
Generalization bounds for deep thresholding networks

Arash Behboodi ∗ Holger Rauhut † Ekkehard Schnoor ‡

Abstract

We consider compressive sensing in the scenario where the sparsity basis (dictionary)
is not known in advance, but needs to be learned from examples. Motivated by the well-
known iterative soft thresholding algorithm for the reconstruction, we define deep networks
parametrized by the dictionary, which we call deep thresholding networks. Based on training
samples, we aim at learning the optimal sparsifying dictionary and thereby the optimal
network that reconstructs signals from their low-dimensional linear measurements. The
dictionary learning is performed via minimizing the empirical risk. We derive generalization
bounds by analyzing the Rademacher complexity of hypothesis classes consisting of such
deep networks. We obtain estimates of the sample complexity that depend only linearly on
the dimensions and on the depth.

1 Introduction

Learning representations of or extracting features from data is an important aspect of deep
neural networks. In the past decade, this approach has led to impressive results and achieved
state-of-the-art performances, e.g., for various classification tasks. However, due to the black-
box nature of the end-to-end learning of neural networks, such features are usually abstract and
difficult to interpret. On the other hand, it has turned out that algorithms such as iterative soft-
thresholding (ISTA) can be regarded as neural networks. Thus, with the help of modern deep
learning software libraries, they can easily be implemented and optimized, such that the trained
parameters can adapt to data sets of interest. When such algorithms are well understood, it
can be possible to transfer results shown for the classical variant to their neural network variant
and in this way increase our understanding of deep neural networks. One variant of this is
the DISTA, which we propose in the present paper, where we consider a joint reconstruction
and dictionary learning problem. Here, the learned representation (a dictionary) is a very well-
understood model in image and signal processing, which can be easily interpreted and visualized.
As a practical application, one may think of reconstructing images from measurements taken
by a medical imaging device. Instead of only trying to reconstruct the image, we would like
to implicitly learn also a meaningful representation system which is adapted to the image class
of interest, and leads to good generalization (e.g., when taking measurements of new patients).
More generally, this is the approach of solving inverse problems in a data-driven way, e.g. by
training neural networks [3, 11].

One of the mysteries of deep neural networks is why in practice they generalize so well,
despite often being overparameterized, i.e., the number of trainable weights being larger than
the sample size [28, 30]. Various techniques have been tried to answer this question, such as
implicit bias [31], a compression approach [2], and a PAC-Bayesian approach [29]. However, the
possible explanations for the generalization of deep neural networks remain unsatisfactory [27],
and the search for good generalization measures is still ongoing [16].
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While so far generalization of neural networks has been studied mostly in the context of clas-
sification using feed-forward neural networks, the case studied here has received less attention so
far from the perspective of generalization. Concretely, our reconstruction problem is a regression
problem, and the network is in fact a recurrent neural network, which is known to be difficult
to train [32]. Due to the weight sharing, this is a non-overparameterized network; however, it
is straightforward to decouple the layers and thus obtain a network which is more similar to
standard feed-forward neural networks. Furthermore, we impose an orthogonality constraint on
the dictionary, which consists of the learned parameters of the network. We derive generaliza-
tion bounds for such thresholding networks with orthogonal dictionaries by estimating Dudley’s
integral (and in particular the covering numbers involved) to upper bound the Rademacher
complexity of hypothesis classes consisting of such deep networks. Since the problem is essen-
tially a regression problem, we use a generalization of Talagrands contraction principle [22] for
vector-valued functions, which is typically not needed when considering real-valued hypothesis
classes, e.g. with the ramp loss (applied to the margin) in a multiclass classification problem [4].

Furthermore, we discuss how imposing structure (such as sparsity) might improve sample
complexity bounds. We believe that the techniques presented are of independent interest far
beyond the particular problem studied here, e.g., for a theoretical investigation of related itera-
tive schemes, general regression problems using neural networks, and in particular autoencoders
and recurrent neural networks.

The paper is structured as follows. In section 2 we precisely introduce DISTA, and formulate
it as a machine learning problem. Section 3 is the main section of this paper, where we derive
a bound for the generalization error. The proof of the main result is sketched in this section,
while detailed proofs of all necessary results are given later in the appendix. Furthermore, we
discuss consequences and directions for possible future work. Finally, in section 4 we present
the results of our numerical experiments and compare it with our theoretical findings in the
section before.

2 Joint Learning of Dictionary and Decoder

2.1 Main definitions and formulation of the problem

We consider the class of signals x ∈ RN which are sparsely representable with respect to a
dictionary Ψ ∈ RN×N . In other words, for each x there is a sparse vector z ∈ RN such that
x = Ψz. The dictionary Ψ is assumed to be unknown. We are given a linear observation
y = Ax ∈ Rn where A ∈ Rn×N is a known measurement matrix. We would like to learn a
dictionary suitable for decoding purpose from a training sequence S := ((xi,yi))i=1,...,m with
i.i.d. samples drawn from a distribution D. (Formally, this is a distribution over the xi, and then
the corresponding measurements yi are given by yi = Axi, with A being deterministic.) The
decoder is based on the unfolded version of the iterative soft thresholding algorithm (ISTA) with
L iterations as follows. The first layer is defined by f1(y) := Sτλ(τ(AΦ)>y), where Sλ : R→ R
(applied entry-wise) is the shrinkage operator defined as

Sλ(x) =

{
0 if |x| ≤ λ,
x− λsign(x) if |x| > λ.

(2.1)

which can also be expressed in closed form as Sλ(x) = sign(x) ·max(0, |x| − λ). For l > 1, the
output is given by

fl(z) := Sτλ

[
z + τ(AΦ)>(y − (AΦ)z)

]
= Sτλ

[(
I− τΦ>A>AΦ

)
z + τ(AΦ)>y

]
, (2.2)

which can be interpreted as a layer of a neural network with weight matrix I − τΦ>A>AΦ,
bias τ(AΦ)>y and activation function Sτλ. Then the decoder is a neural network with shared
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weights Φ in every layer and given by

fLΦ(y) = σ(ΦfL ◦ fL−1 · · · ◦ f1(y)), (2.3)

where the last activation function σ is a 1-Lipschitz thresholding function such that ‖σ(z)‖2 is
bounded.1 The hypothesis set consists of of all functions that can be expressed as a L-step soft
thresholding, where the dictionary matrix Φ parameterizes the hypothesis class

HL := {fLΦ : Rn → RN : fLΦ(x) = σ(ΦfL ◦ fL−1 · · · ◦ f1(y)),Φ ∈ O(N)}.

Here, we assume that Φ ranges over the orthogonal group O(N), which is a typical as-
sumption in dictionary learning; however, different choices of (bounded) parameter sets can
be considered as well. The parameters τ, λ > 0 will be fixed in the following. Based on the
training sequence S and given the hypothesis space HL, a learning algorithm yields a function
hS ∈ HL that aims at reconstructing x from the measurements Ax. The empirical loss is the
reconstruction error on the training sequence, i.e., the difference between xi and x̂i = hS(yi),
i.e.

L̂(h) =
1

m

m∑
j=1

`(h,xj ,yj).

The loss can be chosen, for example, as ‖h(yj)− xj‖2, i.e. measuring the reconstruction error
with respect to the `2-norm. The true loss, i.e., the risk of a hypothesis h is accordingly defined
as

L(h) := Ex,y∼D (`(h,x,y)) .

The generalization error is defined as the difference between the empirical loss and the true loss,

GE(hS) :=
∣∣∣L̂(hS)− L(hS)

∣∣∣ .
(Note that some reference refer to the true loss L(hS) as the generalization error. However,
the above definition is more convenient for our purposes.) We use a Rademacher complexity
analysis to bound the generalization error in the next section.

2.2 Related Work

Compressive sensing using dictionaries has been studied before, but, in contrast to the scenario
discussed here, typically using a fixed (and possibly even redundant) dictionary and a random
measurement matrix [33]. The idea of interpreting gradient-steps of iterative algorithms such
as ISTA [7] for sparse recovery as layers of neural networks is well-known since [12] and has
since then been an active research topic, e.g., [5, 19, 24, 26, 39, 40]. Thresholding networks
fall into the larger class of proximal neural networks studied in [15]. The central problem of
sparse coding is to learn weight matrices for an unfolded version of ISTA. Different works focus
on different parametrization of the network for faster convergence and better reconstructions.
Learning the dictionary can also be implicit in these works. In the present paper, we consider
algorithms that try to find a dictionary suitable for reconstruction. Some of the examples
of these algorithms are recently suggested Ada-LISTA [1], convolutional sparse coding [37]
learning efficient sparse and low-rank models [36]. Like many other related papers, such as
ISTA-Net [41], these methods are mainly motivated by applications like impainting [1]. Instead
of novel algorithmic aspects, our contribution is to conduct a generalization analysis for these
algorithms, which to the best of our knowledge has not been addressed in the literature before
in this particular setting. In this way, we connect this line of research with recent developments

1One may think of a function that shrinks vectors if their norm is beyond a certain thresholding, but the exact
nature of this function is not important for the rest. It is introduced for technical reasons that will be apparent
during our proofs.
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[4, 10] in the study of generalization of deep neural networks. Particularly, we use a similar
framework to [4] by bounding the Rademacher complexity using Dudley’s integral. However,
the approach of [4] applies only to classes of real-valued neural networks, as typically met in
classification problems. The extension to our problem, which is a regression problem with vector-
valued functions, involves additional technicalities requiring a generalized contraction principle
for hypothesis classes of vector-valued functions. Besides, we show linear dimension dependence,
using techniques that are different from the ones in [10]. It is not straightforward to extend the
result of [10] to our case because of the weight sharing between different layers of thresholding
networks. As already pointed out above, the deep thresholding network we analyse is, due to the
weight sharing, a recurrent neural network. The authors of [6] derive VC-dimension of recurrent
networks for recurrent perceptrons with binary outputs. The VC-dimension of recurrent neural
networks for different classes of activation functions has been studied in [20]. However, their
results do not immediately apply to our setup, since they focus on one-dimensional inputs and
outputs, which of course does not suit our vector-valued regression problem, and moreover,
would correspond to taking just one single measurement. Even in the scenario which is closest
to ours, namely fixed piecewiese polynomial activation functions with n = 1, their bound scales
between O(Lw) and O(Lw2), where L is the number of layers and w is the number of trainable
parameters in the network. In our case, the number of trainable parameters are equal to the
dimension of the orthogonal group O(N), which is N(N − 1)/2. Therefore, their bounds scale
betweenO(LN2) andO(LN4). In contrast, if n = 1, our bound scales only likeO(LN). Besides,
we only make use of Lipschitzness of the activation function. Sample complexity of dictionary
learning has been studied before in the literature [9,13,14,34,38]. The authors in [38] also use a
Rademacher complexity analysis for dictionary learning, but they aim at sparse representation
of signals rather than reconstruction from compressed measurements and moreover, they do not
use neural network structures. Fundamental limits of dictionary learning from an information-
theoretic perspective has been studied in [17, 18]. Unique about our perspective and different
to the cited papers is our approach for determining the sample complexity based on learning a
dictionary implicitly by training a neural network.

2.3 Notation

Before we continue with the main part of the paper, let us fix some notation. Vectors v ∈ Rn
and matrices A ∈ Rm×N are denoted with bold letters, unlike scalars λ ∈ R. We will denote the
spectral norm by ‖A‖2→2 and the Frobenius norm by ‖A‖F . The N ×m matrix X contains
the data points, x1, . . . ,xm ∈ RN , as its columns. As a short notation for indices we use [m] :=
{1, . . . ,m}, e.g. (xi)i∈[m] = (x1, . . . ,xm). Analogously Y ∈ Rn×N denotes the matrix collecting
the measurements y1, . . . ,ym ∈ Rn. To make the notation more compact, with a slight abuse of
notation, for fLΦ ∈ HL, we denote by fLΦ(Y ) the matrix whose i-th column is fLΦ(yi). The unit
ball of an n-dimensional normed space V is denoted by Bn

‖·‖ := {x ∈ V : ‖x‖ ≤ 1}. Covering

numbers of a metric space (M, d) at level ε will be denoted by N (M, d, ε). When we consider
subsets of normed spaces where the metric is induced by the norm, we write N (M, ‖ · ‖, ε).
Furthermore, we have already introduced the hypothesis space HL in (2.4). Instead, we write
H if we refer to a general hypothesis space, e.g. when quoting general results from the machine
learning literature.

3 Rademacher Complexity Bounds for Deep Thresholding Net-
works

In order to bound the generalization error we use the Rademacher complexity. For a class G
of functions g : Z → R and a sample S = (z1, . . . , zm) the empirical Rademacher complexity is
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defined as

RS(G) := Eε sup
g∈G

1

m

m∑
i=1

εig(zi), (3.1)

where ε is a Rademacher vector, i.e., a vector with independent Rademacher variables εi, i =
1, . . . ,m, taking the value ±1 with equal probability. The Rademacher complexity is then
given as Rm(G) = ES∼DmRS(G), but note that we will exclusively work with the empirical
Rademacher complexity. Given a loss function ` and a hypothesis class H, one usually considers
the Rademacher complexity of the class G = ` ◦ H = {g((x,y)) = `(h,x,y) : h ∈ H}. We
rely on the following theorem which bounds the generalization error in terms of the empirical
Rademacher complexity.

Theorem 3.1 ( [35, Theorem 26.5]). Let H be a family of functions, and let S be training set
S drawn from Dm. Let ` be areal-valued loss function satisfying |`| ≤ c. Then, for δ ∈ (0, 1),
with probability at least 1− δ we have, for all h ∈ H,

L(h) ≤ L̂(h) + 2RS(` ◦ H) + 4c

√
2 log(4/δ)

m
. (3.2)

To use the above theorem, the loss function needs to be bounded. We make two main
assumptions. Firstly, we assume that the input is bounded in the `2-norm by ‖x‖2 ≤ Bin.
Secondly, for the output, we assume that∥∥fLΦ(y)

∥∥
2
≤ Bout.

Boundedness of the last activation function σ ensures existence of such a constant Bout. More-
over, we will show in Lemma A.1 that in the case of bounded inputs x bounded outputs can
even be guaranteed without the boundedness assumption on σ, although the bound we give in
Lemma A.1 may be improvable in concrete situations. Under the above assumptions, the loss
function `(·), chosen as the `2-distance between the input and the reconstruction, is bounded
bounded as

`(h,y,x) = ‖h(y)− x‖2 ≤ ‖x‖2 + ‖h(y)‖2 ≤ Bin +Bout.

The main challenge and focus of the rest of this section is to bound Rademacher complexity of
` ◦ HL,

Rm(` ◦ HL) = E sup
h∈HL

1

m

m∑
i=1

εi ‖xi − h(yi)‖2 .

Often, e.g., in multiclass classification problems using the margin loss [4], the function h(·) is
real-valued. We can use the classical contraction principle by Talagrand [22] to directly bound
the Rademacher complexity of the hypothesis space. However, in our case the function h(·) is
vector-valued, and the contraction lemma cease to hold. However, since the norm is 1-Lipschitz,
we can use the following generalization of contraction principle for Rademacher complexities of
vector-valued hypothesis classes.

Lemma 3.2 ( [25, Corollary 4]). Let S = (xi)i∈[m] be the training sequence. Suppose that the

function h ∈ H maps X to RN , and the function f is K-Lipschitz from RN to R. Then

E sup
h∈H

m∑
i=1

εif ◦ h(xi) ≤
√

2KE sup
h∈H

m∑
i=1

N∑
k=1

εikhk(xi). (3.3)

The `2-norm appearing in the loss function is 1-Lipschitz. Therefore according to Lemma
3.2, it is enough to bound the following doubly indexed Rademacher complexity

RS(` ◦ HL) ≤
√

2R(2)
S (HL) :=

√
2E sup

h∈HL

1

m

m∑
i=1

N∑
k=1

εikhk(xi).
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3.1 Dudley’s Inequality

We use the following version of Dudley’s inequality [8, Theorem 8.23], with slightly better
constants than [4]. To state the theorem, we require additional definitions. Consider a stochastic
process (Xt)t∈T with the index set T in a space with pseudometric d given by

d(s, t) :=
(
E |Xs −Xt|2

)1/2
.

A zero-mean process Xt for t ∈ T is subgaussian if

E exp(θ(Xs −Xt)) ≤ exp
(
θ2d(s, t)2/2

)
∀ s, t ∈ T , θ > 0.

Finally, define the radius of T as ∆(T ) := supt∈T
√
E|Xt|2. Dudley’s inequality is stated as

follows.

Theorem 3.3 (Dudley’s inequality). Let (Xt)t∈T be a centered (i.e. EXt = 0 for every t ∈ T )
subgaussian process with radius ∆(T ). Then

E sup
t∈T

Xt ≤ 4
√

2

∫ ∆(T )/2

0

√
logN (T , d, u)du. (3.4)

We use this inequality to bound the Rademacher complexity term.

3.2 Bounding the Rademacher Complexity

For fixed number of layers L ∈ N, define the set M⊂ RN×m as

M :=
{

(h(x1)| . . . |h(xm)) ∈ RN×m : h ∈ HL
}

=
{
fLΦ(Y ) ∈ RN×m : fLΦ ∈ HL

}
. (3.5)

Note that M is parameterized by Φ ∈ RN×N (as HL is), such that we can rewrite (3.4) as

R(2)
S (HL) = E sup

M∈M

1

m

m∑
i=1

N∑
k=1

εikMik. (3.6)

We use Dudley’s inequality and a covering number argument to bound the Rademacher com-
plexity term The Rademacher process defined in (3.6) is a subgaussian process, and therefore,
we can apply Dudley’s inequality. For the set of matricesM defined in (3.5), the radius can be
estimated as

∆(M) = sup
h∈HL

√√√√E

(
m∑
i=1

N∑
k=1

εikhk(xi)

)2

≤ sup
h∈HL

√√√√ m∑
i=1

N∑
k=1

hk(xi)2

≤ sup
h∈HL

√√√√ m∑
i=1

‖h(xi)‖22

≤
√
mBout.

Plugging this bound in Dudley’s inequality, we obtain (3.7).

R(2)
S (HL) ≤ 4

√
2

m

∫ √mBout/2

0

√
logN (M, ‖ · ‖F , ε)dε.

To derive the generalization bound, it suffices to bound the covering number ofM. We relate
the covering number of M to the covering number of the parameter space Φ. The following
theorem establishes this connection via a perturbation analysis argument.
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Theorem 3.4. Consider the thresholding networks fLΦ defined as in (2.3) with L ≥ 2 and
dictionary Φ in O(N). Then, for any Φ1,Φ2 ∈ O(N) we have

‖fLΦ1
(Y )− fLΦ2

(Y )‖F ≤ KL‖AΦ1 −AΦ2‖2→2 (3.7)

where KL is given by

KL = τ‖Y ‖F

[
1 +

L∑
l=2

(1 + τ‖A‖22→2)L−l +

(
1 + 2τ‖A‖22→2

l−2∑
k=0

‖I− τATA‖k2→2

)]
. (3.8)

If τ‖A‖22→2 ≤ 1, it has the simplified upper bound

KL ≤ τ‖Y ‖F (1 + 6 · 2L) ≤ 7τ‖Y ‖F 2L. (3.9)

The proof is provided in the supplementary material in Appendix A. In particular, the proof
of (3.9) is based on the following observation. Because it will be useful sometimes in the sequel,
we already state it at this point.

Remark 3.5. The N × N - matrix A>A is rank deficient in the compressive sensing setup
(n < N). If in addition τ ‖A‖22→2 ≤ 1 then

∥∥I− τA>A
∥∥

2→2
= 1.

Before we state the main result, we need the following covering number estimate, which,
together with Theorem 3.4, will give us an estimate of the covering number N (M, ‖ · ‖F , ε)
appearing in Dudley’s integral (3.7).

Lemma 3.6 (Covering numbers of A applied to the orthogonal group). For a fixed matrix
A ∈ Rn×N consider

W := {AΦ : Φ ∈ O(N)} ⊂ Rn×N ,

i.e., A applied to the orthogonal group. The covering number estimate is given by

N (W, ‖ · ‖2→2, ε) ≤
(

1 +
2‖A‖2→2

ε

)nN
.

Proof. The following lemma is a standard result for covering number estimates which can be
found in various sources; as a reference, see [8, Proposition C.3].

Lemma 3.7. Let ε > 0 and let ‖ · ‖ be a norm on a n-dimensional vector space V . Then, for
any subset U ⊆ B‖·‖ := {x ∈ V : ‖x‖ ≤ 1} it holds

N (U, ‖ · ‖, ε) ≤
(

1 +
2

ε

)n
.

Consequently, we obtain the following covering number estimate for the orthogonal group O(N).

Corollary 3.8 (Covering numbers of the orthogonal group). For the covering numbers of the
orthogonal group (O(N), ‖ · ‖2→2) equipped with the spectral norm we have

N (O(N), ‖ · ‖2→2, ε) ≤
(

1 +
2

ε

)N2

.

Proof. The orthogonal group O(N) is contained in BN×N
‖·‖2→2

and therefore Lemma 3.7 applies.

Finally, we can prove the covering number estimate from Lemma 3.6, which we use to prove
our main result. Note that considering A applied to the orthogonal group O(N) instead of
O(N) itself leads to a much better better dimension dependence with nN instead of N2 in the
exponent (recall, that n < N or even n� N in the compressive sensing setting).
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Using that for any Φ ∈ O(N) the matrix AΦ/‖A‖2→2 is contained in the unit ball of Rn×N
with respect to the spectral norm, Lemma 3.7 gives

N (W, ‖ · ‖2→2, ε) =N ({AΦ : Φ ∈ O(N)}, ‖ · ‖2→2, ε)

=N ({AΦ/‖A‖2→2 : Φ ∈ O(N)}, ‖ · ‖2→2, ε/‖A‖2→2)

≤
(

1 +
2‖A‖2→2

ε

)nN
,

which proves the lemma.

Note that considering the set W instead of the orthogonal group O(N) itself results in a
better dimension dependence and takes n, the number of measurements, into account. Now we
are ready to state and prove our main result.

Theorem 3.9. Consider the hypothesis space HL defined in 2.4. With probability at least 1−δ,
the generalization error for any fLΦ is bounded as

L(fLΦ) ≤ L̂(fLΦ) + 8Bout

√
Nn

m
log e

(
1 +

4KL ‖A‖2→2√
mBout

)
+ 4(Bin +Bout)

√
2 log(4/δ)

m
,

where KL is the perturbation bound in (3.8).

Proof. Using Lemma 3.6, the covering numbers of M are bounded by

N (M, ‖ · ‖F , ε) ≤N (KL{AΦ : Φ ∈ O(N)}, ‖ · ‖2→2, ε)

=N ({AΦ : Φ ∈ O(N)}, ‖ · ‖2→2, ε/KL)

≤
(

1 +
2 ‖A‖2→2KL

ε

)nN
.

If we plug this into Dudley’s integral, we obtain

E sup
M∈M

1

m

m∑
i=1

N∑
k=1

εikMik ≤
4
√

2

m

∫ √mBout/2

0

√
logN (M, ‖ · ‖F , ε)dε

≤4
√

2

m

∫ √mBout/2

0

√
nN

√
log

(
1 +

2 ‖A‖2→2KL

ε

)
dε

≤4
√

2nN

m

√
mBout

2

√
log e

(
1 +

2KL ‖A‖2→2√
mBout/2

)

=2
√

2Bout

√
Nn

m
log e

(
1 +

2KL ‖A‖2→2√
mBout/2

)
,

where we have used the following inequality for the last step [8][Lemma C.9]∫ α

0

√
log

(
1 +

β

t

)
dt ≤ α

√
log e(1 + β/α). (3.10)

The theorem is obtained using Theorem 3.1, Lemma 3.3 and 3.4.

Theorem 3.9 holds for general τ and A. However, the convergence analysis of ISTA [7] shows
that the algorithm may not converge if these parameters are not properly chosen. We assume
that τ and A are such that τ ‖A‖22→2 ≤ 1 to ensure convergence. The above theorem is then
simplified to the following corollary using 3.9.
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Corollary 3.10. With the hypothesis space HL defined as 2.4, assume that τ ‖A‖22→2 ≤ 1.
Then, with probability at least 1− δ, the generalization error for any fLΦ is bounded as

L(fLΦ) ≤ L̂(fLΦ) + 8Bout

√
NnL

m

(
1 + log

(
2 +

14Bin

Bout

))
+ 4(Bin +Bout)

√
2 log(4/δ)

m
. (3.11)

3.3 Further remarks and outlook

Some remarks are in order. The above generalization bound holds for general data distributions.
However, the corollary is particularly interesting in the compressive sensing setup where the
number of measurements n is smaller than N . Suppose that the input data x is s-sparse in
a basis Ψ. According to compressive sensing theory, n = Ω(s log(N/s)) random subgaussian
measurements is sufficient for reconstruction of input using many algorithms including ISTA.
In other words, the hypothesis class includes a hypothesis with recovery guarantees. Ignoring
logarithmic factors, this means that Õ(NsL) samples are required for controlling both the
generalization error and the reconstruction error. Under certain conditions, ISTA with a known
dictionary can perfectly recover the input. One example is if A satisfies the so-called (ε, s) -
restricted isometry property (RIP), that is

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22

for all s-sparse vectors x ∈ RN . In such a case, empirical risk minimization (ERM) not only
generalizes well, but also yields a small reconstruction error. Let us summarize this in the
following remark.

Remark 3.11. With the hypothesis spaceHL defined as 2.4, assume that τ ‖A‖22→2 ≤ 1. Suppose
that a dictionary has been found such that ISTA can perfectly recover all the inputs from the
distribution D. Then, with probability at least 1− δ, we have

L(ERMS) ≤ 8Bout

√
Nn

m
log e

(
1 +

7τ ‖Y ‖F 2L

Bout
√
m

)
+ 4(Bin +Bout)

√
2 log(4/δ)

m
, (3.12)

where ERMS is the empirical risk minimizer hypothesis.

We expect that our theoretical results can be extended to far more general scenarios. The
method used for the generalization error can be applied as well for cases where a different
dictionary or a non-orthogonal dictionary is used at each layer. One might expect to obtain
better results when the structure of data is taken into account. All these derivations are expected
to follow from a similar framework presented in this paper.

4 Thresholding Networks for Sparse Recovery

We obtained a worst-case bound on the sample complexity that holds uniformly over the hy-
pothesis space and for any arbitrary data distribution. Although the bound is quite simple and
general, it is interesting to see if it can be improved for data from (realistic) low complexity
distributions, or whether the generalization error behaves similarly when it is applied e.g. to
sparse recovery tasks. Since ISTA is used mainly in sparse coding and recovery, this scenario
suggests itself.

We consider a synthetic dataset as well as the MNIST data set [21]. For both cases, the
measurement matrix is a random Gaussian matrix properly normalized to guarantee convergence
of soft-thresholding algorithms. The synthetic data is generated for different input and output
dimensions and sparsity level. The original dictionary is a random orthogonal matrix. The
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default parameters are N = 100, n = 80 and sparsity equal to 20. Sparse vectors in the
dictionary basis are generated by choosing their support uniformly randomly and non-zero
values according to the standard normal distribution. The experiments for the synthetic data
are repeated 10 times, and the results are averaged over the repetitions. For both the MNIST
and the synthetic dataset, we sweep over L,N and n to see how the generalization error behaves.

There are different ways to implement the orthogonality constraint for weight matrices. One
way [23] is based on the fact that the matrix exponential mapping provides a bijective mapping
from the skew-symmetric matrices onto the special orthogonal group SO(N). However, we use
an alternative method of adding a regularization term ‖I−Φ>Φ‖F (or another matrix norm)
to the loss function, which means to penalize if Φ is far from being orthogonal.

We choose different number of measurements and layers for both datasets. For each one,
the network is trained for a few epochs. Mostly not more than 10 epochs are required to get
first promising results, and often times, the loss goes down very slowly after 10 epochs.

All experiments (see Figure 1a) show that it is possible to recover the original vectors x with
as few as 10 layers, which is less than typical when using ISTA (see supplementary materials for
some visuals). Note that the error in the MNIST experiments is the pixel-based error normalized
by the image dimension. We have chosen Iterative soft thersholding algorithm (ISTA) with a
similar structure and 5000 iterations. The result warrants the applicability of dictionary learning
for sparse reconstruction.

(a) Absolute reconstruction error for different
measurements of MNIST

(b) Generalization error for different measure-
ments of MNIST

Figure 1: MNIST dataset

Figure 2a confirms the dependence of the generalization error on the number of measure-
ments n. Increasing the number of measurements increases the generalization error for a fixed
number of layers (compare plots for various values of n). However, for the MNIST dataset,
it seems that increasing the number of measurements decreases the generalization error. The
generalization error also decreases by increasing the number of layers for both synthetic and
MNIST dataset. See Figure 1b, 2a and 2b. Besides, Figure 2b shows that increasing N decreases
the generalization error.

This is, however, not unexpected. As we mentioned above, the sample complexity is sup-
posed to apply to all possible input distributions, If we restrict ourselves to distributions over
low complexity sets, then various worst-case bounds in our analysis might be improved. The
experiments seem to confirm this intuition. Namely, for the MNIST dataset there is a clear
improvement with increasing measurement numbers and the number of layers. This is intuitive
from a compressive sensing standpoint, as more number of layers in ISTA leads to better results
and more measurements provide more information about the input.

On the other hand, the synthetic dataset shows that the generalization error increases with
the input dimension and the number of layers. Note that the bound of this paper is obtained for
a very general setting where nothing is assumed on the data structure. Additional assumptions
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on the structure of the problem can be used the improve the current bound. Nonetheless, the
linear dimension dependency of the current bound makes it a very good baseline for future
comparisons.

(a) Generalization error for different measure-
ments of synthetic data

(b) Generalization error for different input di-
mensions of synthetic data

Figure 2: Synthetic dataset

There are many ideas for improving the performance of this method experimentally. Firstly,
it has been noted in many works that training RNN architectures are difficult in general. Many
works on LISTA, however, use a different dictionary at each layer, which eases the training
procedure. We expect that the proposed method can be improved and tested on various bench-
marks with ideas borrowed from research on LISTA.

5 Conclusion and Outlook

In this paper, we have derived a generalization bound for deep thresholding networks like
LISTA. To the best of our knowledge, this is the first result of its kind, where most works so
far focused on applications. Our proof utilizes a Rademacher complexity analysis and obtains
generalization bounds with only linear dependence on the dimension. Particularly, we have
applied the contraction principle Lemma 3.3 for vector-valued functions in the context of deep
neural networks. With this tool, it is possible to analyze considerably more general situations
than just hypothesis classes consisting of real-valued functions. In this way, it is also possible to
study general regression problems, whereas so far, research has strongly focused on classification
using feed-forward neural networks. Regression problems of particular interest (that are similar
to the present scenario) are in general all autoencoders, which may be analysed using the
same approach. In particular, analogously to the number of measurements n appearing in
our generalization bound, we expect that the number of latent variables plays a similar role
for general autoencoders. The comparison of our theoretical results and the numerical results
suggests that we might be able to obtain tighter generalization bounds of neural networks for
structured input data. Future works consist of also considering more intricate structures with
more flexible weight sharing between the layers and also learning the parameters simultaneously.
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[17] A. Jung, Y. C. Eldar, and N. Görtz. Performance limits of dictionary learning for sparse
coding. In 2014 22nd European Signal Processing Conference (EUSIPCO), pages 765–769,
2014.
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Appendix

A Proof of Theorem 3.4

In this section we prove Theorem 3.4. It is a key ingredient for the proof of the main result,
Theorem 3.9, but also interesting in its own right. As a preparation, we need the following
Lemma.

Lemma A.1. For any Φ ∈ O(N), l ∈ N, and arbitrary τ, λ > 0 in Sτλ in the definition (2.2)
of f lΦ, we have

∥∥∥f lΦ(Y )
∥∥∥
F
≤
∥∥∥τ(AΦ)>Y

∥∥∥
F

l−1∑
k=0

∥∥∥I− τΦ>A>AΦ
∥∥∥k

2→2
(A.1)

≤ τ‖A‖2→2‖Y ‖F
l−1∑
k=0

∥∥∥I− τA>A
∥∥∥k

2→2
. (A.2)

Proof. We only need to prove (A.1). The second inequality (A.2) then follows immediately
using the orthogonality of Φ. Thus, we turn to the prove of (A.1) via induction. Clearly, for
l = 1, we have

∥∥f1
Φ(Y )

∥∥
F

=
∥∥τ(AΦ)>Y

∥∥
F

. Assuming the statement is true for l, we obtain
it for l + 1 by the following chain of inequalities, using in particular the contractivity Sτλ with
respect to the Frobenius norm,∥∥∥f l+1

Φ (Y )
∥∥∥
F

=
∥∥∥Sτλ [(I− τΦ>A>AΦ

)
f lΦ(Y ) + τ(AΦ)>Y

]∥∥∥
F

≤
∥∥∥(I− τΦ>A>AΦ

)
f lΦ(Y )‖F + ‖τ(AΦ)>Y

∥∥∥
F

≤
∥∥∥I− τΦ>A>AΦ

∥∥∥
2→2

∥∥∥f lΦ(Y )
∥∥∥
F

+
∥∥∥τ(AΦ)>Y

∥∥∥
F

≤
∥∥∥τ(AΦ)>Y

∥∥∥
F

l−1∑
k=0

∥∥∥I− τΦ>A>AΦ
∥∥∥k+1

2→2
+
∥∥∥τ(AΦ)>Y

∥∥∥
F

=
∥∥∥τ(AΦ)>Y

∥∥∥
F

l∑
k=0

∥∥∥I− τΦ>A>AΦ
∥∥∥k

2→2
.

Now we turn to the actual proof of Theorem 3.4.

Proof of Theorem 3.4. We formally set f0
Φ1

(Y ) = f0
Φ2

(Y ) = Y for a unified treatment of all
layers l ≥ 1. Using the fact that Sτλ is 1-Lipschitz we obtain∥∥∥f lΦ1

(Y )− f lΦ2
(Y )

∥∥∥
F

≤
∥∥∥(I− τ(AΦ1)>AΦ1

)
f l−1
Φ1

(Y ) + τ(AΦ1)>Y (A.3)

−
(
I− τ(AΦ2)>AΦ2

)
f l−1
Φ2

(Y )− τ(AΦ2)>Y
∥∥∥
F

≤
∥∥∥f l−1

Φ1
(Y )− f l−1

Φ2
(Y )

∥∥∥
F

+ τ‖AΦ1 −AΦ2‖2→2‖Y ‖F

+ τ
∥∥∥(AΦ2)>AΦ2f

l−1
Φ2

(Y )− (AΦ1)>AΦ1f
l−1
Φ1

(Y )
∥∥∥
F
. (A.4)

We further estimate the term in (A.4) by introducing mixed terms and applying the triangle
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inequality,∥∥∥(AΦ2)>AΦ2f
l−1
Φ2

(Y )− (AΦ1)>AΦ1f
l−1
Φ1

(Y )
∥∥∥
F

≤
∥∥∥(AΦ2)>AΦ2f

l−1
Φ2

(Y )− (AΦ1)>AΦ2f
l−1
Φ2

(Y )
∥∥∥

+
∥∥∥(AΦ1)>AΦ2f

l−1
Φ2

(Y )− (AΦ1)>AΦ1f
l−1
Φ2

(Y )
∥∥∥
F

+
∥∥∥(AΦ1)>AΦ1f

l−1
Φ2

(Y )− (AΦ1)>AΦ1f
l−1
Φ1

(Y )
∥∥∥
F

≤
∥∥∥(AΦ2 −AΦ1)>

∥∥∥
2→2
‖AΦ2‖2→2

∥∥∥f l−1
Φ2

(Y )
∥∥∥
F

+
∥∥∥(AΦ1)>

∥∥∥
2→2
‖AΦ2 −AΦ1‖2→2

∥∥∥f l−1
Φ2

(Y )
∥∥∥
F

+
∥∥∥(AΦ1)>AΦ1

∥∥∥
2→2

∥∥∥f l−1
Φ2

(Y )− f l−1
Φ1

(Y )
∥∥∥
F

≤‖AΦ2 −AΦ1‖2→2 ‖A‖2→2

∥∥∥f l−1
Φ2

(Y )
∥∥∥
F

+ ‖A‖2→2 ‖AΦ2 −AΦ1‖2→2

∥∥∥f l−1
Φ2

(Y )
∥∥∥
F

+
∥∥∥A>A

∥∥∥
2→2

∥∥∥f l−1
Φ2

(Y )− f l−1
Φ1

(Y )
∥∥∥
F

≤2 ‖AΦ2 −AΦ1‖2→2 ‖A‖2→2

∥∥∥f l−1
Φ2

(Y )
∥∥∥
F

+
∥∥∥A>A

∥∥∥
2→2

∥∥∥f l−1
Φ2

(Y )− f l−1
Φ1

(Y )
∥∥∥
F
.

Plugging this estimate into (A.4) and and applying Lemma A.1 in the second inequality
below yields ∥∥∥f lΦ1

(Y )− f lΦ2
(Y )

∥∥∥
F

(A.5)

≤
(

1 + τ
∥∥∥A>A

∥∥∥
2→2

)∥∥∥f l−1
Φ1

(Y )− f l−1
Φ2

(Y )
∥∥∥
F

+ τ ‖AΦ2 −AΦ1‖2→2

(
‖Y ‖F + 2 ‖A‖2→2

∥∥∥f l−1
Φ2

(Y )
∥∥∥
F

)
≤
(
1 + τ‖A‖22→2

) ∥∥∥f l−1
Φ1

(Y )− f l−1
Φ2

(Y )
∥∥∥
F

+ τ‖Y ‖F ‖AΦ2 −AΦ1‖2→2

(
1 + 2τ ‖A‖22→2 Zl−1

)
(A.6)

≤A
∥∥∥f l−1

Φ1
(Y )− f l−1

Φ2
(Y )

∥∥∥
F

+Bl ‖AΦ2 −AΦ1‖2→2 , (A.7)

where Zl (with l ≥ 0) in (A.6) and A, Bl (with l ≥ 1) in (A.7) are defined as

A :=
(
1 + τ‖A‖22→2

)
,

Z0 := 0, Zl :=
l−1∑
k=0

∥∥∥I− τA>A
∥∥∥k

2→2
, l ≥ 1,

Bl := τ‖Y ‖F
(

1 + 2τ ‖A‖22→2 Zl−1

)
, l ≥ 1.

Using these abbreviations, the general formula for KL in (3.8) has the compact form

KL =

L∑
l=1

AL−lBl, L ≥ 1. (A.8)

Based on (A.7) we prove via induction that (3.7) holds for any number of layers L ∈ N with
KL given by (A.8). For L = 1, we can directly calculate the constant K1 via∥∥f1

Φ1
(Y )− f1

Φ2
(Y )

∥∥
F

=
∥∥∥Sτλ(τ(AΦ1)>Y )− Sτλ(τ(AΦ2)>Y )

∥∥∥
F

≤τ‖Y ‖F ‖AΦ1 −AΦ2‖2→2 ,
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so that K1 = τ‖Y ‖F = B1, as claimed in (A.8). Plugging this into the estimate for the second
layer L = 2 and using (A.7), we obtain∥∥f2

Φ1
(Y )− f2

Φ2
(Y )

∥∥
F
≤ A

∥∥∥f1
Φ1

(Y )− f l−1
Φ2

(Y )
∥∥∥
F

+B2‖AΦ2 −AΦ1‖2→2

≤ AK1‖AΦ2 −AΦ1‖2→2 +B2‖AΦ2 −AΦ1‖2→2

≤ (AB1 +B2)‖AΦ2 −AΦ1‖2→2.

Hence, K2 = AB1 + B2 =
∑2

l=1A
2−lBl, which is of the claimed form (A.8) with L = 2. Now

we proceed with the induction step, assuming formula (A.8) to hold for some L ∈ N. Applying
the estimate after (A.5) for the output after layer L+ 1, we obtain∥∥∥fL+1

Φ1
(Y )− fL+1

Φ2
(Y )

∥∥∥
F
≤A

∥∥fLΦ1
(Y )− fLΦ2

(Y )
∥∥
F

+BL+1 ‖AΦ2 −AΦ1‖2→2

≤AKL‖AΦ2 −AΦ1‖2→2 +BL+1‖AΦ2 −AΦ1‖2→2

≤(AKL +BL+1)‖AΦ2 −AΦ1‖2→2,

and therefore,

KL+1 = AKL +BL+1 = A
L∑
l=1

AL−lBl +BL+1 =
L∑
l=1

AL−l+1Bl +BL+1 =
L+1∑
l=1

A(L+1)−lBl.

This is the desired expression for KL+1 and finishes the proof of (3.7). It remains to prove
the upper bound (3.9). Plugging in the assumption τ ‖A‖22→2 ≤ 1 as well as the observation∥∥I− τA>A

∥∥
2→2

= 1 from Remark 3.5 into (3.8), we obtain

KL ≤ τ‖Y ‖F

[
1 +

L∑
l=2

2L−l (1 + 2(l − 2))

]
= τ‖Y ‖F

[
1 + 2L−2

L−2∑
k=0

2−k (1 + 2k)

]
.

The sum can be further bounded by passing to the infinite series, which can be directly calculated
(similar to the case of a geometric series).

L−2∑
l=0

2−l (1 + 2l) ≤
∞∑
l=0

2−l (1 + 2l) = 6.

Together, this gives us the desired result.
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B Reconstruction Comparisons

In Figure 3 and 4, examples of reconstructed images are shown for different number of layers,
using 200 (Figure 3) and 500 (Figure 4) measurements. (Recall that the MNIST images are of
pixel size 28× 28 = 784.)

(a) L = 10 (b) L = 100 (c) L = 1000 (d) Original

Figure 3: MNIST examples: reconstruction from 200 measurements with different number of
layers L.
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(a) L = 10 (b) L = 100 (c) L = 1000 (d) Original

Figure 4: MNIST examples: reconstruction from 500 measurements with different number of
layers L.
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