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Abstract—In this paper, we consider recovery of jointly sparse Determining the sparsest vectorconsistent with the data
multichannel signals from incomplete measurements. Sevar y = Ax is generally an NP-hard problem [14]. To determine
approaches have been developed to recover the unknown spaers ;, practice, a multitude of efficient algorithms have beeo-pr

vectors from the given observations, including thresholdig, . . .
simultaneous orthogonal matching pursuit (SOMP), and congx posed, [14], [18], [43], [7], [9], which achieve high recoye

relaxation based on a mixed matrix norm. Typically, worst-ase rates. The basis pursuit (BP), ér-minimization approach,
analysis is carried out in order to analyze conditions undewhich is the most extensively studied recovery method [12], [8],
the algorithms are able to recover any jointly sparse set ofectors.  [15], [35]. The use of general purpose or specialized convex
However, such an approach is not able to provide insights imt optimization techniques [26], [18] allows for efficient tee

why joint sparse recovery is superior to applying standard parse . . .
reconstruction methods to each channel individually. Preipus ~Struction using this strategy. Although greedy methodshsu

work considered an average case analysis of thresholding dn s simple thresholding or orthogonal matching pursuit (QMP
SOMP by imposing a probability model on the measured signals are faster in practice, BP provides significantly betteovecy
In this paper, our main focus is on analysis of convex relaxabn  guarantees. In particular, there exist measurement naatric
techniques. In particular, we focus on the mixed/, ; approach A ¢ R™N that allow for stable recovery of alt-sparse

to multichannel recovery. We show that under a very mild .
condition on the sparsity and on the dictionary characterigics, vectors as long ag > Cklog(N/k) whereC'is a constant.

measured for example by the coherence, the probability of Such uniform recovery is not possible for simple threshudi
recovery failure decays exponentially in the number of chanels. or OMP [16], [36]. (We note, however, that the recent greedy
This demonstrates that most of the time, multichannel spars algorithms CoSaMP [33] and ROMP [34] are able to provide
recovery is indeed superior to single channel methods. Our gch yniform guarantees.) In practice, the recovery rate of
probability bqunds are.valld and meaningful even for a small BP wh d i d t is tvpicall
number of signals. Using the tools we develop to analyze the when averaged over all random sparse vectors IS typically
convex relaxation method, we also tighten the previous bouts ~Detter than that predicted by the theory. This is due to the fa
for thresholding and SOMP. that existing analysis considers the ability of BP to recove
all vectorsz. On the other hand, in random simulations, the
worst-case instance af typically does not occur. Therefore,
considering the behavior of various recovery methods over
randomz often leads to more characteristic behavior.

The BP principle as well as greedy approaches have been
extended to the multichannel setup where the signal cansist
I. INTRODUCTION of several channels with joint sparsity support [47], [42R],

Recovery of sparse signals from a small number of mel3]: [11], [30], [20], [21]. In [2] the buzzword distribute
surements is a fundamental problem in many different sigrimPressed sensing was coined for this setup. An alteenativ
processing tasks such as image denoising [8], analoggitatli approach is to first reduce the pr_oblem to a single channel
conversion [31], [19], [32], radar, compression, inpaigti p.roblem that preserves the sparsity pattern, and recoeer th
and many more. The recent framework of compressed sensig1a! support set; given the support, the measurements can
(CS), founded in the works of Donoho [15], Candés, Rombe@ inverted to recover the input [30]. A variety _of d]ﬁergnt
and Tao [8], studies acquisition methods as well as efficiefcOvery results have been established that provide ¢onslit
computational algorithms that allow reconstruction of arsp  €nsuring that the output of the proposed efficient algorsthm
vectorz from linear measuremengs= Az, whereA € R™*Y coincides with the true signals. In [11] a recovery resulswa

is referred to as the measurement matrix. The key obsenvatfirived for a mixed’, , program in which the objective is to

is thaty can be relatively short, so that < N, and still Minimize the sum of thé,-norms of the rows of the estimated
contain enough information to recover matrix whose columns are the unknown vectors. Recovery
results for the more general problem of block-sparsity were
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same signal to each channel, then no additional informatitmat while worst-case results based on the coherence limit
on the joint support is provided from multiple measurementthe sparsity level to ordey/n, average-case analysis shows
Therefore, in this worst-case scenario there is no advantdbat sparsity up to orden may enable recovery with high
for multiple channels. probability. In terms of RIP, instead of bounding the reséd
In order to capture more closely the true underlying bésometry constant for sparsity sets of size, we will only
havior of existing algorithms and observe a performanceed to consider sets of sizet 1.
gain when using several channels, we consider an averagefhe remaining of the paper is organized as follows. In
case analysis. In this setting, the inputs are considerdzktoSection Il we introduce our problem and briefly summarize
random variables. The idea is to develop conditions on tkeown equivalence results between thg, approach for
measurement matrid such that the inputs can be recovereghultichannel recovery and NP-hard combinatorial optimiza
with high probability given a certain input distribution. tion that recovers the true signals. A new recovery conglitio
Recently, there have been several papers that consigerderived in Section Ill, which is weaker than previous
sparse recovery with random ensembles. In [46] random subsults, and will be instrumental in developing our average
dictionaries ofA are considered and analyzed. This allows tease analysis in Section IV. Since the probability bounds
obtain average results for BP with a single input channel. ipe develop depend on th&-norm of Agag, in Section V
[40], average-case performance of single channel thréstppl we derive several upper bounds on this norm. In Section VI
was studied. In [25], [24] extensions to two multichannele use the tools developed in the previous section to derive
recovery algorithms were developed: thresholding andé&mu new bounds on the average performance of thresholding and
neous OMP (SOMP) [25], [24]. Under a mild condition on th6SOMP, that are tighter than existing results and also agipléc
sparsity and on the matrik, the probability of reconstruction to a broader set of problems. We then compare our bounds on
failure decays exponentially with the number of channeis. multichannel BP to these results. Finally, in Section VII we
the present paper we contribute to this line of research pyesent several simulations demonstrating the behavitheof
analyzing the average-case performance of multichanngl BRferent methods.
i.e,, mixed {5 1-minimization [45], [22], [21], [20]. The tools  Throughout the paper, we denote By the submatrix ofd
we derive in this context are then also used to slightly ingpro consisting of the columns indexed iyc {1,..., N}, while
previous bounds on average performance of multichanneb is the submatrix ofX’ consisting of the rows ok indexed
thresholding and SOMP. by S. The/th column ofA is denoted by:, or A,. For a matrix
The theoretical average-case results we develop for mulli; || 4|, is the spectral norm ofl, i.e., the largest singular
channel BP are superior to the average bounds developed/aiie, andA* is its conjugate transpose. The unit sphere in
thresholding and SOMP. For an equally mild or even mildeg” is defined bySL—! = {x e R, |lz|l2 = 1}; the complex
condition on the sparsity and on the matrixwe obtain faster counterpart is denoteﬂL ={z e C¥ |zl = 1}.
exponential decay of the failure probability with respecthe
number of channels. Thus, in this sense, the extension o6 BP t
the multichannel case is superior to existing greedy algms, 1. MULTICHANNEL ¢;-MINIMIZATION
just as in the single channel setting. Moreover, our regover
results are applicable also in the single channel case aherg: Problem Formulation

previous results [25] require a large number of channels towe consider multichannel signal recovery where our goal
yield meaningful (e, positive) probability bounds (althoughis to recover a jointly-sparse matriX € CY*% fromn linear
our new bound for thresholding generalizing the one in [4Gheasurements per channel. Hé¥edenotes the signal length
does not suffer from this drawback). Note, however, that ghd L, the number of channels,e.,, the number of signals.
simulations SOMP often exhibits the best performance. Thige assume thak is jointly k-sparse, meaning that there are
may be explained by the fact that the bounds are not tight @tmostk rows in the matrixX that are not identically zero.

least for SOMP). More formally, we define the support of the matti as
To develop our probability bounds, we rely on a new

sufficient condition that ensures recovery of the exactaign
set via/ly ;-minimization. This condition generalizes a result
of [44], [23] to the multichannel setting, and is weaker than
existing multichannel recovery conditions. Our averagsec Where the support of théh column is

anal_ysis is_then carried out assuming that the elements of supp Xy = {j, Xj¢ # 0}. )
the input signal are drawn at random. We prove that under

a certain restriction ol and the sparsity sef, the sufficient Our assumption is thatX||o := | supp X| < k. The measure-
condition we develop is satisfied with high probability. Thé&ents are given by

restriction we impose is that thfg—.norm ongag over all¢ not Y = AX, Y eC™E, 3)

in the setS is bounded, where, is the/th column ofA, and

Al is the pseudo inverse of the restriction4to the columns where A € C™*V is a given measurement matrix. Each
in S. This is an improvement over known worst-case recovergeasurement vectdf, = AX, corresponds to a measurement
conditions which require a bound on tide-norm [11], [20], of the corresponding signaY,.

and are therefore stronger. Loosely speaking, we will showThe natural approach to determiti givenY is to solve

L

supp X = |_J supp X, @
=1



the £yp-minimization problem similar to (6) that involves th@-norm instead of thé-norm,
and is therefore weaker (namely, easier to satisfy).
Assuming the columns ofl are normalized|a,||2 = 1, we

However, (4) is NP hard in general [14]. Several alternati@®n guarantee that (6) holds as long as the cohergrafed
methods have been proposed, that have polynomial comples Small enough, where [17]

[47], [45], [22], [13], [11], [30], [20], [21], [30]. A vari¢y of 1= max |{a;, ar)|. 7
different equivalence results between the solution of dfe J#EL
problem and the output of the proposed efficient algorithmThe following result follows from [20] by noting that the ladko

In [11] an equivalence result was derived for a mixed, coherence in this setting is equal ggd.
program in which the objective is to minimize the sum of the Proposition 2.2: Assume that

¢,-norms of the rows of the estimated matrix whose columns
are the unknown vectors. The condition is based on mutual (2k = 1u < L. (8)
coherence, and turns out to be the same as that obtained frgRan (5) recovers alk with || X||o < k from Y = AX.

a single measurement problem, so that the joint sparsitgipat ynder the same conditions as in Propositions 2.1 and 2.2, it

this condition._Recovery results f(_)r the more general @obl Therefore, if (6) holds, then instead of solving (5) we could
of block-sparsity were developed in [21] based on the RIB, ag|sg use BP on each of the columnslof

in [20] based on mutual coherence. Reducing these results tqne coherence is lower bounded by [41]

the multiple measurement vectors (MMV) setting leads again

to conditions that are the same as in the single measurement | N—n

case. An exception is the work in [25], [24] which considers p= n(N—-1) ©)

average-case performance of thresholding and SOMP. Under

a mild condition on the sparsity and on the matrx the The lower b_qund behaves Iild_q\/ﬁfor IargeN, which limits

probability of reconstruction failure decays exponehialith ~the Proposition 2.2 to maximal sparsitiés= O(,/n). To

the number of channels. In Section VI we slightly improve improve on this we can generalize existing recovery results

on these bounds using the tools developed in this paper. [8], [6] based on RIP to the multichannel setup. The restdct
In Section IV we follow a similar approach and treat thésometry constani;, of a matrix A is defined to be the smallest

average behavior of the mixég ; -minimization program [45], constantj,. such that

min [X[o st AX =Y. (4)

[22], [21] defined by (1= 80)zl3 < | Azl < (L+80)z]3,  (20)
N g
min || X2, = Z IX7|l,, subjecttoAX =Y, (5) Ecz)rl]all k-sparse vectors. The next proposition follows from
j=1 )

) o ) ) ] Proposition 2.3: AssumeA € C™ N with 8o, < V2 — 1
which promotes joint sparsity, as argued for instance ir}.[23 4 x e CV*L y — AX, and letX be the minimizer of
In the single channel cage= 1 this is the usual BP principle. 5y Then

Therefore, our results can also be used to deduce the average .

case behavior of the BP method. This is in contrast to [25], X = X|[g < Ck 2| X = XW|a,

in which the recovery results derived are not applicable to

the single channel case. As we discuss in Section VI, Ovlypere(} Is a constant) X[ = /Tr(X*X) is the Frobenius

. i . X (k) . imati
theoretical results are superior to the previous average-cnorm of X and X" " denotes the best-term approximation

. . . i X (k) i indi i
analysis of [25] in the sense that we use an equally mild §f X+ 1€ supp X' consists of the indices corresponding to

P . ;
even milder condition on the sparsity and on the matrjbut thek largest row norm§.X"[,. In particular, recovery is exact

at the same time get a faster exponential decay of the faiIL?fré supp X| < k. _ _ _
probability with respect to the number of channéls t is well known that Gaussian and Bernoulli random matrices

A e R™N satisfydy, < +/2—1 with high probability as long
B. Recovery Results as [1], [10]
Recovery results for the program (5) were considered in n 2 Cklog(N/k). (11)

[11], [21], [20]. In particular, the lemma below is derived i For random partial Fourier matrices the respective coolis
[11] and follows also from [20] where the more general case> cklog*(IN) [37], [39]. Therefore, Proposition 2.3 allows

of block sparsity is considered. for a smaller number of measurements. However, there is stil
Proposition 2.1: Let S C {1,..., N} and suppose that  no dependency on the number of channels. Indeed, under the
||AT5alH1 <1 forall£¢s, 6) same RIP condition BP will recover a singtesparse vector

and therefore, as before, BP may as well be applied to each
with Ag = (A% As) ' A% denoting the pseudo-inverse df.  of the columns ofY” individually.
Then (5) recovers alX € C¥*¥ with supp X = S from We conclude this overview by stressing that known equiv-
Y = AX. alence results do not improve on those for single channel
Note, that the condition above does not depend on the numbparse recovery. In [21], [20] equivalence results arevddri
of channels. In the next section we will derive a conditiofor a mixed/; ; program when different measurement matrices



A; are used on each channel. In this case, even worst-case Proof: The proof follows from noting that
analysis shows improvement ovér= 1. However, when all . ‘
measurement matrices are equal, the recovery conditions do | Te(BA)| < Z |B"Ay| < Z 18712l Aell2

not show any advantage with multiple signals. ¢ ¢
< max||Aell2 Z 1B 1> = max || Aello]| B2,

lIl. A RECOVERY CONDITION where the second inequality is a result of applying Cauchy-
Schwartz. Under the condition of the lemma, we have strict
iggquality in the last inequality. ]

Before turning to analyze the average-case behavior .
g y g Applying Lemma 3.2 to (17), leads to

(5), we first develop a new condition oA that allows for
perfect recovery. This formulation will be useful in dengi [Xl21 < |\X/Sl|\2,1maXHH*Afz||2 < ||X/S’||271 (18)
the average-case results. / tes’

In the following theorem we give a sufficient condition on = X721,

the minimizers of (5). This theorem generalizes a result gfhere the last inequality follows from (15). We have strict
[44], [23] for the L = 1 case. To this end we denote byinequality in the first inequality of (18) as long as the value
sgn(X) € CV** the matrix with entries | H*Ag|| for ¢ € S are not all equal sincéX’* ||, # 0 for
{ Xy 1X]|2 # 0; all ¢ € S’ be definition of the support.
sgn(X)e; =< 1X0=? , ' (12) Suppose to the contrary th#itH* A2 = « for all ¢ €
0, 152 = 0. S’. Clearly, S’ must contain at least one indéxthat is not
In this definition, each element of is normalized by the norm contained inS; otherwiseS” C S, which would contradict the
of the corresponding row. Wheh = 1, sgn(X) reduces to hypothesis thatls is non-singulards' X’ = AsX and X #
the sign of the elements of the vector X'. By our assumptiofi H*a¢||2 < 1, which then implies that
Theorem 3.1: Let X € CV*L with suppX = S and @ < 1or|[|[H*As||2 < 1,¢ € S’. The inequalities in (18) then

assumeAs to be non-singular. If there exists a matik ¢ PeCOMe

nxL ’ ’
E*7 such that S X2 < X o mae [ All2 < X7 |20 = X2,
ALH = sgn(X5), (13) tes’ (19
and Thus, we have shown thatX’|s,1 > || X]|2;1 for any X’
[H*aell2 <1 forallt¢sS (14) suchthatt” = AX’, and therefore (5) recovers the true sparse
matrix X. [ |

then X is th? unique solution of (5). N ChoosingH = (ATS)* sgn(Xg) in Theorem 3.1 results in
Before proving the theorem we note that the two conditionge following corollary.

on H easily imply that Corollary 3.3: Let X € CV*¥ with suppX = S and
[H*aell2 <1, forall £. (15) assumeds to be non-singular. If
| sgn(X%)*ALasls <1 forall £ ¢S, (20)

Proof: The proof follows the ideas of [44], with appro-
priate modifications to account for the mixég; norm that then X is the unique minimizer of (5).
replaces the/; norm. This corollary will be instrumental in proving the averaggse
LetY = AX, and assume there exists a matfixsuch that performance of (5). It can easily be seen that Corollary 33 i
X, H satisfy (13) and (14). LeX’ be an alternative matrix plies Proposition 2.1. This follows from the triangle inetjty,
satisfyingY = AX’. Our goal is to show thal| X |21 <

!/ 1 .
[IX"||2,1- To this end, we note that Hsgn(XS)*ALaeHQ _ Z(Agaz)j sen(X7)"
[X[l21 = [1X%]|21 = Tr (sgn(X*)(X®)*),  (16) jes 2
where Tr denotes the trace. Substituting H = sgn(X*) < Z |(ATSGL’).7'| [ sgn(X7)[[2 = ||ATsa€H17
into (16), and using the cyclicity of the trace we have jes
HX|21 :’I‘I‘(H*ASXS) :’I‘I‘(H*AX/) (17) where we used the fact thﬁkgn(XUHg =1.

18" Ty

=T (X " AS') ’ IV. AVERAGE CASE ANALYSIS
where we used the fact thatsX® = ¥V = AX’ and &’ Intuitively, we would expect multichannel sparse recovery
denotes the support ak’. We next rely on the following to perform better than single channel recovery. However, in
lemma. the worst case setting this is not true as already suggested b

Lemma 3.2: Let A, B be matrices such thatB is defined. the results of Section Il. The reason is very simple. If each
Then|Tr(BA)| < || Bl|2,1 maxg ||A¢l|2, with strict inequality channel carries the same signal, = = for ¢ = 1,...,L,
if [|Aell2 < maxy||A¢||2 for some value of¢ for which then also the components &f = AX are all the same and
| BY||2 # O. we do not have more information on the supportXfthan



provided by a single componeht. The following proposition The essential idea in both proofs is to show that if the
establishes formally that if BP fails for a given measuretnehound 0n||ATSa¢||2 is satisfied, then the sufficient condition

matrix A, then multichannel optimization (5) will fail as well of Corollary 3.3 holds with high probability.

so that in the worst-case, adding channels will not improve Before stating the first theorem, we derive the following

performance. result on the norm of sums of independent random vectors,

Proposition 4.1: Suppose there existskasparse vectar € uniformly distributed on a sphere.
CY that¢,-minimization is not able to recover from= Az. Theorem 4.2 Let ¢ € C* and letZ;, j =1,...,k be a
Then {5 ;-minimization fails to recovetX = (z|z|---|z) € sequence of independent random vectors which are uniformly
CV*L fromY = AX. distributed on the real sphe®"—!. Then for anyu > 1

Proof: If ¢,-recovery fails on somek-sparsex then .
necessarily|«’||1 < ||«||x for somez’ satisfying Az’ = Ax.
= 7. >
Clearly X = (z|z|-- - |r) is (jointly) k-sparse andl X = AX’ F z_; a;Z3|| = ulallz
for X' = (2'|z|-- - |2'). Furthermore, = L2
1X 21 = VIl < VIljz]h = [|X ]2 =P ( g (v~ lo(u) ”) '

and thereforeX is not the unique minimizer of thé, ;- Proof: See Appendix A. ]
minimization problem. [ | Theorem 4.2 generalizes the Bernstein inequality for Stein

Realizing that (5) is not more powerful than usual BP ihaus sequences in [46, Theorem 13] to higher dimensions. We
the worst case, we seek an average-case analysis. This meaag extend the estimate easily to random vectors uniformly
that we impose a probability model on thesparseX. In distributed on complex unit spheres.
particular, as in [25], we will assume that on the supgbuf Corollary 4.3: Let a € C* and letZ;, j =1,...,k, bea
size k the coefficients ofX are chosen at random. We thersequence of independent random vectors which are uniformly
show that under a suitable probability model on the non-zedistributed on the complex spheﬂé”. Then for anyu > 1
elements ofX, the condition given by Corollary 3.3 is satisfied

with high probability, which depends oh. k
We follow the probability model used in [25]: lef be the P> a2 > ulals
joint support of cardinalityc. On S the coefficients are given =1 2
by < exp (—L(u* —log(u?) — 1)).
X5 =% (21)

Proof: First observe that;Z; has the same distribution
where Y = diag(oj,j € S) € R¥** is an arbitrary diagonal as|a;|Z;. We may therefore assume without loss of generality
matrix with positive diagonal elementg. The matrix® will thata; € R. Next, a random vectoZ < Séfl is uniformly

be chosen at random according to one of the following modetfistributed onS%~! if and only if (Re(Z)7,Im(2)T)7 is

. Real Gaussian:each entry of® € R"**" is chosen uniformly distributed on the real sphers*~'. Applying
independently from a standard normal distribution.  Theorem 4.2 withZ replaced by2L yields the statementm

« Real spherical the rows of ® € R**" are chosen  with this tool at hand we can now easily prove the following
independently and uniformly at random from the realverage-case recovery theorem.
spheres*™ ', Theorem 4.4: Let S C {1,..., N} be a set of cardinality

« Complex Gaussianthe real and imaginary parts of eachand suppose
entry of ® € C** are chosen independently according ;
to a standard normal distribution. [Asaell < <1 forall£¢S. (22)

« Complex spherical the rows of® € are chosen | gt x ¢ RVXL with suppX C {1,...,N} such that the
mdepen(ger;tly and uniformly at random from the complesefficients onS are given by (21) with some diagonal matrix
sphereS . ¥ € R** and ® € R¥*E chosen from the real Gaussian or

Note that taking® to be the identity matrix results in aspherical probability. Then with probability at least
standard Gaussian random mati, while taking arbitrary I

non-zeroo;’s on the diagonal of¥ allows for different 1— Nexp (——(a_2 —log(a™?) — 1)> (23)
variances. The matriXX may be deterministic or random. In 2

particular, choosing to be the matrix with diagonal elementg5) recoversX fromY = AX.

CkXL

given by the inversés-norm of the rows of® in the real If the real probability model is replaced by one of the two
(complex) Gaussian model, leads to a matix with a real complex models theri /2 can be replaced by, in (23).
(complex) spherical distribution. For o < 1 we are guaranteed that the exponent in (23) has

In Theorems 4.4 and 4.5 below we develop conditions undemegative argument, and therefore the error decays exponen
which (5) recoversX from Y = AX with probability that tially in L.
decays exponentially witth.. The condition in both theorems Proof: First observe that by the rotational invariance
is given in terms of an upper bound QIATSWHQ for/notinS. of Gaussian random vectors the columnssgfi(X9)* =
This is in contrast to the worst-case result of Propositidn 2sgn(®*) are independent and uniformly distributed on the
that is given in terms Oﬂ|ATSag||1 and therefore stronger.real sphere, and the same is also true if we use the real



spherical random model. Dencké) = ATSag for ¢ ¢ S and (5) recoversX fromY = AX.

by Z;,j = 1,..., k a sequence of independent random vectorsi|t follows from Stirling’s formulal’(z) ~ V222771 2¢—2
that are uniformly distributed on the sphesé—!. Using the that
sufficient recovery condition of Corollary 3.3, the unioruna

and Theorem 4.2 we can estimate the probability that A =

ﬂw (Lt /e

L—-1)/2,—L/2
minimization fails to recoveX by ( (L/2) L2 (L/2)E=0/2emts
L+1 _ 1/2
Pl | sgn(X%)"0 2 > 1) = P = e P (LA +1/0)) T ~ VL
<Y Pl sgn(X )0 > 1) Moreover, for allL > 1 it holds thatyZ > A, > \/g\/— ~
s 0.797VL.
k o Ap . . . . .
., Z1y.(0) Note thaty = VA monotonically increasing in
A ZP ij Zi|| > a Il L. In addition, the prgbabilityP is also increasing (towards
s 2 1) in L. Therefore, more channels increase the probability of
< (N — k) exp <_§(O‘_2 —log(a™2) — 1)) _ zuccess and in addition relax the requirements on the matrix
The complex case follows analogously using Corollary 43. Proof: To prove the theorem we show that if (24) is
satisfied, then condition (20) of Corollary 3.3 holds with

For L = 1, Theorem 4.4 is contained implicitly in [46, robability P
Theorem 13]. The appearance of theorm in (24) instead P y L

; kxL i i
of the 1-norm as in (6) makes the condition of the theorem To this end, let® € R denote a random matrix with
weaker than worst-case estimates (recall thdt, < [|z]; < independent standard normal distributed entries, andelé&fin

Vk||z||» for any lengthk vectorz). In Section V this will 2S thek x k diagonal matrix with diagonal elementgs;, j €
be made more evident when we consider conditions on thgwheres; = ||®7]]; = \/Zle |®,¢]2. We can then express
coherence: and the RIP constant to allow for recovery With;gn(XS) = sgn(X®) = sgn(®) = D®. (This equation also
high probability. The requirement we obtain @nis weaker means that the diagonal matr® does not play any role.)
than that of Proposition 2.2 and allows for recovery witbn Denotingb; = A}aj forj ¢S,
the order ofn, while the worst-case results limit recovery to . .
order \/n. Furthermore, in contrast to the worst-case results [Isen(Xs) ;|2 = | @7 Dbjll2 < [[@[2[|Dll2]bs]l2-
which depend oy, we will show that high-probability By the assumption of the theorefib;||, < v where~ is
recovery is possible as long &g, is small enough. defined by (24). It therefore remains to bouyfil|, and||D||..

It is evident from (23) that the failure probability decay$rom [10, equation (4.35)], see also [42], the operator norm
exponentially with growing number of channdls Moreover, of ® satisfies
the bound is also useful for small, and in particular for |®)2 < VL +VE+r (26)
the monochannel casé = 1. Indeed, a simple algebraic
manipulation shows that the failure probability is lessntha
€ prowdedHA agl2 < « for all £ ¢ S with o satisfying

with probability at leastl — exp(—72/2).

Next we consideri|D||o. Observe that thes? are x*(L)
distributed. Therefore, denoting & (L varlable byY,

_ _ 21og(N/e)
2 2
a “ —log(a > — 2 +1. -
(@) 7 E[s;] = E[VY] = m/ ST 2
This provides a useful average-case analysis evet. ferl. (L +1)/2)
For completeness, we also state an alternative recovery re- =2 T2 = AL~ VL.

sult below which provides a slightly better probabilityigsite

than Theorem 4.4 for very large values f. However, the As a function of &/ the s; are Lipschitz continuousi.e.,

required condition on AL, is stronger. sj(®/ — W) < || — W||,. Using these two observations
Theorem 45: Let S C {1,..., N} be a set of cardinality we rely on the following standard concentration of measure

k, and letX € R¥*L be random sparse coefficients with esult, see e.g. [28, eq. (2.35)] or [29, eq. (1.6)].

L -
supp X = S given by the real Gaussian probability model. IX fg)egr?r(ny;ﬁi J}‘;ﬁtx{ Sng ?o:_glsghgzefﬂégculg?rtgff a’s;l?l%e

HAT agl|s < AL =y~ (24 thatZ = (Z1, Z», ..., Z1) is a vector of independent standard
5 3VL 4+ 2VEk 3+4+2k/L Gaussian random variables. Then
2
for all £ ¢ S, where P(f(Z) > E[f(Z)] +1) < exp (_t_Q) 7
I((L+1)/2) 2B
Ap =V2— L2 VI, (25) 2
ML/ P((2) < ELAZ)] -0 < exp (555 )
andT" denotes the Gamma function, then with probability at
least Our goal is to show thafD||» is bounded from above, which

P =1—exp(—L/8) — kexp(—A2/8) is equivalent to bounding the smallest valuespffrom below.



Applying Theorem 4.6 to;,
P(s; < AL(1 —1t)) < exp(—t*A43 /2),

where we used the fact th& = 1 andE[s;] = Ar. Using a
union bound over allj, we obtain

P(s; < Ap(1—1),Vj) =P <
< P(sj < AL(1— 1)) < kexp(—t2A43 /2).
JES
Assuming thatminjegs; > Ap(l — t) holds, ||D|l; <
1/(AL(1—t)). Combining this bound with (26) for = v/Ls
we have

min_ s; < Ar(l —t)>

.....

I Sgn(XS)ATSajlh = \/EXL\(/lzjt‘;\/z
_ s+ 1+ VHINVE
(1-0A,

Choosings =t =1/2,
| sen(Xs)* ALajlla < (3 +2v/k/L)VWL/AL < 1.

From (27) and Corollary 3.3X is recoverable using (5).

(27)

in the upper bound. However, (28) still suffers the squan-r
bottleneckk = O(y/n). To improve on this result, we next
provide a condition based on the following refinement of the
RIP of A. For a setS C {1,...,N} we let

0(5) = [[AsAs = I|2-

The restricted isometry constan; of (10) satisfiesd, =
max|g|<y, |A5As — I||2 so that if S has cardinalityk then
0(S) < 0. We further define

5(5) = maxd(5 U {0)). (29)

Clearly, §(S) < §*(S) < dx+1. Finally, we make use of the
following “local” 2-coherence function,

pa($) = o { x| A3l a1 45 ol ) (30)

for a subsetS < {1,...,N}, where S \ ¢ denotes the
elements inS excluding thefth one. From the definition of
the coherence it follows immediately that

p2(S) < V/1S|k,

since the magnitude of each eleméft,,a;)| of the vector

(31)

The probability that (27) does not hold can be computed bdsac is bounded above by. In addition,

applying a union bound to the probabilities that the spéctra
norms of each of the matriced and D are not bounded.

12(S) < 0%(S). (32)

This shows that (27) does not hold with probability at mosthis is a result of the fact thala, is a submatrix of
exp(—L/8) + kexp(—A2/8) completing the proof of the Agug}ASU{g} — I for ¢ ¢ S, while Ag\{é}ag is a submatrix

theorem. [ |

V. BOUNDED NORM CONDITION

of AgAg—1 for ¢ € S. (They both consist of a subcolumn of
the respective matrix, that “leaves” out the diagonal elemye
We now use these definitions to bOUH\ATSagHQ:

Both Theorems 4.4 and 4.5 state tiatcan be recovered Proposition 5.2: Let S C {1,...,N}. Then:

with high probability fromY”, as long asﬂAgagHQ is bounded.
In this section we develop several different conditionsarnd

which this holds.

Proposition 5.1: Let A € C™*" have unit-norm columns

(a) If A satisfiesé*(S) < 4§ < 1/2 then

)
< ——x<1

AT
|| SG’ZH2 = 1—6

forall ¢ ¢ S.

and coherence:, and letS c {1,...,N} be a set of (b) If A satisfiesi(S) <4 <1 andus(S) <7 then

cardinality k. Assume that
VEk+ (k=18 <6
for somed > 0. Then||ALag|» < & for all £ ¢ S.

(28)

<1
~1-3

Proof: Denoting by A an eigenvalue ofA3Ag, the
definition of §(S) < 6*(S) < ¢ implies that|1 — A\| < §.

| ALall2

Proof: Gershgorin’s disk theorem implies that the smallconsequently, the smallest eigenvalue A A5 is bounded
est eigenvalue\n;, of A3Ag is bounded from below by from below by1 — § and therefore

1 — (k — 1)u. In particular, A5 Ag is invertible provided

(k — 1)p < 1. Further,

1ASadllz = > [{ae, a;)|? < Vg,
j€S

since by definition,/{as, a;)| < p. Now, using the fact that

Af = (A5 As) 1A%,
AL acll2 < [[(A5As) " ll2ll A5acl
< (1= (k= 1) Vp <o,
where the last inequality follows from the fact that (28) iiap
§>VE/(1— (k—1)p)~ L. n

Condition (28) is slightly weaker than (8) as long &s-
1/v/k. This follows from the2-norm that replaced the-norm

1
< —.

A*A —1
|(4545)7 2 < 7=

For (a), as already noted abovdja, for £ ¢ S is a
k x 1 submatrix of A%, ,Arue — I. Therefore,||Agaell2 <
HA’?UZATUZ — IHQ < 5, and

| Aball2 < [|(A4545) ™ Azar]

4]

< —.
—1-94
The proof of (b) follows from the fact thatd5as||2 < p2(.5).
A similar estimate as above yieldstLa|[» < (1—48)" 1. m

Proposition 5.2 applies ifx+1 is small while in contrast

Theorem 2.3 works withox, which is generally larger than
0r+1. By (11) the conditionj,+; < ¢ can be satisfied ifi >

< [I(A5As) ™ l2ll A5 ac]l2



Csklog(N/k). Working with 0*(S) instead of§;; allows to 1 — ¢, which implies that
improve on the bound (11) for Gaussian, Bernoulli and random 1
spherical matrices. [(A5A4s) 72 < =3
Proposition 5.3: LetS C {1,..., N} be a set of cardinality
k and suppose thatl = %L(I) e R™N, where® is drawn
at random according to a standard Gaussian or Bernoulli || ALa,||s < [[(A5As) 2] ASac]l2 < L\/EM
distribution (with expectation0 and variancel/n). Then -0
0*(S) < § with probability at leastl — ¢ provided that < Ved

(1= log(e~1
n > C16 2 max{klog(1/6),log(N/e)} (33) (1 —6)/log(e1)
by using condition (34) once more. n

Finally,

for a suitable constant.

The same statement holds as well (with possibly a differeRt comparison With Worst-Case Results
constant) for a random matrix whose columns are chose
independently at random according to the uniform distidyut
on a sphere.

our average-case analysis dependqm@ag”% while the
classical condition (6) of Proposition 2.1 dependq|®k§az||1
) and is therefore significantly stronger. Proposition 5.@les
Proof: See Appendix B. B ishes that the2-norm condition can be satisfied as long as
A straightforward extension of the proof, as in [1], alsowho ;11 < 1/2. This is clearly weaker than the worst case
that a random matrixd € R™*" with independent columns conditiondy;, < v/2 — 1 ~ 0.41 of Proposition 2.3.
drawn from the uniform distribution on the sphere satisfies Let us now compare worst-case and average-case results
RIP, 6 < ¢ with probability at leastl — ¢ providedn > based on the coherenge by relying on Theorem 5.4. For
C572%(klog(N/k) + log(e1)). Although this fact seems to simplicity, we consider the case in whichis a unit-norm tight
be known [48], we are not aware of reference where this fimme, for which||A|3 = . In this case, (35) is equivalent
rigorously proven. tok < M%n. If additionally . = ¢/+/n, then conditions (34)

The next result relies on a theorem by Tropp [46, Theoreffd (35) are both satisfied for fixeds provided
B] that uses random support se&fsand allows to work with E<C'n.
the coherence: alone. Note that choosing at random is o
perfectly in line with an average-case analysis. This beats the square-root bottleneck and even removes the
Theorem 5.4: Let A € C™*N have unit norm columns andlog-factor present in estimates for the restricted isometry- co
stants, see (11). Moreover, we have the additional advantag

coherence:. LetS C {1,..., N} be a set of cardinality > 4 that the coh . h easier to estimate than thecteiri
chosen uniformly at random. Léte € (0,1) and assume that . atthe coherence Is much easierto estimate than thectestn
isometry constants.

pw2klog(e™!) < cd?, (34) Combining Theorem 5.4 with the average-case analysis of
k ) § Theorems 4.4 and 4.5 shows that for a unit norm tight frame
N||A||2 = el/1’ (35) A of coherence, multichannel sparse recovery by (5) can be
log(2)e-/? » ensured in the average-case provided Cp~2, which can be
wherec = 7oy & 6.64- 1077 Then as small as: < Cn. Moreover, the failure probability decays
N exponentially in the number of channels.
| ALasls < forall £ ¢ S In then next section we provide further examples when we
(1—06)/log(e™?) discuss particular choices of the matrix

with probability at leastl — .
Proof: The proof relies on [46, Theorem 12]. The VI. COMPARISON WITHMULTICHANNEL GREEDY

formulation below follows from [46] by settings = ALGORITHMS
log(e=1)/log(k/2) and estimatindog(k/2 + 1)/log(k/2) < We now compare our results regardifig; optimization to
log(3)/log(2) for k > 4. those obtained for the greedy algorithmthresholding ang-

Theorem 5.5: AssumeA € C™* has unit norm columns SOMP [25]. These are multichannel versions of simple thresh

and coherencg. Let S C {1,..., N} be a set of cardinality 0/ding and orthogonal matching pursuit. FDK p < oo they
k > 4 chosen uniformly at random. The condition produce ak-sparse signaly’ from measurements” = AX
using a greedy search. To this end, we improve slightly on

V/14410g(3)log(2)~ 112k log(e—1) + £||A||§ < e V45 previous average-case performance results in [25] forethes
N (36) algorithms in the noiseless setting.

implies
P(|[A5As = I|| > 0) <e. A. Greedy Methods

. . In p-thresholding, lect f k indi h
Using (34) and the value @f the square-root in (36) becomes -cgrfelatri?)?] V?/itrlgg a\rléea?neo?\(; tﬁé:sié;rgest' ndices whose
§/(2¢/*). Combining this with (35) shows that (36) is satis? '

fied. Therefore||A5As — I]|2 < ¢ with probability at least la;Yllp > lla;Y|l,, VE€S,Vj¢S. (37)



After the supportS is determined, the non-zero coefficients oNow,
X are computed via an orthogonal projection® = ATSY.

The p-SOMP algorithm is an iterative procedure. At each Za;’kaﬂ'aﬂ'zf = ||oiZi + Z a;a;jo;Z;
iteration, an atom index,, is selected, and a residual is up- jes 2 JES,j# 2
dated. At the first iteration the residual is simply = Y. After
M iterations, the set of selected atoms betg = {£,,}_,, > |Omin| — Z ojlai,a;)Z;
the new residual is computed a5, = Y — Ag,, Xy = JES,j#i 9

(I - Ps, )Y where Xy = AL Y and Ps, = As, AL, Substituting into (40),
is the orthogonal projection onto the linear span of the

selected atoms. The next selected afom, ; is the one which P(Héig la;Y |2 < p)
maximizes thep-correlation with the residudly,, ’

gy, Yullpy = max {lagYar|lp- (38) <Y P DD olana)Zi|| = omn—p
== i€S JES,j#i )

Using the real Gaussian probability model (21) average-cdgh00singp = omin/2 and applying Theorem 4.2 we obtain
recovery theorems fagp-thresholding ang-SOMP have been
proven in [25], [24, Theorems 4,6,7,8]. We improve slightly
on these in the following. (Note, however, that [25] alsatse < kexp(—L/2(07* —log(6~?) — 1))

the noisy case.) Our first result generalizes the one in [@0] t
the mult)i/channgl setup g [ ]Where we used the definition &f and p2(.S). Similarly we

estimate

P(min ||a*Y
(gggllaz ll2 <p)

Theorem 6.1: Let A € C"*" have unit norm columns and
local 2-coherence function:(S) defined in (30). LetX €
RY*L with supp X € S whereS c {1,...,N}, and such < (N —k)exp(—L/2(67% —log(672) — 1)).
that the coefficients o8 are given by (21)X° = X®, where . )
we choose the real spherical model fbr SetY — AX and Combining the two estimates pompletes the proof for the_ real
R = max; 0;/ min; o, whereX = diag(o;, j € S). If case. ChLoosmg the vectoss, j € S, from the complex unit

sphereS(C and using Corollary 4.3 yields the statement for
0 = Rus(S) < 1, (39) the complex case. [ |

We now state the corresponding result 85OMP, which
slightly improves the one in [25] for the noiseless case.téNo
that we restrict tp = 2 here, although the theorem is easily
Nexp (—L/2(67% —log(672) — 1)) . extended to general values pf)

If we use the complex spherical model instead of the real 'N€orem6.2: Let A be a matrix with unit norm columns
spherical model therl./2 in the above probability estimate@nd constants)(s), u2(S) < 1 where S c {1,..., N}.
may be replaced by.. Assume that

p2(9)” + (L+ )1 — &) pa(S)

The probability bound of Theorem 6.1 is similar to that 1-6(9)

of Theorem 4.4. However, in contrast to our results f9x- - .
minimization, success of thresholding suffers a depengder@’ Somee € (0,1). Let X be a random coefficient matrix
on the diagonal matri. The larger the ratick, the stronger with supportS that is selected according to the real Gaussian

the condition (39) on the maximal allowed spardityand the prob.ability model, see (,21)’ and lgt - AX. Th?n 2-SOMP
larger the probability of error. applied toY recoversX in k steps with probability at least

1 — N2Fexp(—€2A32), (42)

P Yl > min/2
(1 a7 2 > omin2)

then the probability tha®-thresholding applied td” fails to
recoverX is bounded by

<1 (41)

Proof: We proceed similarly as in [40]. We denote By
the event thaR-thresholding fails. Clearly, where Ay, ~ /L is given by (25).
If we use the complex Gaussian model instead of the real
Gaussian model then the same conclusion holds with
< P(min [[ajY |2 < p) + P(max ||a;Y |2 > p), replaced byAsy, in (42).
i€S 0¢S . ;

) - ' Proof: See Appendix C. |
where p will be specified later. Denote by;, j € S, @  Remark 6.3; (a) Due to the factor2® the probability
sequence of independent random vectors which are uniformly p o4 (42) becomes effective only when the number
distributed on the unit sphere &". Then, of channels becomes comparable to the spafsityhis

drawback is very likely due to the analysis and is not
P(min ||a]Y |2 < p) =P | min Za*ajgjz’f <pl. observed in practice. However, it seems to be very
ics " i€S ¢ J e ; ot
jes difficult to remove this factor by a more sophisticated
(40) proof technique.

P(©) = Plmin o}V 2 < max la;Y )

2
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(b) We requirec < 1, so that the probability decay of (42) Conditions (43), (44), (45) fof, ;, thresholding and SOMP
is potentially slower than that given by Theorem 4.4. are rather similar. However, condition (44) for threshotdi

(c) With § = ¢ = 1/2 condition (41) is satisfied ifi2a(A) < involves the ratioR. If R is large then thresholding behaves
1/7 while the probability estimate (42) behaves like- much worse compared t6,; and SOMP. The probability

N2Fexp(—L/4). estimate (46) is the worst compared to the other two algosth
(d) With the estimate$(S) < §*(S) and u2(S) < 6*(S), due to the factor®. Therefore,l>; gives the best known
(41) with e = 3/11 is implied by theoretical average case result.

5*(S) < 1/3 2) Union of Dirac a_nd Fourier: C_onsider then X 2n matr_ix
' A = (I|F), wherel is then x n identity matrix andF is
(e) By Proposition 5.2 the conditiofi*(S) < 1/3 implies the normalized» x n Fourier matrix. The coherence of is
||ATSa,3||2 < 1/2 for all ¢ ¢ S, i.e., the bounded norm easily seen to bg = 1/4/n. By Proposition 5.1 condition
condition ( 22) of the average case recovery result f622), [ Aiac|> < o with o = 1/2 is satisfied for all support
mixed/s ;. In other words, the condition in (d) for SOMPsetsS of cardinality at most provided

is slightly stronger than the one fég ;. T or—1 1
\/;Jr o 2
B. Comparison If S is chosen at random then a much better bound (up to

We now compare the average-case recovery conditions fginstants) is obtained using Theorem 5.4. In our specia, cas
mixed /5 1, thresholding and SOMP for the following choicediowever, further improvement is possible. A reformulation

of the matrix A which we will also use in the numericalof a result of [5], see also [46, Proposition 3] shows the
experiments: following. If the supportS consists o, arbitrary elements of

{1,...,n} andk, random elements ofn + 1,...,2n} then

1) Random spherical ensemble; ) - ;
with probability at leastt — e we haved(S) < 1/2 provided

2) Union of Dirac and Fourier;
3) Time-Frequency shifts of the Alltop window. k=ky+ky < cn (47)

1) Random spherical ensemble: Assume that the random \/log (&) + 10g(n)7
columns of A € R™" are independent and uniformly ) )
distributed on the sphers”—!. Let S be a support set of sizeW'th ¢ = 0.25. In particulark < n/.4 and the same reasoning
k. Then according to Proposition 5.2 the conditjohi,a,||, < @S in the proof of Theorem 5.4 yields
a <1 of Theore_r_n 4.4 is implied by*(5) < e < 1/2 IIATsalelz <a=1/2.
while by Proposition 5.3 the latter holds with probability a
least1 — e provided Using one of the complex probability models in Theorem

4.4, the failure probability of, ;-minimization is bounded by
n = max{C\(a)k, Ca(e) log(N/€)}. (43)  Nexp(—L(4 —log(4) — 1)) = N exp(—cL) with ¢ ~ 1.61.

Assuming, for examplen = 1/4, under the probability To_pompute the performance of threshold_ing, note that

model (21), the probability that reconstruction by, fails condition (39),2Ru(S) < 2RuVk < 6 < 1, is satisfied
is bounded from above b exp(—L/2(15 —log(16))) +¢ = Provided
N exp(—cL) + € with ¢ ~ 6.1137. n>—=k. (48)
We now compare this result with the condition of Theorem
6.1 concerning thresholding. As noted in (32)(S) < 6*(S). Assuming that the non-zero rows of the matdx in the

Therefore, by Proposition 5.3 we have probability model (21) on the coefficients are indepen-
. dent and uniformly distributed on the complex unit sphere
0 =2Rp(S) < 2R6"(S) <1 S¢~ !, the failure probability of thresholding is bounded by
with probability at leasti — ¢ provided Nexp(—L(6~2 —log(0~?) — 1)).
B2 Assumingd(S) <6 =1/2 anduvk < 1/7, i.e.,
n > 09—2 max {klog(R/0),log(N/e)} (44) n> 49k, (49)
and the failuregprobabilitgy of thresholding is bounded byhe condition of Remark 6.3(c) is satisfied since by (32),
N exp(—L/2(07% —log(07%) — 1)) + €. p2(8) < vk < 1/7. Then by Theorem 6.2 SOMP fails with

Letus finally cqnsider Theorem 6.2 for SOMP._ By Propospyrobability at mostV2* exp(—AZ2, /4) assuming the complex
tion 5.3 the conditior§*(5) < 1/3 in Remark 6.3 is satisfied Gaussian probability model. Assuming as in the discussion

with probability at leastl — ¢ provided of £, that the support set is such thiat arbitrary elements
n > max {C1k, Cs log(N/e)} (45) of {1,...,n} qnd ko random elements ofn + 1,.. .,2n.}-
are chosen withk = ki + ko then the assumed condition
and the failure probability of SOMP is bounded by 5(S) < 1/2 is true with probability at least — ¢ provided
N2¥exp(—9/121 A2) + ¢ (4p) (47) holds.

Similar conclusions on the comparison of the three algo-
with A2 ~ L if the real Gaussian probability model is usedrithms as in the previous example apply. We note, however,
L
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that in contrast tof, ; and SOMP, the performance boundNote that® = I is favorable for thresholding, while the choice
for thresholding does not require a probability model on th&f 3 should have no influence on the performancé-of and

support setS. only a mild influence on SOMP.
3) Time-Frequency shifts of Alltop window: Letn > 5be  |n the following figures the results of various simulation
a prime. Denote bY(T.g)¢ = gr—r modn aNd (Msg)e = runs are plotted (we always usdd0 simulations for each

e?mist/ng, the cyclic shift and modulation operator, respecchoice of parameters).

tively. ThenT,.M,, r,s =0,...,n — 1 forms the set of time- ; ;
TS U In Fig. 1 we plot the results when choosimgy from a
frequency shifts. Let, = -Le27*/ be the so-called Alltop ra 9. - We P utts W Ing

. - Vn 5 s ndom spherical ensemble of size = 32 columns and
window. Then defined to be then x n® matrix with columns  nr _ 956 rows for I, betweenl and 16. The matrix X

being the time-frequency shifts, Mg, r,s = 0,...,n = 1. \yag5 generated according to model (1). The improvement with
The coherence ofl is pu = 1/y/n [41]. - increasingL is clearly evident.
As in the Fourier-Dirac case, under condition (48) and

the complex spherical probability model, thresholdingsfai

with probability at mostV exp(—L(0~2 —log(6=2) — 1)) by e Recovery Rate forl, ;
Theorem 6.1. NN ‘ ==
For the analysis ofl;; and SOMP we assume that the 008 |
supportS is chosen uniformly at random. A4 is the union B B
of n orthonormal bases we hayel||2 = n. Then choosing % o6 §
0 = 3/4 in Theorem 5.4 yields that under the condition 3
x \
n>Ck log(e_l) g 0.4f
with a constanC' (which also implies (35)) we have Goz
|ALarll2 < 3yelog™*(e7!) < forall £ ¢ S 6 ‘ SUSS S SO
0 5 10 15 20 25
with probability at leastl — e wherea = 31/c ~ 0.0773. By Sparsity Level
Theorem 4.4, using one of the complex probability modeks, th @)
fgitlﬁre probat;ilit)i offg,l 2|s), th?n bounded by exp(—coL)+e Recovery Rate for SOMP
WIth ¢ = o™ * — log(a™“) — 1. LS = ; —
For the analysis of SOMP we choose= 1/2 in Theo- k=2
rem 5.5. Assuming that the square-root in (36) is less than 2038 l:;ig'
2e~1/41 is equivalent to < -
206
n > Cklog(e™!) (50) 3
@
with an appropriate”, and condition (36) is satisfied. Then g0
with probability at leastl — ¢ we have §*(S) < 1/2. §
Furthermore, as suggested by Remark 6.3(b) the condition 02
p2(S) < 1/12 is also implied by (50) sincgs(S) < VEu = .

}1/%. Assuming the complex Gaussian probability model on 0 5 0 1 20 25
the

Sparsity Level
non-zero coefficients of the failure probability of SOMP ®)
is bounded byN2* exp(—A3; /2) + ¢ due to Theorem 6.2.

Recovery Rate for Thresholding

VII. NUMERICAL SIMULATIONS +§1
We tested the three algorithnis ; minimization, thresh- 50'8 *zig
olding and SOMP using the three different types of matrices >
indicated in the previous section. The support Sebf the §°‘6
sparse coefficient matrices was always selected uniformly ¢
at random while the non-zero coefficients were selected at £ o4
random using one of the following choices of the probability §02
model (21),X° = X&: '
1) @ is chosen at random according to the real Gaussian 0 DN bg s e
model;¥ has independent diagonal entries with standard 0 D arsity Level 20 2

normal distribution.
2) @ is chosen at random according to the complex Gaus-

Slan model'Y equals the Identlj[y' Fig. 1. Multichannel recovery withX generated according to model (1)
3) @ is chosen at random according to the complex sphegd A chosen from a random spherical ensemble, #g), (b) SOMP, (c)

ical model;X equals the identity. Thresholding.

(©
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In Fig. 2 we consider all three methods whehis a N = 292 = 841. Here the results of thresholding are
union of Dirac and Fourier bases, each wiih elements. extremely poor and therefore not plotted.

Thereforen = 64 and N = 128. The matrixX was generated
according to model (3). Our simulations show that depending Recovery Rate forl, |
on the number of channels the three algorithms behave -
differently. For small values aof < 4 the mixed norm program

¢,1 shows the best performance. For intermediate number of
channels SOMP shows the best recovery results, while, quite
surprisingly, for large values aof > 16 actually thresholding

exhibits the best recovery performance.

Recovery Rate for I2 i

1=

o 0.8r
S
o
>
0 0.6
Q
(5]
[}
o
© 0.4r
L
=
E |
Wo.2r ;
0 L L L Y o o ry
0 10 20 30 40 50
Sparsity Level
@
1—e & & 0 ¢ & B 6B §
© 0.8f
©
a4
g
é 0.6 ——TL=1
g —e-1,=2
T 0.4r * L=4
Zg -~ L=8
£ -+~ L=16
wo.2r L=32
0 , , , .
0 10 20 30 40 50
Sparsity Level
(b)
Recovery Rate for Thresholding
1 TS S . E e L R e A S
208 1
ol
o
>
206 1
o
o
Q
4
< 0.4 1
L2
=
£
wo.2 1
R - &

0 10 20 30
Sparsity Level

(©

Fig. 2.  Multichannel recovery withX generated according to model (3)
and A a union of the Dirac and Fourier bases, (@)1, (b) SOMP, (c)

Thresholding.
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Finally, in Fig. 3 we plot the results when using time- E E a; Z;|| < (—)
frequency shifts of the Alltop window witm = 29 and j=1 )
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Fig. 3. Multichannel recovery wittX generated according to model (2) and
A chosen as time-frequency shifts of the Alltop window, {&), (b) SOMP.

In all examples the three recovery methods show clear
performance advantage with increasihg

VIIl. CONCLUSION

In this paper we analyzed the average-case performance
of /51 recovery of multichannel signals. Our main result is
that under mild conditions on the sparsity and measurement
matrix, the probability of failure decays exponentiallythwi
the number of channels. To develop this result we assumed
a probability model on the non-zero coefficients of a jointly
sparse signal. The results we obtained appear to be the best-
known theoretical results on multichannel recovery. Using
the tools we developed for analyzing tlig, approach, we
also improved slightly on previous performance bounds for
thresholding and SOMP.

APPENDIXA
PROOF OFTHEOREM4.2

The proof uses the following extension of Khintchine’s
inequality to higher dimensions stated in [27],
L
b2 (L52)

(%)

lall3

L
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for all p > 2 and all vectors: € R*. By splitting in real and By a union bound this implies that

imaginary parts it easily follows that this inequality alsolds
for all « € C*. We may assume without loss of generality that P (1 —v< min sf < max sf < —)
L . . . j=1,..., N j=1,...,.N 1—7v
|la]l2 = 1. Then an application of Markov’s inequality yields
>1— 2N exp(—v*n/4). (52)
k
P Zaﬂ'zj >u By the above reasoning, we hae— §/3)||z||3 < ||Ax|]2 <
(1 + 6/3)||=||3 for all = with suppz C S U {¢} for some
2 5 ¢ ¢ S with probability at leastl — e provided (33) holds with
a suitable constant. If additionally— v < min;_;  ns? <
=P |exp | AL/2|)D a;Z;|| | > exp(ALu®/2) maxj—1, v 7 < = for y = 6/4 then (1 — 5)|x||§ <
J 2 |DAz||3 = ||Vz|3 < (1 + 6)||z|3 for all z with suppz C
2 S U {¢} for somel ¢ S. By a union bound and (52) this
_ 2 v holds with probability at least — 2¢ provided (33) holds and
< exp(-ALw/2)E |exp | AL/2 ;%ZJ 2N exp(—6%n/64) < e, the latter being equivalent ta >
' 2 6462 log(2N/¢). Adjusting the constant in (33) completes the
o % proof.
= exp(—ALu?/2) Z AL/2)'E Zaj
i=0 J=1 9 APPENDIXC
>0 PROOF OFTHEOREM 6.2
< exp(—ALu?/2) Z/\ 'L/2+Z . .
pard IT(L/2) We assume that until a certain step SOMP has selected only
o0 L/2 correct indices, collected id C S. Let us first estimate the
= exp( )\Lu2/2 Z probability that it selects a correct element $f\ J also in
i=0 the next step. )
9 1 We denote byP; = A;A', the orthogonal projection onto
= exp(—ALu /2)(1 —\L/2’ (51) the span of the columns o{l in J, and@Qy; = I — P;. The
where (a); = afa + 1)(a + 2)---(a + i — 1) denotes the residual it the current iteration is given By, = Q;Y =
Pochhammer symbol. The last equation is due to the fact tr%ftﬁsX ot QtJAS.fE(I)' SOMP selects a correct index i\ J
Yoo (@i \i is the Taylor series oft —A)~*, which converges e nextstep
for )\ < 1 Minimizing (51) with respect to\ gives\ =1 — max [|a;QrAsE®||2 > max||a;QrAsEP|2. (53)
u~2. Inserting this value yields the statement of the theorem. tes\J s

By Theorem 11 in [25] (which is proven using Theorem 4.6;
note that there is a slight error in [25] in the computation
of the constant4d;) we have the following concentration of

measure inequalities
APPENDIXB q

PROOF OFPROPOSITIONS.3 P <érélsa\)§|a2‘QJAsE¢|2 < (1+6)Co(L)

Consider first the case of Gaussian or Bernoulli matrices.

X émsa\55|azQJASE|2> < exp(—€*A}),
S
According to Theorem 2.1 in [38] (see also Lemma 5.1 in [1]),

we haveHAgAS — I||2 > ¢ with probability at most2(1 + P (r?asxm;fQJASEtI)b > (1 —¢€)Cy(L)
12/6)* exp(—co/9nd?) with ¢y = 7/18. A similar estimate ¢

holds for || A5 ,Asue — 1|2 vyith L¢8. A union bound over % maX|aZQJAsE|2> < |S¢] exp(—e2A2),
all ¢ ¢ S yields §*(S) > ¢ with probability at mos2N (1 + tgs

12/6)* exp(—co/9nd?). This term is less thanif (33) holds. where A, is the constant in (25) andy(L) = E||Z]|» with
Now consider a random matri¥ € R"*" with indepen- Z = (Z1,...,Z.) being a vector of independent standard

dent columns that are uniformly distributed on the sphef®rmal variables. Now we assume that

S7~1. Then ¥ has the same distribution a3A, where A

: ) ) 1 Cy(L 1QrAsY

is Gaussian matrix as abov® = diag(s;',...,sy') and (14 €)Ca UQQ@”WQ" Sl

s; = 4/n||®,||2 where®; € R" is a vector of independent > (1 —€)Co(L) max [|a;Q s AsS||2. (54)
standard normally-distributed random variables. We now us ¢S

the following measure concentration inequality [3, Canfl Then by the above and a union bound the probability that
(2.3)] or [4, eq. (2.6)] for a standard Gaussian vedor R", SOMP fails can be bounded by

n * *
PIZI > 1) < expl—rn/), B 07 Q 4590l < max ai Qs As5 )

P(||Z])3 < (1 —y)n) < exp(—y*n/4). < (IS°l+ 1) exp(—€°A7). (55)



Let us consider now the maximum on the right hand side gf]
(54). First note that’;a, = a, for all ¢ € J, in other words

Qsa, = 0. Hence, we can estimate [6]

1QiAsT3 = Ta\s AL 5
T?¢35><|\%QJ s¥l3 %aSXH s\ A s Qacll; o
o7 (Qay,ar)®

) (8]
(Quaj,an]|”.

T ieS\J
\ jeES\J

El

Furthermore, for ¢ S we have [10]
1/2

> Quaz a0

JES\J

= | A%\, Qa2 [11]

= A5\, (I = Pracl2 [12]
<Ay gacllz + [ A% s A (AT A7) " Afa] 2 13]
< pa(S\J) + |45 ;A 2ll(A5 A7) " 2l Adacl2
6(5) p2(S) (14]
< pa(8) + ——pa(S) = 2L
? 1-46(8)" 1-6(9) (15
where we used the fact thAtg\JAJ is a submatrix oAy Ag— 116}

I.

of
[17]

Next we consider the maximum on the left hand side
(54). We can estimate

a *QsAsS|?2 = ma 2 Mk
EIélS\)?]”anJ S ||2 EIélS\)?]. U]|<QJG‘Z7QJ>| [18]
JES\J

> max o7 inf [(Qaj,a;)|* (19]

T LeS\J T jeS\J

[20]
Furthermore, forj € S\ J
(Quaj,a5)| = (I = Pr)aj, a;)|
=1 —ajAs;(A5A;) " Afay
> 1= [|A5a; 1 (A7 A 2
> 1 — ua(8)2(1 - 6(S)) "
[24]

Combining the above estimates, condition (54) is satisfied i
——>(1- 1-
sy > 09

112(5)? >
1-46(9))"
which is equivalent to (41). [26]
In order to complete the proof, we note that OMP success-
fully recovers the correct signal if (54) holds for all C S.
By a union bound of (55) over all thos#® subsets this is [27]
true with probability at least — N2* exp(—e2A2%) provided
condition (41) holds. [28]
The extension to the complex valued case is straightforwafef]

[21]

[22]

(23]

w2 (S) [25]

(1+e¢)

[30]
REFERENCES

[1] R. G. Baraniuk, M. Davenport, R. A. DeVore, and M. Wakin.sinple
proof of the restricted isometry property for random maisicConstr.
Approx., 28(3):253-263, 2008.

[2] D.Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and RB@raniuk.
Distributed compressed sensirgreprint, 2005.

[3] A. Barvinok. Measure concentration, 2005. lecture sote

[4] E. Candés and B. Recht. Exact matrix completion via eanptimiza-
tion. preprint, 2008.

[31]

(32

(33]

14

E. Candés and J. Romberg. Quantitative robust uncgytgirinciples
and optimally sparse decompositioriund. Comput. Math., 6(2):227—
254, 2006.

E. J. Candes. The restricted isometry property andniiglications for
compressed sensin@.. R. Acad. <ci. Paris Ser. | Math., 346:589-592,
2008.

E. J. Candés, J. Romberg, and T. Tao. Robust uncertpiirigiples: Ex-
act signal reconstruction from highly incomplete frequeimformation.
IEEE Trans. Inform. Theory, 52(2):489-509, Feb. 2006.

E. J. Candes, J. Romberg, and T. Tao. Stable signal eegafvom
incomplete and inaccurate measuremen@mm. Pure Appl. Math.,

59(8):1207-1223, 2006.

E. J. Candeés and T. Tao. Decoding by linear programmiB&E Trans.

Inform. Theory, 51(12):4203-4215, Dec. 2005.

E. J. Candés and T. Tao. Near optimal signal recovesynfrandom
projections: universal encoding strategie&EE Trans. Inform. Theory,

52(12):5406-5425, 2006.

J. Chen and X. Huo. Theoretical results on sparse reptasons
of multiple-measurement vectors.|[EEE Trans. Signal Processing,

54(12):4634-4643, Dec. 2006.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic dgaosition
by Basis PursuitSAM J. Si. Comput., 20(1):33—-61, 1999.

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-DelgadSparse
solutions to linear inverse problems with multiple meament vectors.
IEEE Trans. Sgnal Processing, 53(7):2477-2488, July 2005.

G. Davis, S. Mallat, and M. Avellaneda. Adaptive greemjyproxima-
tions. Constr. Approx., 13(1):57-98, 1997.

D. L. Donoho. Compressed sensindEEE Trans. Inform. Theory,
52(4):1289-1306, 2006.
D. L. Donoho. For most large underdetermined systemdingfar

equations the minimdl" solution is also the sparsest solutid@@ommun.
Pure Appl. Anal., 59(6):797-829, 2006.

D. L. Donoho and X. Huo. Uncertainty principles and idegomic

decomposition. |EEE Transactions Info. Theory, 47(7):2845-2862,

2001.

B. Efron, T. Hastie, |. Johnstone, and R. Tibshirani. ast angle

regression.Ann. Satist., 32(2):407-499, 2004.

Y. C. Eldar. Compressed sensing of analog signals ift-sivariant

spaces. to appear IEEE Trans. Sgnal Processing.

Y. C. Eldar and H. Bolcskei. Block-sparsity: Coherenand efficient

recovery. to appear ilCASSP09.

Y. C. Eldar and M. Mishali. Robust recovery of signalsrr a union

of subspaces. submitted ttEEE Trans. Inf. Theory.

M. Fornasier and H. Rauhut. Recovery algorithms forteegalued data

with joint sparsity constraintsSSAM J. Numer. Anal., 46(2):577-613,
008.

J. J. Fuchs. On sparse representations in arbitrandaht basedEEE
Trans. Inform. Theory, 50(6):1341-1344, 2004.

R. Gribonval, B. Mailhe, H. Rauhut, K. Schnass, and md&gheynst.
Average case analysis of multichannel thresholdingPrioc. |EEE Intl.
Conf. Acoust. Speech Sgnal Process., 2007.

R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergsteyktoms of all
channels, unite! Average case analysis of multi-channaisgprecovery
using greedy algorithmsJ. Fourier Anal. Appl., 14(5):655-687, 2008.
S. Kim, K. Ksh, M. Lustig, S. Boyd, and D. Gorinevsky. A thed
for large-scale I1-regularized least squares problemb ejiplications
in signal processing and statistic$EEE J. Sdl. Top. Sgnal Proces.,
4(1):606-617, 2007.

H. Konig and S. Kwapieh. Best Khintchine type inedtie$ for sums of
independent, rotationally invariant random vectd®ssitivity, 5(2):115—
152, 2001.

M. Ledoux. The Concentration of Measure Phenomenon. AMS, 2001.
M. Ledoux and M. TalagrandProbability in Banach spaces. |soperime-
try and processes., volume 23. Springer-Verlag, Berlin, Heidelberg,
NewYork, 1991.

M. Mishali and Y. C. Eldar. Reduce and boost: Recoverngjtrary sets
of jointly sparse vectors.|EEE Trans. Sgnal Process., 56(10):4692—
4702, Oct. 2008.

M. Mishali and Y. C. Eldar. Blind multiband signal recstruction:
Compressed sensing for analog signdlEEE Trans. Sgnal Process.,
57:993-1009, Mar. 2009.

M. Mishali and Y. C. Eldar. From theory to practice: SNigguist sam-
pling of sparse wideband analog signakrXiv 0902.4291; submitted
to IEEE Selected Topics on Signal Process., 2009.

D. Needell and J. A. Tropp. CoSaMP: lterative signalokexy from
incomplete and inaccurate samples. submitted, 2008.



[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]

[47]

(48]

D. Needell and R. Vershynin. Signal recovery from ingbate and
inaccurate measurements via regularized orthogonal imgtqbursuit.
submitted, 2008.

H. Rauhut. Random sampling of sparse trigonometrigmpaials.Appl.
Comput. Harmon. Anal., 22(1):16-42, 2007.

H. Rauhut. On the impossibility of uniform sparse resuaction using
greedy methodsSampl. Theory Sgnal Image Process., 7(2):197-215,
2008.

H. Rauhut. Stability results for random sampling of rsgetrigonometric
polynomials.|EEE Trans. Information Theory, 54(12):5661-5670, 2008.
H. Rauhut, K. Schnass, and P. Vandergheynst. Comptesssesing and
redundant dictionaried EEE Trans. Inform. Theory, 54(5):2210 — 2219,
2008.

M. Rudelson and R. Vershynin. On sparse reconstrudtiom Fourier
and Gaussian measuremen@omm. Pure Appl. Math., 61:1025-1045,
2008.

K. Schnass and P. Vandergheynst. Average performanab/sis for
thresholding. IEEE Sgnal Processing Letters, 14(11):828-831, Nov.
2007.

T. Strohmer and R. W. Heath. Grassmannian frames witliGgtions to
coding and communicatiorAppl. Comput. Harmon. Anal., 14(3):257—
275, 2003.

S. J. Szarek. Condition numbers of random matricésComplexity,
7:131-149, 1991.

J. A. Tropp. Greed is good: Algorithmic results for spampproxima-
tion. IEEE Trans. Inform. Theory, 50(10):2231-2242, 2004.

J. A. Tropp. Recovery of short, complex linear combhiors via l1
minimization. IEEE Trans. Inform. Theory, 51(4):1568-1570, 2005.
J. A. Tropp. Algorithms for simultaneous sparse appration. Part II:
Convex relaxation.Sgnal Processing, 86(3):589 — 602, 2006.

J. A. Tropp. On the conditioning of random subdictidgaar Appl.
Comput. Harmon. Anal., to appear.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithrws simulta-
neous sparse approximation. Part |I: Greedy pursignal Processing,
86(3):572 — 588, 2006.

P. Wojtaszczyk. Stability and instance optimality fBaussian measure-
ments in compressed sensingeprint, 2008.

15



