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Abstract—We consider the estimation of doubly selective wireless channels within pulse-

shaping multicarrier systems (which include OFDM systems as a special case). A pilot-

assisted channel estimation technique using the methodology of compressed sensing (CS) is

proposed. By exploiting a channel’s delay-Doppler sparsity, CS-based channel estimation

allows an increase in spectral efficiency through a reduction of the number of pilot symbols

that have to be transmitted. We also present an extension of our basic channel estimator

that employs a sparsity-improving basis expansion. We propose a framework for optimizing

the basis and an iterative approximate basis optimization algorithm. Simulation results using

three different CS recovery algorithms demonstrate significant performance gains (in terms of

improved estimation accuracy or reduction of the number of pilots) relative to conventional

least-squares estimation, as well as substantial advantages of using an optimized basis.
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1 Introduction

The recently introduced principle and methodology of compressed sensing (CS) allows the efficient re-

construction of sparse signals from a very limited number of measurements (samples) [3, 4]. CS has

gained a fast-growing interest in applied mathematics and signal processing. Applications of CS have

been proposed in areas as diverse as coding, information theory, high-dimensional geometry, statis-

tical signal processing, machine learning, Bayesian inference, multi-band signal processing, imaging,

analog-to-information conversion, biosensing, geophysical data analysis, radar, astronomy, metrology,

and communications, see e.g. [5]. In this paper, we apply CS to the estimation of doubly selective (dou-

bly dispersive, doubly spread) channels. We consider pulse-shaping multicarrier (MC) systems, which

include orthogonal frequency-division multiplexing (OFDM) as a special case [6, 7]. OFDM is part of, or

proposed for, numerous wireless standards like WLANs (IEEE 802.11a,g,n, Hiperlan/2), fixed broadband

wireless access (IEEE 802.16), wireless personal area networks (IEEE 802.15), digital audio and video

broadcasting (DAB, DRM, DVB), and future mobile communication systems (UMTS LTE) [8–13].

Coherent detection in such systems requires accurate channel state information (CSI) at the receiver.

Usually, CSI is obtained by embedding training data (pilot symbols) into the transmit signal and using a

standard least-squares (LS) [14] or minimum mean-square error (MMSE) [15] estimator. More advanced

channel estimators for MC transmissions include estimators employing one-dimensional (1-D), double

1-D, or two-dimensional (2-D) MMSE filtering algorithms [16–18]; 2-D irregular sampling techniques

[19]; or basis expansion models [20–22].

Wireless multipath channels tend to be dominated by a relatively small number of clusters of sig-

nificant paths, especially when transmitting over large bandwidths and large signaling durations [23].

Conventional methods for channel estimation do not take advantage of this inherent sparsity of the

transmission channel. In [1, 2], we proposed CS-based techniques for the estimation of delay-Doppler

sparse, doubly selective channels within pulse-shaping MC systems. We were able to demonstrate that

CS provides a constructive way to exploit channel sparsity in the sense that the number of pilot symbols

that have to be transmitted for accurate channel estimation can be reduced. Transmitting fewer pilots

leaves more symbols for transmitting data, which yields an increase in spectral efficiency.

The modeling and estimation of sparse channels have received some attention recently [1, 2, 24–32].

For sparse channel estimation, several other authors have independently proposed the application of CS

methods or methods inspired by the literature on sparse signal representations, more commonly studied

under the rubric of CS these days. Both [24] and [27] considered single-carrier signaling and proposed

variants of the matching pursuit algorithm [33] for channel estimation. The results were primarily based
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on simulation and experimental implementations, without a CS theoretical background. The channel

estimation techniques presented in [24, 28] limited themselves to sparsity in the delay domain, i.e., they

did not exploit Doppler sparsity. The recent work in [29] and its extension to multiple-input/multiple-

output (MIMO) channels [30], on the other hand, considered both MC signaling and sparsity in the

delay-Doppler domain, somewhat similar to [1]. However, [29] studied also single-carrier signaling and

applied a different recovery technique (the Dantzig selector [34]).

In this paper, building on our work in [1, 2], we propose and study CS-based estimation techniques

for doubly selective channels that exploit a channel’s delay-Doppler sparsity to reduce the number of

pilot symbols and, hence, increase the spectral efficiency of MC transmissions. These techniques use

three alternative nonlinear sparse recovery algorithms that have been extensively studied in the recent

CS literature, namely, ℓ1-minimization (also known as basis pursuit) [35, 36], orthogonal matching pursuit

(see [37] and references therein), and CoSaMP [38].

Besides the presentation of our basic compressive channel estimation scheme, this paper offers the

following contributions.

• We propose a time-frequency subsampling that leads to reduced complexity and improved perfor-

mance.

• We present generalized CS-based channel estimators using a sparsity-improving basis expansion of

the channel’s time-frequency coefficients. The improved sparsity is due to a reduction of leakage

effects.

• We propose an iterative basis optimization procedure that aims to minimize sparsity, and we

demonstrate significant performance gains obtained with the optimized basis. Our basis opti-

mization is similar in spirit—but not algorithmically—to dictionary learning techniques recently

proposed in [39–41].

• We demonstrate that CS-based channel estimation can exploit a channel’s delay-Doppler sparsity

for increasing spectral efficiency through a reduction of the number of pilot symbols.

This paper is organized as follows. In Section 2, we describe the MC system model, the general

setup of pilot-assisted channel estimation, and the time-frequency subsampling. Section 3 provides a

brief review of the basic concept of CS and of three recovery algorithms used later. In Section 4, we

analyze the sparsity of the channel’s delay-Doppler representation and present the basic CS-based channel

estimation method. In Section 5, we develop the generalized CS-based channel estimation method using a
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Figure 1: MC system and equivalent channels.

sparsity-improving basis expansion. A framework and an iterative algorithm for optimizing the sparsity-

improving basis are proposed in Section 6. Finally, simulation results presented in Section 7 assess the

performance gains achieved with CS-based channel estimation.

2 Multicarrier System Model

We assume a pulse-shaping MC system for the sake of generality and because of its advantages over

conventional cyclic-prefix (CP) OFDM [6, 42]. This framework includes CP-OFDM as a special case.

The complex baseband domain is considered throughout.

2.1 Modulator, Channel, Demodulator

The block diagram of an MC system is depicted in Fig. 1. The MC modulator generates the discrete-time

transmit signal [6]

s[n] =

L−1
∑

l=0

K−1
∑

k=0

al,k gl,k[n] , (1)

where K and L denote the numbers of subcarriers and transmitted MC symbols, respectively; al,k ∈A
(l= 0, . . . , L−1; k= 0, . . . ,K−1) denotes the complex data symbols, drawn from a finite symbol alphabet

A; and

gl,k[n] , g[n− lN ] ej2π k
K

(n−lN)

is a time-frequency shifted version of a transmit pulse g[n] (N ≥K is the symbol duration). Using an

interpolation filter with impulse response f1(t), s[n] is converted into the continuous-time transmit signal

s(t) =

∞
∑

n=−∞
s[n]f1(t−nTs) , (2)
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where Ts is the sampling period. This signal is transmitted over a noisy, doubly selective channel, at

whose output the receive signal

r(t) =

∫ ∞

−∞
h(t, τ)s(t− τ)dτ + z(t) (3)

is obtained. Here, h(t, τ) is the channel’s time-varying impulse response and z(t) is complex noise.

At the receiver, r(t) is converted into the discrete-time receive signal

r[n] =

∫ ∞

−∞
r(t)f∗2 (t−nTs)dt , (4)

where f2(t) is the impulse response of an anti-aliasing filter. Subsequently, the MC demodulator calcu-

lates the “demodulated symbols”

rl,k = 〈r, γl,k〉 =
∞
∑

n=−∞
r[n]γ∗l,k[n] , l = 0, . . . , L−1 , k = 0, . . . ,K−1 . (5)

Here, γl,k[n] , γ[n− lN ]ej2π k
K

(n−lN) is a time-frequency shifted version of a receive pulse γ[n]. Finally,

the demodulated symbols rl,k are equalized (i.e., divided by estimates of the corresponding channel

coefficients) and quantized according to the data symbol alphabet A.

Combining (2)–(4), we obtain an equivalent discrete-time channel (see Fig. 1) that is described by

the following equation relating the discrete-time signals s[n] and r[n]:

r[n] =

∞
∑

m=−∞
h[n,m]s[n−m] + z[n] , (6)

with the discrete-time time-varying impulse response

h[n,m] =

∫ ∞

−∞

∫ ∞

−∞
h(t+ nTs, τ)f1(t− τ +mTs)f

∗
2 (t) dtdτ (7)

and the discrete-time noise z[n] =
∫ ∞
−∞ z(t)f∗2 (t−nTs)dt.

Despite the superior spectral concentration of smooth (nonrectangular) pulses g[n] and γ[n], in

current MC applications CP-OFDM is almost exclusively used [8–13]. CP-OFDM is a simple special

case of the pulse-shaping MC framework; it is obtained for a rectangular transmit pulse g[n] that is 1 for

n = 0, . . . , N−1 and 0 otherwise, and a rectangular receive pulse γ[n] that is 1 for n = N−K, . . . ,N−1

and 0 otherwise (N−K ≥ 0 is the CP length).

2.2 System Channel

Next, we consider the equivalent system channel that subsumes the MC modulator, interpolation filter,

physical channel, anti-aliasing filter, and MC demodulator (see Fig. 1). Combining (5), (6), and (1), we
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obtain a relation of the form

rl,k =
L−1
∑

l′=0

K−1
∑

k′=0

Hl,k;l′,k′ al′,k′ + zl,k , l = 0, . . . , L−1 , k = 0, . . . ,K−1 , (8)

with zl,k = 〈z, γl,k〉 =
∑∞

n=−∞ z[n]γ∗l,k[n]. Assuming that the intersymbol and intercarrier interference

characterized byHl,k;l′,k′ with (l′, k′) 6= (l, k) is small (which is justified even in highly mobile environments

if g[n] and γ[n] are properly designed [42]), we rewrite (8) as

rl,k = Hl,k al,k + z̃l,k , l = 0, . . . , L−1 , k = 0, . . . ,K−1 , (9)

whereHl,k , Hl,k;l,k and all intersymbol and intercarrier interference is absorbed in the noise/interference

term z̃l,k. The system channel coefficients Hl,k can be expressed in terms of g[n], h[n,m], and γ[n] as [6]

Hl,k =

∞
∑

n=−∞

∞
∑

m=−∞
h[n+ lN,m] g[n−m] γ∗[n] e−j 2π

K
km .

We will need an expression of the system channel coefficients Hl,k in a joint delay-Doppler-domain.

Let us suppose that the receive pulse γ[n] is zero outside [0, Lγ ]. To compute rl,k in (5) for l = 0, . . . , L−1,

we need to know r[n] for n = 0, . . . , Nr−1, where

Nr , (L−1)N + Lγ + 1 .

In this interval, we can rewrite the discrete-time channel (6) as1

r[n] =

∞
∑

m=−∞

Nr−1
∑

i=0

Sh[m, i]s[n−m]ej2π ni
Nr + z[n] , (10)

with the discrete-delay-Doppler spreading function [45]

Sh[m, i] ,
1

Nr

Nr−1
∑

n=0

h[n,m]e−j2π in
Nr , m, i ∈ Z . (11)

Note that Sh[m, i] represents the discrete-time channel (previously characterized by the discrete-time

time-varying impulse response h[n,m]) in terms of discrete delay (time shift) m and discrete Doppler

frequency shift i. Combining (5), (10), and (1) and again including intersymbol and intercarrier inter-

ference in a noise/interference term z̃l,k, we reobtain the system channel relation (9), however with the

system channel coefficients Hl,k now expressed as

Hl,k =
∞
∑

m=−∞

Nr−1
∑

i=0

F [m, i] e−j2π(km
K

−Nli
Nr

), l = 0, . . . , L−1 , k = 0, . . . ,K−1 , (12)

1This expression is effectively equivalent to a basis expansion model using an exponential (Fourier) basis [43, 44].
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where

F [m, i] , Sh[m, i]A∗
γ,g

(

m,
i

Nr

)

(13)

with the cross-ambiguity function [46] of the pulses γ[n], g[n]

Aγ,g(m, ξ) ,

∞
∑

n=−∞
γ[n] g∗[n−m]e−j2πξn , m∈ Z, ξ ∈ R .

Note that the function F [m, i] is a discrete-delay-Doppler representation of the system channel coefficients

Hl,k; it equals the discrete-delay-Doppler spreading function of the discrete-time channel, Sh[m, i], up to

a weighting by the pulse-dependent factor A∗
γ,g

(

m, i
Nr

)

.

For CS-based channel estimation, we need to reformulate the relation (12) as a 2-D discrete Fourier

transform (DFT). Let us assume that h[n,m] is causal with maximum delay at most K−1, i.e., h[n,m]

is zero for m 6∈ {0, . . . ,K−1}. Using the approximation Nr ≈ LN (which, by the way, is exact for

CP-OFDM), the system channel coefficients Hl,k can then be expressed as

Hl,k =
K−1
∑

m=0

L−1
∑

i=0

F̃ [m, i] e−j2π(km
K

− li
L

) , l = 0, . . . , L−1 , k = 0, . . . ,K−1 , (14)

with the “pre-aliased” version of F [m, i]

F̃ [m, i] ,

N−1
∑

q=0

F [m, i+ qL] , i∈ Z . (15)

Since both Sh[m, i] and A∗
γ,g

(

m, i
Nr

)

are Nr-periodic with respect to i, F̃ [m, i] is L-periodic with respect

to i. Assuming that L is even, we can hence rewrite (14) as

Hl,k =

K−1
∑

m=0

L/2−1
∑

i=−L/2

F̃ [m, i] e−j2π(km
K

− li
L

) , l = 0, . . . , L−1 , k = 0, . . . ,K−1 . (16)

According to (16), Hl,k is the 2-D DFT of the discrete-delay-Doppler representation F̃ [m, i], with Fourier-

dual variables l (symbol time) ↔ i (Doppler frequency shift) and k (subcarrier frequency) ↔ m (delay).

2.3 Time-Frequency Subsampling and Pilot-Based Channel Estimation

For practical wireless channels as well as transmit and receive pulses, the function F [m, i] in (13) is

effectively supported in a subregion of the delay-Doppler plane. This allows us to perform a subsampling

in the time-frequency domain. Thus, hereafter we assume that the support of F [m, i] (within the

fundamental i period [−Nr/2, Nr/2−1]) is contained in [0,D−1] × [−I/2, I/2−1], where D ≤ K and

I ≤ L. For mathematical convenience, I is chosen even; furthermore, D and I are chosen such that
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∆K , K/D and ∆L , L/I are integers. It follows that the support of F̃ [m, i] (within the fundamental i

period [−L/2, L/2−1]) is contained in [0,D−1]× [−I/2, I/2−1]. Because of (16), the channel coefficients

Hl,k are then uniquely specified by their values on the subsampled time-frequency grid

G , {(l, k) = (l′∆L, k′∆K) : l′ = 0, . . . , I−1 , k′ = 0, . . . ,D−1} .

Furthermore, (16) entails the relation

Hl′∆L,k′∆K =
D−1
∑

m=0

I/2−1
∑

i=−I/2

F̃ [m, i] e−j2π(k′m
D

− l′i
I

) , l′ = 0, . . . , I−1 , k′= 0, . . . ,D−1 . (17)

Note that we also allow the limiting case of no subsampling in either or both dimensions, that is, D = K

(i.e., ∆K = 1) and/or I = L (i.e., ∆L = 1). However, subsampling is beneficial as a means to improve

performance and reduce complexity.

Suppose now that pilot symbols al,k = pl,k are transmitted at time-frequency positions (l, k) ∈ P,

where P ⊂ G, i.e., the pilot position set P is a subset of the subsampled time-frequency grid G. The

pilots pl,k and their time-frequency positions are assumed to be known to the receiver. From (9),

rl,k = Hl,k pl,k + z̃l,k for (l, k) ∈ P. Based on this relation and the known pl,k, the receiver calculates

channel coefficient estimates Ĥl,k at the pilot positions according to

Ĥl,k ,
rl,k
pl,k

= Hl,k +
z̃l,k
pl,k

, (l, k) ∈ P . (18)

Thus, the Hl,k for (l, k) ∈ P are known up to additive noise terms z̃l,k/pl,k. Next, the receiver calculates

channel estimates Ĥl,k for all (l, k) ∈ G, i.e., on the whole subsampled grid, from the Ĥl,k for (l, k) ∈ P.

Some interpolation technique is usually employed for this task. Subsequently, the inverse of the DFT

relation (17) is used to calculate an estimate of F̃ [m, i]. Finally, estimates of all channel coefficients Hl,k

are obtained from (16). In Section 4, we will replace the conventional interpolation-based approach by

a CS-based method.

3 Review of Compressed Sensing

Before presenting the CS-based channel estimation technique, we need to review some CS basics. CS

provides a theoretical framework and efficient algorithms for reconstructing sparse signals from a com-

paratively small number of measurements (samples) [3, 4]. More specifically, CS considers the sparse

reconstruction problem of estimating an unknown sparse vector x ∈ C
M from an observed vector of

measurements y∈C
Q based on the linear model (“measurement equation”)

y = Φx + z . (19)
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Here, Φ∈ C
Q×M is a known measurement matrix and z ∈ C

Q is an unknown vector that accounts for

measurement noise and modeling errors. The reconstruction is subject to the constraint that x is S-

sparse, i.e., at most S of its entries are nonzero. The positions (indices) of the nonzero entries of x are

unknown. Typically, the number of unknowns to be estimated is much larger than the number of known

measurements, i.e., M≫Q. Thus, Φ is a fat matrix.

We shall now review three CS recovery methods that will be used in Section 4.

3.1 Basis Pursuit

We first consider an estimator of x that is given by the following version of basis pursuit (BP) [35, 36]:

x̂ , arg min
x

‖x‖1 subject to ‖Φx − y‖2 ≤ ǫ , (20)

for a given ǫ>0 [35]. This is a convex program that can be solved efficiently by interior-point methods

[47]. The classical BP is reobtained for ǫ = 0, in which case the constraint becomes Φx = y. Note that

the estimate x̂ is not necessarily S-sparse with a given S; however, in general it will be approximately

S-sparse if x is approximately S-sparse, as discussed below.

A performance analysis of BP can be based on the assumption that the measurement matrix Φ

obeys a “restricted isometry hypothesis” [35]. The S-restricted isometry constant δS of Φ is defined as

the smallest positive number δ such that

(1−δ) ‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1+ δ) ‖x‖2
2 (21)

for all S-sparse vectors x∈ C
M. Using the restricted isometry constant δ2S , the performance of BP (20)

is characterized by the following theorem2 [35, 48].

For a given S, assume that the 2S-restricted isometry constant of Φ satisfies

δ2S <
√

2 −1 . (22)

Let x ∈ C
N (not necessarily sparse) and y = Φx + z with ‖z‖2 ≡ ‖y − Φx‖2 ≤ ǫ, and let

xS ∈ C
M contain the S components of x with largest absolute values, the remaining M−S

components being zero (thus, xS is the best S-sparse approximation to x). Then the recon-

struction error of BP (20) is bounded as

‖x̂−x‖2 ≤ C1ǫ + C2
‖x−xS‖1√

S
, (23)

where the constants C1 and C2 depend only on δ2S.

2In [35, 48, 49], this theorem is formulated for the real-valued case. However, it also holds for the complex case, with the

same proof.
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In particular, (23) shows that if x is approximately S-sparse (i.e., x ≈ xS) and the norm of the

noise vector z is small, then the reconstruction error ‖x̂−x‖2 is small and thus also the estimate x̂ is

approximately S-sparse. In the noiseless case (ǫ=0), (23) shows that x̂ = x for any S-sparse vector x.

Conditions under which the measurement matrix Φ satisfies (22) are obviously of interest. It has

been shown [3, 50, 51] that if Φ∈C
Q×M is constructed by selecting uniformly at random Q rows3 from

a unitary M×M matrix U and normalizing the columns (so that they have unit ℓ2 norms), a sufficient

condition for δS ≤ δ to be true with probability 1−η is provided by the following lower bound on the

number of observations:

Q ≥ C3 δ
−2 (lnM)4µ2

US ln(1/η) . (24)

Here, µU ,
√
M maxi,j |Ui,j | (known as the coherence of U) and C3 is a constant.

3.2 Orthogonal Matching Pursuit

The second estimator of x we are considering is orthogonal matching pursuit (OMP) [37]. This is an

iterative algorithm that calculates sequences of partial estimates x̂j , approximations yj to the observation

vector y, and residuals rj = y − yj as summarized in the following.

Initialization (j = 0): Define the residual r0 = y and the empty index set S0 = ∅.

Steps at the jth iteration (j = 1, 2, . . . ):

1. Determine an index sj that satisfies

|〈rj−1,φφsj
〉| = max

s∈{1,...,M}\Sj−1

|〈rj−1,φφs〉| ,

where φφs denotes the sth column of Φ.

2. Augment the index set as Sj = Sj−1 ∪ {sj}. (Note that |Sj | = j.)

3. Calculate a new estimate x̂j such that it has zero entries outside the index set Sj, i.e., supp{x̂j} =

Sj, and the nonzero entries (combined into a j-dimensional vector denoted by x̂j |Sj
) are given by

the solution of a least-squares problem:

x̂j |Sj
= arg min

x∈Cj
‖y−ΦSj

x‖
2

= Φ†
Sj

y .

Here, the Q×j matrix ΦSj
comprises the columns of Φ indexed by Sj and Φ†

Sj
is its Moore-Penrose

pseudoinverse.

3That is, all possible subsets of Q rows are equally likely.
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4. Calculate a new approximation to the observation vector y and a new residual:

yj = Φx̂j = ΦSj
x̂j |Sj

, rj = y−yj .

These steps are repeated until a stopping criterion is satisfied. This may be a predefined number

of iterations (corresponding to a fixed known sparsity S) or a required approximation quality (e.g., the

norm of the residual rj is required to be below a given threshold). Upon termination (at the final

iteration, say, j=J), OMP outputs the J-sparse vector x̂ = x̂J .

Some theoretical results on the performance of OMP are available [52] but they are not as deep as

for BP [53]. However, simulation results demonstrate a similar or even superior average performance;

furthermore, OMP can be implemented more efficiently.

3.3 CoSaMP

The recently proposed CoSaMP algorithm [38] combines the near-optimal (uniform) recovery guarantees

of BP with the advantages of greedy algorithms like OMP, i.e., speed and easy implementation. It is an

iterative algorithm that refines the current estimate x̂j in each iteration. (Note that subspace pursuit

[54] is a very similar method.) The algorithm works as follows.

Initialization (j = 0): Choose a sparsity level S. Let x̂0 be the M -dimensional zero vector, and set

r0 = y.

Steps at the jth iteration (j = 1, 2, . . . ):

1. Let Ωj be the index set corresponding to the 2S largest of the correlations |〈rj−1,φφs〉|, s = 1, . . . ,M ,

where φφs denotes the sth column of Φ. Merge supports according to

Tj = Ωj ∪ supp{x̂j−1} ,

where supp{x̂j−1} is the set of the indices of all nonzero entries of x̂j−1.

2. Calculate the vector bj that has zero entries outside the index set Tj, i.e., supp{bj} = Tj, and

whose nonzero entries (combined into a |Tj|-dimensional vector denoted by bj|Tj
) are given by the

solution of a least-squares vspace*-.5mm problem:

bj|Tj
= arg min

b∈C
|Tj |

‖y−ΦTj
b‖

2
= Φ†

Tj
y .

Here, the Q× |Tj | matrix ΦTj
comprises the columns of Φ indexed by Tj.

3. Calculate the new estimate x̂j as the best S-sparse approximation to bj, i.e., the vector that agrees

with bj in its S largest entries and is zero elsewhere.
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4. Update the residual as rj = y − Φx̂j.

These steps are repeated until a stopping criterion is triggered, which may be a fixed number of

iterations or a required approximation quality. CoSaMP then outputs the last iterate, i.e., x̂ = x̂J ,

where J is the index of the last iteration. Based on the restricted isometry constant δ4S of Φ (see (21)),

the following result on the performance of CoSaMP was stated in [38, Theorem A].

For a given S, assume that the 4S-restricted isometry constant of Φ satisfies δ4S ≤ 0.1. Let

x∈C
M (not necessarily sparse) and y = Φx+z. For a given precision parameter ξ, CoSaMP

produces an S-sparse approximation x̂ that satisfies

‖x− x̂‖2 ≤ C max

{

ξ ,
‖x−xS/2‖1√

S
+ ‖z‖2

}

, (25)

where xS/2∈ C
M contains the S/2 components of x with largest absolute values, the remaining

M−S/2 components being zero (thus, xS/2 is the best S/2-sparse approximation to x). The

computational complexity is O
(

B log(‖x‖2/ξ)
)

, where B is a bound on the cost of a matrix-

vector multiplication with Φ or Φ∗.

The condition δ4S ≤ 0.1 is satisfied if the measurement matrix Φ is constructed from a unitary

matrix as it was described for BP in Section 3.1, provided that (24) is satisfied with an appropriately

chosen δ. The computational complexity of CoSaMP is slightly lower than that of OMP in practice.

3.4 Discussion

BP and OMP are probably the most popular recovery algorithms in the CS literature. Whereas for

BP theoretical performance guarantees are available, OMP lacks similar results. On the other hand,

OMP allows a faster implementation, and simulation results even demonstrate a better recovery perfor-

mance. Low computational complexity is very important for our application, since the channel has to

be estimated in real time during data transmission. The third recovery algorithm we are considering,

CoSaMP, allows an even faster implementation than OMP. Using an efficient implementation of the

pseudoinverse by means of the LSQR algorithm [55], we observed a running time that was only half or

even less than half that of OMP, and a performance that was only slightly poorer than that of OMP. A

major advantage of CoSaMP is the existence of performance bounds analogous to those for BP. Hence,

CoSaMP offers arguably the best compromise between low complexity, good practical performance, and

provable performance guarantees.

12



While there are thus good reasons for using BP, OMP, and CoSaMP for sparse channel estimation,

many other algorithms exist, such as simple thresholding [56], the stagewise OMP [57], the LARS method

[58, 59], etc. In [29, 30], application of the Dantzig selector (DS) [34] to sparse channel estimation was

proposed. DS is especially interesting when the noise vector z is modeled as random, because it satisfies

optimal asymptotic performance bounds in that case. However, for the practically relevant case of finite

(moderate) Q and M , the performance of DS is not necessarily superior. Furthermore, DS assumes

knowledge of the noise statistics, and thus requires an additional estimation step. In our experiments,

we did not observe any performance or complexity advantages of DS over BP.

4 Compressive Channel Estimation

In this section, we first analyze the sparsity of the channel’s delay-Doppler representation for a simple

time-varying multipath channel model. Motivated by this analysis, we then propose CS-based channel

estimators. We also discuss implications regarding the number and time-frequency positions of the pilots.

4.1 Delay-Doppler Sparsity

We assume that the doubly selective wireless channel comprises P propagation paths corresponding to

P specular (point) scatterers with fixed delays τp and Doppler frequency shifts νp for p = 1, . . . , P . This

simple model is often a good approximation to real mobile radio channels [23, 60]. The channel impulse

response thus has the form

h(t, τ) =

P
∑

p=1

ηp δ(τ−τp) ej2πνpt, (26)

where ηp characterizes the attenuation and initial phase of the pth propagation path and δ(·) denotes

the Dirac delta. The discrete-time impulse response (7) then becomes

h[n,m] =

P
∑

p=1

ηp e
j2πνpnTs

∫ ∞

−∞
ej2πνptf1(t− τp +mTs)f

∗
2 (t) dt

=
P

∑

p=1

ηp e
j2πνpnTs φ(νp)

(

m− τp
Ts

)

, (27)

with

φ(ν)(x) ,

∫ ∞

−∞
ej2πνtf1(t+Tsx)f

∗
2 (t) dt .

Furthermore, inserting (27) into (11), we obtain for the discrete-delay-Doppler spreading function

Sh[m, i] =
1

Nr

P
∑

p=1

ηp φ
(νp)

(

m− τp
Ts

)

Nr−1
∑

n=0

ej2π(νpTs− i
Nr

)n.
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Applying the geometric sum formula, this becomes

Sh[m, i] =
P

∑

p=1

ηp e
jπ(νpTs− i

Nr
)(Nr−1)Λ(νp)

(

m− τp
Ts
, i−νpTsNr

)

, (28)

with

Λ(ν)(x, y) , φ(ν)(x)ψ(y) ,

where

ψ(y) ,
1

Nr
ejπ

y

Nr
(Nr−1)

Nr−1
∑

n=0

e−j2π y

Nr
n =

sin(πy)

Nr sin(πy/Nr)
. (29)

The function Λ(ν)(x, y) = φ(ν)(x)ψ(y) describes the leakage effect that is due to the finite transmit

bandwidth (≈ 1/Ts) and the finite blocklength (Nr ≈ LN).

We next investigate the sparsity of Sh[m, i]. In view of expression (28), this essentially amounts to

studying the sparsity of Λ(νp)(m − τp/Ts, i − νpTsNr) = φ(νp)(m − τp/Ts)ψ(i − νpTsNr). To this end, we

first consider the energy of those samples of φ(νp)(m− τp/Ts) whose distance from τp/Ts is greater than

∆m ∈ {1, 2, . . . }, i.e., |m − τp/Ts| > ∆m. We assume that φ(ν)(x) exhibits a polynomial decay,4 i.e.,

|φ(ν)(x)| ≤ C (1 + |x/x0|)−s with s≥1, for some positive constants C and x0. We can then develop the

following bound on the energy of all φ(νp)(m− τp/Ts) with |m− τp/Ts| > ∆m:

∑

|m−τp/Ts|>∆m

∣

∣

∣
φ(νp)

(

m− τp
Ts

)∣

∣

∣

2
≤ C2

∑

|m−τp/Ts|>∆m

(

1 +
∣

∣

∣

m− τp/Ts

x0

∣

∣

∣

)−2s

≤ 2C2
∞
∑

m = ∆m

(

1 +
m

x0

)−2s

≤ 2C2

∫ ∞

∆m−1

(

1 +
x

x0

)−2s
dx

=
2C2x0

2s−1

(

1 +
∆m−1

x0

)−2s+1
.

This shows that the energy of φ(νp)(m−τp/Ts) outside the interval [⌊τp/Ts −∆m⌋, ⌈τp/Ts + ∆m⌉] decays

polynomially of order 2s−1 with respect to ∆m.

In a similar manner, we consider the energy of those samples of ψ(i − νpTsNr) whose distance (up

to the modulo-Nr operation, see below) from νpTsNr is greater than ∆i ∈ {2, . . . , Nr/2} (Nr is assumed

even). Let I denote the set {0, . . . , Nr−1} with the exception of all i= iZ modNr, where iZ is any integer

with |iZ − νpTsNr| ≤ ∆i. From (29), we then obtain the bound

4This includes the following important special cases: (i) the ideal lowpass filter, i.e., f1(t) = f2(t) =
p

1/Ts sinc(t/Ts)

with sinc(x) ,
sin(πx)

πx
; here s = 1; and (ii) the family of root-raised-cosine filters: if both f1(t) and f2(t) are equal to the

root-raised-cosine filter with roll-off factor ρ, then, for ν not too large, φ(ν)(x) ≈ sinc(x) cos(ρπx)/[1−(2ρx)2] and s = 3.
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∑

i∈I

∣

∣ψ(i − νpTsNr)
∣

∣

2 ≤ 2

N2
r

Nr/2
∑

i=∆i

1

sin2
(

π
Nr
i
)

≤ 2

N2
r

∫ Nr/2

∆i−1

dx

sin2
(

π
Nr
x
)

=
2

Nrπ
cot

( π

Nr
(∆i−1)

)

≤ 1

π(∆i−1)
,

where we have used sin2x ≤ 1, some monotonicity arguments, and the fact that cotx ≤ π
2x within [0, π

2 ].

The above bound shows that the energy of ψ(i−νpTsNr) outside the interval [⌊νpTsNr−∆i⌋, ⌈νpTsNr+∆i⌉]
(modulo Nr) decays linearly (polynomially of order 1) with respect to ∆i.

From these decay results, it follows that Λ(νp)(m−τp/Ts, i−νpTsNr) = φ(νp)(m−τp/Ts)ψ(i−νpTsNr)

can be considered as an approximately sparse (or compressible, in CS terminology [35]) function. Thus,

as an approximation, we can model Λ(νp)(m−τp/Ts, i−νpTsNr) as NΛ-sparse, i.e., at most NΛ values of

Λ(νp)(m − τp/Ts, i− νpTsNr) are nonzero, with an appropriately chosen sparsity parameter NΛ. It then

follows from (28) that Sh[m, i] is PNΛ-sparse, and the same is true for F [m, i] in (13) and for F̃ [m, i] in

(15) (in the respective fundamental i period). In the next subsection, we propose a CS-based channel

estimator that exploits this sparsity. Unfortunately, NΛ cannot be chosen extremely small because of

the strong leakage due to the slowly (only linearly) decaying factor ψ(i − νpTsNr). In Section 5, this

limitation will motivate the introduction of a sparsity-improving basis expansion.

We emphasize that the channel model (26) is only used for motivating our CS-based channel esti-

mators via the sparsity arguments described above; it is not used in the formulation of the estimation

algorithms. Thus, our estimators are not restricted to the channel model (26); all they require is the

approximate sparsity of F̃ [m, i].

4.2 CS-based Channel Estimators

We now combine pilot-assisted channel estimation with CS-based signal reconstruction. Our starting-

point is the 2-D DFT relation (17), repeated here for convenience:

Hl′∆L,k′∆K =

D−1
∑

m=0

I/2−1
∑

i=−I/2

F̃ [m, i] e−j2π(k′m
D

− l′i
I

), l′ = 0, . . . , I−1 , k′ = 0, . . . ,D−1 . (30)

This can be written as the 2-D expansion

Hl′∆L,k′∆K =

D−1
∑

m=0

I/2−1
∑

i=−I/2

αm,i um,i[l
′, k′] , (31)
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with

αm,i ,
√
ID F̃ [m, i] , um,i[l

′, k′] ,
1√
ID

e−j2π(k′m
D

− l′i
I

) . (32)

The functions Hl′∆L,k′∆K and um,i[l
′, k′] are both defined for l′ = 0, . . . , I−1 and k′ = 0, . . . ,D−1; we

may thus consider them as I×D matrices. Let h , vec
{

Hl′∆L,k′∆K

}

and um,i , vec
{

um,i[l
′, k′]

}

denote

the vectors of length ID obtained by stacking all columns of these matrices (e.g., h = [h1 · · · hID]T with

hk′I+l′+1 = Hl′∆L, k′∆K). We can then rewrite (31) as

h =

D−1
∑

m=0

I/2−1
∑

i=−I/2

αm,ium,i = Uαα , (33)

where αα , vec
{

αm,i

}

and U is the ID × ID matrix whose
(

(i+ I/2)D +m+1
)

th column is given by

the vector um,i. Because the um,i are orthonormal, U is a unitary matrix.

According to Section 2.3, there are |P| pilot symbols at time-frequency positions (l, k)∈P. Thus, |P|
of the ID entries of the channel vector h are given by the channel coefficients Hl,k at the pilot positions

(l, k)∈P. Let h(p) denote the corresponding length-|P| subvector of h, and let U(p) denote the |P|×ID
submatrix of U constituted by the corresponding |P| rows of U. Reducing (33) to the pilot positions,

we obtain

h(p) = U(p)αα . (34)

Equivalently,

h(p) = Φx , (35)

with

Φ ,

√

ID

P
U(p) and x ,

√

P

ID
αα . (36)

Note that Φ is normalized such that its columns have unit ℓ2-norm, and that the length-ID vector x is,

up to a constant factor, the vector form of the function F̃ [m, i] (on the fundamental i period).

Our task is to estimate x based on relation (35). The vector h(p) is unknown, but estimates of its

entries—the channel coefficient estimates Ĥl,k = rl,k/pl,k at the pilot positions (l, k) ∈ P, see (18)—

are available. Therefore, let us replace h(p) by the corresponding vector of estimates Ĥl,k

∣

∣

(l,k)∈P . For

consistency with the notation used in Section 3, this latter vector will be denoted as y (rather than

ĥ(p)). According to (18),
y = h(p) + z , (37)

where z is the vector of noise terms z̃l,k/pl,k

∣

∣

(l,k)∈P . Inserting (35) into (37), we finally obtain the

“measurement equation”

y = Φx + z . (38)
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According to Section 4.1, x is modeled as PNΛ-sparse. Thus, (38) is seen to be a sparse reconstruction

problem of the form (19), with dimensions M = dim{x} = ID and Q = dim{y} = |P| and sparsity

S=PNΛ. We can hence use the CS recovery techniques reviewed in Section 3 to obtain an estimate of

x or, equivalently, of αα =
√

ID/P x or of F̃ [m, i] = αm,i/
√
ID. From the estimate of F̃ [m, i], estimates

of all channel coefficients Hl,k are finally obtained via (14).

4.3 Measurement Matrix and Pilots

Next, we discuss the construction of the measurement matrix Φ and some implications regarding the

number and positions of the pilots. According to (36), Φ is constructed by selecting |P| rows of the

unitary ID× ID matrix U and normalizing the resulting columns. This agrees with the construction

described in Sections 3.1 and 3.3 in the context of BP and CoSaMP, respectively. To be fully consistent

with that construction, we have to select the |P| rows of U uniformly at random. The indices of these

rows equal the |P| indices within the index range {1, . . . , ID} of the channel vector h that correspond to

the set of pilot positions P. We conclude that the pilot positions (l, k)∈P have to be selected uniformly

at random within the subsampled time-frequency grid G, in the sense that the |P| “pilot indices” within

the index range {1, . . . , ID} of h are selected uniformly at random.

For BP and CoSaMP, in order to achieve a good approximation quality in the sense of (23) and (25),

the number of pilots should satisfy condition (24). In our case, this condition becomes

|P| ≥ C3 δ
−2

(

ln(ID)
)4
PNΛ ln(1/η) , (39)

with an appropriately chosen δ (note that µU = 1). This bound suggests that the required number of

pilots scales only linearly with the number of channel paths (scatterers) P and the sparsity parameter

NΛ, and poly-logarithmically with the system design parameters I and D. Note that the pilot positions

are randomly chosen (and communicated to the receiver) before the beginning of data transmission; they

are fixed during data transmission. If the number of pilots is sufficiently large in the sense of (39), then

with high probability, this random choice of the pilot positions will yield good estimation performance

for arbitrary channels with at most P paths. This will be verified experimentally in Section 7.

5 Sparsity-Improving Basis Expansion

The compressive channel estimation scheme presented in the previous section was based on the 2-D

DFT relation (30), which is an expansion of the subsampled channel coefficients Hl′∆L,k′∆K in terms

of the 2-D DFT basis um,i[l
′, k′] = 1√

ID
e−j2π(k′m

D
− l′i

I
) (see (32)). The expansion coefficients, αm,i =
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√
ID F̃ [m, i], were shown in Section 4.1 to be approximately sparse, and this property was utilized by

the compressive channel estimator. However, the sparsity is limited by the slowly (only linearly) decaying

factor ψ(i−νpTsNr) of the function Λ(νp)(m−τp/Ts, i−νpTsNr) = φ(νp)(m−τp/Ts)ψ(i−νpTsNr) in (28).

5.1 2-D and 1-D Basis Expansions

In order to improve the sparsity of the expansion coefficients, we introduce a generalized 2-D expansion

of the subsampled channel coefficients Hl′∆L,k′∆K into orthonormal basis functions vm,i[l
′, k′]:

Hl′∆L,k′∆K =

D−1
∑

m=0

I/2−1
∑

i=−I/2

βm,i vm,i[l
′, k′] , l′ = 0, . . . , I−1 , k′= 0, . . . ,D−1 . (40)

Clearly, our previous 2-D DFT expansion (30), (31) is a special case of (40). The advantage of the

generalized basis expansion (40) is the possibility of using a basis {vm,i[l
′, k′]} for which the coefficients

βm,i are sparser than our previous coefficients αm,i =
√
ID F̃ [m, i].

We will choose a 2-D basis that is adapted to the channel model (26) (but not to the specific channel

parameters P , ηp, τp, and νp involved in (26)); this choice will be seen to reduce to the choice of a family

of 1-D bases. Equation (26) suggests that the coefficients βm,i should be sparse for the elementary

single-scatterer channel

h(τ1,ν1)(t, τ) , δ(τ−τ1) ej2πν1t, (41)

for all possible choices of τ1 ∈ [0, τmax] and ν1 ∈ [−νmax, νmax]. Specializing (28) to P = 1 and η1 = 1,

and using (13) and (15), we obtain

F̃ [m, i] =
N−1
∑

q=0

ejπ(ν1Ts− i+qL

Nr
)(Nr−1)φ(ν1)

(

m− τ1
Ts

)

ψ(i + qL−ν1TsNr)A
∗
γ,g

(

m,
i+ qL

Nr

)

. (42)

Inserting (42) into the 2-D DFT expansion (30) yields

Hl′∆L, k′∆K =

D−1
∑

m=0

φ(ν1)
(

m− τ1
Ts

)

C(ν1)[m, l′] e−j2π k′m
D . (43)

Here, we have set

C(ν1)[m, l′] ,

I/2−1
∑

i=−I/2

α̃
(ν1)
m,i

1√
I
ej2π l′i

I , (44)

where

α̃
(ν1)
m,i ,

√
I

N−1
∑

q=0

ψ(ν1)(i+ qL) A∗
γ,g

(

m,
i+ qL

Nr

)

, (45)

with

ψ(ν1)(i) , ejπ(ν1Ts− i
Nr

)(Nr−1) ψ(i−ν1TsNr) . (46)
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According to (45) and (46), the poor decay of ψ(x) entails a poor decay of α̃
(ν1)
m,i with respect to i.

To improve the decay, we replace the 1-D DFT (44) by a general 1-D basis expansion

C(ν1)[m, l′] =

I/2−1
∑

i=−I/2

β̃
(ν1)
m,i bm,i[l

′] , m = 0, . . . ,D−1 , l′ = 0, . . . , I−1 , (47)

with a family of bases {bm,i[l
′]}i=−I/2,...,I/2−1, m = 0, . . . ,D − 1 that are orthonormal (i.e.,

∑I−1
l′=0 bm,i1 [l

′] b∗m,i2
[l′] = δ[i1− i2] for all m) and do not depend on the value of ν1 in C(ν1)[m, l′]. The idea

is to choose the 1-D basis {bm,i[l
′]}i=−I/2,...,I/2−1 such that the coefficient vector

[

β̃
(ν1)
m,−I/2 · · · β̃

(ν1)
m,I/2−1

]T

is sparse for all m and all ν1 ∈ [−νmax, νmax]. Substituting (47) back into (43), we obtain

Hl′∆L, k′∆K =

D−1
∑

m=0

I/2−1
∑

i=−I/2

φ(ν1)
(

m− τ1
Ts

)

β̃
(ν1)
m,i bm,i[l

′] e−j2π k′m
D .

This can now be identified with the 2-D basis expansion (40), i.e., Hl′∆L, k′∆K =
∑D−1

m=0

∑I/2−1
i=−I/2 β

(τ1,ν1)
m,i vm,i[l

′, k′],

with the orthonormal 2-D basis

vm,i[l
′, k′] ,

1√
D
bm,i[l

′] e−j2π k′m
D (48)

and the 2-D coefficients

β
(τ1,ν1)
m,i ,

√
D φ(ν1)

(

m− τ1
Ts

)

β̃
(ν1)
m,i .

The basis functions vm,i[l
′, k′] are seen to agree with our previous 2-D DFT basis functions um,i[l

′, k′] =

1√
ID

e−j2π(k′m
D

− l′i
I

) in (32) with respect to k′, but they are different with respect to l′ because 1√
I
ej2π l′i

L

is replaced by bm,i[l
′]. Furthermore, the sparsity of β

(τ1,ν1)
m,i in the i direction is governed by the new 1-D

coefficients β̃
(ν1)
m,i , which are potentially sparser than the previous 1-D coefficients α̃

(ν1)
m,i in (44) that were

based on the 1-D DFT basis
{

1√
I
ej2π l′i

I

}

.

The above considerations were based on the elementary single-scatterer channel (41), but they can

be immediately extended to the multiple-scatterer case. When the channel comprises P scatterers as in

(26), the coefficients are βm,i =
∑P

p=1 ηp β
(τp,νp)
m,i . If each coefficient sequence β

(τp,νp)
m,i is S-sparse, βm,i is

PS-sparse. Note that, by construction, our basis {vm,i[l
′, k′]} does not depend on the channel parameters

P , ηp, τp, and νp. While it was motivated by (26), its formulation does not explicitly use that channel

model. An optimal design of the 1-D basis {bm,i[l
′]}i=−I/2,...,I/2−1 will be presented in Section 6.

We note that the use of the 2-D basis vm,i[l
′, k′] in (48) comes at the cost of an increased compu-

tational complexity compared with the 2-D DFT basis um,i[l
′, k′], for both applying the CS recovery

algorithms and for computing the channel coefficients on the subsampled grid. This is because efficient

FFT algorithms can only be applied with respect to k′, but not with respect to l′. However, if I is not

too large (in our simulations I = 16, see Section 7.1), the additional complexity is small.
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5.2 CS-based Channel Estimators Using the Basis Expansion

A CS-based channel estimation scheme that uses the generalized basis expansion (40) can now be devel-

oped as in Section 4.2. We can write (40) in matrix form as (cf. (33))

h = Vββ , (49)

with a unitary matrix V. Here, ββ and V are defined in an analogous manner as, respectively, αα and U

were defined in Section 4.2. Reducing (49) to the pilot positions yields (cf. (34), (35))

h(p) = V(p)ββ = Φx ,

with Φ , V(p)D and x , D−1ββ (cf. (36)), where the diagonal matrix D is chosen such that all columns

of Φ have unit ℓ2-norm. Finally, we replace the unknown vector h(p) by its pilot-based estimate, again

denoted as y. Using (18), we then obtain the “measurement equation” (cf. (38))

y = Φx + z , (50)

where z is again the vector with entries z̃l,k/pl,k

∣

∣

(l,k)∈P . As in Section 4.2, our task is to recover the

length-ID vector x from the known length-|P| vector y, based on the measurement equation (50). From

the resulting estimate of x, estimates of all channel coefficients Hl,k are finally obtained as explained

in Section 4.2. As discussed further above, we can expect ββ to be (approximately) sparse provided

the 1-D basis {bm,i[l
′]} is chosen appropriately. Then x is sparse as well, and our channel estimation

problem is again recognized to be a sparse reconstruction problem of the form (19), with dimensions

M = dim{x} = ID and Q= dim{y} = |P|. We can thus use the CS recovery techniques summarized in

Section 3 to obtain an estimate of x.

As in Section 4.3, to be consistent with the CS framework of Sections 3.1 and 3.3, we select the pilot

positions uniformly at random within the subsampled time-frequency grid G. For BP and CoSaMP, to

achieve a good approximation in the sense of (23) and (25), the number of pilots should satisfy condition

(24), i.e.,

|P| ≥ C3 δ
−2

(

ln(ID)
)4
µ2

VS ln(1/η) ,

where S is the sparsity of x and µV is the coherence of V. Note that S depends on the chosen basis

{vm,i[l
′, k′]}; furthermore, µV ≥ 1 (for the DFT basis, we had µU = 1). Thus, the potentially better

sparsity S comes at the cost of an increased coherence. For improved performance, the gain due to the

better sparsity should be larger than the loss due to the larger coherence.
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6 Basis Optimization

We now discuss the optimal design of the 1-D basis functions {bm,i[l
′]}i=−I/2,...,I/2−1 in the general 1-D

expansion (47). We will propose a framework and, subsequently, an algorithm for basis optimization.

6.1 Basis Optimization Framework

Ideally, the m orthonormal 1-D bases {bm,i[l
′]}i=−I/2,...,I/2−1, m = 0, . . . ,D−1 should be such that the

coefficient vectors
[

β̃
(ν)
m,−I/2 · · · β̃

(ν)
m,I/2−1

]T
are sparse for all m and all ν ∈ [−νmax, νmax] (the maximum

Doppler frequency shift νmax is assumed known). For our optimization, we slightly relax this requirement

in that we only require a sparse coefficient vector for a finite number of uniformly spaced Doppler

frequencies ν ∈ D, where D ,
{

ν∆d, d = −⌈νmax/ν∆⌉, . . . , ⌈νmax/ν∆⌉
}

with some Doppler frequency

spacing ν∆.

Regarding the choice of ν∆, it is interesting to note that for the “canonical spacing” given by ν∆ =

1/(TsNr), the coefficients α̃
(ν∆d)
m,i in the 1-D DFT expansion (44) are 1-sparse with respect to i. Indeed,

(46) here simplifies to

ψ(ν∆d)(i) = ejπ(d−i)Nr−1
Nr ψ(i−d) = δNr [i−d] ,

where δNr [i] is the Nr-periodic unit sample (i.e., δNr [i] is 1 if i is a multiple of Nr and 0 otherwise).

Expression (45) then reduces to

α̃
(ν∆d)
m,i =

√
I

N−1
∑

q=0

δNr [i−d+ qL]A∗
γ,g

(

m,
i+ qL

Nr

)

= δNr

[

i− d̃
]

A∗
γ,g

(

m,
d

Nr

)

,

where d̃ depends on d but not on i. Thus, for ν∆ = 1/(TsNr), the coefficients obtained using the 1-D DFT

basis
{

bm,i[l
′] = 1√

I
ej2π l′i

I

}

are 1-sparse (no leakage effect). This means that the 1-D DFT basis would

be optimal; no other basis could do better. We therefore choose a Doppler spacing that is twice as dense,

i.e., ν∆ = 1/(2TsNr). In this case, D includes also the Doppler frequencies located midway between any

two adjacent canonical sampling points, for which the DFT basis results in maximum leakage (these

frequencies are given by ν∆d for odd d).

Because the basis {bm,i[l
′]} is orthonormal, the expansion coefficients defined by (47) can be calculated

as the inner products

β̃
(ν)
m,i =

I−1
∑

l′=0

C(ν)[m, l′] b∗m,i[l
′] , i = −I/2, . . . , I/2−1 .

This can be rewritten as

β̃β
(ν)
m = Bmγγ(ν)

m ,
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with the length-I vectors β̃β
(ν)
m ,

[

β̃
(ν)
m,−I/2 · · · β̃

(ν)
m,I/2−1

]T
and γγ

(ν)
m ,

[

C(ν)[m,−I/2] · · · C(ν)[m, I/2−1]
]T

and the unitary I×I matrix Bm with elements (Bm)i+1,l′+1 = b∗m,i−I/2[l
′]. We can now state the basis

optimization problem as follows.

For given vectors γγ
(ν)
m , m = 0, . . . ,D−1, with γγ

(ν)
m defined as described above, find I×I unitary

matrices Bm not dependent on ν such that the vectors β̃β
(ν)
m = Bmγγ

(ν)
m are maximally sparse

for all ν∈D.

As is usual in the CS framework, we measure the sparsity of β̃β
(ν)
m by the ℓ1-norm or, more precisely, by

the ℓ1-norm averaged over all ν ∈ D, i.e.,

1

|D|
∑

ν∈D

∥

∥β̃β
(ν)
m

∥

∥

1
=

1

|D|
∑

ν∈D

∥

∥Bmγγ(ν)
m

∥

∥

1
.

Thus, our basis optimization problem is formulated as the D constrained minimization problems5

B̂m = arg min
Bm∈U

∑

ν∈D

∥

∥Bmγγ(ν)
m

∥

∥

1
, m = 0, . . . ,D−1 , (51)

where U denotes the set of all unitary I×I matrices. Note that the vectors γγ
(ν)
m are known because they

follow from the function C(ν)[m, l′], which is given by (see (44), (45), (46))

C(ν)[m, l′] =

I/2−1
∑

i=−I/2

N−1
∑

q=0

ψ(ν)
(

i+ qL) A∗
γ,g

(

m,
i+ qL

Nr

)

ej2π l′i
I , (52)

with ψ(ν)(i) = ejπ(νTs− i
Nr

)(Nr−1) ψ
(

i − νTsNr

)

. It is seen that the optimal bases characterized by the

matrices B̂m depend on the pulses g[n], γ[n] and the maximum Doppler νmax (via the definition of D).

They do not depend on any other channel characteristics.

6.2 Basis Optimization Algorithm

Let us consider the minimization problem (51) for a fixed delay index m. Unfortunately, this problem is

nonconvex (since U is not a convex set), so we cannot use standard convex optimization techniques. We

therefore propose an approximate iterative algorithm that relies on the following facts [61]. (i) Every

unitary I×I matrix B can be represented in terms of a Hermitian I×I matrix A as

B = ejA .

5We note that the optimization problem (51) is similar to dictionary learning problems that have recently been considered

in CS theory [39–41]. In [41], conditions for the local identifiability of orthonormal bases by means of ℓ1 minimization are

derived.
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(ii) The matrix exponential B = ejA can be approximated by its first-order Taylor expansion, i.e.,

B ≈ II + jA , (53)

where II is the I×I identity matrix. Even though II +jA is not a unitary matrix, the approximation (53)

will be good if A is small. Because of this condition, we construct Bm iteratively: starting with the DFT

basis, we perform a small update at each iteration, using the approximation (53) in the optimization

criterion but not for actually updating Bm (thus, the iterated Bm is always unitary). More specifically,

at the rth iteration, we consider the following update of the unitary matrix B
(r)
m :

B(r+1)
m = ejA

(r)
m B(r)

m ,

where A
(r)
m is a small Hermitian matrix that remains to be optimized. Note that B

(r+1)
m is again unitary

because both B
(r)
m and ejA

(r)
m are unitary.

Ideally, we would like to optimize A
(r)
m according to (51), i.e., by minimizing

∑

ν∈D

∥

∥B(r+1)
m γγ(ν)

m

∥

∥

1
=

∑

ν∈D

∥

∥ejA
(r)
m B(r)

m γγ(ν)
m

∥

∥

1
.

Since this problem is still nonconvex, we use the approximation (53), and thus the final minimization

problem at the rth iteration is

Â(r)
m = arg min

A∈Ar

∑

ν∈D

∥

∥(II + jA)B(r)
m γγ(ν)

m

∥

∥

1
. (54)

Here, Ar is the set of all Hermitian I×I matrices A that are small in the sense that ‖A‖∞ ≤ λr, where

‖A‖∞ denotes the largest modulus of all elements of A and λr is a positive constraint level (a small λr

ensures a good approximation accuracy in (53) and also that the unitary matrix ejÂ
(r)
m is close to II).

The problem (54) is convex and thus can be solved by standard convex optimization techniques [47].

The next step at the rth iteration is to test whether the cost function is smaller for the new unitary

matrix ejÂ
(r)
m B

(r)
m , i.e., whether

∑

ν∈D

∥

∥ejÂ
(r)
m B(r)

m γγ(ν)
m

∥

∥

1
<

∑

ν∈D

∥

∥B(r)
m γγ(ν)

m

∥

∥

1
. (55)

In the positive case, we actually perform the update of B
(r)
m and we retain the constraint level λr for the

next iteration:

B(r+1)
m = ejÂ

(r)
m B(r)

m , λr+1 = λr .

Otherwise, we reject the update of B
(r)
m and reduce the constraint level λr:

B(r+1)
m = B(r)

m , λr+1 =
λr

2
.
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Figure 2: Sparsity improvement obtained with the proposed iterative basis optimization algorithm: (a)

Modulus of the expansion coefficients for the DFT basis, (b) modulus of the expansion coefficients for

the optimized basis.

This iteration process is terminated either if λr falls below a prescribed threshold or if the number

of iterations exceeds a certain value. The iteration process is initialized by the I×I DFT matrix FI ,

i.e., B
(0)
m = FI . As mentioned in Section 4.1, the DFT basis already yields a relatively sparse coefficient

vector, and thus it provides a reasonable initial choice. We note that efficient algorithms for computing

the matrix exponentials ejÂ
(r)
m exist [61]. In any case, the bases {bm,i[l

′]} (or, equivalently, the basis

matrices Bm) have to be optimized only once before the actual channel estimation starts; the optimal

bases are independent of the received signal and can thus be precomputed.

For classical CP-OFDM with CP length N−K ≥ D−1, we have Aγ,g(m, ξ) = Aγ,g(0, ξ) for all

m = 1, . . . ,D−1, so C(ν)[m, l′] = C(ν)[0, l′] (see (52)) and thus γγ
(ν)
m = γγ

(ν)
0 . Because γγ

(ν)
m no longer

depends on m, only one basis B (instead of D different bases Bm, m = 0, . . . ,D−1) has to be optimized.

In Fig. 2, we compare the expansion coefficients αm,i obtained with the DFT basis (see (31), (32))

and the expansion coefficients βm,i obtained with the optimized basis (see (40), (48)) for one channel

realization. The system parameters are as in Sections 7.1 and 7.2. The minimization (54) (not m-

dependent, since we are simulating a CP-OFDM system) was carried out using the convex optimization

package CVX [62]. It is seen that the basis optimization yields a significant improvement of sparsity.

7 Simulation Results

In this section, we assess the performance of our CS-based channel estimators and compare it with that

of classical least-squares (LS) channel estimation. For CS-based channel estimation, we employ BP,

OMP, and CoSaMP as recovery algorithms, and we use both the DFT basis and the optimized basis
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obtained with the algorithm of Section 6.2.

7.1 Simulation Setup

In accordance with the DVB-T standard [10], we simulated a CP-OFDM system with K = 2048 sub-

carriers and CP length N−K = 512, whence N = 2560. The system employed 4-QAM symbols with

Gray labeling, a rate-1/2 convolutional code (generator polynomials (138, 158)), and 32×16 row-column

interleaving. The interpolation/anti-aliasing filters f1(t) = f2(t) were chosen as root-raised-cosine filters

with roll-off factor ρ=1/4.

For BP, we used ǫ=0 even though noise was present in our system, in order to avoid assuming knowl-

edge or estimation of the noise characteristics and to obtain a smaller computational complexity. (Recent

results [63] suggest that BP is robust to noise also for ǫ=0.) We used the MATLAB function l1eq pd()

from the toolbox ℓ1-MAGIC [64], which supports a large-scale modus that can handle large systems

efficiently (our complex-valued measurement matrices are typically of size 2048 × 8192). This function

requires that all vectors and matrices involved are real-valued. Therefore, for BP, we considered the

real sparse reconstruction problem yr = Φrxr + zr, with xr ,
[

ℜ{xT } ℑ{xT }
]T

, yr ,
[

ℜ{yT } ℑ{yT }
]T

,

zr ,
[

ℜ{zT } ℑ{zT }
]T

, and Φr ,

[ ℜ{Φ} −ℑ{Φ}
ℑ{Φ} ℜ{Φ}

]

. This is not fully equivalent to the original

complex problem y = Φx + z, since real and imaginary parts are treated separately. If x is con-

strained to be (approximately) S-sparse, we now constrain xr to be (approximately) 2S-sparse. Fur-

thermore, if Φ satisfies the restricted isometry hypothesis (21) with S-restricted isometry constant δS ,

the same is true for Φr (this follows from the special structure of Φr—see, e.g., [65, Lemma 1]—and

the fact that if a real-valued vector ar = [a1 · · · a2M ]T is S-sparse, then so is the complex-valued vector

a , [a1 · · · aM ]T + j[aM+1 · · · a2M ]T ).

CoSaMP requires a prior estimate of the sparsity of x. In all simulations, we used the fixed sparsity

estimate S=262. This estimate was determined from the formula S = ⌈Q/(2 logM)⌉ suggested in [38],

in which we set Q ≡ |P|=2048 regardless of the actual number of pilots used. (Note, however, that in

most scenarios we actually used 2048 pilots for CS-based channel estimation.) The number of CoSaMP

iterations was J = 15. For OMP, on the other hand, we always used J =S= 262 iterations. Therefore,

the coefficient vectors produced by OMP and CoSaMP were exactly S-sparse with S=262.

For all channel estimators considered (CS-based and LS), we simulated and estimated the channel

for blocks of L=16 transmitted OFDM symbols. All CS-based estimators employed a subsampling with

∆K=4 and ∆L=1, whence D=512 and I=16.
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7.2 MSE and BER versus SNR

We first compare the normalized6 mean square error (MSE) and bit error rate (BER) performance of CS-

based channel estimation with that of LS channel estimation for different signal-to-noise ratios (SNRs).

For LS channel estimation, we used two alternative rectangular pilot constellations: (i) a pilot on every

fourth subcarrier for each OFDM symbol, corresponding to 8192 pilots or 25% of all transmit symbols,

and (ii) a pilot on every fourth subcarrier for every second OFDM symbol, corresponding to 4096 pilots

or 12.5% of all symbols. For all CS-based channel estimators, we placed uniformly at random 2048 pilots

on the subsampled grid G specified above (i.e., ∆K=4 and ∆L=1). This corresponds to 6.25% of all

symbols, which is one quarter of the number of pilots used for LS estimation with pilot constellation (i)

and half that used with pilot constellation (ii). All CS-based methods used the same pilot constellation.

During blocks of L=16 transmitted OFDM symbols, we simulated a noisy doubly selective channel

whose discrete-delay-Doppler spreading function Sh[m, i] was computed from (28). We assumed P =

20 propagation paths with scatterer delay-Doppler positions (τp/Ts, νpTs) chosen uniformly at random

within [0, 511] × [−0.03/K, 0.03/K] for each block of 16 OFDM symbols (hence, the maximum Doppler

normalized by the subcarrier spacing was ±3%). The complex scatterer amplitudes ηp were randomly

drawn from zero-mean, complex Gaussian distributions with three different variances (3 strong scatterers

of equal mean power, 7 medium scatterers with 10 dB less mean power, and 10 weak scatterers with 20 dB

less mean power).

Fig. 3 shows the normalized MSE of the channel estimates and the resulting BER of the overall

receiver versus the channel SNR. It is seen that all CS estimators (with 6.25% pilots) significantly

outperform the LS estimator with 12.5% pilots. The extremely poor performance of the LS estimator

with 12.5% pilots is due to the fact that the Shannon sampling theorem is violated by the pilot grid. In

contrast, the CS estimators are able to produce reliable channel estimates even far below the Shannon

sampling rate. Compared with the LS estimator with 25% pilots, the CS estimators (with 6.25% pilots)

using the DFT basis exhibit a performance degradation that is relatively small for low-to-medium SNR

but larger for high SNR. The performance degradation at high SNR has two reasons: (i) the number

of pilots used for the CS estimators is too small for the channel’s sparsity, and (ii) the OMP-based

and CoSaMP-based CS estimators produce S-sparse signals with S = 262, which is too small for the

channel’s sparsity.

It is furthermore seen that the CS estimators using the optimized basis clearly outperform those

using the DFT basis. The BP-based and CoSaMP-based CS estimators using the optimized basis show

6The mean square error was normalized by the energy of all channel coefficients.
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Figure 3: Performance of CS-based and LS channel estimators versus the SNR: (a) MSE, (b) BER.

only a small performance degradation with respect to the LS estimator with 25% pilots even for higher

SNRs, while the OMP-based CS estimator is as good as or even better than the LS estimator with 25%

pilots for all SNRs (note that the LS estimator uses four times as many pilots!). This performance gain is

due to the better sparsity produced by the optimized basis, and it is obtained even though the coherence

of the optimized basis (µV =2.237) is greater than that of the DFT basis (µU =1).

Comparing the different recovery algorithms, we see that OMP has the best performance, followed

by CoSaMP and, in turn, BP (over a wide SNR range).

7.3 MSE and BER versus Number of Propagation Paths

Next, we compare the performance of the CS and LS estimators for different numbers P of propa-

gation paths (scatterers) of the channel, which were chosen between 15 and 46. In each case, the

scatterers’ delay-Doppler positions (τp/Ts, νpTs) were chosen uniformly at random within [0, 511] ×
[−0.03/K, 0.03/K] for each block of 16 OFDM symbols (hence, the maximum normalized Doppler was

again ±3%). The complex scatterer amplitudes ηp were randomly drawn from zero-mean, complex

Gaussian distributions with three different variances—strong scatterers of equal power, medium scatter-

ers with 10 dB less power, and weak scatterers with 20 dB less power—with (approximately) a ratio of

3:7:10 between their numbers. The SNR was fixed to 17 dB. As before, we placed uniformly at random

2048 pilots (6.25% of all symbols) on the subsampled grid G specified above and used the resulting pilot

constellation for all CS estimators. The pilot grids for the LS estimators were the same as in the previous
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Figure 4: Performance of CS-based and LS channel estimation versus the number of propagation paths

(scatterers): (a) MSE, (b) BER.

subsection (i.e., 25% and 12.5% of all symbols).

Fig. 4 depicts the normalized MSE and the BER versus P . All CS estimators perform better for a

smaller P , due to the better sparsity. The performance of the LS estimators is effectively independent

of P . Again, we observe significant gains resulting from the use of the optimized basis.

7.4 MSE and BER versus Number of Pilots

An important design parameter influencing the performance of the CS estimators is the number of pilots,

|P|, since it equals the number of measurements available for sparse reconstruction. To study this issue,

we placed uniformly at random |P| ∈ {512, · · · , 8192} pilots on the subsampled grid G (corresponding

to 1.5625% . . . 25% of all symbols) and used the resulting pilot constellations for all CS estimators. We

also considered LS estimators with the number of pilots in the same range (but placed on rectangular

subgrids of G). The channel was simulated as in Section 7.2. The SNR was fixed to 17 dB.

Fig. 5 depicts the normalized MSE and the BER of all estimators versus |P|; as a reference, the

known-channel BER is also plotted as a horizontal line. It is seen that, as expected, the performance of

all estimators improves with growing |P|. We again observe large performance gains of the CS estimators

over the LS estimators, and of the CS estimators using the optimized basis over those using the DFT

basis. Note that the two best CS estimators almost achieve the known-channel BER.
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Figure 5: Performance of CS-based and LS channel estimators versus the number of pilots: (a) MSE,

(b) BER.

7.5 MSE and BER versus Maximum Doppler Frequency

Finally, we compare the performance of the CS and LS estimators for different maximum Doppler

frequencies νmax. We simulated a channel consisting of P =20 propagation paths with scatterer positions

(τp/Ts, νpTs) chosen uniformly at random within [0, 511]× [−νmaxTs, νmaxTs] for each block of 16 OFDM

symbols, where νmaxTsK ∈ [0.0025, 0.03]. Hence, the maximum Doppler frequency νmax normalized by

the subcarrier spacing varied between 0.25% and 3%. As before, the complex scatterer amplitudes ηp

were randomly drawn from zero-mean, complex Gaussian distributions with three different variances (3

strong, 7 medium, 10 weak). The SNR was 17 dB. All CS estimators used the same pilot constellation

of 2048 pilots (6.25% of all symbols) placed uniformly at random on the subsampled grid G. The pilot

grids of the LS estimators were the same as in Subsection 7.2 (i.e., 25% and 12.5% of all symbols).

Fig. 6 depicts the normalized MSE and the BER versus the maximum normalized Doppler frequency

νmaxTsK. It can be seen that the LS estimator with 12.5% pilots that fails completely for large νmax

performs better for smaller νmax. This is because for smaller maximum Doppler frequency, the Shannon

sampling theorem is better satisfied by the pilot grid. A similar behavior can also be observed for the

CS estimators. However, the reason now is that for smaller maximum Doppler frequency, the effective

delay-Doppler support regions of the individual propagation paths (given by the supports of the leakage

functions Λ(νp)(m − τp

Ts
, i − νpTsNr)) overlap more, which results in better sparsity. This effect is seen

to be weaker when the optimized basis is used. Again, basis optimization results in improved overall
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Figure 6: Performance of CS-based and LS channel estimators versus the maximum normalized Doppler

frequency: (a) MSE, (b) BER.

performance. We note that the optimized basis depends on νmax.

8 Conclusion

We proposed the application of compressed sensing (CS) methods to the estimation of doubly selective

wireless channels within pulse-shaping multicarrier systems (which include OFDM systems as a special

case). The channel coefficients on a subsampled time-frequency grid are estimated in a way that exploits

the channel’s sparsity in a dual delay-Doppler domain. We formulated this estimation task as a sparse

reconstruction problem, for which several efficient CS recovery methods are available. The measurements

used for sparse reconstruction are given by a small subset of the channel coefficients, which are calculated

by means of pilot symbols. We demonstrated that, compared with classical least-squares estimation, our

CS-based estimators allow an increase in spectral efficiency through a reduction of the number of pilot

symbols that have to be transmitted. Alternatively, for a given number of pilot symbols, they yield an

improved accuracy of channel estimation. Knowledge of channel or noise statistics is not required.

We also presented generalized CS-based channel estimators that use an explicit basis expansion of

the channel’s time-frequency coefficients. With a suitably designed basis, the sparsity is improved due to

a reduction of leakage effects, which results in a further improvement of channel estimation performance.

30



We proposed a framework for optimizing the basis and an iterative approximate basis optimization

algorithm. Simulation results demonstrated large performance gains obtained with the optimized basis.

The additional computational complexity is moderate; in particular, the basis can be precomputed before

the start of data transmission. We expect that our basis optimization algorithm may also be useful for

dictionary learning in other applications besides sparse channel estimation.

Additional work is needed to better assess the potential of the proposed methods. Possible avenues

for future research include the use of other sparse recovery methods (besides BP, OMP, and CoSaMP);

a comparison with other channel estimators (besides least-squares methods); a performance evaluation

using other methods of channel simulation and real wireless channels; the application of other dictionary

learning methods for basis optimization, and a reduction of computational complexity.
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