recovery is implied for fusion frames. This means that
m & s ln(N/s) is a sufficient condition for recovery. However this bound does not
take the parameter λ into account. Presently the uniform result (4.1) suffers from
additional log-terms and behave slightly worse than the nonuniform one (3.3).

Acknowledgments. The authors would like to thank the Hausdorff Center
for Mathematics for support, and acknowledge funding through the WWTF project
SPORTS (MA07-004) and the ERC Starting Grant StG 258926.

REFERENCES

[1] P. Boufounos, G. Kutyniok, and H. Rauhut. Sparse recovery from combined fusion frame
measurements. IEEE Trans. Inform. Theory, 57(6):3864–3876, 2011.

[2] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52(2):489–509,
2006.

[3] E. Candès and T. Tao. Near optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inf. Theory, 52(12):5406–5425, 2006.

[4] E. J. Candès and Y. Plan. A probabilistic and ripless theory of compressed sensing. CoRR,
abs/1011.3854, 2010.

[5] P. G. Casazza, G. Kutyniok, and S. Li. Fusion frames and distributed processing. Appl.
Comput. Harmon. Anal., 254(1):114–132, 2008.

[6] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.
[7] Y. C. Eldar and H. Bölcskei. Block-sparsity: Coherence and efficient recovery. CoRR,

abs/0812.0329, 2008.
[8] M. Fornasier and H. Rauhut. Recovery algorithms for vector valued data with joint sparsity

constraints. SIAM J. Numer. Anal., 46(2):577–613, 2008.
[9] D. Gross. Recovering low-rank matrices from few coefficients in any basis. CoRR,

abs/0910.1879, 2009.
[10] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Compu-

tational Mathematics, 12(4):389–434, 2012.


