List of Errata for the Book A Mathematical Introduction to Compressive Sensing

Simon Foucart and Holger Rauhut

This list was last updated on May 8, 2015. If you see further errors, please send us an e-mail at foucart@math.uga.edu and rauhut@mathc.rwth-aachen.de

Chapter 2

- Page 51, Theorem 2.15: the statement concerns s-sparse vectors, not $2 s$-sparse vectors
- Page 51, Line 22: ' $\hat{p} * \hat{x}=\widehat{p \cdot x}=0$ ' should read ' $\hat{p} * \hat{x}=N \widehat{p \cdot x}=0$ '
- Page 52, Line 11: 'so that the trigonometric polynomial q vanishes on S ': this statement is only valid if the support of x is exactly S; to repair the argument, take $\hat{q}(1), \ldots, \hat{q}(s)$ as a solution of the linear system with a maximum number of consecutive zero values for $\hat{q}(s)$, $\hat{q}(s-1), \ldots$ (this is done by solving a sequence of linear systems), then replace s by $\|x\|_{0}$ and S by $\operatorname{supp}(x)$ in Lines 9-12

Chapter 3

- Page 74, Exercise 3.4: the condition about the invertibility of the submatrices is not necessary
- Page 74, Exercise 3.8: one may assume that the matrix $\mathbf{A} \in \mathbb{C}^{m \times N}$ is of full rank $m<N$
- Page 75, Exercise 3.10: a complex conjugation is missing on line 8, which should read

$$
\Delta_{n}=\left\|\mathbf{A}\left(\mathbf{x}^{n+1}-\mathbf{x}^{n}\right)\right\|_{2}^{2}=\overline{x_{j^{n+1}}^{n+1}}\left(\mathbf{A}^{*}\left(\mathbf{y}-\mathbf{A} \mathbf{x}^{n}\right)\right)_{j^{n+1}}
$$

Chapter 4

- Page 109, Exercise 4.20(b): one should read ' $\mathbf{M} \in \mathbb{C}^{n_{1} \times n_{2}}$ ' instead of ' $\mathbf{M} \in \operatorname{ker} \mathcal{A} \backslash\{\mathbf{0}\}$ '; the occurrences' $\|\mathbf{e}\|_{2}$ ' and ' $\|\mathcal{A}(\mathbf{Z})-\mathbf{y}\|_{2}{ }^{\prime}$ of an ℓ_{2}-norm should be replaced by ' $\|\mathbf{e}\|$ ' and ' $\|\mathcal{A}(\mathbf{Z})-\mathbf{y}\|$ ' with a general norm; and 'quadratically constrained' should be rephrased as 'inequality-constrained'

Chapter 5

- Page 120, Theorem 5.12: 'For $m \geq 3$ ' should read 'For $m>3$ ' (indeed, when $m=3$, equiangular systems of $N=m(m+1) / 2$ vectors in \mathbb{R}^{m} exist - see Exercise 5.5 - yet $m+2$ is not the square of an odd integer); in the proof of the theorem, one should also verify that Σ_{1} and Σ_{2} are nonzero, but if they were, then $\Sigma_{1}-\sqrt{m+1} \Sigma_{2}=0$ would mean that $\sqrt{m+2}=1 / c$ is the other eigenvalue of \mathbf{B}, namely $(N / m-1) / c=((m+1) / 2-1) / c$, which is impossible when $m>3$

Chapter 6

- Page 134 , Line 7 : 'the interval $\left[1-\delta_{s}, 1+\delta_{s}\right.$ ' should read 'the interval $\left[\sqrt{1-\delta_{s}}, \sqrt{1+\delta_{s}}\right.$ ',
- Page 134 , Line 14 : 'relative $\ell_{2}(\mathbb{R})$ ' should read 'relative to $\ell_{2}(\mathbb{R})$ '
- Pages 139-140, Proof of Theorem 6.8: more care is required to deal with the fact that the last block \mathbf{A}_{n} may have less than t columns - one should establish $\operatorname{tr}(\mathbf{H}) \geq N\left(1-\delta_{s}\right)$ instead of (6.10) and $\operatorname{tr}(\mathbf{H})^{2} \leq m N\left((n-1) \delta_{s}^{2}+\left(1+\delta_{s}\right)^{2}\right)$ instead of (6.11), while the rest of the argument remains unchanged
- Page 142, Line 15: replace 'Corollary 4.5' by 'Theorem 4.5'
- Page 161, Lines 15 and 16: δ_{s+n} should be $\delta_{s+s^{0}+n}$ - this implies that δ_{s+K} found in Lines 19 , 21,24 , as well as on Page 163 , Lines 4 and 5 , should be $\delta_{s+s^{0}+K}$, but there is no repercussion on the final result because $\alpha / \gamma<1$ still holds
- Page 171, Exercise 6.7: replace 'the unit ball in ℓ_{p} ' by 'the unit ball in ℓ_{p}^{N},
- Page 173, Exercise 6.19: establish the result under the condition $\delta_{3 s}<1 / 2$, not $\delta_{3 s}<1 / 3$
- Page 173, Exercise 6.21: assume that all vectors and matrices are real-valued rather than complex-valued throughout the exercise

Chapter 7

- Page 190, Line 11: the extra parenthesis after $\left(-B_{\ell}\right)$ should be removed, so that it reads

$$
\exp \left(\theta X_{\ell}\right)=f\left(X_{\ell}\right)=f\left(t\left(-B_{\ell}\right)+(1-t) B_{\ell}\right) \leq \ldots
$$

- Page 191, Line 15: it should read 'from Hoeffding's inequality (Theorem 7.20)'
- Page 199, Line 1: 'Bernstein's inequality' instead of 'Bernstein inequality'
- Page 199, Exercise 7.3: the exponent 2 on the right-hand side of the desired inequality has to be replaced by $p /(p-1)$, so that it reads

$$
\mathbb{P}\left(\left|\sum_{\ell=1}^{M} a_{\ell} X_{\ell}\right|>t\|\mathbf{a}\|_{2}\right) \geq c_{p} \frac{\left(\sigma^{2}-t^{2}\right)^{p /(p-1)}}{\mu^{2 p /(p-1)}}, \quad 0 \leq t \leq \sigma
$$

- Page 199, Exercise 7.6: the inequality to be proved is in fact

$$
\mathbb{E} \exp \left(\frac{t X^{2}}{2 c}\right) \leq \frac{1}{\sqrt{1-2 t}}
$$

which is valid for any (not necessarily nonnegative) $t \leq 1 / 2$

Chapter 8

- Page 219, Line 10: replace 'positive semidefinite' by 'positive definite', so that it reads '... is concave on the set of positive definite matrices.'

Chapter 9

- Page 289, Line 1: an expectation \mathbb{E} is missing; the left-hand side of the inequality should read $\mathbb{E} \min _{\mathbf{z} \in \mathcal{N}(\mathbf{x})}\|\mathbf{g}-\mathbf{z}\|_{2}^{2}$
- Page 306, Fig. 9.2: the caption should include 'Image courtesy of Jared Tanner' instead of 'Image Courtesy by Jared Tanner'
- Page 306 , Exercise 9.2 : the inequality inside the probability should be strict, otherwise (9.61) is wrong for $\mathbf{x}=\mathbf{0}$
- Page 307, Exercise 9.6: a renormalization is missing - it is indeed the matrix $\frac{\sqrt{\pi / 2}}{m} \mathbf{A}$ that satisfies the stated modified restricted isometry property.

Chapter 10

- Page 312, Line 8: there is a deplorable break at the end of this line - ' $\lim _{m \rightarrow \infty} d^{m}(K, X)=0$ ' should appear as one block
- Page 313, Line 25: ' $=0$ ' is missing after $\lambda_{2 ; 0}(\mathbf{v})$, so that one should read $\lambda_{2 ; \lambda_{1}(\mathbf{v})}=\lambda_{2 ; 0}(\mathbf{v})=0$
- Page 314, Line 23: 'quasi-triangle' should be 'quasi-triangle inequality'

Chapter 13

- Page 439, Lemma 13.4: replace lines 2 and 3 by

For each $i \in R(S)$, let $\ell(i) \in S$ denote a fixed left vertex connected to i. Then the set

$$
E^{\prime}(S):=\{\overline{j i} \in E(S): j \neq \ell(i)\}=E(S) \backslash\{\overline{\ell(i) i}, i \in R(S)\}
$$

- Page 442, Line 3: ' $j=\operatorname{card}(R(J))$ ' should read ' $j=\operatorname{card}(J)$ '
- Page 453 , Line 1: replace m by m^{\prime} in 'given $\mathbf{y} \in \mathbb{C}^{m}, \ldots$ '
- Page 453 , Line 5: it should be emphasized that the stated condition may not be met if the bipartite graph fails to be a lossless expander, so the algorithm is not well defined in this case
- Page 454 , Lines $2,3,4,6: B_{k, j}, B_{k, j^{*}}, B_{\ell+1, j^{*}}$ should instead be $B_{k, j}^{\prime}, B_{k, j^{*}}^{\prime}, B_{\ell+1, j^{*}}^{\prime}$
- Page 454 , Line 7: the two sums should start at $k=1$ and not at $k=0$

Appendix B

- Page 544, Theorem B.4: 'interiors' should read 'relative interiors'
- Page 545 , Remark B.5: instead of K_{1}, K_{2} intersecting in only one point, the second application of Theorem B. 4 requires that K_{1}, K_{2} intersect in only one point not in the relative interior of K_{1}, i.e., $K_{1} \cap K_{2}=\left\{\mathbf{x}_{0}\right\}$ with $\mathbf{x}_{0} \notin \operatorname{ri}\left(K_{1}\right)$

References

- Page 614, Reference 503: 'Wakinm' should be 'Wakin'

Back cover

- Line 12: 'build' should be 'built'

