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ABSTRACT lenge. The situation unlocked with the realization tharspa

This paper introduces-thresholding, an algorithm to com- rr_10de|s solye these problems. To iIIustrgteT the ro!e of spar-
pute simultaneous sparse approximations of multichaiigiel s St 1€t us introduce theoherenceof the dictionary, i.e. the
nals over redundant dictionaries. We work out both worsStrongest correlation between any two distinct vector&in
case and average case recovery analyses of this algoritin= maXizj [(@i, ¢;)|. Schematically, if our dictionary is
and show that the latter results in much weaker condition80tt00 coherentand the signal is an arbitrary superpositio

on the dictionary. Numerical simulations confirm our theo-€SS tharO(+/d) elements of®, this representation Is unigue
retical findings and show thatthresholding is an interesting &nd can be recovered by standard algorithms [1, 2, 3].

low complexity alternative to simultaneous greedy or conve N parallel to developments in sparse signal models, var-
relaxation algorithms for processing sparse multichasige! ious application scenarios motivated renewed interestan p
nals with balanced coefficients. cessing not just a single signal, but many signals or chan-
nels at the same time. A striking example is sensor networks,
where signals are monitored by low complexity devices whose
observations are transfered to a central collector [4].sThi
entral node thus faces the task of analyzing many, possi-
ly high-dimensional, signals. Moreover, signals measure

1. INTRODUCTION

Transform coding is one of the most successful paradigms i
signal processing. Generally speaking, it asserts thayymar) . )
signals can be efficiently compressed because they have"%lSensor networks are typically not uncor.relateq. theee ar
sparse representation in some fixed basis. A simple tramsforg_Oba_I trepds or components that appear in a}ll signals, Pos-
coder would then decompose the signal over this optimal bas-'bly in slightly altered forms_. I_\/Iode_hng multlch_a_nn(_el sI9
sis and threshold all projections to locate and keep onlyithe nals by means of red_undantd|ct|onar|es, ge_:nerallz_lnglagls :
strongest ones. This simple algorithm is at the core of the su mono-channel algorithms and understanding their progeert

cess of modern image and video coders such as JPEG208%¢ thu; important challenges. )
where a wavelet basis is used. In this paper we analyze the theoretical performange of
Recently though, new problems have come to Cha"eng@resholding, a_sim_ple aIgorithr‘r_\ for recovgring simultaue
that paradigm. Restricting our models to decompositioes ov SParsé approximations of multichannel signals. Our analy-
fixed bases drastically narrows the class of signals that ca?iS iS based on studying the average in addition to the worst
be efficiently processed. A lively strand of research advoS@Se. and the spirit of our results is the following: given a
cates richer models based on redundant dictionaries, whid}ft to0 coherent dictionary and signals with coefficients su
can capture a much broader range of signals. A dictionarjciently large and balanced over the number of channels,
& is a large collection of unit norm vectotoy|ls = 1, hresholding can recover superpositions of utael) atoms
k=1,...,KinR% usually withK > d. Handling arbi- with overwhelming probabilityOur conditions orb are thus
trary dictionaries is no easy task, though. First, uniggene Much less restrictive than in the worst case.
of a signal representation is not guaranteed anymore. Sec-
ond, even computing a decomposition becomes a complicated
issue: several algorithms, most notably greedy algorithms
and convex relaxation techniques can be used, but until re-

cently analyzing their performance remained a daunting cha>UPPOSE we are to design a networklbfsensors monitor-
ing a common phenomenon. Each of our sensors observes a
" S-Gfibf)t;vaflshd B. MTarill'he afiWith 'RlSAi Rt’egﬂeﬁ,l a?';;;- R{il\{:_ith d-dimensional signay,, € R4, n = 1,..., N. As explained
e university or vienna. IS WOrk was completea wnile e visiliing H H H H H H
EPFL and partly supported by the HASSIP network, HPRN-C02200285. in the prewo_us section, a sparsity hypothesis \.NIII be the ce
Contact authorkar i n. schnass@pf | . ch tral assumption of our model. Moreover, we will assume that

Index Terms: multidimensional signal processing each signaly,, admits a sparse approximation over a single

2. SIGNAL MODEL




dictionary®: generalizations of greedy algorithms [6] or convex relerat
algorithms. A common weakness to all these techniques is a
Yn = Py +ep, n=1,..,N. high computational complexity. To overcome this problem,
i ) ) . we would like to resort here to one of the simplest possible
In.order to quel cqrrelatlons bgtween signals, we will efin algorithms: thresholding. More precisely, our algorithome
this model by imposing that all signals share a common sparsg e the,-norm of the correlation of the multichannel signal

support, i.e. Y with the atomsy;, of a sensing dictionary:
Yn = QAxn + €n,
N
where®, is the restriction of the synthesis matdx to the *
. ; . AN Y|P = L Yn) |-
columns listed in the set. This model is inspired by a recent 1Yl 7; [, yn)]

series of papers on distributed sensing, see [5] and refesen

therein. It describes a network of sensors monitoring a sigf'he sensing dictionaryr has the same cardinality &, so

nal with a strong global component that appears at each nodé&€ atoms in both dictionaries are in a one-to-one relakipns

Localized effects are modeled by letting synthesis coeffiisi Ve could se® = @, but we voluntarily keep the possibility

x, € RS, S := |A|, vary across nodes and through the noiseof optimizing both dictionaries in the spirit of [7].

en. As an illustrative example, imagine sensors measuring the

chemical composition of the atmosphere at some locations &2. Recovery conditions

a geographical area. There is a common component modeled .. . .

by the fixed supporA. Slight changes from node to node due%e.f'neAS’. the .SEt of |nd|ce$c.wnh the S largestp-norms.

to different sensor locations are modeled by varying amp"]'hls_algorlt*hm IS Sl*JCCGSSfu| |f*foﬂ = A we haveAs =

tudesr,, of components from node to node. Localized effectsA' _Smc_:e\Il Y=w12e,X+¥'E, th_e strongesp-norm of

can drastically alter the signal and are captured by ngjse projections on the set of bad atoms is

Let us now 'Furn to describing a generqtive modgl for the syn- [TXY lpoo < [FXPAX ||p,oo + [F5Ep 00,

thesis coefficients:,. In order to obtain a sufficiently gen-

eral model, we will assume that the componeniék) of the  where theg(p, co)-norm of a matrix| M|, ~ is defined as the

random vector,, are independent Gaussian variables of vari-naximum of thep-norms of its rows. Conversely, the smallest

anceay. This model is fairly general to accommodate vari- p-norm of projections on the set of good atoms reads

ous practical problems: the Gaussian assumption is one of . . . ) .

the most widely used in signal processing, while incorporat min [|97Y ||, > min |97 22X, — PR El|p,co-

ing different variances allows us to shape the synthesit coe ) )

ficients, imposing statistical decay for example on#h¢k).  and the algorithm will thus succeed as soon as

In order to simplify our analysis we will adopt a global . * * *

matrix notation. Wleova/ll collect a)Iq signalg, on thepcolu?nns Ten 197 @aXllp = W5 @AXlp.oo >R Ellp.00

of thed x N matrixY and the synthesis coefficients on the 4 ||\1;%E|

columns of theS x N matrix X. LetU be aS x N random

matrix with in_dependent s@andard Gaus_sian entries_ gnﬂ let 33 \Worst case analysis

be aS x S diagonal matrix whose entries are positive real

numbersy;. Our model can then be written in compact form This condition can be checked based on simple character-

istics of the multichannel signals and the dictionaries. To
Y=®\X+E=®,DU+E, (1)  capture the requirements on the dictionary we need to de-

. ) ) o ) fine 3 := min;eca |4, ;)| the minimum correlation between

whereE is ad x N matrix collecting noise signals, onits  gensing and synthesis atoms, and to adapt the definitioe of th

columns. standard cumulative coherence [1]:

p,00

1/q
> ALCORITHM (2, @, 8) 1= sup | @3], = sup (Z |<wl,soi>|q> .
1¢A 1A \izh
(3)
Let us now describe more precisely our sensing algorithmAs for properties of the signal we need to define the p-Peak
The observed signalg, are sent to a central processing unit SNR and the dynamic range, .
that tries to recover the common sparse suppoithe prob-

3.1. Principle

[¥%Ep.co + [ TLE]

lem thus boils down to estimating the joint sparse support of PSNR, Pro0
a set of signals generated from a redundant dictiodar 1 Xl p,00 ’
number of algorithms have been proposed lately to jointly min;ea || X (4)]|p
process sparse signals, most of them based on multichannel Ry = 1 Xlpee



where we denot@X (i), = (32, |2, (i)[?)'/? thep-norm
of thei-th row of X. Following the analysis in [8], it is easy
to check [9] that the following condition implies (2):

11 (O, & A) + sup 1 (Ta, ®a, A/{i})
1€

< B-R,—PSNR,.

(4)

The success gf-thresholding is thus governed by the con-
dition that the dynamic range of the signal should be big

can be successful even whén~ ;=2 > 1. Second, due

to typicality, we see that the probability of failure quighdi-
minishes as the number of channel grows, suggesting that we
should useV ~ log K channels in practice.

Ingredientsand Flavour of the Proof

As explained in the previous section, thresholding works by
collecting statistics on the signals through projectiofbe
intuition is that, when there are sufficiently many channels

ger than the noise level and the sum of correlations amonfyPical behavior will emerge and allow us to detect the mean-

atoms on the support and between the support and the relg

maining of ®. We note thatu; can be very big even for
reasonably smal\. For example, whewr = &, the quan-
tity 1 (¥, ®,A) + p1(Pp, ®p, A/{i}) is often replaced by
its upper estimatg2S — 1)u. The r.h.s in (4) is at most
one, so the resulting condition can only be satisfied whe

S < (1 + p~1)/2. In the next sections, we develop an aver-

age case analysis pfthresholding and show that tipical
recovery conditions are much less restrictive.

4. AVERAGE CASE ANALYSIS

To state our central theoretical result for the average wase

ful components. The following classical result of measu
concentration will be our main tool [10].

Theorem 2. Letl < p < co. Suppos€Z = (Z1,...,2ZN)
is a vector of independent standard Gaussian variablesnThe

there exist constants,(N), A, (NN) such that
n

P(|Z], > (14 €)Cp(N)) < exp (—€*A,(N))  (6)
and

P(|Z]lp < (1= )Cp(N)) < exp (=€ 45(N)) . (7)

For the important cases = 1,2 we haveC;(N) = \/gN,

need to define a probabilistic PSNR and dynamic range, re=>(N) ~ v/ N and Ay (N) > A;(N) = N/.

member we had” = ®, DU + E whereD = diag(«;),

- max;en o) ’
7 .. minea Jovi

max;ea ||

Theorem 1. Assume that the noise level and the dynamid_Wl:q’ADU”P

range are sufficiently small (respectively large), thatisay

pa(®, W, A) < min | @342 - B~ PSNR/C,(N). (5)

whereC, () is a constant depending only grand the num-

ber of channelsv, see Theorem 2. Then, under signal model (1),

the probability thap-thresholding fails to recover the indices
of the atoms im\ does not exceed

P(p — thresholding fail$ < K - exp (—AN~?)

with

_ R-minjep [ 3¢z — PSNR,/Cy(N) — 112(®, ¥, A)
R-minjep @392 + p2(®, ¥, A)

This theorem highlights the emergence of typicality in
high-dimensional random Gaussian vectors: the probgbilit
that thep-norm of Z differs significantly fromC,(N) de-
creases exponentially with'.

The main idea for the proof of Theorem 1 is that when the
number of channels is sufficiently large, eaeleorrelation
of the noiseless multichannel signal with a sens-
ing atom s, with very large probability, almost equaltp(V )-
165 ®@aDll2 = Cp(N) - | DB31x 2, whereCy(N) grows
with the number of channels. Therefore, if

Cp(N) - ( min || D&} ;|2 — D@}, 2
o)+ (min D@32 ~ e [ D@02 ) 2

W5 Elp,c0 + [[CAElp,00,
the recovery condition (2) will be met with high probability
The easy part of the proof is that inserting the following-est

mates into the above and simplifying a bit we arrive at condi-
tion (5) of the theorem,

v

min [ D®XYil|2 g.rgg o] - [[ @AY |2,

A

Dd* |- g (@, W, A).
r;lafll Aell2 < Ijneaglagl po(®, ¥, A)

This result has unique features compared to the worst case,

see (4). First, the condition o is expressed in terms of

The hard part of the proof is to make precise estimates of the

the cumulative coherence of order 2 which is much smalletypicality and precision of the approximatifgh; ®, DU]||, ~
than that of order one. For example assuming that there is @, (V)| D®} ¢« |2 using Theorem 2. Although this is clearly

noise and that the variances are constant the r.h.s in (5) is
larger than one. If additionallfy = &, an upper estimate of
uo(®, ¥, A) is u/S and we see that typically thresholding

out of the scope of this paper, let us summarize the main.steps
Observe that); ®, DU =: v;;U is a vector of independent
Gaussian random variables whose components have variance



|lug]l2- Therefore, applying Theorem 2 and the union boundhat, in a probabilistic multichannel setting, it sharesdjce-

we arrive at covery properties with much more complex alternatives such

as greedy algorithms and convex relaxation algorithms. The

P (max |lv;Ullp > (14 €1)Cp(N) max ||v¢||2) < worst case recovery condition is reminiscent of Tropp’s re-
LeN LeN

A covery condition, see [1], but the typical behaviour is é&ast
|A| - exp(—€5A,(N)).  driven by a much less restrictive condition and improvesiwit

o ) N the numbers of channels. This is clearly confirmed by our
Similar arguments are used to estimate the probability thafi,,,1ation results.

min;ea [|Y*®2 DU ||, takes a small value. The exact resultis

. X One of the main drawbacks of thresholding is that its per-
then obtained by carefully choosing the constants

formance relies heavily on the assumption that the signal co
efficients are well balanced, in addition to the Gaussianehod

5. EXPERIMENTAL RESULTS Orthogonal Matching Pursuit is a natural candidate for-deal

ing with signals that do not have balanced coefficients. Pre-

In this section we compare our theoretical findings with simuliminary results [9] indicate that its typical performarioea
lations of the performance of 2-thresholding with= ®. As  muiti-channel probabilistic setup is also driven by muctsle
dictionary we chose a combination of the Dirac and Fouriefestrictive conditions on the dictionary than the worstecas
basis,® = (14, F4), in dimensiond = 1024, which has co- ones. Last but not least, since the characterization of what
herenceu = 1/v/d. For each number of channel§, vary-  drives the average performance of thresholding involves th
ing from 1 to 128, and support size, varying from 1 to 1024mutual coherence of order 2 between a sensing dictionary
in steps of 16, we created 180 signals by choosing a supmd a synthesis dictionary, an interesting new perspeistive
port A uniformly at random and independent Gaussian coefthe design of a sensing dictionary to optimize the recovery
ficients with variances; = 1 and calculated the percentage performance for a given signal model.
of thresholding being able to recover the full support. The
results can be seen in Figure 1. 7. REFERENCES
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Fig. 1. Comparison of Recovery Rates for Different Support [5]
Sizes and Number of Channels.

6. CONCLUSIONS

Thresholding is a computationally inexpensive algoritian f [10] "X'M'S-eggg’f
simultaneous sparse signal approximation. We have shown ' '



