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Abstract

This paper provides novel results for the recovery of signals from undersampled measure-
ments based on analysis `1-minimization, when the analysis operator is given by a frame. We
both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysis-
sparse) signals using Gaussian random measurement matrices. The nonuniform result relies
on a recovery condition via tangent cones and the uniform recovery guarantee is based on an
analysis version of the null space property. Examining these conditions for Gaussian random
matrices leads to precise bounds on the number of measurements required for successful recov-
ery. In the special case of standard sparsity, our result improves a bound due to Rudelson and
Vershynin concerning the exact reconstruction of sparse signals from Gaussian measurements
with respect to the constant and extends it to stability under passing to approximately sparse
signals and to robustness under noise on the measurements.

Keywords: compressive sensing, `1-minimization, analysis regularization, frames, Gaussian
random matrices.

1 Introduction

Compressive sensing [12, 6, 17] is a recent field that has seen enormous research activity in the
past years. It predicts that certain signals (vectors) can be recovered from what was previously
believed to be incomplete information using efficient reconstruction methods. Applications of this
principle range from magnetic resonance imaging over radar and remote sensing to astronomical
signal processing and more. The key assumption of the theory is that the signal to be recovered
is sparse or can at least be well-approximated by a sparse one. Most research activity so far has
been dedicated to the synthesis sparsity model where one assumes that the signal can be written
as a linear combination of only a small number of elements from a basis, or more generally an
overcomplete frame. In certain situations, however, it turns out to be more efficient to work with
an analysis-based sparsity model. Here, one rather assumes that the application of a linear map
yields a vector with a large number of zero entries. While the synthesis and the analysis model are
equivalent in special cases, they are very distinct in an overcomplete case. By now, comparably few
investigations have been dedicated to the analysis sparsity model and its rigorous understanding
is still in its infancy.
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The analysis based sparsity model and corresponding reconstruction methods were introduced
systematically in recent work of Nam et al. [29]. Nevertheless we note that it appeared also in
earlier works, see e.g. [7]. In particular, the popular method of total variation minimization [8, 30]
in image processing is closely related to analysis based sparsity with respect to a difference operator.
An estimate of the number of Gaussian measurements for successful recovery via total variation
minimization has been recently obtained in [22].

In this paper we consider the analysis based sparsity model for the important case that the
analysis transform is given by inner products with respect to a possibly redundant frame. As
reconstruction method we study a corresponding analysis `1-minimization approach. Furthermore,
we assume that the linear measurements are obtained via an application of a Gaussian random
matrix. The main results of this paper provide precise estimates of the number of measurements
required for the reconstruction of a signal whose analysis representation has a given number of
zero elements. Moreover, stability estimates are given. An alternative bound on the number of
measurements can be found in [22].

1.1 Problem statement and main results

We consider the task of reconstructing a signal x ∈ Rd from incomplete and possibly corrupted
measurements given by

y = Mx + w, (1)

where M ∈ Rm×d with m� d is the measurement matrix and w corresponds to noise. Since this
system is underdetermined it is impossible to recover x from y without additional information,
even when w = 0.

As already mentioned, the underlying assumption in compressive sensing is sparsity. The
synthesis sparsity prior assumes that x can be represented as a linear combination of a small
number of elements of a dictionary D ∈ Rd×n, i.e.,

x = Dα, α ∈ Rn,

where the number of non-zero elements of α, denoted by ‖α‖0, is considerably less than n. Often D
is chosen as a unitary matrix, which refers to sparsity of x in an orthonormal basis. Unfortunately,
the approach to recover α, or x respectively, from y = Mx = MDα (assuming the noiseless case
for simplicity) via `0-minimization, i.e.,

min
α∈Rn

‖α‖0 subject to MDα = y,

is NP-hard in general. A by-now well-studied tractable alternative is the `1-minimization approach
of finding the minimizer α∗ of

min
α∈Rn

‖α‖1 subject to MDα = y (2)

The restored signal is then given by x∗ = Dα∗. This optimization problem is referred to as basis
pursuit [10]. In the noisy case, one passes to

min
α∈Rn

‖α‖1 subject to ‖MDα− y‖2 ≤ η, (3)

where η corresponds to an estimate of the noise level.
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The analysis sparsity prior assumes that x is sparse in some transform domain, that is, given
a matrix Ω ∈ Rp×d – the so-called analysis operator – the vector Ωx is sparse. For instance, such
operators can be generated by the discrete Fourier transform, the finite difference operator (related
to total variation), wavelet [26, 32, 34], curvelet [5] or Gabor transforms [21].

Analogously to (2), a possible strategy for the reconstruction of analysis-sparse vectors (or
cosparse vectors, see below) is to solve the analysis `1-minimization problem

min
z∈Rd

‖Ωz‖1 subject to Mz = y, (4)

or, in the noisy case,
min
z∈Rd

‖Ωz‖1 subject to ‖Mz− y‖2 ≤ η. (5)

Both optimization problems can be solved efficiently using convex optimization techniques, see
e.g. [3]. If Ω is an invertible matrix, then these analysis `1-minimization problems are equivalent
to (2) and (3). However, in general the analysis `1-minimization problems cannot be reduced to
the standard `1-minimization problems.

We note, that one may also pursue greedy or other iterative approaches for recovery, see e.g. [17]
for an overview in the standard synthesis sparsity case and see e.g. [29] for the analysis sparsity
case. However, we will concentrate on the above optimization approaches here.

In the remainder of this paper, we assume that the analysis operator is given by a frame. Put
formally, let {ωi}pi=1, ωi ∈ Rd, p ≥ d, be a frame, i.e., there exist positive constants A, B > 0 such
that for all x ∈ Rd

A‖x‖22 ≤
p∑
i=1

|〈ωi,x〉|2 ≤ B‖x‖22.

Its elements are collected as rows of the matrix Ω ∈ Rp×d. The analysis representation of a signal
x is given by the vector Ωx = {〈ωi,x〉}pi=1 ∈ Rp. (We note that in the literature it is often common
to collect the elements of a frame rather as columns of a matrix. However, for our purposes it is
more convenient to collect them as rows.) The frame is called tight if the frame bounds coincide,
i.e., A = B.

Cosparsity is now defined as follows.

Definition 1. Given an analysis operator Ω ∈ Rp×d, the cosparsity of x ∈ Rd is defined as

l := p− ‖Ωx‖0.

The index set of the zero entries of Ωx is called the cosupport of x. If x is l-cosparse, then Ωx is
s-sparse with s = p− l.

The motivation to work with the cosupport rather than the support in the context of analysis
sparsity is that in contrast to synthesis sparsity, it is the location of the zero-elements which define
a corresponding subspace. In fact, if Λ is the cosupport of x, then it follows from Definition 1 that

〈ωj ,x〉 = 0, for all j ∈ Λ.

Hence, the set of l-cosparse signals can be written as⋃
Λ⊂[p]:#Λ=l

WΛ,
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where WΛ denotes the orthogonal complement of the linear span of {ωj : j ∈ Λ}.
In contrast to standard sparsity, there are often certain restrictions on the values that the

cosparsity can take. In fact, in the generic case that the frame elements ωj are in general position
in Rd, then every set of d rows of Ω are linearly independent. Then the maximal number of zeros
that can be achieved for a nontrivial vector x in the analysis representation Ωx is less than d, since
otherwise x = 0. Thus, for the cosparsity l of any non-zero vector x it holds l < d in this case.
Nevertheless, if there are linear dependencies among the frame elements ωj , then larger values of l
are possible. This applies to certain redundant frames as well as to the difference operator (related
to total variation).

Our main results concern the minimal number m of measurements that are necessary to recover
an l-cosparse vector x from y = Mx with M ∈ Rm×d. As it is hard to come up with theoretical
guarantees for deterministic matrices M, we pass to random matrices. As common in compres-
sive sensing, we work with Gaussian random matrices, that is, with matrices having independent
standard normal distributed entries. Gaussian random matrices have already proven to provide ac-
curate theoretical guarantees in the context of standard synthesis sparsity, see e.g. [9, 13]. Moreover,
empirical tests indicate that also other types of random matrices behave very similar to Gaussian
random matrices in terms of recovery performance [14], although a theoretical justification may be
much harder than for Gaussian matrices.

We both provide so-called nonuniform and uniform recovery guarantees. The nonuniform result
states that a given fixed cosparse vector x is recovered via analysis `1-minimization from y = Mx
with high probability using a random choice of a Gaussian measurement matrix M under a suitable
condition on the number of measurements. In contrast, the uniform result states that a single
random draw of a Gaussian matrix M is able to recover all cosparse signals x simultaneously with
high probability. Clearly, the uniform statement is stronger than the nonuniform one, however, as
we will see, the uniform statement requires more measurements.

We start with the nonuniform guarantee for recovery of cosparse signals with respect to frames
using Gaussian measurement matrices.

Theorem 1. Let Ω ∈ Rp×d be a frame with frame bounds A,B > 0 and let x be l-cosparse, that
is, Ωx is s-sparse with s = p− l. For a Gaussian random matrix M ∈ Rm×d and 0 < ε < 1, if

m2

m+ 1
≥ 2Bs

A

(√
ln
(ep
s

)
+

√
A ln(ε−1)

Bs

)2

, (6)

then with probability at least 1 − ε, the vector x is the unique minimizer of ‖Ωz‖1 subject to
Mz = Mx.

Roughly speaking, that is, ignoring terms of lower order, a fixed l-cosparse vector is recovered
with high probability from

m > 2(B/A)s ln(ep/s)

Gaussian measurements where s = p − l. Note that the number of measurements increases with
increasing frame ratio B/A, and the optimal behavior occurs for tight frames. For Ω = Id, this
bound slightly strengthens the main result for sparse recovery in [9]. We will also show stability
of the reconstruction with respect to noise on the measurements, see Theorem 6 below. The proof
of the above result (given in Section 2) relies on a characterization of the minimizer via tangent
cones (Theorems 3 and 4) which is similar to corresponding conditions stated in [9, 28]. Moreover,
our proof uses an extension of the Gordon’s escape through a mesh theorem (Theorem 5).
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We now pass to the uniform recovery result which additionally takes into account that in
practice the signals are often only approximately cosparse. The quantity

σs(Ωx)1 := inf {‖Ωx− u‖1 : u is s-sparse}

describes the `1-best approximation error to Ωx by s-sparse vectors.

Theorem 2. Let M ∈ Rm×d be a Gaussian random matrix, 0 < ρ < 1 and 0 < ε < 1. If

m2

m+ 1
≥

2Bs
(
1 + (1 + ρ−1)2

)
A

(√
ln
ep

s
+

1√
2

+

√
A ln(ε−1)

Bs (1 + (1 + ρ−1)2)

)2

, (7)

then with probability at least 1 − ε for every vector x ∈ Rd a minimizer x̂ of ‖Ωz‖1 subject to
Mz = Mx approximates x with `2-error

‖x− x̂‖2 ≤
2(1 + ρ)2

√
A(1− ρ)

σs(Ωx)1√
s

.

Roughly speaking, with high probability every l-cosparse vector can be recovered via analysis
`1-minimization using a single random draw of a Gaussian matrix if

m > 10(B/A)s ln(ep/s). (8)

Moreover, the recovery is stable under passing to approximately cosparse vectors when adding
slightly more measurements. The proof of this theorem relies on an extension of the null space
property, which is well known in the synthesis sparsity case [11, 17, 20] and was adapted to the
analysis sparsity setting in [1, 16]. In fact, for the standard case Ω = Id, we improve a result of
Rudelson and Vershynin [33] (also relying on the null space property) with respect to the constants
in (7) and add stability in `2. We further show that recovery is robust under perturbations of
the measurements in Theorem 11. We note, that in the standard exact sparse case with no noise,
the constant 8 in (8) can be replaced by 2e, see the contribution by Donoho and Tanner in [13].
Their methods, however, are completely different to ours, and it is not clear, whether they can be
extended to analysis sparsity.

1.2 Related work

Let us discuss briefly related theoretical studies on recovery of analysis sparse vectors and compare
them with our main results. An earlier version of Theorem 2 was shown by Candès and Needell
in [7]. However, they were only able to treat the case that the analysis operator is given by a
tight frame, that is, when A = B. Moreover, their analysis is based on a version of the restricted
isometry property and does not provide explicit constants in the corresponding bound on the
required number of measurements. To be fair, we note, however, that their analysis applies to
general subgaussian random matrices. The results of [7] were extended to the case of non-tight
frames and Weibull matrices in the work of Foucart in [16]. The analysis in [16] incorporates the
robust null space property, the verification of which for the Weibull matrices relies on a variant of
the classical restricted isometry property. In our work we prove that Gaussian random matrices
satisfy the robust null space property by referring to a modification of the Gordon’s escape through
a mesh theorem.
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A recent contribution by Needell and Ward [30] provides theoretical recovery guarantees for the
special case of total variation minimization, which corresponds to analysis `1-minimization with a
certain difference operator. Unfortunately, we cannot cover this situation with our main results
because the difference operator is not a frame. Nevertheless, it would be interesting to pursue
theoretical recovery guarantees for total variation minimization and Gaussian random matrices
using the approach of this paper.

Nam et al.’s work [29] provides a systematic introduction of the analysis sparsity model and
treats also greedy recovery methods, see also [18]. Further contributions are contained in [25, 35].

Our nonuniform recovery guarantees rely on a geometric characterization of the successful
recovery. We obtain quantitative estimates by bounding a certain Gaussian width which can be
thought as an intrinsic complexity measure. The authors of [2] exploit the geometry of optimality
conditions to study phase transition phenomena in random linear inverse problems and random
demixing problems. They express their results in terms of the statistical dimension which is
essentially equivalent to the Gaussian width, see Section 10. 3 of [2] for further details.

Also, we note that the optimization problems (4) and (5) often appear in image processing
[4, 8].

1.3 Notation

We use the notation ΩΛ to refer to a submatrix of Ω with the rows indexed by Λ; (Ωx)S stands
for the vector whose entries indexed by S coincide with the entries of Ωx and the rest are filled by
zeros. As we have already mentioned, the `0-norm ‖ · ‖0 of a vector corresponds to the number of
non-zero elements in it. The unit ball in Rd with respect to the `q-norm is denoted by Bd

q . The
operator norm of a matrix A is defined by ‖A‖2→2 := sup

‖x‖2≤1
‖Ax‖2 and the Frobenius norm is

given by

‖A‖F :=

 m∑
i=1

d∑
j=1

|Aij |2
1/2

.

It is well-known that Frobenius norm dominates the operator norm, ‖A‖2→2 ≤ ‖A‖F . Finally, [p]
is the set of all natural numbers not exceeding p, i.e., [p] = {1, 2, . . . , p}.

2 Nonuniform recovery

In this section we prove Theorem 1 and extend it to robust recovery in Theorem 6. The proof
strategy is similar as in [9]. We rely on conditions on the measurement matrix M involving tangent
cones, which should be of independent interest. In order to check these conditions for a Gaussian
random matrix we rely on an extension of the Gordon’s escape through a mesh theorem. (In
contrast to [9], the standard version of the Gordon’s result is not sufficient for our purposes.)

2.1 Recovery via tangent cones

Our conditions for successful recovery of cosparse signals are formulated via tangent cones. For
fixed x ∈ Rd we define the convex cone

T (x) = cone{z− x : z ∈ Rd, ‖Ωz‖1 ≤ ‖Ωx‖1},
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where the notation “cone” stands for the conic hull of the indicated set. The following result is
analogous to Proposition 2.1 in [9].

Theorem 3. Let M ∈ Rm×d. A vector x ∈ Rd is the unique minimizer of ‖Ωz‖1 subject to
Mz = Mx if and only if ker M ∩ T (x) = {0}.

Proof. First assume that ker M∩T (x) = {0}. Let z ∈ Rd be a vector that satisfies Mz = Mx and
‖Ωz‖1 ≤ ‖Ωx‖1. This means that z− x ∈ T (x) and z− x ∈ ker M. According to our assumption
we conclude that z− x = 0, so that x is the unique minimizer.

The other direction is proved by contradiction. Let x be the unique minimizer of (4). Take any
v ∈ T (x) \ {0}. Then v can be written as

v =
∑
j

tj(zj − x), tj ≥ 0, ‖Ωzj‖1 ≤ ‖Ωx‖1.

Since v 6= 0, it holds
∑
j
tj > 0 and we can define t′j := tjP

j
tj

. Suppose v ∈ ker M. Then

0 = M

 v∑
j
tj

 = M

∑
j

t′jzj

−Mx,

so that M
(∑

j t
′
jzj
)

= Mx. Together with the estimate

‖
∑
j

t′jzj‖1 ≤
∑
j

t′j‖zj‖ ≤ ‖x‖1

and uniqueness of the minimizer, this implies
∑
j
t′jzj = x. Hence v = 0, which leads to a contra-

diction. Thus, ker M ∩ T (x) = {0}.

When the measurements are noisy, we use the following condition for successful recovery [9].

Theorem 4. Let x ∈ Rd, M ∈ Rm×d and y = Mx + w with ‖w‖2 ≤ η. If

inf
v∈T (x)
‖v‖2=1

‖Mv‖2 ≥ τ (9)

for some τ , then a minimizer x̂ of (5) satisfies

‖x− x̂‖2 ≤
2η
τ
.

Proof. Since x̂ is a minimizer of (5), we have ‖Ωx̂‖1 ≤ ‖Ωx‖1 and x̂− x ∈ T (x). Our assumption
(9) implies

‖M(x̂− x)‖2 ≥ τ‖x̂− x‖2. (10)

On the other hand, we can give an upper bound for ‖Mx̂−Mx‖2 by

‖Mx̂−Mx‖2 ≤ ‖Mx̂− y‖+ ‖Mx− y‖2 ≤ 2η. (11)

Combining (10) and (11) we get the desired estimate.
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2.2 Nonuniform recovery with Gaussian measurements

To prove the non-uniform recovery result for Gaussian random measurements (Theorem 1) we
rely on the condition stated in Theorem 3, which requires that the null space of the measurement
matrix M misses the set T (x). The next ingredient of the proof is a variation of the Gordon’s
escape through a mesh theorem, which was first used in the context of compressed sensing in [33].
To state this theorem, we introduce some notation and formulate auxiliary lemmas.

Let g ∈ Rm be a standard Gaussian random vector, that is, a vector of independent mean zero,
variance one normal distributed random variables. Then for

Em := E ‖g‖2 =
√

2
Γ ((m+ 1)/2)

Γ (m/2)

we have
m√
m+ 1

≤ Em ≤
√
m,

see [19, 17]. For a set T ⊂ Rd we define its Gaussian width by

`(T ) := E sup
x∈T
〈x,g〉,

where g ∈ Rd is a standard Gaussian random vector.

Lemma 1 (Gordon [19]). Let Xi,j and Yi,j, i = 1 . . . ,m, j = 1, . . . , n be two mean-zero Gaussian
random variables. If

E |Xi,j −Xk,l|2 ≤ E |Yi,j − Yk,l|2 , for all i 6= k, and j, l

E |Xi,j −Xi,l|2 ≥ E |Yi,j − Yi,l|2 for i, j, l,

then
E min

i
max
j
Xi,j ≥ E min

i
max
j
Yi,j .

Remark 1. Gordon’s lemma extends to the case of Gaussian processes indexed by possibly infinite
sets where the expected maxima or minima are replaced by corresponding lattice suprema or infima,
see for instance [17, Remark 8.28] or [24].

We further exploit the concentration of measure phenomenon, which asserts that Lipschitz
functions concentrate well around their expectation [23, 27].

Lemma 2 (Concentration of measure). Let f : Rn → R be an L-Lipschitz function:

|f(x)− f(y)| ≤ L‖x− y‖2, for all x,y ∈ Rn.

Let g = (g1, g2, . . . , gn) be a vector of independent standard normal random variables. Then, for
all t > 0,

P (E[f(g)]− f(g) ≥ t) ≤ e−
t2

2L2 .

Next, we state our modification of the Gordon’s escape through a mesh theorem, see [19] for
the original version. Below, Ω(T ) corresponds to the set of elements produced by applying Ω to
the elements of T .

8



Theorem 5. Let Ω ∈ Rp×d be a frame with constants A, B > 0. Let M ∈ Rm×d be a Gaussian
random matrix and T be a subset of the unit sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. Then, for t > 0,
it holds

P
(

inf
x∈T
‖Mx‖2 > Em −

1√
A
` (Ω(T ))− t

)
≥ 1− e−

t2

2 . (12)

Proof. Recall that
‖Mx‖2 = max

y∈Sm−1
〈Mx,y〉.

For x ∈ T and y ∈ Sm−1 we compare the two Gaussian processes

Xx,y := 〈Mx,y〉 and Yx,y :=
1√
A
〈g,Ωx〉+ 〈h,y〉,

where g ∈ Rp and h ∈ Rm are independent standard Gaussian random vectors. Let x,x′ ∈ Sd−1

and y,y′ ∈ Sm−1. Since Mij are independent with EMij = 0, EM2
ij = 1, we have

E
∣∣Xx,y −Xx′,y′

∣∣2 = E

∣∣∣∣∣∣
m∑
i=1

d∑
j=1

Mij(xjyi − x′jy′i)

∣∣∣∣∣∣
2

=
m∑
i=1

d∑
j=1

(xjyi − x′jy′i)2

=
m∑
i=1

d∑
j=1

(x2
jy

2
i + x′2j y

′2
i − 2xjx′jyiy

′
i) = ‖x‖22‖y‖22 + ‖x′‖22‖y′‖22 − 2〈x,x′〉〈y,y′〉

= 2− 2〈x,x′〉〈y,y′〉. (13)

Independence and the isotropicity of the Gaussian vectors g and h together with the fact that Ω
is a frame with lower frame bound A imply

E
∣∣Yx,y − Yx′,y′

∣∣2 = E
∣∣∣∣ 1√
A
〈g,Ωx−Ωx′〉

∣∣∣∣2 + E
∣∣〈h,y − y′〉

∣∣2
=

1
A
‖Ωx−Ωx′‖22 + ‖y − y′‖22 ≥ ‖x− x′‖22 + ‖y − y′‖22

= ‖x‖22 + ‖x′‖22 − 2〈x,x′〉+ ‖y‖22 + ‖y′‖22 − 2〈y,y′〉
= 4− 2〈x,x′〉 − 2〈y,y′〉. (14)

When x = x′, we have
E
∣∣Yx,y − Yx,y′

∣∣2 = ‖y − y′‖22 = 2− 2〈y,y′〉.

Combining (13) and (14), we obtain

E
∣∣Yx,y − Yx′,y′

∣∣2 − E
∣∣Xx,y −Xx′,y′

∣∣2 ≥ 2(1− 〈x,x′〉)(1− 〈y,y′〉)

and since 〈x,x′〉 ≤ ‖x‖2‖x′‖2 ≤ 1 and similarly for y,y′, it follows that

E
∣∣Yx,y − Yx′,y′

∣∣2 − E
∣∣Xx,y −Xx′,y′

∣∣2 ≥ 0.

Moreover, we have
E
∣∣Yx,y − Yx,y′

∣∣2 = E
∣∣Xx,y −Xx,y′

∣∣2 .
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Due to Gordon’s lemma (Lemma 1) and Remark 1,

E inf
x∈T
‖Mx‖2 = E inf

x∈T
max

y∈Sm−1
Xx,y ≥ E inf

x∈T
max

y∈Sm−1
Yx,y

= E inf
x∈T

max
y∈Sm−1

{
1√
A
〈g,Ωx〉+ 〈h,y〉

}
= E inf

x∈T

{
1√
A
〈g,Ωx〉+ ‖h‖2

}
= E ‖h‖2 −

1√
A

E sup
x∈T
〈g,Ωx〉 = Em −

1√
A

E sup
z∈Ω(T )

〈g, z〉 = Em −
1√
A
`(Ω(T )). (15)

Let F (M) := inf
x∈T
‖Mx‖2. For any A,B ∈ Rm×d

inf
x∈T
‖Ax‖2 ≤ inf

x∈T
(‖Bx‖2 + ‖ (A−B) x‖2)

≤ inf
x∈T
‖Bx‖2 + ‖A−B‖2→2 ≤ inf

x∈T
‖Bx‖2 + ‖A−B‖F .

The second inequality follows from the fact that T ⊂ Sd−1. By interchanging A and B we conclude
that

|F (A)− F (B)| ≤ ‖A−B‖F .

This means that F is 1-Lipschitz with respect to the Frobenius norm (which corresponds to the
`2-norm when interpreting a matrix as a vector) and due to concentration of measure (Lemma 2)

P
(

inf
x∈T
‖Mx‖2 ≤ E inf

x∈T
‖Mx‖2 − t

)
≤ e−t2/2.

Applying the estimate (15) to the previous inequality gives

P
(

inf
x∈T
‖Mx‖2 ≤ Em−

`(Ω(T ))√
A

− t
)
≤ P

(
inf
x∈T
‖Mx‖2 ≤ E inf

x∈T
‖Mx‖2 − t

)
≤ e−

t2

2 ,

which concludes the proof.

The previous result suggests to estimate the Gaussian width of Ω(T ) with T := T (x) ∩ Sd−1.
Since Ω is a frame with upper frame constant B, we have

Ω(T ) ⊂ Ω(T (x)) ∩Ω(Sd−1) ⊂ K(Ωx) ∩
(√

BBp2
)
,

where
K(Ωx) = cone {y −Ωx : y ∈ Rp, ‖y‖1 ≤ ‖Ωx‖1} .

The supremum over a larger set can only increase, hence

`(Ω(T )) ≤
√
B` (K(Ωx) ∩ Bp2) . (16)

We next recall an upper bound for the Gaussian width ` (K(Ωx) ∩ Bp2) from [9] involving the polar
cone N(Ωx) = K(Ωx)◦ defined by

N(Ωx) = {z ∈ Rp : 〈z,y −Ωx〉 ≤ 0 for all y ∈ Rp such that ‖y‖1 ≤ ‖Ωx‖1} .
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Proposition 1. Let g ∈ Rp be a standard Gaussian random vector. Then

` (K(Ωx) ∩ Bp2) ≤ E min
z∈N(Ωx)

‖g − z‖2.

The proof relies on tools from convex analysis, see [9, 17], [3, Ch. 5.9].

Proposition 2. Let s be the sparsity of the vector Ωx ∈ Rp. Then

` (K(Ωx) ∩ Bp2)2 ≤ 2s ln
ep

s
. (17)

Proof. By Proposition 1 and Hölder’s inequality

` (K(Ωx) ∩ Bp2)2 ≤
(

E min
z∈N(Ωx)

‖g − z‖2
)2

≤ E min
z∈N(Ωx)

‖g − z‖22. (18)

Let S denote the support of Ωx. Then one can verify that

N(Ωx) =
⋃
t≥0

{z ∈ Rp : zi = t sgn(Ωx)i, i ∈ S, |zi| ≤ t, i ∈ Sc} , (19)

see [17, Lemma 9.23] for a proof. To proceed, we fix t, minimize ‖g − z‖22 over all possible entries
zj , take the expectation of the obtained expression and finally optimize over t. According to (19),
we have

min
z∈N(Ωx)

‖g − z‖22 = min
t≥0

|zi|≤t, i∈Sc

∑
i∈S

(gi − t sgn(Ωx)i)
2 +

∑
i∈Sc

(gi − zi)2

= min
t≥0

∑
i∈S

(gi − t sgn(Ωx)i)
2 +

∑
i∈Sc

St(gi)2,

where St is the soft-thresholding operator given by

St(x) =


x+ t, x < −t,
0, −t ≤ x ≤ t,
x− t, x > t.

Taking expectation we arrive at

E min
z∈N(Ωx)

‖g − z‖22 ≤ E

[∑
i∈S

(gi − t sgn(Ωx)i)
2

]
+ E

[∑
i∈Sc

St(gi)2

]
= s(1 + t2) + (p− s) ESt(g)2, (20)

where g is a univariate standard Gaussian random variable. To calculate the expectation of St(g)2,
we apply the direct integration

ESt(g)2 =
1√
2π

 −t∫
−∞

(x+ t)2e−
x2

2 dx+

∞∫
t

(x− t)2e−
x2

2 dx


=

2√
2π

∞∫
0

x2e−
(x+t)2

2 dx =
2e−

t2

2

√
2π

∞∫
0

x2e−
x2

2 e−xt dx

≤ e−
t2

2

√
2
π

∞∫
0

x2e−
x2

2 dx = e−
t2

2 . (21)

11



Substituting the estimate (21) into (20) gives

E min
z∈N(Ωx)

‖g − z‖22 ≤ s(1 + t2) + (p− s)e−
t2

2 .

Setting t =
√

2 ln(p/s) finally leads to

` (K(Ωx) ∩ Bp2)2 ≤ s (1 + 2 ln(p/s)) + s = 2s ln(ep/s).

This concludes the proof.

By combining inequalities (16) and (17) we obtain

`(Ω(T ))2 ≤ 2Bs ln
ep

s
.

of Theorem 1. Set t =
√

2 ln(ε−1). The fact that Em ≥ m/
√
m+ 1 along with condition (6) yields

Em ≥
1√
A
`(Ω(T )) + t.

Theorem 5 implies

P
(

inf
x∈T
‖Mx‖2 > 0

)
≥ P

(
inf
x∈T
‖Mx‖2 > Em −

1√
A
` (Ω(T ))− t

)
≥ 1− e−

t2

2 = 1− ε,

which guarantees that ker M ∩ T (x) = {0} with probability at least 1 − ε. As the final step we
apply Theorem 3.

We now extend Theorem 1 to robust recovery.

Theorem 6. Let Ω ∈ Rp×d be a frame with frame bounds A,B > 0 and let x be l-cosparse and
s = p − l. For a random draw M ∈ Rm×d of a Gaussian random matrix, let noisy measurements
y = Mx + w be given with ‖w‖2 ≤ η. If for 0 < ε < 1 and some τ > 0

m2

m+ 1
≥ 2Bs

A

(√
ln
ep

s
+

√
A ln(ε−1)

Bs
+ τ

√
A

2sB

)2

, (22)

then with probability at least 1− ε, any minimizer x̂ of (5) satisfies

‖x− x̂‖2 ≤
2η
τ
.

Proof. We use the recovery condition stated in Theorem 4. Set t =
√

2 ln(ε−1). Our previous
considerations and the choice of m in (22) guarantee that

Em −
1√
A
`(Ω(T ))− t ≥ m√

m+ 1
−
√

2Bs
A

ln
ep

s
−
√

2 ln(ε−1) ≥ τ.

The monotonicity of probability and Theorem 5 yield

P
(

inf
x∈T
‖Mx‖2 ≥ τ

)
≥ P

(
inf
x∈T
‖Mx‖2 ≥ Em −

1√
A
`(Ω(T ))− t

)
≥ 1− ε.
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3 Uniform recovery

This section is dedicated to the proof of the uniform recovery result in Theorem 2. It relies on the
Ω-null space property, which extends the null space property known from the standard synthesis
sparsity case, see e.g. [11, 17, 20]. We analyze this property directly for Gaussian random matrices
with similar techniques as used in the previous section.

3.1 Ω-null space property

Let us start with the Ω-null space property which is a sufficient condition for the exact reconstruc-
tion of every cosparse vector.

Definition 2. A matrix M ∈ Rm×d is said to satisfy the Ω-null space property of order s with
constant 0 < ρ < 1, if for any set Λ ⊂ [p] with #Λ ≥ p− s it holds

‖ΩΛcv‖1 ≤ ρ‖ΩΛv‖1 for all v ∈ ker M. (23)

If Ω is the identity map Id : Rd → Rd, then (23) is the standard null space property. We start
with a result on exact recovery of cosparse vectors.

Theorem 7. If M ∈ Rm×d satisfies the Ω-null space property of order s with 0 < ρ < 1, then
every l-cosparse vector x ∈ Rd with l = p− s is the unique solution of (4) with y = Mx.

This theorem follows immediately from the next result, which also implies a certain stability
estimate in `1.

Theorem 8. Let x ∈ Rd be an arbitrary vector and x̂ be a solution of (4) with y = Mx, where
M ∈ Rm×d satisfies the Ω-null space property of order s with constant ρ ∈ (0, 1). Then

‖Ω (x− x̂) ‖1 ≤
2(1 + ρ)

1− ρ
σs(Ωx)1. (24)

Proof. Since x̂ is the solution of (4), we must have ‖Ωx̂‖1 ≤ ‖Ωx‖1. Take any Λ ⊂ [p] with
#Λ ≥ p− s. Then

‖ΩΛc x̂‖1 + ‖ΩΛx̂‖1 ≤ ‖ΩΛcx‖1 + ‖ΩΛx‖1.

By the triangle inequality, the vector v := x− x̂ satisfies

‖ΩΛcx‖1 − ‖ΩΛcv‖1 + ‖ΩΛv‖1 − ‖ΩΛx‖1 ≤ ‖ΩΛcx‖1 + ‖ΩΛx‖1,

which implies
‖ΩΛv‖1 ≤ ‖ΩΛcv‖1 + 2‖ΩΛx‖1 ≤ ρ‖ΩΛv‖1 + 2‖ΩΛx‖1.

Hereby, we have applied the Ω-null space property (23). Rearranging and choosing a set Λ of size
p− s which minimizes ‖ΩΛx‖1 yields

‖ΩΛv‖1 ≤
2

1− ρ
σs(Ωx)1.

Furthermore, another application of the Ω-null space property gives

‖Ωv‖1 = ‖ΩΛv‖1 + ‖ΩΛcv‖1 ≤ (1 + ρ)‖ΩΛv‖1 ≤
2(1 + ρ)

1− ρ
σs(Ωx)1.

This completes the proof.
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In order to provide a suitable stability estimate in `2 we require a slightly stronger version of
the Ω-null space property.

Definition 3. A matrix M ∈ Rm×d is said to satisfy the `2-stable Ω-null space property of order
s with constant 0 < ρ < 1, if, for any set Λ ⊂ [p] with #Λ ≥ p− s, it holds

‖ΩΛcv‖2 ≤
ρ√
s
‖ΩΛv‖1 for all v ∈ ker M. (25)

Remark 2. The Hölder’s inequality implies ‖ΩΛcv‖1 ≤
√
s‖ΩΛcv‖2 for any set Λ ⊂ [p] with

#(Λc) = s. This means that if M ∈ Rm×d satisfies the `2-stable Ω-null space property of order s
with constant 0 < ρ < 1, then it satisfies the Ω-null space property of the same order and with the
same constant.

Theorem 9. Let M ∈ Rm×d satisfy the `2-stable Ω-null space property of order s with constant
0 < ρ < 1. Then for any x ∈ Rd the solution x̂ of (4) with y = Mx approximates the vector x
with `2-error

‖x− x̂‖2 ≤
2(1 + ρ)2

√
A(1− ρ)

σs(Ωx)1√
s

. (26)

Inequality (26) means that l-cosparse vectors are exactly recovered by (4) and vectors x ∈ Rd,
such that Ωx is close to an s-sparse vector in `1, can be well approximated in `2 by a solution
of (4). The proof goes along the same lines as in the standard case in [17]. The novelty here is
that we exploit the sparsity not of the signal itself, but of its analysis representation. So first we
extend the `1-error estimate above to an `2-error estimate for Ωx and use the fact that Ω is a
frame to bound the `2-error ‖x− x̂‖2. The statement of Theorem 9 was generalized to the setting
of a perturbed frame and imprecise knowledge of the measurement matrix in [1, Theorem 3.1].

of Theorem 9. We define the vector v := x̂ − x ∈ ker M and denote by S0 ⊂ [p] an index set of
s largest absolute entries of Ωv. Since #Sc0 = p − s and M ∈ Rm×d satisfies the `2-stable Ω-null
space property, it follows

‖(Ωv)S0‖2 ≤
ρ√
s
‖ΩSc

0
v‖1 ≤

ρ√
s
‖Ωv‖1. (27)

We partition the indices of Sc0 into subsets S1, S2, . . . of size s in order of decreasing magnitude of
(Ωv)i. Then for each k ∈ Si+1, i ≥ 0,

|(Ωv)k| ≤
1
s

∑
j∈Si

|(Ωv)j | and ‖(Ωv)Si+1‖2 ≤
1√
s
‖(Ωv)Si‖1.

Along with the triangle inequality this gives

‖(Ωv)Sc
0
‖2 ≤

∑
i≥1

‖(Ωv)Si‖2 ≤
1√
s

∑
i≥0

‖(Ωv)Si‖1 =
1√
s
‖Ωv‖1. (28)

Inequalities (27) and (28) together with Remark 2 and Theorem 8 yield

‖Ωv‖2 ≤ ‖(Ωv)S0‖2 + ‖(Ωv)Sc
0
‖2 ≤

1 + ρ√
s
‖Ωv‖1 ≤

2(1 + ρ)2

(1− ρ)
√
s
σs(Ωx)1. (29)
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Finally, we use that Ω is a frame with lower frame bound A to conclude that

‖x− x̂‖2 ≤
1√
A
‖Ωx−Ωx̂‖2 ≤

2(1 + ρ)2

√
A(1− ρ)

√
s
σs(Ωx)1.

This completes the proof.

When the measurements are given with some error, the author in [16] introduced the following
extension of the Ω-null space property in order to guarantee robustness of the recovery.

Definition 4. A matrix M ∈ Rm×d is said to satisfy the robust `2-stable Ω-null space property
of order s with constant 0 < ρ < 1 and τ > 0, if for any set Λ ⊂ [p] with #Λ ≥ p− s it holds

‖ΩΛcv‖2 ≤
ρ√
s
‖ΩΛv‖1 + τ‖Mv‖2 for all v ∈ Rd. (30)

If v ∈ ker M, the term ‖Mv‖2 vanishes, and we see that the robust `2-stable Ω-null space
property implies the `2-stable Ω-null space property. The robust `2-stable null space property
guarantees the stability and robustness of the `1-minimization (5).

Theorem 10. Let M ∈ Rm×d satisfy the robust `2-stable Ω-null space property of order s with
constants 0 < ρ < 1 and τ > 0. Then for any x ∈ Rd the solution x̂ of (5) with y = Mx + w,
‖w‖2 ≤ η, approximates the vector x with `2-error

‖x− x̂‖2 ≤
2(1 + ρ)2

√
A(1− ρ)

σs(Ωx)1√
s

+
2τ(3 + ρ)√
A(1− ρ)

η. (31)

Proof. Theorem 5 in [16] with q = p = 2 provides the bound for ‖Ω(x− x̂)‖2. Taking into account
that Ω is a frame with lower frame constant A, we obtain estimate (31).

3.2 Uniform recovery from Gaussian measurements

We now show Theorem 2 by establishing the `2-stable Ω-null space property of order s for a
Gaussian measurement matrix M by following a similar strategy as in Section 2. To this end we
introduce the set

Wρ,s :=
{

w ∈ Rd : ‖ΩΛcw‖2 > ρ/
√
s‖ΩΛw‖1 for some Λ ⊂ [p], #Λ = p− s

}
.

In fact, if
inf
{
‖Mw‖2 : w ∈Wρ,s ∩ Sd−1

}
> 0, (32)

then for all w ∈ ker M and any Λ ⊂ [p] with #Λ = p− s we have

‖ΩΛcw‖2 ≤
ρ√
s
‖ΩΛw‖1,

which means that M satisfies the `2-stable Ω-null space property of order s. To show (32) we
apply Theorem 5, which requires to study the Gaussian width of the set Ω

(
Wρ,s ∩ Sd−1

)
. Since Ω

is a frame with upper frame bound B, we have

Ω
(
Wρ,s ∩ Sd−1

)
⊂ Ω (Wρ,s) ∩

(√
BBp2

)
⊂ Tρ,s ∩

(√
BBp2

)
=
√
B (Tρ,s ∩ Bp2) , (33)
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with
Tρ,s =

{
u ∈ Rp : ‖uS‖2 ≥ ρ/

√
s‖uSc‖1 for some S ⊂ [p], #S = s

}
.

Then

Tρ,s ∩ Bp2 =
⋃

#S=s

{
u ∈ Rp : ‖u‖2 ≤ 1, ‖uS‖2 >

ρ√
s
‖uSc‖1

}
.

Lemma 3. Let D be the set defined by

D := conv
{
x ∈ Sp−1 : # supp x ≤ s

}
. (34)

(a) Then D is the unit ball with respect to the norm

‖x‖D :=
L∑
l=1

∑
i∈Il

(x∗i )
2

1/2

,

where L = dpse,

Il =
{
{s(l − 1) + 1, . . . , sl} , l = 1, . . . , L− 1,
{s(L− 1) + 1, . . . , p} , l = L,

and x∗ is the non-increasing rearrangement of x.

(b) It holds
Tρ,s ∩ Bp2 ⊂

√
1 + (1 + ρ−1)2D. (35)

A similar result was stated as Lemma 4.5 in [33]. For the sake of completeness we present the
proof.

Proof. (a) Suppose x ∈ D. It can be represented as x =
∑
i
αixi with αi ≥ 0,

∑
i
αi = 1 and

xi ∈ Sp−1, # supp xi ≤ s. Then ‖xi‖D = ‖xi‖2 = 1. By the triangle inequality

‖x‖D ≤
∑
i

αi‖xi‖D =
∑
i

αi = 1.

This proves that D is a subset of the unit ball with respect to the ‖ · ‖D-norm.
On the other hand, let ‖x‖D ≤ 1. We partition the index set [p] into subsets S1, S2, . . . of size

s in order of decreasing magnitude of entries xk. Set αi = ‖xSi‖2. Then x can be written as

x =
∑
i:αi 6=0

αi

(
1
αi

xSi

)
, where

∑
i:αi 6=0

αi =
∑
i

‖xSi‖2 = ‖x‖D ≤ 1

and, for αi 6= 0, ‖ 1
αi

xSi‖2 = 1
αi
‖xSi‖2 = 1. Thus x ∈ D.

(b) Take an arbitrary x ∈ Tρ,s∩Bp2. To show (35) we estimate ‖x‖D. According to the definition
of ‖ · ‖D in Lemma 3 (a),

‖x‖D =
L∑
l=1

∑
i∈Il

(x∗i )
2

 1
2

=

[
s∑
i=1

(x∗i )
2

] 1
2

+

[
2s∑

i=s+1

(x∗i )
2

] 1
2

+
L∑
l≥3

∑
i∈Il

(x∗i )
2

 1
2

. (36)
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To bound the last term in the inequality above, we first note that for each i ∈ Il, l ≥ 3,

x∗i ≤
1
s

∑
j∈Il−1

x∗j and

∑
i∈Il

(x∗i )
2

1/2

≤ 1√
s

∑
j∈Il−1

x∗j .

Summing up over l ≥ 3 yields

L∑
l≥3

∑
i∈Il

(x∗i )
2

 1
2

≤ 1√
s

∑
l≥2

∑
j∈Il

x∗j .

Since x ∈ Tρ,s∩Bp2, it holds ‖x‖2 ≤ 1 and there is S ⊂ [p], #S = s, such that ‖xS‖2 > ρ/
√
s‖xSc‖1.

Then ∑
l≥2

∑
i∈Il

x∗i ≤ ‖xSc‖1 <
√
s

ρ
‖xS‖2 ≤

√
s

ρ

[
s∑
i=1

(x∗i )
2

] 1
2

and
L∑
l≥3

∑
i∈Il

(x∗i )
2

 1
2

≤ ρ−1

[
s∑
i=1

(x∗i )
2

] 1
2

.

Applying the last estimate to (36) and taking into account that ‖x‖22 ≤ 1 we derive that

‖x‖D ≤ (1 + ρ−1)

[
s∑
i=1

(x∗i )
2

] 1
2

+

[
2s∑

i=s+1

(x∗i )
2

] 1
2

≤ 1 + ρ−1)

[
s∑
i=1

(x∗i )
2

] 1
2

+

[
1−

s∑
i=1

(x∗i )
2

] 1
2

.

Set a =
[∑s

i=1(x∗i )
2
] 1

2 . The maximum of the function

f(a) := (1 + ρ−1)a+
√

1− a2, 0 ≤ a ≤ 1,

is attained at the point

a =
1 + ρ−1√

1 + (1 + ρ−1)2

and is equal to
√

1 + (1 + ρ−1)2. Thus for any x ∈W it holds

‖x‖D ≤
√

1 + (1 + ρ−1)2,

which proves (35).

Lemma 3 (b) implies
` (Tρ,s ∩ Bp2) ≤

√
1 + (1 + ρ−1)2`(D). (37)

17



Lemma 4. The Gaussian width of the set D defined by (34) satisfies

`(D) ≤
√

2s ln
ep

s
+
√
s.

Proof. The supremum of the linear functional 〈g,x〉 over D is achieved at an extreme point, i.e.,
at an x ∈ Sp−1 with # supp x ≤ s. Hence, by Hölder’s inequality

`(D) = E sup
x∈D
〈g,x〉 = E sup

‖x‖2=1,
# supp x≤s

〈g,x〉 ≤ E max
S⊂[p],#S=s

‖gS‖2.

An estimate on the maximum squared `2-norm of a sequence of standard Gaussian random vectors
(see e.g. [31, Lemma 3.2] or [17, Proposition 8.2]) gives

`(D) ≤
√

E max
S⊂[p],#S=s

‖gS‖22 ≤

√
2 ln

(
p

s

)
+
√
s ≤

√
2s ln

ep

s
+
√
s.

The last inequality follows from the fact that
(
p
s

)
≤
( ep
s

)s, see e.g. [17, Lemma C.5].

of Theorem 2. Expressions (33), (37) and Lemma 4 show that

`
(
Ω
(
Wρ,s ∩ Sd−1

))
≤
√
B [1 + (1 + ρ−1)2]`(D)

≤
√
B [1 + (1 + ρ−1)2]

(√
2s ln

ep

s
+
√
s

)
. (38)

Set t =
√

2 ln(ε−1). The fact that Em ≥ m/
√
m+ 1 along with condition (7) yields

Em ≥
1√
A
`
(
Ω
(
Wρ,s ∩ Sd−1

))
+ t.

The monotonicity of probability and Theorem 5 imply

P
(

inf ‖Mw‖2 > 0 : w ∈Wρ,s ∩ Sd−1
)
≥ 1− e−

t2

2 = 1− ε,

which guarantees that with probability at least 1− ε

‖ΩΛcw‖2 <
ρ√
s
‖ΩΛw‖1

for all w ∈ ker M \ {0} and any Λ ⊂ [p] with #Λ = p − s, see (32). This means that M satisfies
the `2-stable Ω-null space property of order s. Finally, we apply Theorem 9.

Finally, we extend to robustness of the recovery with respect to perturbations of the measure-
ments.

Theorem 11. Let M ∈ Rm×d be a Gaussian random matrix, 0 < ρ < 1, 0 < ε < 1 and τ > 1. If

m2

m+ 1
≥

2
(
1 + (1 + ρ−1)2

)
τ2B

(τ − 1)2A
s

(√
ln
ep

s
+

1√
2

+

√
A ln(ε−1)

Bs (1 + (1 + ρ−1)2)

)2

, (39)
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then with probability at least 1−ε for every vector x ∈ Rd and perturbed measurements y = Ωx+w
with ‖w‖2 ≤ η a minimizer x̂ of (5) approximates x with `2-error

‖x− x̂‖2 ≤
2(1 + ρ)2

√
A(1− ρ)

σs(Ωx)1√
s

+
2τ
√

2B(3 + ρ)
√
m
√
A(1− ρ)

η.

Proof. Condition (39) together with Em ≥ m/
√
m+ 1 imply

Em

(
1− 1

τ

)
≥
√
B

A
(1 + (1 + ρ−1)2)

(√
2s ln

ep

s
+
√
s

)
+
√

2 ln(ε−1),

which is equivalent to

Em −
√
B

A
(1 + (1 + ρ−1)2)

(√
2s ln

ep

s
+
√
s

)
−
√

2 ln(ε−1) ≥ Em
τ
.

Taking into account (38) we may conclude

Em −
1√
A
`
(
Ω
(
Wρ,s ∩ Sd−1

))
−
√

2 ln(ε−1) ≥ Em
τ
≥ 1
τ

√
m

2
.

Then according to Theorem 5

P
(

inf ‖Mw‖2 >
√
m

τ
√

2
: w ∈Wρ,s ∩ Sd−1

)
≥ 1− ε.

This means that for any w ∈ Rd such that ‖Mw‖2 ≤
√
m

τ
√

2
‖w‖2 and any set Λ ⊂ [p] with #Λ ≥ p−s

it holds with probability at least 1− ε

‖ΩΛcw‖2 <
ρ√
s
‖ΩΛw‖1.

For the remaining vectors w ∈ Rd, we have ‖Mw‖2 >
√
m

τ
√

2
‖w‖2, which together with the fact that

Ω is a frame with upper frame bound B leads to

‖ΩΛcw‖2 ≤ ‖Ωw‖2 ≤
√
B‖w‖2 <

τ
√

2B√
m
‖Mw‖2.

Thus, for any w ∈ Rd,

‖ΩΛcw‖2 <
ρ√
s
‖ΩΛw‖1 +

τ
√

2B√
m
‖Mw‖2.

Finally, we apply Theorem 10.

4 Numerical experiments

In this section we present the results of numerical experiments on synthetic data performed in
Matlab using the cvx package.

For the first set of experiments we constructed tight frames Ω as an orthonormal basis of the
range of the matrix the rows of which were drawn randomly and independently from Sd−1. In order
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to obtain also non-tight frames we simply varied the norms of the rows of Ω. As dimensions for the
analysis operator, we have chosen d = 200 and p = 250. The maximal number of zeros that can
be achieved in the analysis representation Ωx is less than d, since otherwise x = 0. Therefore, the
sparsity level of Ωx was always greater than 50. For each trial we fixed a cosparsity l (resulting
in the sparsity s = p− l) and selected at random l rows of an analysis operator Ω that constitute
the cosupport Λ of the signal. To produce a signal x we constructed a basis B of ker ΩΛ, drew
a coefficient vector c from a normalized standard Gaussian distribution and set x = Bc. We ran
the algorithm and counted the number of times the signal was recovered correctly out of 70 trials.
A reconstruction error of less than 10−5 was considered as a successful recovery. The curves in
Figure 1 depict the relation between the number of measurements and the sparsity level such that
the recovery was successful at least 98% of the time. Each point on the line corresponds to the
maximal sparsity level that could be achieved for the given number of measurements.
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Figure 1: Recovery for different analysis operators. The red curve corresponds to a tight frame,
the black one has frame bound ratio B/A of 13.1254 and for the blue one B/A = 45.7716.

The experiments clearly show that analysis `1-minimization works very well for recovering
cosparse signals from Gaussian measurements. (Note that only a comparison of the experiments
with the nonuniform recovery guarantees make sense.) The frame bound ratio B/A indeed influ-
ences the performance of the recovery algorithm (4) – although the degradation with increasing
value of B/A is less dramatic than indicated by our theorems. The reason for this may be that
the theorems give estimates for the worst case, while the experiments can only reflect the typical
behavior.
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