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Abstract

We establish the restricted isometry property for finite dimensional Gabor systems, that is, for
families of time–frequency shifts of a randomly chosen window function. We show that the s-th
order restricted isometry constant of the associated n×n2 Gabor synthesis matrix is small provided
s ≤ c n2/3/ log2 n. This improves on previous estimates that exhibit quadratic scaling of n in s.
Our proof develops bounds for a corresponding chaos process.

Key Words: compressive sensing, restricted isometry property, Gabor system,
time-frequency analysis, random matrix, chaos process.

AMS Subject classification: 60B20, 42C40, 94A12

1 Introduction and statements of results

Sparsity has become a key concept in applied mathematics and engineering. This is largely due to
the empirical observation that a large number of real-world signals can be represented well by a sparse
expansion in an appropriately chosen system of basic signals. Compressive sensing [9, 11, 13, 19, 21, 44]
predicts that a small number of linear samples suffices to capture all the information in a sparse vector
and that, furthermore, we can recover the sparse vector from these samples using efficient algorithms.
This discovery has a number of potential applications in signal processing, as well as other areas of
science and technology.

Linear data acquisition is described by a measurement matrix. The restricted isometry property
(RIP) [12, 13, 21, 44] is by-now a standard tool for studying how efficiently the measurement matrix
captures information about sparse signals. The RIP also streamlines the analysis of signal reconstruc-
tion algorithms, including `1-minization, greedy and iterative algorithms. Up to date there are no
deterministic constructions of measurement matrices available that satisfy the RIP with the optimal
scaling behavior; see, for example, the discussions in [44, Sec. 2.5] and [21, Sec. 5.1]. In contrast, a vari-
ety of random measurement matrices exhibit the RIP with optimal scaling, including Gaussian matrices
and Rademacher matrices [3, 20, 47, 13].

Although Gaussian random matrices are optimal for sparse recovery [19, 25], they have limited use in
practice because many applications impose structure on the matrix. Furthermore, recovery algorithms
are significantly more efficient when the matrix admits a fast matrix–vector multiplication. For example,
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random sets of rows from a discrete Fourier transform matrix model the measurement process in MRI
imaging and other applications. These random partial Fourier matrices lead to fast recovery algorithms
because they can utilize the FFT. It is known that a random partial Fourier matrix satisfies a near-
optimal RIP [13, 49, 42, 44] with high probability; see also [44, 48] for some generalizations.

This paper studies another type of structured random matrix that arises from time-frequency analy-
sis, and has potential applications for the channel identification problem [41] in wireless communications
and sonar [35, 50], as well as in radar [30]. The columns of the considered n × n2 matrix consist of
all discrete time-frequency shifts of a random vector. Previous analysis of this matrix has provided
bounds for the coherence [41], as well as nonuniform sparse recovery guarantees using `1-minimization
[45]. However, the so far best available bounds on the restricted isometry constants were derived from
coherence bounds [41] and, therefore, exhibit highly non-optimal quadratic scaling of n in the sparsity
s. This paper dramatically improves on these bounds. Such an improvement is important because the
nonuniform recovery guarantees in [45] apply only for `1-minimization, they do not provide stability of
reconstruction, and they do not show the existence of a single time-frequency structured measurement
matrix that is able to recover all sufficiently sparse vectors. Also it is of theoretical interest whether
Gabor systems, that is, the columns of our measurement matrix, can possess the restricted isometry
property. Nevertheless, our results still fall short of the optimal scaling that one might hope for.

Our approach is similar to the recent restricted isometry analysis for partial random circulant matri-
ces in [46]. Indeed, also here we bound a chaos process of order 2, by means of a Dudley type inequality
for such processes due to Talagrand [53]. This requires to estimate covering numbers of the set of unit
norm s-sparse vectors with respect to two different metrics induced by the process. In contrast to [46],
the specific structure of our problem does not allow us to reduce to the Fourier case, and to apply
covering number estimates shown in [49].

This paper is organized as follows. In Section 1.1 we recall central concepts in compressive sensing.
Section 1.2 introduces the time-frequency structured measurement matrices that are considered in this
paper, and we state our main result, Theorem 1. Remarks on applications in wireless communications
and radar, as well as the relation of this paper to previous work are given in Sections 1.4 and 1.3,
respectively. Sections 2, 3 and 4 provide the proof of Theorem 1.

1.1 Compressive Sensing

In general, reconstructing x = (x1, . . . , xN )T ∈ CN from

y = Ax ∈ Cn, (1)

where A ∈ Cn×N and n� N (in this paper, we have N = n2) is impossible without substantial a-priori
information on x. In compressive sensing the assumption that x is s-sparse, that is, ‖x‖0 := #{` :
x` 6= 0} ≤ s for some s� N is introduced to ensure uniqueness and efficient recoverability of x. More
generally, under the assumption that x is well-approximated by a sparse vector, the question is posed
whether an optimally sparse approximation to x can be found efficiently.

Reconstruction of a sparse vector x by means of the `0-minimization problem,

min
z
‖z‖0 subject to y = Az,

is NP-hard [36] and therefore not tractable. Consequently, a number of alternatives to `0-minimization,
for example, greedy algorithms [5, 23, 37, 54, 55], have been proposed in the literature. The most
popular approach utilizes `1-minimization [11, 15, 19], that is, the convex program

min
z
‖z‖1 subject to y = Az, (2)

is solved, where ‖z‖1 = |z1|+ |z2|+ . . .+ |zN | denotes the usual `1 vector norm.
To guarantee recoverability of the sparse vector x in (1) by means of `1-minimization and greedy

algorithms, it suffices to establish the restricted isometry property (RIP) of the so-called measurement
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matrix A: define the restricted isometry constant δs of an n×N matrix A to be the smallest positive
number that satisfies

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 for all x with ‖x‖0 ≤ s. (3)

In words, the statement (3) requires that all column submatrices of A with at most s columns are
well-conditioned. Informally, A is said to satisfy the RIP with order s when δs is “small”.

Now, if the matrix A obeys (3) with
δκs < δ∗ (4)

for suitable constants κ ≥ 1 and δ∗ < 1, then many algorithms precisely recover any s-sparse vectors x
from the measurements y = Ax. Moreover, if x can be well approximated by an s sparse vector, then
for noisy observations

y = Ax+ e where ‖e‖2 ≤ τ,
these algorithms return a reconstruction x̃ that satisfies an error bound of the form

‖x− x̃‖2 ≤ C1
σs(x)1√

s
+ C2τ, (5)

where σs(x)1 = inf‖z‖0≤s ‖x− z‖1 denotes the error of best s-term approximation in `1 and C1, C2 are
positive constants. For illustration, we include Table 1 which lists available values for the constants κ
and δ∗ in (4) that guarantee (5) for several algorithms along with respective references.

Algorithm κ δ∗ References
`1-minimization (2) 2 3

4+
√

6
≈ 0.4652 [8, 10, 12, 22]

CoSaMP 4
√

2
5+
√

73
≈ 0.3843 [24, 54]

Iterative Hard Thresholding 3 1/2 [5, 22]
Hard Thresholding Pursuit 3 1/

√
3 ≈ 0.5774 [23]

Table 1: Values of the constants κ and δ∗ in (4) that guarantee success for various recovery algorithms.

For example, Gaussian random matrices, that is, matrices that have independent, normally dis-
tributed entries with mean zero and variance one, have been shown [3, 13, 34] to have restricted isometry
constants of 1√

n
A satisfy δs ≤ δ with high probability provided that

n ≥ Cδ−2s log(N/s).

That is, the number n of Gaussian measurements required to reconstruct an s-sparse signal of length
N is linear in the sparsity and logarithmic in the ambient dimension. See [3, 13, 34, 21, 44] for precise
statements and extensions to Bernoulli and subgaussian matrices. It follows from lower estimates of
Gelfand widths that this bound on the required samples is optimal [17, 25, 26], that is, the log-factor
must be present.

As discussed above, no deterministic construction of a measurement matrix is known which provides
RIP with optimal scaling of the recoverable sparsity s in the number of measurements n. In fact, all
available proofs of the RIP with close to optimal scaling require the measurement matrix to contain some
randomness. In Table 2 we list the Shannon entropy (in bits) of various random matrices along with the
available RIP estimates. Compared to Gaussian random matrices, the Gabor synthesis measurement
matrices constructed in this paper introduces only a small amount of randomness, that is, the presented
measurement matrix depends only on the so-called Gabor window, a random vector of length n, which
can be chosen to be a normalized copy of a Rademacher vector. Moreover, the random Gabor matrix
provably provides scaling of s roughly in n2/3, which significantly improves on known deterministic
constructions. Clearly, such scaling falls short of the optimal one, but we expect that it is possible
to establish linear scaling of s in n up to log-factors, similar to Gaussian matrices or partial random
Fourier matrices. However, such improvement seems to require more powerful methods to estimate
chaos processes than presently available.
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n×N Measurement matrix Shannon entropy RIP regime References
Gaussian nN 1

2 log(2πe) s ≤ Cn/ logN [3, 20, 49]
Rademacher entries nN s ≤ Cn/ logN [3]
Partial Fourier matrix N log2N−n log2 n s ≤ Cn/ log4N [46, 49]

−(N−n) log2(N−n)
Partial circulant Rademacher N s ≤ Cn2/3/ log2/3N [46]
Gabor, Rademacher window n s ≤ Cn2/3/ log2 n this paper
Gabor, Alltop window 0 s ≤ C

√
n [41]

Table 2: List of measurement matrices that have been proven to be RIP, scaling of sparsity s in the
number of measurements n, and the respective Shannon entropy of the (random) matrix.

1.2 Time-frequency structured measurement matrices

In this paper, we provide probabilistic estimates of the restricted isometry constants for matrices whose
columns are time–frequency shifts of a randomly chosen vector. To define these matrices, we let T
denote the cyclic shift, also called translation operator, and M the modulation operator, or frequency
shift operator, on Cn. They are defined by

(Th)q = hq	1 and (Mh)q = e2πiq/nhq = ωqhq, (6)

where 	 is subtraction modulo n and ω = e2πi/n. Note that

(T kh)q = hq	k and (M `h)q = e2πi`q/nhq = ω`qhq. (7)

The operators π(λ) = M `T k, λ = (k, `), are called time-frequency shifts and the system {π(λ) : λ ∈
Zn×Zn}, Zn = {0, 1, . . . , n − 1}, of all time-frequency shifts forms a basis of the matrix space Cn×n
[32, 31].

We choose ε ∈ Cn to be a Rademacher or Steinhaus sequence, that is, a vector of independent random
variables taking the values +1 and −1 with equal probability, respectively taking values uniformly
distributed on the complex torus S1 = {z ∈ C, |z| = 1}. The normalized window is

g = n−1/2ε,

and the set
{π(λ)g : λ ∈ Zn×Zn} (8)

is called a full Gabor system with window g [28]. The matrix Ψg ∈ Cn×n
2

whose columns list the
members π(λ)g, λ ∈ Zn×Zn, of the Gabor system is referred to as Gabor synthesis matrix [16, 32, 40].
Note that Ψg allows for fast matrix vector multiplication algorithms based on the FFT. The main result
of this paper addresses the restricted isometry constants of Ψg. Below E denotes expectation and P
the probability of an event.

Theorem 1 Let Ψg ∈ Cn×n
2

be a draw of the random Gabor synthesis matrix with normalized Stein-
haus or Rademacher generating vector.

(a) The expectation of the restricted isometry constant δs of Ψg, s ≤ n, satisfies

E δs ≤ max
{
C1

√
s3/2

n
log s

√
log n, C2

s3/2 log3/2 n

n

}
, (9)

where C1, C2 > 0 are universal constants.
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(b) For 0 ≤ λ ≤ 1, we have

P(δs ≥ E[δs] + λ) ≤ e−λ
2/σ2

, where σ2 =
C3s

3
2 log n log2 s

n
(10)

with C3 > 0 being a universal constant.

With slight variations of the proof one can show similar statements for normalized Gaussian or
subgaussian random windows g.

Roughly speaking Ψg satisfies the RIP of order s with high probability if n ≥ Cs3/2 log3(n), or
equivalently if,

s ≤ cn2/3/ log2 n.

We expect that this is not the optimal estimate, but improving on this seems to require more sophisti-
cated techniques than pursued in this paper. There are known examples [33, 53] for which the central
tool in this paper, the Dudley type inequality for chaos processes stated in Theorem 3, is not sharp.
We may well be facing one of these cases here.

Numerical tests illustrating the use of Ψg for compressive sensing are presented in [41]. They
illustrate that empirically Ψg performs very similarly to a Gaussian matrix.

1.3 Application in wireless communications and radar

An important task in wireless communications is to identify the communication channel at hand, that
is, the channel opperator, by probing it with a small number of known transmit signals; ideally a single
probing signal. A common finite-dimensional model for the channel operator, that combines digital
(discrete) to analog conversion, the analog channel, and analog to digital conversion. It is given by
[4, 18, 27, 38]

Γ =
∑

λ∈Zn×Zn

xλπ(λ).

Time-shifts model delay due to multipath-propagation, while frequency-shifts model the Doppler effect
due to moving transmitter, receiver, and/or scatterers. Physical considerations often suggest that x is
rather sparse as, indeed, the number of present scatterers can be assumed to be small in most cases.
The same model is used as well in sonar [35, 50] and radar [30].

Our task is to identify from a single input output pair (g,Γg) the coefficient vector x. In other
words, we need to reconstruct Γ ∈ Cn×n, or equivalently x, from its action y = Γg on a single vector
g. Writing

y = Γg =
∑

λ∈Zn×Zn

xλπ(λ)g = Ψgx (11)

with unknown but sparse x, we arrive at a compressive sensing problem. In this setup, we clearly have
the freedom to choose g, and we may choose it as a random Rademacher or Steinhaus sequence. Then
the restricted isometry property of Ψg, as shown in Theorem 1, ensures recovery of sufficiently sparse
x, and hence, of the associated operator Γ.

Recovery of the sparse x in (11) can also be interpreted as finding a sparse time-frequency represen-
tation of a given y with respect to the window g. From an application point of view though, the vectors
considered here are not well suited to describe meaningful sparse time-frequency representations of x
as all g that are known to guarantee RIP of Ψg are very poorly localized both in time and in frequency.

1.4 Relation with previous work

Time-frequency structured matrices Ψg appeared in the study of frames with (near-)optimal coherence.
Recall that the coherence of a matrix A = (a1| . . . |aN ) with normalized columns ‖a`‖2 = 1 is defined
as

µ := max
` 6=k
|〈a`,ak〉|.
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Choosing the Alltop window [1, 51] g ∈ Cn with entries g` = n−1/2e2πi`3/n for n ≥ 5 prime yields Ψg

with coherence
µ =

1√
n
.

Due to the general lower bound µ ≥
√

N−n
n(N−1) for an n×N matrix [51], this coherence is almost optimal.

Together with the bound δs ≤ (s− 1)µ we obtain

δs ≤
s− 1√
n
.

This requires a scaling s ≤ c
√
n to achieve sufficiently small RIP and sparse recovery, which clearly is

worse than the main result of this paper.
The coherence of Ψg with Steinhaus sequence g is estimated in [41] by

µ ≤ c
√

log(n/ε)
n

,

holding with probability at least 1− ε. As before, this does not give better than quadratic scaling of n
in s in order to have small RIP constants δs.

The following nonuniform recovery results for `1-minimization with Ψg and Steinhaus sequence g
was derived in [45].

Theorem 2 Let x ∈ Cn be s-sparse. Choose a Steinhaus sequence g at random. Then with probability
at least 1− ε, the vector x can be recovered from y = Ψgx via `1-minimization provided

s ≤ c n

log(n/ε)
.

Clearly, the (optimal) almost linear scaling of n in s of this estimate is better than the RIP estimate of
the main Theorem 1. However, the conclusion is weaker than what can be derived using the restricted
isometry property: recovery in Theorem 2 is nonuniform in the sense that a given s-sparse vector can
be recovered with high probability from a random draw of the matrix Ψg. It is not stated that a single
matrix Ψg can recover all s-sparse vectors simultaneously. Moreover, nothing is said about the stability
of recovery, while in contrast, small RIP constants imply (5). Therefore, our main Theorem 1 is of
high interest and importance, despite the better scaling in Theorem 2. Moreover, we expect that an
improvement of the RIP estimate is possible, although it is presently not clear how this can be achieved.

Partial random circulant matrices are a different, but closely related measurement matrix, studied in
[29, 43, 44, 46]. They model convolution with a random vector followed by subsampling on an arbitrary
(deterministic) set. The so far best estimate of the restricted isometry constants δs of such an n × N
matrix in [46] requires n ≥ c(s logN)3/2, similarly to the main result of this paper. The corresponding
analysis requires to bound as well a chaos process, which is also achieved by the Dudley type bound
of Theorem 3 below. Nonuniform recovery guarantees for partial random circulant matrices similarly
to Theorem 2 are contained in [43, 44]. The analysis of circulant matrices benefits from a simplified
arithmetic in the Fourier domain, a tool not available to us in the case of Gabor synthesis matrices.
Hence, the analysis presented here is more involved.

2 Expectation of the restricted isometry constants

We first estimate the expectation of the restricted isometry constants of the random Gabor synthesis
matrix, that is, we shall prove Theorem 1(a). To this end, we first rewrite the restricted isometry
constants δs. Let T = Ts = {x ∈ Cn

2
, ‖x‖2 = 1, ‖x‖0 ≤ s}. Introduce the following semi-norm on

Hermitian matrices A,
|||A|||s = sup

x∈Ts
|x∗Ax|.
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Then the restricted isometry constants of Ψ = Ψg can be written as

δs = |||Ψ∗Ψ− I|||s,

where I denotes the identity matrix. Observe that the Gabor synthesis matrix Ψg takes the form

Ψg =


g0 gn−1 · · · g1 g0 · · · g1 · · · g1

g1 g0 · · · g2 ωg1 · · · ωg2 · · · ωn−1g2

g2 g1 · · · g3 ω2g2 · · · ω2g3 · · · ω2(n−1)g3

g3 g2 · · · g4 ω3g3 · · · ω3g4 · · · ω3(n−1)g4

...
...

. . .
...

...
. . .

...
...

gn−1 gn−2 · · · g0 ωn−1gn−1 · · · ωn−1g0 · · · ω(n−1)2g0

 .

Our analysis in this section employs the representation

Ψg =
n−1∑
q=0

gqAq

with

A0 =


1 0 0 · · · 0 1 0 0 · · · 0 · · · 0
0 1 0 · · · 0 0 ω 0 · · · 0 · · · 0
0 0 1 · · · 0 0 0 ω2 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 1 0 0 0 · · · ωn−1 · · · ω(n−1)2


=

(
I
∣∣M ∣∣M2

∣∣ · · · ∣∣Mn−1
)
,

A1 =


0 0 0 · · · 1 0 0 0 · · · 1 · · · 1
1 0 0 · · · 0 ω 0 0 · · · 0 · · · 0
0 1 0 · · · 0 0 ω2 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 0 · · · 0 · · · 0


=

(
T
∣∣MT

∣∣M2T
∣∣ · · · ∣∣Mn−1T

)
,

and so on. In short, for q ∈ Zn,

Aq =
(
T q
∣∣MT q

∣∣M2T q
∣∣ · · · ∣∣Mn−1T q

)
. (12)

Observe that

H := Ψ∗Ψ− I = −I +
1
n

n−1∑
q,q′=0

εq′εqA
∗
q′Aq .

Using (29) below, it follows that

H =
1
n

∑
q′ 6=q

εq′ εqA
∗
q′Aq =

1
n

∑
q′,q

εq′ εqWq′,q, (13)

where, for notational simplicity, we use here and in the following Wq′,q = A∗q′Aq for q 6= q′ and
Wq′,q = 0 for q = q′. We employ the matrix B(x) ∈ Cn×n, x ∈ Ts, given by matrix entries

B(x)q′,q = x∗Wq′,qx. (14)

Then we have
nEδs = E sup

x∈Ts
|Yx| = E sup

x∈Ts
|Yx − Y0| , (15)

where
Yx = ε∗B(x)ε =

∑
q′ 6=q

εq′ εq x
∗A∗q′Aqx (16)
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and x ∈ Ts = {x ∈ Cn×n, ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. A process of the type (16) is called Rademacher or
Steinhaus chaos process of order 2. In order to bound such a process, we use the following Theorem, see
for example, [33, Theorem 11.22] or [53, Theorem 2.5.2], where it is stated for Gaussian processes and in
terms of majorizing measure (generic chaining) conditions. The formulation below requires the operator
norm ‖A‖2→2 = max‖x‖2=1 ‖Ax‖2 and the Frobenius norm ‖A‖F = Tr(A∗A)1/2 = (

∑
j,k |Aj,k|2)1/2,

where Tr(A) denotes the trace of a matrix A.

Theorem 3 Let ε = (ε1, . . . , εn)T be a Rademacher or Steinhaus sequence, and let

Yx := ε∗B(x)ε =
n∑

q′,q=1

εq′εqB(x)q′,q

be an associated chaos process of order 2, indexed by x ∈ T , where we additionally assume B(x)
hermitian with zero diagonal, that is, B(x)q,q = 0 and B(x)q′,q = B(x)q,q′ . We define two (pseudo-
)metrics on T ,

d1(x,y) = ‖B(x)−B(y)‖2→2,

d2(x,y) = ‖B(x)−B(y)‖F .

Let N(T, di, u) be the minimum number of balls of radius u in the metric di needed to cover T . Then
there exists a universal constant K > 0 such that, for an arbitrary x0 ∈ T ,

E sup
x∈T
|Yx − Yx0 | ≤ K max

{∫ ∞
0

logN(T, d1, u) du
∫ ∞

0

√
logN(T, d2, u) du,

}
. (17)

Proof: For a Rademacher sequence, the theorem is stated in [46, Proposition 2.2]. If ε is a Steinhaus
sequence and B a Hermitian matrix then

ε∗Bε = Re(ε∗Bε) = Re(ε)∗Re(B) Re(ε)− Re(ε)∗ Im(B) Im(ε)
+ Im(ε)∗ Im(B) Re(ε) + Im(ε)∗Re(B) Im(ε).

By decoupling, see, for example, [39, Theorem 3.1.1], we have with ε′ denoting an independent copy of
ε,

E sup
x∈T
|Re(ε)∗ Im(B(x)) Im(ε)| ≤ 8 E sup

x∈T
|Re(ε)∗ Im(B(x)) Im(ε′)|

≤ 8 E sup
x∈T
|ξ∗ Im(B(x)) Im(ε′)| ≤ 8 E sup

x∈T
|ξ∗ Im(B(x))ξ′|,

where ξ, ξ′ denote independent Rademacher sequences. The second and third inequalities follow from
the contraction principle [33, Theorem 4.4] (and symmetry of Re(ε`), Im(ε`) ) first applied conditionally
on ε′ and then conditionally on ξ (note that |Re(ε`)| ≤ 1, | Im(ε`)| ≤ 1 for all realizations of ε`). Using
the triangle inequality we get

E sup
x∈T
|Yx − Yx0 | ≤ 16 E sup

x∈T
|ξ∗(Re(B(x))− Re(B(x0))ξ′|

+ 16 E sup
x∈T
|ξ∗(Im(B(x))− Im(B(x0)))ξ′|. (18)

Further note that ‖ Im(B(x)) − Im(B(y))‖F , ‖Re(B(x)) − Re(B(y))‖F ≤ ‖B(x) − B(y)‖F and
similarly, writingB(x)−B(y) as a 2n×2n real block matrix acting on R2n we see that also ‖ Im(B(x))−
Im(B(y))‖2→2, ‖Re(B(x)) − Re(B(y))‖2→2 ≤ ‖B(x) −B(y)‖2→2. Furthermore, the statement for
Rademacher chaos processes holds as well for decoupled chaos processes of the form above. (Indeed, its
proof uses decoupling in a crucial way.) Therefore, the claim for Steinhaus sequences follows.

8



Note that B(x) defined in (14) satisfies the hypotheses of Theorem 3 by definition. The pseudo-
metrics are given by

d2(x,y) = ‖B(x)−B(y)‖F =
(∑
q′ 6=q

∣∣x∗A∗q′Aqx− y∗A∗q′Aqy
∣∣2)1/2

, (19)

and
d1(x,y) = ‖B(x)−B(y)‖2→2.

The bound on the expected restricted isometry constant follows then from the following estimates on
the covering numbers of Ts with respect to d1 and d2. Corresponding proofs will be detailed in Section
3. We start with N(Ts, d2, u).

Lemma 4 For u > 0, it holds

log(N(Ts, d2, u)) ≤ s log(en2/s) + s log(1 + 4
√
snu−1).

The above estimate is useful only for small u > 0. For large u we require the following alternative
bound.

Lemma 5 The diameter of Ts with respect to d2 is bounded by 4
√
sn, and for

√
n ≤ u ≤ 4

√
sn, it holds

log(N(Ts, d2, u)) ≤ cu−2ns3/2 log(ns5/2u−1),

where c > 0 is universal constant.

Covering number estimates with respect to d1 are provided in the following lemma.

Lemma 6 The diameter of Ts with respect to d1 is bounded by 4s, and for u > 0

log(N(Ts, d1, u)) ≤ min
{
s log(en2/s) + s log(1 + 4su−1),

cu−2s2 log(2n) log(n2/u)
}
, (20)

where c > 0 is a universal constant.

Based on these estimates and Theorem 3 we complete the proof of Theorem 1(a). By Lemmas 4
and 5, the subgaussian integral in (17) can be estimated as∫ ∞

0

√
log(N(Ts, d2, u))du =

∫ 4
√
sn

0

√
log(N(Ts, d2, u))du

=
∫ √n

0

√
log(N(Ts, d2, u))du+

∫ √sn
√
n

√
log(N(Ts, d2, u))du

≤
∫ √n

0

√
s log(en2/s)du+

∫ √n
0

√
s log(1 + 4

√
snu−1)du

+ c
√
ns3/2

∫ 4
√
sn

√
n

u−1
√

log(ns5/2u−1)du

≤
√
sn log(en2/s) + 4s

√
n

∫ s−1/2

0

√
log(1 + u−1)du

+ c
√
s3/2n

√
log(n1/2s5/2) log(

√
s)

≤
√
sn log(en2/s) + 4

√
sn

√
log(e(1 +

√
s)) + c′

√
s3/2n log(n) log2(s)

≤ Ĉ1

√
s3/2n log(n) log2(s). (21)
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Hereby, we have used [44, Lemma 10.3], and that s ≤ n. Due to Lemma 6 the subexponential integral
obeys the estimate, for some κ > 0 to be chosen below,∫ ∞

0

log(N(Ts, d1, u))du =
∫ 4s

0

log(N(Ts, d1, u))du

=
∫ κ

0

log(N(Ts, d1, u))du+
∫ 4s

κ

log(N(Ts, d1, u))du

≤ κs log(en2/s) + s

∫ κ

0

log(1 + 4su−1)du+ cs2 log(2n)
∫ 4s

κ

u−2 log(n2/u)du

≤ κs log(en2/s) + 4κs log(e(1 + κ(4s)−1)) + cs2κ−1 log(2n) log(n2/κ).

Choose κ =
√
s log(n) to reach∫ ∞

0

log(N(Ts, d1, u))du ≤ Ĉ2s
3/2 log3/2(n). (22)

Combining the above integral estimates with (15) and Theorem 3 yields

Eδs =
1
n

E sup
x∈Ts

|Yx − Y0| ≤
1
n

max
{
C1

√
s3/2n log(n) log2(s), C2s

3/2 log3/2(n)
}
. (23)

This is the statement of Theorem 1(a).

Remark 7 In analogy to the estimate of a subgaussian entropy integral arising in the analysis of
partial random circulant matrices in [46], we expect that the exponent 3/2 in (21) can be improved
to 1. However, we doubt that for the subexponential integral (22) such improvement will be possible
(indeed, the estimate of the subexponential integral in [46] also exhibits an exponent of 3/2 at the
s-term), so that we did not pursue an improvement of (21) here as this would not provide a significant
overall improvement of (23). We expect that an improvement of (23) would require more sophisticated
tools than the Dudley type estimate for chaos processes of Theorem 3.

3 Proof of covering number estimates

In this section we provide the covering number estimates of Lemma 4, 5 and 6, which are crucial to the
proof of our main result. We first introduce additional notation. Let δ(m, k) = δ0,m−k and δ(m) = δ0,m
be the Kronecker symbol as usual. We denote by suppx = {`, x` 6= 0} the support of a vector x. Let
A be a matrix with vector of singular values σ(A). For 0 < q ≤ ∞, the Schatten Sq-norm is defined by

‖A‖Sq := ‖σ(A)‖q, (24)

where ‖ · ‖q is the usual vector `q norm. For an integer p, the S2p norm can be expressed as

‖A‖S2p = (Tr((A∗A)p))1/(2p). (25)

The S∞-norm coincides with the operator norm, ‖ · ‖S∞ = ‖ · ‖2→2. By the corresponding properties of
`q-norms we have the inequalities

‖A‖2→2 ≤ ‖A‖Sq ≤ rank(A)1/q‖A‖2→2. (26)

Moreover, we will require an extension of the quadratic form B(x) in (14) to a bilinear form,

(B(x, z))q′,q =
{ x∗A∗q′Aqz if q′ 6= q,

0 if q′ = q.
(27)

Then B(x) = B(x,x).
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3.1 Time–frequency analysis on Cn

Before passing to the actual covering number estimates we provide some facts and estimates related to
time-frequency analysis on Cn. Observe that the matrices Aq introduced in (12) satisfy

A∗q =


(T q)∗

(MT q)∗

(M2T q)∗
...

(Mn−1T q)∗

 =


T−q

T−qM−1

T−qM−2

...
T−qM1

 ,

and, hence,
(A∗qy)(k,`) = yk+q ω

−`(k+q).

Clearly,

〈Aqz,y〉 = 〈z,A∗qy〉 =
∑
k,` z(k,`)yk+qω

`(k+q) =
∑
k,` z(k−q,`)ykω

`k

=
∑
k

(∑
` z(k−q,`)ω

`k
)
yk

and, hence,
(Aqz)k =

∑
`

z(k−q,`)ω
`k.

In the following, F : Cn 7→ Cn denotes the normalized Fourier transform, that is,

(Fv)` = n−1/2
n−1∑
q=0

ω−q`vq.

For v ∈ Cn×n, F2v denotes the Fourier transform in the second variable of v.
Let {eλ}λ∈Zn×Zn

and {eq}q∈Zn
denoting the Euclidean basis of Cn×n respectively Cn, and, let Pλ

denote the orthogonal projection onto the one dimensional space span {eλ}. The following bounds will
be crucial for the covering number estimates below.

Lemma 8 Let Aq be as given in (12). Then, for λ ∈ Zn×Zn, q ∈ Zn,

Aqeλ = π(λ)eq , (28)
n−1∑
q=0

A∗qAq = n I , (29)

n−1∑
q=0

AqPλA
∗
q = I , (30)

n−1∑
q=0

n−1∑
q′=0

∣∣x∗A∗q′Aqy
∣∣2 ≤ n ‖x‖0 ‖x‖22 ‖y‖22. (31)

Proof: For (28), observe that

(Aqe(k0,`0))k =
∑
`

δ(k − q − k0, `− `0)ω`k = δ(q − (k − k0))ω`0k

= (π(k0, `0)eq)k .

11



To see (29), choose z ∈ Cn×n and compute(
A∗q′Aqz

)
(k′,`′)

=
∑
`

z(k′+q′−q,`)ω
`(k′+q′)ω−`

′(k′+q′)

=
∑
`

z(k′+q′−q,`)ω
(`−`′)(k′+q′) .

Hence, ∑
q

(
A∗qAqz

)
(k′,`′)

=
∑
q

∑
`

z(k′,`)ω
(`−`′)(k′+q) =

∑
`

z(k′,`)

∑
q

ω(`−`′)(k′+q)

=
∑
`

z(k′,`)n δ(`− `′) = n z(k′,`′) .

Finally, observe that all but one column of AqP{(`0,k0)} are 0, the nonzero column being column (`0, k0),
and only its (k0 + q)th entry is nonzero, namely, it is ω`0(k0+q). We have

AqP{(`0,k0)}A
∗
q = AqP{(`0,k0)}P{(`0,k0)}A

∗
q = AqP{(`0,k0)}(AqP{(`0,k0)})∗,

and hence, AqP{(`0,k0)}A
∗
q = P{k0+q} and

∑
qAqP{(`0,k0)}A

∗
q = I.

Let x ∈ Cn×n and Λ = suppx, then∑
q

∑
q′

∣∣x∗A∗q′Aqy
∣∣2 =

∑
q

∑
q′

∣∣ ∑
(k′,`′)∈Λ

x(k′,`′)

(
A∗q′Aqy

)
k′,`′

∣∣2
≤ ‖x‖22

∑
q

∑
q′

∑
(k′,`′)∈Λ

∣∣(A∗q′Aqy
)
k′,`′

∣∣2
= ‖x‖22

∑
q

∑
q′

∑
(k′,`′)∈Λ

∣∣ω−`′(k′+q′)∑
`

ω`(k
′+q′)y(k′−(q−q′),`)

∣∣2
= ‖x‖22

∑
q

∑
q′

∑
(k′,`′)∈Λ

∣∣∑
`

ω`(k
′+q′)y(k′−(q−q′),`)

∣∣2
= n ‖x‖22

∑
(k′,`′)∈Λ

∑
q

∑
q′

∣∣(F2y
)

(k′−(q−q′),k′+q′)

∣∣2
= n ‖x‖22

∑
(k′,`′)∈Λ

∥∥F2y
∥∥2

2
= n |Λ| ‖x‖22 ‖y‖22 = n ‖x‖0‖x‖22‖y‖22

by unitarity of F2.

3.2 Proof of Lemma 4

For x,y ∈ Cn
2
,

d2(x,y) ≤
(∑
q′ 6=q

∣∣∣x∗A∗q′Aq(x− y)
∣∣∣2)1/2

+
(∑
q′ 6=q

∣∣∣(x− y)∗A∗q′Aqy
∣∣∣2)1/2

.

Inequality (31) implies that for x,y ∈ Ts,(∑
q′ 6=q

∣∣∣x∗A∗q′Aq(x− y)
∣∣∣2)1/2(∑

q′ 6=q

∣∣∣(x− y)∗A∗q′Aqy
∣∣∣2)1/2

≤
√
sn ‖x− y‖2

and, hence,

d2(x,y) ≤ 2
√
sn ‖x− y‖2. (32)
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Using the volumetric argument, see, for example, [44, Proposition 10.1], we obtain

N(Ts, ‖ · ‖2, u) ≤
(
n2

s

)
(1 + 2/u)s ≤ (en2/s)s(1 + 2/u)s.

By a rescaling argument

N(Ts, d2, u) ≤ N(Ts, 2
√
sn‖ · ‖2, u) = N(Ts, ‖ · ‖2, u/(2

√
sn))

≤ (en2/s)s(1 + 4
√
snu−1)s.

Taking the logarithm completes the proof.

3.3 Proof of Lemma 5

Now, we seek a suitable estimate of the covering numbers N(Ts, d1, u) for u ≥
√
n. Observe that by

(32) the diameter of Ts with respect to d1 is at most 4
√
sn. Hence, it suffices to consider N(Ts, d1, u)

for √
n ≤ u ≤ 4

√
sn, (33)

as stated in the lemma. We use the empirical method [14], similarly as in [49]. We define the norm
‖ · ‖∗ on Cn×n by

‖x‖∗ =
∑
λ

|Re xλ|+ | Im xλ| . (34)

For x ∈ Ts we define a random vector Z, which takes ‖x‖∗ sgn(Rexλ)eλ with probability |Re xλ|
‖x‖∗ , and

the value i‖x‖∗ sgn(Imxλ)eλ with probability | Im xλ|
‖x‖∗ .

Now, let Z1, . . . ,Zm,Z
′
1, . . . ,Z

′
m be independent copies of Z. We set y = 1

m

∑m
j=1Zj and y′ =

1
m

∑m
j=1Z

′
j and attempt to approximate B(x) by

B := B(y,y′) =
1
m2

m∑
j,j′=1

B(Zj ,Z ′j′) . (35)

First, compute

E‖B −B(x)‖2F = E
∑
q,q′

∣∣x∗Wq′,qx−
1
m2

m∑
j,j′=1

Z∗jWq′,qZ
′
j′

∣∣2
=
∑
q,q′

(
|x∗Wq′,qx|2 − 2 Re

(
x∗Wq′,qxE

[ 1
m2

m∑
j,j′=1

Z∗jWq,q′Z
′
j′

])
+ E

[∣∣∣ 1
m2

m∑
j,j′=1

Z∗jWq,q′Z
′
j′

∣∣∣2])
=
∑
q,q′

(
− |x∗Wq′,qx|2 +

1
m4

m∑
j,j′,j′′,j′′′=1

E
[
Z∗jWq,q′Z

′
j′(Z

′
j′′)
∗W ∗

q,q′Zj′′′
])
,

where we used that E[Z∗jWq,q′Z
′
j′ ] = x∗Wq,q′x, j, j′ = 1, . . .m, by independence. Moreover, for j 6= j′′′

and j′ 6= j′′, independence implies

E
[
Z∗jWq,q′Z

′
j′(Z

′
j′′)
∗W ∗

q,q′Zj′′′
]

= |x∗Wq,q′x|2.

To estimate summands with j′ = j′′, note that

Z∗jWq′,qZ
′
j′(Z

′
j′)
∗Wq,q′Zj′′′ = ‖x‖2∗Z∗jA∗q′AqP{λ}A

∗
qAq′Zj′′′ ,
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where {λ} = suppZj′ is random. Hence, in this case, we compute using (30) in Lemma 8∑
q′ 6=q

E
[
Z∗jA

∗
q′AqZ

′
j′(Z

′
j′)
∗A∗qAq′Zj′′′

]
≤ ‖x‖2∗

∑
q′,q

E
[
Z∗jA

∗
q′AqP{λ}A

∗
qAq′Zj′′′

]
= ‖x‖2∗E

[
Z∗j
∑
q′

(
A∗q′
(∑

q

AqP{λ}A
∗
q

)
Aq′

)
Zj′′′

]
= ‖x‖2∗E

[
Z∗j
∑
q′

(
A∗q′Aq′

)
Zj′′′

]
= n‖x‖2∗E[Z∗jZj′′′ ]

=
{ n‖x‖4∗, if j = j′′′,
n‖x‖2∗E[Z∗j ]E[Zj′′′ ] = n‖x‖2∗‖x‖22 ≤ n‖x‖2∗, else.

Symmetry implies an identical estimate for j = j′′′, j′ 6= j′′. As x ∈ Ts is s-sparse we have ‖x‖∗ ≤√
2‖x‖1 ≤

√
2s‖x‖2 ≤

√
2s. We conclude

∑
q′,q

m∑
j,j′,j′′,j′′′=1

E
[
Z∗jWq,q′Z

′
j′(Z

′
j′′)
∗W ∗

q,q′Zj′′′
]

≤ m2(m− 1)2
∑
q′,q

|x∗Wq,q′x|2 +m2n4s2 + 2m2(m− 1)n · 2s.

For m ≥ 11ns
3
2

u2 and u ≤ 4
√
sn, we finally obtain,

E‖B −B(x)‖2F ≤
∑
q′,q

−|x∗Wq′,qx|2 +
m2(m2 − 1)

m4

∑
q′,q

|x∗Wq,q′x|2

+
m2n4s2

m4
+

4m2(m− 1)ns
m4

≤ 4ns2

m2
+

4ns
m
≤ 4ns2

121n2s3
u4 +

4ns
11ns

3
2
u2 ≤ 64ns

121ns
u2 +

44
121
√
s
u2 ≤ u2 . (36)

Since ‖x‖∗ can take any value in [1,
√

2s], we still have to discretize this factor in the definition of
the random variable Z. To this end, set

Bα :=
1
m2

m∑
j=1,j′=1

B(α sgn(xλj )eλj , α sgn(xλ′
j′

)eλ′
j′

) .

Next, we observe that, for λ = (k, `) and λ′ = (k′, `′),

B(eλ′ , eλ)q′,q = (Aq′eλ′)∗Aqeλ = 〈π(λ)eq,π(λ′)eq′〉

=
{
ω(`−`′)(k+q), if k′ + q′ = k + q ;
0, else,

(37)
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and, hence, ‖B(eλ′ , eλ)‖2F = n. Now, assume α is chosen such that |‖x‖2∗ − α2| ≤ u√
n

. Then

‖Bα −B‖x‖∗‖F

=
∥∥∥ 1
m2

m∑
j=1,j′=1

B(α sgn(xλj )eλj , α sgn(xλ′
j′

)eλ′
j′

)

− 1
m2

m∑
j,j′=1

B(‖x‖∗ sgn(xλj )eλj , ‖x‖∗ sgn(xλ′
j′

)eλ′
j′

)
∥∥∥
F

= |‖x‖2∗ − α2|‖ 1
m2

m∑
j,j′=1

B(sgn(xλj )eλj , sgn(xλ′
j′

)ek′
j′

)‖F

≤ u

m2
√
n

m∑
j,j′=1

‖B(eλj , eλj′ )‖F

= u. (38)

We conclude that it suffices to choose

K :=
⌈2s− 1

u√
n

⌉
≤ d2s

√
n/ue

values αk ∈ Js := [1, 2s], k = 1, . . . ,K, such that for each β ∈ Js there exists k satisfying |β − αk| ≤
u/
√
n.

Now, given x we can find z1, . . . ,zm, z
′
1, . . . ,z

′
m of the form ‖x‖∗pλeλ, pλ ∈ {1,−1, i,−i} such

that ‖B − B(x)‖F ≤ u. Further, we can find k such that |‖x‖2∗ − α2
k| ≤ u/

√
n. We replace the

z1, . . . ,zm, z
′
1, . . . ,z

′
m by the respective z̃1, . . . , z̃m, z̃

′
1, . . . , z̃

′
m of the form αjpλeλ.

Then, using (36), (38) and the triangle inequality, we obtain

‖B(x)− 1
m2

m∑
j,j′=1

B(z̃j , z̃′j′)‖F ≤ 2u.

Now, each z̃j , z̃′j can take at most d2s
√
n/ue · 4 · n2 values, so that

1
m2

m∑
j,j′=1

B(z̃j , z̃′j′)

can take at most (4d 2s
√
n

u en
2)2m ≤ (Csn

5
2 /u)2m values. Hence, we found a 2u-covering of the set of

matrices B(x) with x ∈ Ts of cardinality at most (Csn
5
2 /u)2m. Unfortunately, the matrices of the

covering are not necessarily of the form B(x). Nevertheless, we may replace each relevant matrix.
(Clearly, if for a matrix 1

m2

∑m
j,j′=1B(z̃j , z̃′j′) there is no such x̃, then we can discard that matrix.)

1
m2

∑m
j,j′=1B(z̃j , z̃′j′) by a matrix B(x̃) with

‖B(x̃)− 1
m2

m∑
j,j′=1

B(z̃j , z̃′j′)‖F ≤ 2u.

Again, the set of such chosen x̃ has cardinality at most (Csn
5
2 /u)2m and, by the triangle inequality, for

each x we can find x̃ of the covering such that

d2(x, x̃) ≤ 4u.

For m ≥ 11u−2ns
3
2 , we consequently get

log(N(Ts, d2, 4u)) ≤ log((Csn
5
2 /u)2m) = 2m log(Cns5/2/u).

15



The choice m = d11u−2ns
3
2 e ≤ 27u−2ns

3
2 and rescaling gives

log(N(Ts, d2, u)) ≤ 27u−2ns
3
2 log(4Cns5/2/u) ≤ cu−2ns

3
2 log(ns5/2/u).

The proof of Lemma 5 is completed.

3.4 Proof of Lemma 6, Part I

Now we show the estimate

log(N(Ts, d1, u)) ≤ s log(en2/s) + s log(1 + 4su−1),

which will establish one part of (20). Before doing so, we note that one can quickly obtain an estimate
for N(Ts, d1, u) for small u using that the Frobenius norm dominates the operator norm, and, hence
d1(x,y) ≤ d2(x,y) ≤ 2

√
sn‖x − y‖2. In fact, this estimate would not deteriorate the estimate in

Theorem 1(a). But in the proof of Theorem 1(b), the more involved estimate d1(x,y) ≤ 2s‖x − y‖2
developed below is useful.

Let us first rewrite d1. Recall (28) in Lemma 8, namely, Aqeλ = π(λ)eq, and, with λ = (k, `) and
λ′ = (k′, `′), we obtain

π(λ′)∗π(λ) = ωk
′(`−`′′)π(λ− λ′) ≡ ω(λ, λ′)π(λ− λ′).

Writing now x =
∑
λ∈Zn×Zn

xλeλ, the entries of the matrix B(x) in (27) for q′ 6= q are given by

B(x)q′q =
∑
λ,λ′

xλxλ′e
∗
λ′A

∗
q′Aqeλ =

∑
λ,λ′

xλxλ′e
∗
q′π(λ′)∗π(λ)eq

=
∑
λ,λ′

xλxλ′ω(λ, λ′) e∗q′π(λ− λ′)eq =
∑
λ6=λ′

xλxλ′ω(λ, λ′) e∗q′π(λ− λ′)eq

= e∗q′
( ∑
λ6=λ′

xλxλ′ω(λ, λ′) π(λ− λ′)
)
eq.

We used for the fourth inequality that e∗q′π(`0, k0)eq = 0 if q′ 6= q and k0 = 0. This shows that

B(x) =
∑
λ 6=λ′

xλxλ′ω(λ, λ′) π(λ− λ′).

The estimate (26) for the Schatten norms shows

d2p
1 (x,y) = ‖

∑
λ6=λ′

(xλxλ′ − yλyλ′)ω(λ, λ′) π(λ− λ′)‖2p2→2

≤ ‖
∑
λ6=λ′

(xλxλ′ − yλyλ′)ω(λ, λ′) π(λ− λ′)‖2pS2p

=
∑

λ1 6=λ′1,λ2 6=λ′2,...,λ2p 6=λ′2p

(xλ1xλ′1 − yλ1yλ′1) · · · (xλ2pxλ′2p − yλ2pyλ′2p)×

× ω(λ1, λ
′
1) · · ·ω(λ2p, λ

′
2p) Tr

(
π(λ1 − λ′1) · · ·π(λ2p − λ′2p)

)
.

Setting (`0, k0) = λ1 − λ′1 + λ2 − λ′2 + · · · + λ2p − λ′2p we observe that the trace in the last expression
sums over zero entries if k0 6= 0 and sums over roots of unity to zero if `0 6= 0. We conclude that∣∣∣Tr

(
π(λ1 − λ′1) · · ·π(λ2p − λ′2p)

)∣∣∣ ≤ n δ0,λ1−λ′1+λ2−λ′2+···+λ2p−λ′2p .
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Hence,

d1(x,y)2p ≤ n
∑
λ1 6=λ′1

∣∣xλ1xλ′1 − yλ1yλ′1

∣∣ ∑
λ2 6=λ′2

∣∣xλ2xλ′2 − yλ2yλ′2
∣∣ · · ·

· · ·
∑

λ2p−1 6=λ′2p−1

∣∣xλ2p−1xλ′2p−1
− yλ2p−1yλ′2p−1

∣∣ ∑
λ2p

∣∣xλ2pxλ1−λ′1+···+λ2p − yλ2pyλ1−λ′1+···+λ4p

∣∣.
Now observe that, setting t = λ1 − λ′1 + · · ·+ λ2p−1 − λ′2p−1, and using the Cauchy-Schwarz inequality∑

λ

|xλxt+λ − yλyt+λ| ≤
∑
λ

|xλ||xt+λ − yt+λ|+
∑
λ

|xλ − yλ||yλ+t|

≤ ‖x‖2‖x− y‖2 + ‖x− y‖2‖y‖2 = (‖x‖2 + ‖y‖2)‖x− y‖2.

We obtain similarly∑
λ,λ′

|xλxλ′ − yλyλ′ | =
∑
λ,λ′

|xλ| |xλ′ − yλ′ |+ |yλ′ | |xλ − yλ| ≤ (‖x‖1 + ‖y‖1)‖x− y‖1.

For x,y with suppx = suppy = Λ for |Λ| ≤ s and ‖x‖2 = ‖y‖2 = 1 we have ‖x‖1 ≤
√
s‖x‖2 =

√
s

(and similarly for y) as well as ‖x− y‖1 ≤
√
s‖x− y‖2. Hence,

(‖x‖1 + ‖y‖1)‖x− y‖1 ≤ 2s‖x− y‖2.

This finally yields
d1(x,y)2p ≤ 22pns2p−1‖x− y‖2p2

for such x,y. As this holds for all p ∈ N we conclude that

d1(x,y) ≤ 2s‖x− y‖2. (39)

With the volumetric argument, see for example [44, Proposition 10.1], we obtain the bound

log(N(Ts, ‖ · ‖2, u)) ≤ s log(en2/s) + s log(1 + 2/u).

Rescaling yields

log(N(Ts, d1, u)) ≤ log(N(Ts, 2s‖ · ‖2, u)) = log(N(Ts, ‖ · ‖2, u/(2s)))
≤ s log(en2/s) + s log(1 + 4su−1),

which is the claimed inequality.

3.5 Proof of Lemma 6, Part II

Next we establish the remaining estimate of (20),

log(N(Ts, d1, u)) ≤ cu−2s2 log(2n) log(n2/u).

To this end, we use again the empirical method as in Section 3.3.
For x ∈ Ts, we define Z1, . . . ,Zm and Z ′1, . . . ,Z

′
m as in Section 3.3, that is, each takes independently

the value ‖x‖∗ sgn(Rexλ)eλ with probability |Re xλ|
‖x‖∗ , and the value i‖x‖∗ sgn(Imxλ)eλ with probability

| Im xλ|
‖x‖∗ .

As before, we set
B(Z,Z ′) = (Z∗Wq′qZ

′)q′,q, (40)
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where A∗q′Aq = A∗q′Aq for q′ 6= q and Wq,q = 0, j = 1, . . . , N , and attempt to approximate B(x) with

B :=
1
m

m∑
j=1

B(Zj ,Z ′j). (41)

That is, we will estimate E‖B −B(x)‖22→2.
We will use symmetrization as formulated in the following lemma [44, Lemma 6.7], see also [33,

Lemma 6.3], [39, Lemma 1.2.6]. Note that we will use this result with Bj = B(Zj ,Z ′j).

Lemma 9 (Symmetrization) Assume that (Yj)mj=1 is a sequence of independent random vectors in Cr
equipped with a (semi-)norm ‖ · ‖, having expectations βj = EYj. Then for 1 ≤ p <∞(

E‖
m∑
j=1

(Yj − βj)‖p
)1/p

≤ 2
(
E‖

m∑
j=1

εjYj‖p
)1/p

, (42)

where (εj)Nj=1 is a Rademacher series independent of (Yj)mj=1.

To estimate the 2p-th moment of ‖B(x)−B‖2→2, we will use the noncommutative Khintchine inequality
[7, 44] which makes use of the Schatten p-norms introduced in (24).

Theorem 10 (Noncommutative Khintchine inequality) Let ε = (ε1, . . . , εm) be a Rademacher sequence,
and let Aj, j = 1, . . . ,m, be complex matrices of the same dimension. Choose p ∈ N. Then

E‖
m∑
j=1

εjAj‖2pS2p
≤ (2p)!

2pp!
max

{∥∥∥( m∑
j=1

AjA
∗
j

)1/2∥∥∥2p

S2p

,
∥∥∥( m∑

j=1

A∗jAj

)1/2∥∥∥2p

S2p

}
. (43)

Let p ∈ N. We apply symmetrization with Bj = B(Zj ,Z ′j), estimate the operator norm by the
Schatten-2p-norm and apply the noncommutative Khintchine inequality (after using Fubini’s theorem),
to obtain (

E‖B −B(x)‖2p2→2

) 1
2p

=
(
E‖ 1
m

m∑
j=1

(B(Zj ,Z ′j)− EB(Zj ,Z ′j))‖
2p
2→2

) 1
2p

≤ 2
m

(
E‖

m∑
j=1

εjB(Zj ,Z ′j)‖
2p
2→2

) 1
2p ≤ 2

m

(
E‖

m∑
j=1

εjB(Zj ,Z ′j)‖
2p
S2p

) 1
2p

≤ 2
m

( (2p)!
2pp!

) 1
2p
(
E max

{∥∥∥( m∑
j=1

B(Zj , Z ′j)
∗B(Zj ,Z ′j)

)1/2∥∥∥2p

S2p

,

∥∥∥( m∑
j=1

B(Zj ,Z ′j)B(Zj ,Z ′j)
∗
)1/2∥∥∥2p

S2p

}) 1
2p
. (44)

Now recall that the Zj ,Z
′
j may take the values ‖x‖∗pλeλ, with

pλ ∈ {1,−1, i,−i}. Further, observe that B(eλ′ , eλ)∗ = B(eλ, eλ′), and, for q 6= q′,

(B(eλ′ , eλ)∗B(eλ′ , eλ))q,q′′ =
∑
q′

e∗λA
∗
qAq′eλ′ e

∗
λ′A

∗
q′Aq′′eλ

=
∑
q′

e∗λA
∗
qAq′Pλ′A

∗
q′Aq′′eλ = e∗λA

∗
q

(∑
q′

Aq′Pλ′A
∗
q′
)
Aq′′eλ

= e∗λA
∗
qAq′′eλ = 〈π(λ)eq′′ ,π(λ)eq〉 = 〈eq′′ , eq〉 = δ(q′′ − q).

Therefore, B(eλ′ , eλ)∗B(eλ′ , eλ) = I and

B(Z`,Z ′`)
∗B(Zj ,Z ′j) = ‖x‖4∗I. (45)

18



Since ‖I‖2pS2p
= n, ‖x‖∗ ≤ 2s‖x‖2 = 2s, we obtain

‖
( m∑
j=1

B(Zj ,Z ′j)
∗B(Zj ,Z ′j)

)1/2

‖2pS2p
= ‖
( m∑
j=1

‖x‖4∗I
)1/2

‖2pS2p
= ‖x‖4p∗ mpn

≤ (2s)2pmpn . (46)

By symmetry this inequality applies also to the second term in the maximum in (44). This yields(
E‖B −B(x)‖2p2→2

) 1
2p ≤ 2

m

( (2p)!
2qq!

) 1
2p

2sm
1
2n

1
2p ≤ 4s√

m
n1/(2p)

( (2p)!
2pp!

) 1
2p
.

Using Hölder’s inequality, we can interpolate between 2p and 2p + 2, and an application of Stirling’s
formula yields for arbitrary moments p ≥ 2, see also [44],(

E‖B −B(x)‖p2→2

)1/p

≤ 23/(4p)n1/pe−1/2√p 4s√
m
. (47)

Now we use the following lemma relating moments and tails [43, 44].

Proposition 11 Suppose Ξ is a random variable satisfying

(E|Ξ|p)1/p ≤ αβ1/pp1/γ for all p ≥ p0

for some constants α, β, γ, p0 > 0. Then

P(|Ξ| ≥ e1/γαv) ≤ βe−v
γ/γ

for all v ≥ p1/γ
0 .

Applying the lemma with p0 = 2, γ = 2, β = 23/4n, α = e−1/2 4s√
m

, and

v = u
e−1/γ

α
= u

e−1/2
√
m

e−1/24s
= u

√
m

4s
≥
√

2

gives

P
(
‖B −B(x)‖2→2 ≥ u

)
≤ 23/4ne−

mu2

32s2 , u ≥ 4s
√

2/m.

In particular, if

m >
32s2

u2
log(23/4n) (48)

then there exists a matrix of the form 1
m

∑m
j=1B(zj , z′j) with zj , z′j of the given form ‖x‖∗pλeλ for

some k such that ∥∥∥ 1
m

m∑
j=1

B(zj , z′j)−B(x)
∥∥∥ ≤ u.

As before, we still have to discretize the prefactor ‖x‖∗. Assume that α is chosen such that |‖x‖2∗−α2| ≤
u. Then, similarly as in (38),∥∥∥ 1

m

m∑
j=1

B(α sgn(xλj )eλj , α sgn(xλj′ )eλj′ )

− 1
m

m∑
j=1

B(‖x‖1 sgn(xλj )eλj , ‖x‖1 sgn(xλj′ )eλj′ )
∥∥∥

2→2

= |‖x‖21 − α2|‖ 1
m

m∑
j=1

B(sgn(xλj )eλj , sgn(xλj′ )eλj′ )‖2→2

≤ u

m

m∑
j=1

‖B(sgn(xλj )eλj , sgn(xλj′ )eλj′ )‖2→2 = u.
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Hereby, we used ‖B(sgn(xλj )eλj , sgn(xλj′ )eλj′ )‖2→2 = 1.
As in Section 3.3, we use a discretization of Js = [1, 2s] with about K = d 2s

u e elements, α1, . . . , αK
such that for any β in Js there exists k such |β − α2

k| ≤ u. Now, provided (48) holds, for given x we
can find z̃1, . . . , z̃m, z̃

′
1, . . . , z̃

′
m of the form αk sgn(xλ)eλ, p(λ) ∈ {1,−1, i,−i}, with

‖B(x)− 1
m

m∑
j=1

B(z̃j , z̃′j)‖2→2 ≤ 2u.

Observe as in Section 3.3 that each z̃j can take 4d 2s
u en

2 values, so that 1
m

∑m
j=1B(z̃j , z̃′j) can take at

most (4d 2s
u en

2)2m ≤ (Cn2s/u)2m values. As seen before, this establishes a 4u covering of the set of
matrices B(x) with x ∈ Ts of cardinality at most (Cn2s/u)2m, and we conclude

log(N(Ts, d1, u)) ≤ log((Cn2s/u)2m) ≤ C ′ s
2

u2
log(23/4n) log(Cn2s/u)

≤ C̃ s
2

u2
log(2n) log(n2/u).

This completes the proof of Lemma 6.

4 Probability estimate

To prove Theorem 1(b) will use the following concentration inequality, which is a slight variant of
Theorem 17 in [6], which in turn is an improved version of a striking result due to Talagrand [52]. Note
that with B(x) as defined above, Y below satisfies EY = nEδs.

Theorem 12 Let B = {B(x)}x∈T be a countable collection of n×n complex Hermitian matrices, and
let ε = (ε1, . . . , εn)T be a sequence of i.i.d. Rademacher or Steinhaus random variables. Assume that
B(x)q,q = 0 for all x ∈ T . Let Y be the random variable

Y = sup
x∈T

∣∣∣ε∗B(x)ε
∣∣∣ =

∣∣∣ n∑
q,q′=1

εq′εqB(x)q′,q
∣∣∣.

Define U and V to be
U = sup

x∈T
‖B(x)‖2→2

and

V = E sup
x∈T
‖B(x)ε‖22 = E sup

x∈T

n∑
q′=1

∣∣∣ n∑
q=1

εqB(x)q′,q
∣∣∣2. (49)

Then, for λ ≥ 0,

P
(
Y ≥ E[Y ] + λ

)
≤ exp

(
− λ2

32V + 65Uλ/3

)
. (50)

Proof: For Rademacher variables, the statement is exactly Theorem 17 in [6]. For Steinhaus sequences,
we provide a variation of its proof. For ε = (ε1, . . . , εn), let gM (ε) =

∑n
j,k=1 εjεkMj,k and set

Y = f(ε) = sup
M∈B

∣∣∣gM (ε)
∣∣∣.

Further, for an independent copy ε̃` of ε`, set ε(`) = (ε1, . . . , ε`, ε̃`, ε`+1, . . . , εn) and Y (`) = f(ε(`)).
Conditional on (ε1, . . . , εn), let M̂ = M̂(ε) be the matrix giving the maximum in the definition of Y .
(If the supremum is not attained, then one has to consider finite subsets T ⊂ B. The derived estimate
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will not depend on T , so that one can afterwards pass over to the possibly infinite, but countable, set
B.) Then we obtain, using M̂∗ = M̂ and M̂kk = 0 in the last step,

E
[
(Y − Y (`))21Z>Z(`) |ε

]
≤ E

[
|gcM (ε)− gcM (ε(`))|21Z>Z(`) |ε

]
= E

[
|(ε` − ε̃`)

n∑
j=1,j 6=`

εjM̂j,` + (ε` − ε̃`)
n∑

k=1,k 6=`

εkM̂`,k|21Z>Z(`) |ε
]

≤ 4Eeε` |ε` − ε̃`|2
∣∣∣ n∑
j=1,j 6=`

εjM̂j,`

∣∣∣2 = 8
∣∣∣ n∑
j=1

εjM̂j,`

∣∣∣2.
The remainder of the proof is analogous to the one in [6] and therefore omitted.

We first note that we may pass from Ts to a dense countable subset T ◦s without changing the
supremum, hence Theorem 12 is applicable. Now, it remains to estimate U and V . To this end, note
that (39) implies

U = sup
x∈Ts

‖B(x)‖2→2 ≤ sup
x∈Ts

2s‖x‖2 = 2s .

The remainder of this section develops an estimate of the quantity V in (49). Hereby, we rely on a
Dudley type inequality for Rademacher or Steinhaus processes with values in `2, see below. First we
note the following Hoeffding type inequality.

Proposition 13 Let ε = (εq)nq=1 be a Steinhaus sequence and let B ∈ Cm×n. Then, for u ≥ 0,

P
(
‖Bε‖2 ≥ u‖B‖F

)
≤ 8e−u

2/16. (51)

Proof: In [46, Proposition B.1], it is shown that

P
(
‖Bε‖2 ≥ u‖B‖F

)
≤ 2e−u

2/2. (52)

for Rademacher sequences. We extend this result using the contraction principle [33, Theorem 4.4], as
in the proof of Theorem 3.

In fact, [33, Theorem 4.4] implies that for B ∈ Cn×n and ε being a Steinhaus sequence and ξ a
Rademacher sequence, we have, for example

P(‖Re(B) Re(ε)‖2 ≥ u‖B‖F ) ≤ 2P(‖ReBξ‖2 ≥ u‖B‖F ) ≤ 4e−u
2/2.

Hence,

P(‖Bε‖2 ≥ u‖B‖F ) = P(‖Re(Bε)‖22 + ‖ Im(Bε)‖22 ≥ u2‖B‖2F )

≤ P(‖Re(Bε)‖22 ≥
u2

√
2

) + P(‖ Im(Bε)‖22 ≥
u√
2
‖B‖2F )

≤ P(‖ReBRe ε)‖2 ≥
u√
8
‖B‖2F ) + P(‖ ImB Im ε)‖2 ≥

u√
8
‖B‖2F )

+ P(‖ReB Im ε)‖2 ≥
u√
8
‖B‖2F ) + P(‖ ImBRe ε)‖2 ≥

u√
8
‖B‖2F )

≤ 8e−u
2/16.

With more effort, one may also derive (51) with better constants. Let us now estimate the quantity

V = E sup
x∈Ts

‖B(x)ε‖22 = E sup
x∈Ts

∑
q′=1

|
∑
q=1

εqB(x)q′,q|2.
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It follows immediately from Proposition 13 and (52) that the increments of the process satisfy

P(‖B(x)ε−B(x′)ε‖2 ≥ u‖B(x)−B(x′)‖F ) ≤ 8e−u
2/16. (53)

This allows to apply the following variant of Dudley’s inequality for vector-valued processes in `2.

Theorem 14 Let Rx, x ∈ T , be a process with values in Cm indexed by a metric space (T, d), with
increments that satisfy the subgaussian tail estimate

P(‖Rx −Rx′‖2 ≥ ud(x,x′)) ≤ 8e−u
2/16.

Then, for an arbitrary x0 ∈ T and a universal constant K > 0,(
E sup

x∈T
‖Rx −Rx0‖22

)1/2

≤ K
∫ ∞

0

√
log(N(T, d, u))du, (54)

where N(T, d, u) denote the covering numbers of T with respect to d and radius u > 0.

Proof: The proof follows literally the lines of the standard proof of Dudley’s inequalities for scalar-
valued subgaussian processes, see for instance [44, Theorem 6.23] or [2, 33, 53]. One only has to replace
the triangle inequality for the absolute value by the one for ‖ · ‖2 in Cm.

We have d = d2 defined above, and, hence, (21) provides us with the right hand side of (54). Using
the fact that here, Rx = B(x)ε, we conclude that

V = E sup
x∈Ts

‖B(x)ε‖22 = E sup
x∈Ts

‖B(x)ε−B(0)ε‖22

≤
(
KC

√
ns3/2

√
log(n) log(s)

)2 ≤ C ′ns3/2 log(n) log2(s).

Plugging these estimates into (50) and simplifying leads to our result, compare with [46]. In partic-
ular, Theorem 1(b) follows.
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