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ABSTRACT

Recovery of functions of many variables from sample values
usually suffers the curse of dimensionality: The number of
required samples scales exponentially with the spatial dimen-
sion. In order to avoid this severe bottleneck, one needs to im-
pose further structural properties of the function to be recovered
apart from smoothness. Here, we build on ideas from com-
pressive sensing and introduce a function model that involves
“sparsity with respect to dimensions” in the Fourier domain.
Using recent estimates on the restricted isometry constants of
measurement matrices associated to randomly sampled trigono-
metric systems, we show that the number of required samples
scales only logarithmically in the spatial dimension provided
the function to be recovered follows the newly introduced high-
dimensional function model.

Keywords— Functions in high dimensions, compressive
sensing, sparse Fourier expansions, Fourier algebra, restricted
isometry property.

1. INTRODUCTION

Many applied problems lead to the problem of recovering a
function of a large number of variables. We mention areas like
machine learning, mathematical finance, numerical simulation
of stochastic PDEs and in quantum mechanics. Typically, one
faces the curse of dimensionality, which makes such problems
notoriously hard. In this paper we suggest a new function model
and an associated reconstruction method that avoids the curse of
dimensionality to some extent.

Assume that f : [0, 1]d ! C is a function of d variables,
where d is large. Our goal is to approximate f accurately based
on sample values f(x1), . . . , f(x

m

), with x
`

2 [0, 1]d, ` =
1, . . . ,m.

The following is well-known: Suppose that f is s-times con-
tinuously differentiable, f 2 Cs([0, 1]d). Then there exists
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sampling points t1, . . . , tm and a linear reconstruction method,
which computes a function ef from the sampling values such that

kf � efk1  Ckfk
C

sm�s/d, (1)

where kgk1 := sup
t2[0,1]d |g(t)| as usual. The appearance of

d in the exponent s/d is commonly called the curse of dimen-
sionality, as it severely deteriorates the reconstruction error in
high dimensions. Expressed differently, we require a number of
samples m � c"�d/s in order to have the reconstruction error
below ", that is, we have an exponential scaling of m in d.

The estimate (1) is sharp in the sense that for each set of m
points x1, . . . , xm

and each reconstruction map we can find a
function in Cs([0, 1]d), such that the reconstruction error can-
not be smaller than the right hand side in (1), see [5]. In other
words, one needs to impose further assumptions on f aside from
smoothness in order to avoid (or at least weaken) the curse of
dimension.

2. SPARSITY WITH RESPECT TO DIMENSIONS

Our goal is to introduce a function model which involves more
structure than just smoothness, and thereby allows to signifi-
cantly reduce the number of required samples. We will exploit
recent ideas from compressed sensing and introduce a struc-
tured sparsity model.

For k 2 Zd, let

�
k

(t) := e2⇡ik·t, t 2 [0, 1]d .

We consider functions which can be well approximated by a
sparse expansion of the form

g(t) =
X

k2S

x
k

�
k

(t) , (2)

where S ⇢ Zd is a finite set. Its cardinality is called the spar-
sity of x or of g, respectively. In sparse approximation or in
compressed sensing, one often makes only a constraint on the
sparsity; one requires it to be less than s, say. In our context, we



impose further restrictions on S. Indeed, we assume that it is of
the form

S = [�n1, n1]⇥ [�n2, n2]⇥ · · ·⇥ [�n
d

, n
d

] \ Zd , (3)

in addition to having cardinality at most s. This means in par-
ticular that

dY

`=1

(2n
i

+ 1)  s . (4)

This requirement tells us that only a few n
i

can be large, and
the remaining ones have to be small. Since the vector n =
(n1, . . . , nd

) will not be prescribed, such setup can be inter-
preted as sparsity with respect to the dimensions: the variables
which play the most important role are not known in advance.
We introduce M

s

as the collection of all sets S 2 Zd of the
form (3) satisfying (4).

In order to compute an approximation of f of sparsity s, one
has to take into account all possible subsets S of the form (3)
with the constraint (4). The subset of indices of Zd that are
contained in one of these sets is a hyperbolic cross,

Hd

s

:= {k 2 Zd,

dY

`=1

(2k
`

+ 1)  s} =
[

S2Ms

S.

The size of a hyperbolic cross can be estimated as

#Hd

s

 Csmin{ln(s)d�1, dln(s)} . (5)

3. RECOVERY VIA COMPRESSIVE SENSING

Given sample values f(t1), . . . , f(t
m

) at points t1, . . . , tm 2
[0, 1]d we propose to compute the Fourier coefficients of the
approximation to f via techniques from compressed sensing.
Let A 2 Cm⇥N with N := #Hd

s

be the sampling matrix with
entries

A
`,k

= �
k

(t
`

), ` = 1, . . . ,m, k 2 Hd

s

. (6)

A by-now classical reconstruction technique is `1-
minimization,

min
x

kxk1 subject to kAx� yk2  ⌘ ,

where kxk
p

= (
P

m

`=1 |x`

|p)1/p for 1  p < 1 as usual, and ⌘
is a suitable parameter reflecting the noise level. Other methods,
such as CoSaMP [11], Iterative Hard Thresholding [1, 9] and
Hard Thresholding Pursuit [8] are applicable as well.

A basic tool for the analysis of these algorithms is the re-
stricted isometry property (RIP) [2, 3]. The restricted isometry
constant �

s

of a matrix A is the smallest number such that

(1� �
s

)kxk22  kAxk22  (1 + �
s

)kxk22 for all s-sparse x .

Informally, A is said to possess the RIP if �
s

is small for rea-
sonable large s. If

�
s

 �⇤

for suitable constants  2 N and �⇤ < 1 then the reconstruction
x# obtained from applying one of the mentioned algorithms to
the noisy measurements y = Ax + z with kzk22  ⌘ satisfies

kx� x#k2  C1
�

s

(x)1p
s

+ C2⌘,

kx� x#k1  D1�s

(x)1 + D2
p

s⌘.

Here the quantity �
s

(x)1 is the best s-term approximation error
of x in `1, that is,

�
s

(x)1 := inf
z is s-sparse

kx� zk1.

The constants  and �⇤ depend on the algorithm. For `1-
minimization, for instance, the best known constants are  = 2
and �⇤ = 0.4652 [7].

As we would like to apply these error estimates, it is impor-
tant to clarify whether the measurement matrix (6) associated
to our setup satisfies the RIP. Since this question is very diffi-
cult to answer in general, we assume that the sampling points
t1, . . . , tm are chosen independently at random according to the
uniform measure on [0, 1]d. Set N := #Hd

s

. If

m � C��2s ln(s)3 ln(N), (7)

then the restricted isometry constant �
s

of the rescaled matrix
1p
m

A satisfies �
s

 � with probability at least 1 � N�� ln3(s)

[10]. Together with the estimate (5), the bound on the samples
(7) is satisfied whenever

m � C 0 ln(d)s ln4(s) .

4. FOURIER ALGEBRAS IN HIGH DIMENSIONS

As the next step we introduce a class of functions in high di-
mensions which is suitable for our purposes. As we work with
trigonometric expansions, it turns out to be natural to measure
errors in the Fourier algebra rather than with respect to the
supremum norm. For a continuous function f 2 C([0, 1]d) we
denote by

c
k

(f) =
Z

[0,1]d
f(x)e�2⇡ik·tdt, k 2 Zd,

its Fourier coefficients. The Fourier algebra A1 = A1([0, 1]d)
consists of all functions with summable Fourier coefficients. Its
norm is given by

kfk
A1 :=

X

k2Zd

|c
k

(f)| .

It is well-known that kfk1  kfk
A1 . Now let ↵ =

(↵1, . . . ,↵d

) be a vector of smoothness indices ↵
`

> 0. We in-
troduce then the anisotropic smoothness space A

↵

is the space
of functions f with finite norm

kfk
A↵ :=

X

k2Zd

|c
k

(f)|(1+|k1|)↵

1 ·(1+|k2|)↵2 · · · (1+|k
d

|)↵d .



This is a kind of anisotropic Hölder space where smoothness is
measured in A1([0, 1]d) instead of C([0, 1]d). A function in A

↵

is required to be very smooth in directions where ↵
`

is large and
it maybe rough in directions where ↵

`

is small.
As already announced we do not wish to prescribe directions

in which f is allowed to be rough, but we would only like to
restrict the number of ”rough directions”. We model such func-
tions by a union of anisotropic Fourier algebras. For a parameter
r > 0 we set

A
r

:=
[

P
` ↵

�1
` r

�1

A
↵

.

An example of a function f in this class would be a function
that is constant in most directions, and only depends on k ⌧ N
variables, f(x) = g(x

i1 , . . . , xik), where g 2 A
↵

([0, 1]k),
↵ = kr(1, 1, . . . , 1). This is the case, for instance, if @

�
g

@x

�
j

,

j = 1, . . . , k, exists for all � = 1, . . . , n with n > kr + 1.
The crucial point is that the variables x

i1 , . . . , xik on which f
depends are not prescribed in advance. This example is similar
to the setup in [6]; but the set A

r

allows more general functions,
so that our setup seems to be more flexible than [6].

Functions in A
r

can be well-approximated by sparse expan-
sions of the form (2), where S 2M

s

, that is, S satisfies (3) and
(4). In order to measure the approximation error, we introduce

e�
s

(f) := e�Ms(f)
A1 := inf

S2Ms,x:supp x⇢S

kf �
X

k2S

x
k

�
k

k
A1

= inf
S2Ms

X

k2Zd\S

|c
k

(f)| .

If f is contained in A
r

then one can show that

e�
s

(f)  C min
↵:

P
↵

�1
` r

�1
kfk

A↵s�r .

Our goal is to achieve the same rate of convergence, having only
sampling values of f at our disposal. Of course, we use all
the preparations above for attacking this task. In particular, we
exploit the restricted isometry property and error estimates from
compressed sensing. Working out all the details leads to the
following result.

Theorem 1. Let r > 0 and s > 0. Assume that m is such that

m � C

✓
1 +

2
r

◆
ln(d)s ln4(s)

Then there eixsts a set of m sampling points t1, . . . , tm 2
[0, 1]d such that for every f 2 A

r

an approximation ef
can be reconstructed from the samples f(t1), . . . , f(t

m

) with
supp(c

k

( ef)) ⇢ Hd

s

. The approximation error satisfies

kf � efk
A1  C 0 min

↵:
P

↵

�1
` r

�1
kfk

A↵ s�r .

The sampling points in the theorem are taken at random
(which allows to use corresponding estimates for the RIP out-
lined above). Since k · k1  k · k

A1 we obtain an estimate in
the supremum norm as well.

The crucial point in the above result is, of course, that the
number of required sampling points only scales logarithmically
in d opposed to the exponential scaling in (1). Therefore, the
curse of dimensionality can be avoided (at least to some extend)
using ideas from compressed sensing.

Detailed proofs will appear in the paper [4].
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