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ABSTRACT

This paper introducesp-thresholding, an algorithm to com-
pute simultaneous sparse approximations of multichannel sig-
nals over redundant dictionaries. We work out both worst
case and average case recovery analyses of this algorithm
and show that the latter results in much weaker conditions
on the dictionary. Numerical simulations confirm our theo-
retical findings and show thatp-thresholding is an interesting
low complexity alternative to simultaneous greedy or convex
relaxation algorithms for processing sparse multichannelsig-
nals with balanced coefficients.

1. INTRODUCTION

Transform coding is one of the most successful paradigms in
signal processing. Generally speaking, it asserts that many
signals can be efficiently compressed because they have a
sparse representation in some fixed basis. A simple transform
coder would then decompose the signal over this optimal ba-
sis and threshold all projections to locate and keep only them
strongest ones. This simple algorithm is at the core of the suc-
cess of modern image and video coders such as JPEG2000,
where a wavelet basis is used.

Recently though, new problems have come to challenge
that paradigm. Restricting our models to decompositions over
fixed bases drastically narrows the class of signals that can
be efficiently processed. A lively strand of research advo-
cates richer models based on redundant dictionaries, which
can capture a much broader range of signals. A dictionary
Φ is a large collection of unit norm vectors‖ϕk‖2 = 1,
k = 1, . . . ,K in R

d, usually withK ≫ d. Handling arbi-
trary dictionaries is no easy task, though. First, uniqueness
of a signal representation is not guaranteed anymore. Sec-
ond, even computing a decomposition becomes a complicated
issue: several algorithms, most notably greedy algorithms
and convex relaxation techniques can be used, but until re-
cently analyzing their performance remained a daunting chal-
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lenge. The situation unlocked with the realization that sparse
models solve these problems. To illustrate the role of spar-
sity, let us introduce thecoherenceof the dictionary, i.e. the
strongest correlation between any two distinct vectors inΦ:
µ = maxi6=j |〈ϕi, ϕj〉|. Schematically, if our dictionary is
not too coherent and the signal is an arbitrary superposition of
less thanO(

√
d) elements ofΦ, this representation is unique

and can be recovered by standard algorithms [1, 2, 3].
In parallel to developments in sparse signal models, var-

ious application scenarios motivated renewed interest in pro-
cessing not just a single signal, but many signals or chan-
nels at the same time. A striking example is sensor networks,
where signals are monitored by low complexity devices whose
observations are transfered to a central collector [4]. This
central node thus faces the task of analyzing many, possi-
bly high-dimensional, signals. Moreover, signals measured
in sensor networks are typically not uncorrelated: there are
global trends or components that appear in all signals, pos-
sibly in slightly altered forms. Modeling multichannel sig-
nals by means of redundant dictionaries, generalizing existing
mono-channel algorithms and understanding their properties
are thus important challenges.

In this paper we analyze the theoretical performance ofp-
thresholding, a simple algorithm for recovering simultaneous
sparse approximations of multichannel signals. Our analy-
sis is based on studying the average in addition to the worst
case, and the spirit of our results is the following: given a
not too coherent dictionary and signals with coefficients suf-
ficiently large and balanced over the number of channels,p-
thresholding can recover superpositions of up toO(d) atoms
with overwhelming probability. Our conditions onΦ are thus
much less restrictive than in the worst case.

2. SIGNAL MODEL

Suppose we are to design a network ofN sensors monitor-
ing a common phenomenon. Each of our sensors observes a
d-dimensional signalyn ∈ R

d, n = 1, ..., N . As explained
in the previous section, a sparsity hypothesis will be the cen-
tral assumption of our model. Moreover, we will assume that
each signalyn admits a sparse approximation over a single



dictionaryΦ:

yn = Φxn + en, n = 1, ..., N.

In order to model correlations between signals, we will refine
this model by imposing that all signals share a common sparse
support, i.e.

yn = ΦΛxn + en,

whereΦΛ is the restriction of the synthesis matrixΦ to the
columns listed in the setΛ. This model is inspired by a recent
series of papers on distributed sensing, see [5] and references
therein. It describes a network of sensors monitoring a sig-
nal with a strong global component that appears at each node.
Localized effects are modeled by letting synthesis coefficients
xn ∈ R

S , S := |Λ|, vary across nodes and through the noise
en. As an illustrative example, imagine sensors measuring the
chemical composition of the atmosphere at some locations of
a geographical area. There is a common component modeled
by the fixed supportΛ. Slight changes from node to node due
to different sensor locations are modeled by varying ampli-
tudesxn of components from node to node. Localized effects
can drastically alter the signal and are captured by noiseen.
Let us now turn to describing a generative model for the syn-
thesis coefficientsxn. In order to obtain a sufficiently gen-
eral model, we will assume that the componentsxn(k) of the
random vectorxn are independent Gaussian variables of vari-
anceαk. This model is fairly general to accommodate vari-
ous practical problems: the Gaussian assumption is one of
the most widely used in signal processing, while incorporat-
ing different variances allows us to shape the synthesis coef-
ficients, imposing statistical decay for example on thexn(k).

In order to simplify our analysis we will adopt a global
matrix notation. We will collect all signalsyn on the columns
of thed×N matrixY and the synthesis coefficientsxn on the
columns of theS ×N matrixX . LetU be aS ×N random
matrix with independent standard Gaussian entries and letD
be aS × S diagonal matrix whose entries are positive real
numbersαk. Our model can then be written in compact form

Y = ΦΛX + E = ΦΛDU + E, (1)

whereE is ad × N matrix collecting noise signalsen on its
columns.

3. ALGORITHM

3.1. Principle

Let us now describe more precisely our sensing algorithm.
The observed signalsyn are sent to a central processing unit
that tries to recover the common sparse supportΛ. The prob-
lem thus boils down to estimating the joint sparse support of
a set of signals generated from a redundant dictionaryΦ. A
number of algorithms have been proposed lately to jointly
process sparse signals, most of them based on multichannel

generalizations of greedy algorithms [6] or convex relaxation
algorithms. A common weakness to all these techniques is a
high computational complexity. To overcome this problem,
we would like to resort here to one of the simplest possible
algorithms: thresholding. More precisely, our algorithm com-
putes thep-norm of the correlation of the multichannel signal
Y with the atomsψk of a sensing dictionaryΨ:

‖ψ⋆
kY ‖p

p :=

N
∑

n=1

|〈ψk, yn〉|p.

The sensing dictionaryΨ has the same cardinality asΦ, so
the atoms in both dictionaries are in a one-to-one relationship.
We could setΨ ≡ Φ, but we voluntarily keep the possibility
of optimizing both dictionaries in the spirit of [7].

3.2. Recovery conditions

DefineΛS , the set of indicesk with theS largestp-norms.
This algorithm is successful if forS = ♯Λ we haveΛS =
Λ. SinceΨ⋆Y = Ψ⋆ΦΛX + Ψ⋆E, the strongestp-norm of
projections on the setΛ of bad atoms is

‖Ψ⋆
Λ
Y ‖p,∞ ≤ ‖Ψ⋆

Λ
ΦΛX‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞,

where the(p,∞)-norm of a matrix‖M‖p,∞ is defined as the
maximum of thep-norms of its rows. Conversely, the smallest
p-norm of projections on the set of good atoms reads

min
i∈Λ

‖ψ⋆
i Y ‖p ≥ min

i∈Λ

‖ψ⋆
i ΦΛX‖p − ‖Ψ⋆

ΛE‖p,∞.

and the algorithm will thus succeed as soon as

min
i∈Λ

‖ψ⋆
i ΦΛX‖p − ‖Ψ⋆

Λ
ΦΛX‖p,∞ >‖Ψ⋆

ΛE‖p,∞

+ ‖Ψ⋆
Λ
E‖p,∞.

(2)

3.3. Worst case analysis

This condition can be checked based on simple character-
istics of the multichannel signals and the dictionaries. To
capture the requirements on the dictionary we need to de-
fineβ := mini∈Λ |〈ψi, ϕi〉| the minimum correlation between
sensing and synthesis atoms, and to adapt the definition of the
standard cumulative coherence [1]:

µq(Ψ,Φ,Λ) := sup
l/∈Λ

‖Φ⋆
Λψl‖q = sup

l/∈Λ

(

∑

i∈Λ

|〈ψl, ϕi〉|q
)1/q

.

(3)
As for properties of the signal we need to define the p-Peak
SNR and the dynamic rangeRp:

PSNRp :=
‖Ψ⋆

Λ
E‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞

‖X‖p,∞
,

Rp :=
mini∈Λ ‖X(i)‖p

‖X‖p,∞
,



where we denote‖X(i)‖p = (
∑N

n=1
|xn(i)|p)1/p thep-norm

of thei-th row ofX . Following the analysis in [8], it is easy
to check [9] that the following condition implies (2):

µ1(Ψ,Φ,Λ) + sup
i∈Λ

µ1(ΨΛ,ΦΛ,Λ/{i})

< β · Rp − PSNRp.
(4)

The success ofp-thresholding is thus governed by the con-
dition that the dynamic range of the signal should be big-
ger than the noise level and the sum of correlations among
atoms on the support and between the support and the re-
maining of Φ. We note thatµ1 can be very big even for
reasonably smallΛ. For example, whenΨ = Φ, the quan-
tity µ1(Ψ,Φ,Λ) + µ1(ΨΛ,ΦΛ,Λ/{i}) is often replaced by
its upper estimate(2S − 1)µ. The r.h.s in (4) is at most
one, so the resulting condition can only be satisfied when
S < (1 + µ−1)/2. In the next sections, we develop an aver-
age case analysis ofp-thresholding and show that thetypical
recovery conditions are much less restrictive.

4. AVERAGE CASE ANALYSIS

To state our central theoretical result for the average casewe
need to define a probabilistic PSNR and dynamic range, re-
member we hadY = ΦΛDU + E whereD = diag(αi),

PSNRp :=
‖Ψ⋆

Λ
E‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞

maxi∈Λ |αi|
,

R :=
mini∈Λ |αi|
maxi∈Λ |αi|

.

Theorem 1. Assume that the noise level and the dynamic
range are sufficiently small (respectively large), that is to say

µ2(Φ,Ψ,Λ) < min
i∈Λ

‖Φ⋆
Λψi‖2 · R− PSNRp/Cp(N). (5)

whereCp(N) is a constant depending only onp and the num-
ber of channelsN , see Theorem 2. Then, under signal model (1),
the probability thatp-thresholding fails to recover the indices
of the atoms inΛ does not exceed

P(p− thresholding fails) ≤ K · exp
(

−ANγ2
)

with

γ =
R · mini∈Λ ‖Φ⋆

Λ
ψi‖2 − PSNRp/Cp(N) − µ2(Φ,Ψ,Λ)

R · mini∈Λ ‖Φ⋆
Λ
ψi‖2 + µ2(Φ,Ψ,Λ)

.

This result has unique features compared to the worst case,
see (4). First, the condition onΦ is expressed in terms of
the cumulative coherence of order 2 which is much smaller
than that of order one. For example assuming that there is no
noise and that the variancesαi are constant the r.h.s in (5) is
larger than one. If additionallyΨ = Φ, an upper estimate of
µ2(Φ,Ψ,Λ) is µ

√
S and we see that typically thresholding

can be successful even whenS ≈ µ−2 ≫ µ−1. Second, due
to typicality, we see that the probability of failure quickly di-
minishes as the number of channel grows, suggesting that we
should useN ∼ logK channels in practice.

Ingredients and Flavour of the Proof
As explained in the previous section, thresholding works by
collecting statistics on the signals through projections.The
intuition is that, when there are sufficiently many channels,
typical behavior will emerge and allow us to detect the mean-
ingful components. The following classical result of measure
concentration will be our main tool [10].

Theorem 2. Let 1 ≤ p ≤ ∞. SupposeZ = (Z1, . . . , ZN )
is a vector of independent standard Gaussian variables. Then
there exist constantsCp(N), Ap(N) such that

P(‖Z‖p ≥ (1 + ǫ)Cp(N)) ≤ exp
(

−ǫ2Ap(N)
)

(6)

and

P(‖Z‖p ≤ (1 − ǫ)Cp(N)) ≤ exp
(

−ǫ2Ap(N)
)

, (7)

For the important casesp = 1, 2 we haveC1(N) =
√

2

πN ,

C2(N) ∼
√
N andA2(N) ≥ A1(N) = N/π.

This theorem highlights the emergence of typicality in
high-dimensional random Gaussian vectors: the probability
that thep-norm of Z differs significantly fromCp(N) de-
creases exponentially withN .

The main idea for the proof of Theorem 1 is that when the
number of channels is sufficiently large, eachp-correlation
‖ψ⋆

kΦΛDU‖p of the noiseless multichannel signal with a sens-
ing atom is, with very large probability, almost equal toCp(N)·
‖ψ⋆

kΦΛD‖2 = Cp(N) · ‖DΦ⋆
Λ
ψk‖2, whereCp(N) grows

with the number of channels. Therefore, if

Cp(N) ·
(

min
i∈Λ

‖DΦ⋆
Λψi‖2 − max

ℓ/∈Λ

‖DΦ⋆
Λψℓ‖2

)

&

‖Ψ⋆
Λ
E‖p,∞ + ‖Ψ⋆

ΛE‖p,∞,

the recovery condition (2) will be met with high probability.
The easy part of the proof is that inserting the following esti-
mates into the above and simplifying a bit we arrive at condi-
tion (5) of the theorem,

min
i∈Λ

‖DΦ⋆
Λψi‖2 ≥ min

j∈Λ

|αj | · ‖Φ⋆
Λψj‖2,

max
ℓ/∈Λ

‖DΦ⋆
Λ
ψℓ‖2 ≤ max

j∈Λ

|αj | · µ2(Φ,Ψ,Λ).

The hard part of the proof is to make precise estimates of the
typicality and precision of the approximation‖ψ⋆

kΦΛDU‖p ≈
Cp(N)‖DΦ⋆

Λ
ψk‖2 using Theorem 2. Although this is clearly

out of the scope of this paper, let us summarize the main steps.
Observe thatψ⋆

kΦΛDU =: v∗kU is a vector of independent
Gaussian random variables whose components have variance



‖vk‖2. Therefore, applying Theorem 2 and the union bound
we arrive at

P

(

max
ℓ∈Λ

‖v⋆
ℓU‖p ≥ (1 + ǫ1)Cp(N)max

ℓ∈Λ

‖vℓ‖2

)

≤

|Λ| · exp(−ǫ2
1
Ap(N)).

Similar arguments are used to estimate the probability that
mini∈Λ ‖ψ⋆ΦΛDU‖p takes a small value. The exact result is
then obtained by carefully choosing the constantsǫi.

5. EXPERIMENTAL RESULTS

In this section we compare our theoretical findings with simu-
lations of the performance of 2-thresholding withΨ = Φ. As
dictionary we chose a combination of the Dirac and Fourier
basis,Φ = (Id,Fd), in dimensiond = 1024, which has co-
herenceµ = 1/

√
d. For each number of channelsN , vary-

ing from 1 to 128, and support size, varying from 1 to 1024
in steps of 16, we created 180 signals by choosing a sup-
port Λ uniformly at random and independent Gaussian coef-
ficients with variancesαi = 1 and calculated the percentage
of thresholding being able to recover the full support. The
results can be seen in Figure 1.
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Fig. 1. Comparison of Recovery Rates for Different Support
Sizes and Number of Channels.

As reference we also calculated how many out of 200 ran-
domly chosen supports of a given size satisfy the worst case
recovery conditionµ1(λ) + supi∈Λ µ1(Λ/{i}) < 1. This
is indicated by the dash dotted line and can be seen to drop
rapidly once the theoretical limit|Λ| = 16 is reached. Since
µ = 1/

√
d the average recovery conditionµ2(Λ) < 1, in-

dicated by the dashed line, is always satisfied. We can see
that as predicted by Theorem 1 with an increasing number of
channels we get closer to the average case bound, which is
actually attained onceN = 128.

6. CONCLUSIONS

Thresholding is a computationally inexpensive algorithm for
simultaneous sparse signal approximation. We have shown

that, in a probabilistic multichannel setting, it shares good re-
covery properties with much more complex alternatives such
as greedy algorithms and convex relaxation algorithms. The
worst case recovery condition is reminiscent of Tropp’s re-
covery condition, see [1], but the typical behaviour is instead
driven by a much less restrictive condition and improves with
the numbers of channels. This is clearly confirmed by our
simulation results.

One of the main drawbacks of thresholding is that its per-
formance relies heavily on the assumption that the signal co-
efficients are well balanced, in addition to the Gaussian model.
Orthogonal Matching Pursuit is a natural candidate for deal-
ing with signals that do not have balanced coefficients. Pre-
liminary results [9] indicate that its typical performancein a
multi-channel probabilistic setup is also driven by much less
restrictive conditions on the dictionary than the worst case
ones. Last but not least, since the characterization of what
drives the average performance of thresholding involves the
mutual coherence of order 2 between a sensing dictionary
and a synthesis dictionary, an interesting new perspectiveis
the design of a sensing dictionary to optimize the recovery
performance for a given signal model.
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