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Abstract

Iteratively Re-weighted Least Squares (IRLS) is a method for solving minimization problems
involving non-quadratic cost functions, perhaps non-convex and non-smooth, which however can
be described as the infimum over a family of quadratic functions. This transformation suggests an
algorithmic scheme that solves a sequence of quadratic problems to be tackled efficiently by tools of
numerical linear algebra. Its general scope and its usually simple implementation, transforming the
initial non-convex and non-smooth minimization problem into a more familiar and easily solvable
quadratic optimization problem, make it a versatile algorithm. It has been formulated for a variety
of problems, such as robust statistical linear regression, total variation minimization in image pro-
cessing, as the so-called Kačanov fixed point iteration for the solution of certain quasi-linear elliptic
partial differential equations, for `τ -norm minimization for 0 < τ 6 1 in signal processing, and
for nuclear norm minimization for low-rank matrix identification. However, despite its simplicity,
versatility, and elegant analysis, the complexity of IRLS strongly depends on the way the solution
of the successive quadratic optimizations is addressed. For the important special case of compressed
sensing and sparse recovery problems in signal processing, we investigate theoretically and numeri-
cally how accurately one needs to solve the quadratic problems by means of the conjugate gradient
(CG) method in each iteration in order to guarantee convergence. The use of the CG method may
significantly speed-up the numerical solution of the quadratic subproblems, in particular, when fast
matrix-vector multiplication (exploiting for instance the FFT) is available for the matrix involved.
In addition, we study convergence rates. Our modified IRLS method outperforms state of the art
first order methods such as Iterative Hard Thresholding (IHT) or Fast Iterative Soft-Thresholding
Algorithm (FISTA) in many situations, especially in large dimensions. Moreover, IRLS is often
able to recover sparse vectors from fewer measurements than required for IHT and FISTA.
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1 Introduction

1.1 Iteratively Re-weighted Least Squares

Iteratively Re-weighted Least Squares (IRLS) is a method for solving minimization problems by trans-
forming them into a sequence of easier quadratic problems which are then solved with efficient tools of
numerical linear algebra. Contrary to classical Newton methods smoothness of the objective function
is not required in general. We refer to the recent paper [34] for an updated and rather general view
about these methods.

In the context of constructive approximation, an IRLS algorithm appeared for the first time in the
doctoral thesis of Lawson in 1961 [32] in the form of an algorithm for solving uniform approximation
problems. It computes a sequence of polynomials that minimize a sequence of weighted Lτ–norms.
This iterative algorithm is now well-known in classical approximation theory as Lawson’s algorithm.
In [14] it is proved that this algorithm essentially obeys a linear convergence rate.

In the 1970s extensions of Lawson’s algorithm for `τ -norm minimization, and in particular `1-norm
minimization, were proposed. Since then IRLS has become a rather popular method also in math-
ematical statistics for robust linear regression [25]. Perhaps the most comprehensive mathematical
analysis of the performance of IRLS for `τ -norm minimization was given in the work of Osborne [35].

The increased popularity of total variation minimization in image processing starting with the
pioneering work [40], significantly revitalized the interest in these algorithms, because of their simple
and intuitive implementation, contrary to more general optimization algorithms such as interior point
methods. In particular, in [9, 41] an IRLS for total variation minimization has been proposed. At the
same time, IRLS appeared as well under the name of Kačanov method in [23] as a fixed point iteration
for the solution of certain quasi-linear elliptic partial differential equations. In signal processing, IRLS
was used as a technique to build algorithms for sparse signal reconstruction in [21]. After the pioneering
work [13] and the starting of the development of compressed sensing with the seminal papers [5, 18],
several works [10, 11, 12, 16] addressed systematically the analysis of IRLS for `τ -norm minimization
in the form

min
Φx=y

‖x‖`τ , (1)

where 0 < τ 6 1, Φ ∈ Cm×N is a given matrix, and y ∈ Cm a given measurement vector. In these
papers, the asymptotic super-linear convergence of IRLS towards `τ -norm minimization for τ < 1
has been shown. As an extension of the analysis of the aforementioned papers, IRLS have been also
generalized towards low-rank matrix recovery from minimal linear measurements [19].

In recent years, there has been an explosion of papers on applications and variations on the theme of
IRLS, especially in the engineering community of signal processing, and it is by now almost impossible
to give a complete account of the developments. (Presently Scholar Google reports more than 3180
papers since 2010 containing the phrase “Iteratively Re-weighted Least Squares” and more than 100
with it in the title since 1970, half of which appeared after 2003.)

1.2 Contribution of this paper

Since it is based on a relatively simple reformulation of the initial potentially non-convex and non-
smooth minimization problem (for instance of the type (1)) into a more familiar and easily solvable
quadratic optimization, IRLS is one of the most immediate and intuitive approaches towards such
non-standard optimizations and perhaps one of the first and popular algorithms beginner practitioners
consider for their first experiments. However, despite its simplicity, versatility, and elegant analysis,
IRLS does not outperform in general well-established first order methods, which have been proposed
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recently for similar problems, such as Iterative Hard Thresholding (IHT) [3] or Fast Iterative Soft-
Thresholding Algorithm (FISTA) [1], as we also show in our numerical experiments in Section 5.
In fact, its complexity very strongly depends on the way the solution of the successive quadratic
optimizations is addressed, whether one uses preconditioned iterative methods and exploits fast matrix-
vector multiplications or just considers simple direct linear solvers. If the dimensions of the problem
are not too large or the involved matrices have no special structure allowing for fast matrix-vector
multiplications, then the use of a direct method such as Gaussian elimination can be appropriate.
When instead the dimension of the problem is large and one can take advantage of the structure of
the matrix to perform fast matrix-vector multiplications (e.g., for partial Fourier or partial circulant
matrices), then it is appropriate to use iterative solvers such as the Conjugate Gradient method (CG).
The use of CG in the implementation of IRLS is appearing, for instance, in [41] towards total variation
minimization and in [42] towards `1-norm minimization. However, the price to pay is that such solvers
will return only an approximate solution whose precision depends on the number of iterations. A
proper analysis of the convergence of the perturbed method in this case has not been reported in the
literature. Without such an analysis it is impossible to give any estimate of the actual complexity
of IRLS. Thus, the scope of this work is to clarify, specifically for compressed sensing problems (i.e.,
for matrices Φ with certain spectral properties such as the Null Space Property), how accurately one
needs to solve the quadratic problems by means of CG in order to guarantee convergence and possibly
also asymptotic (super-)linear convergence rates.

Besides analyzing the effect of CG in an IRLS for problems of the type (1), we further extend it
in Section 4 to a class of problems of the type

min
x
‖Φx− y‖2`2 + 2α ‖x‖`τ , (2)

for 0 < τ 6 1, used for sparse recovery in signal processing. In the work [31, 42] a convergence analysis
of IRLS towards the solution of (2) has been carried out with two limitations:

(i) In [31] the authors do not consider the use of an iterative algorithm to solve the appearing system
of linear equations and they do not show the behavior of the algorithm when the measurements
y are given with additional noise;

(ii) Also in [42] a precise analysis of convergence is missing when iterative methods are used to solve
the intermediate sequence of systems of linear equations. Also the non-convex case of τ < 1 is
not specifically addressed.

Regarding these gaps, we contribute in this work by

• giving a proper analysis of the convergence when inaccurate CG solutions are used;

• extending the results of convergence in [42] to the case of 0 < τ < 1 by combining our analysis
with findings in [37, 43];

• performing numerical tests which evaluate possible speedups via the CG method, also taking
problems into consideration where measurements may be affected by noise.

Our work on CG accelerated IRLS for (2) does not analytically address rates of convergence because
this turned out to be a very technical task.

We illustrate the theoretical results of this paper described above by several numerical experiments.
We first show that our versions of IRLS yield significant improvements in terms of computational time
and may outperform state of the art first order methods such as Iterative Hard Thresholding (IHT) [3]
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and Fast Iterative Soft-Thresholding Algorithm (FISTA) [1], especially in high dimensional problems
(N > 105). These results are somehow both surprising and counterintuitive as it is well-known that
first order methods should be preferred in higher dimension. However, they can be easily explained
by observing that in certain regimes preconditioning in the conjugate gradient method (as we show at
the end of Subsection 5.3) turns out to be extremely efficient. This is perhaps not a completely new
discovery, as benefits of preconditioning in IRLS have been reported already in minimization problems
involving total variation terms [41]. The second significant outcome of our experiments is that CG-
IRLS not only is faster than state of the art first order methods, but also shows higher recovery
rates, i.e., requires less measurements for successful sparse recovery. This will be demonstrated with
corresponding phase transition diagrams of empirical success rates (Figure 3).

1.3 Outline of the paper

The paper is organized as follows: In Section 2, we introduce definitions and notation and give a short
review on the CG method. Although this brief introduction on CG retraces very well-known facts of
the numerical linear algebra literature, it is necessary for us for the sake of a consistent presentation
also in terms of notation. We hope that this small detour will help readers to access more easily
the technical parts of the paper. In Section 3, we present the IRLS method tailored to problems
of the type (1) and its modification including CG for the solution of the quadratic optimizations.
We present a detailed analysis of the convergence and rate of convergence. The approach is further
extended to problems of type (2) in Section 4, where we also analyze the convergence of the method.
We conclude with numerical experiments in Section 5 showing that the modifications to IRLS inspired
by our theoretical results make the algorithm extremely efficient, also compared to state of the art
first order methods, especially in high dimension.

2 Definitions, Notation, and Conjugate Gradient method

In this section, we introduce the main terms and notation used in this paper. In addition to this, we
shortly review the basics around the Conjugate Gradient method. In order to simplify cross-reading,
we use the same notation as in [16].

For matrices Φ ∈ Cm×N and y ∈ Cm, we define

FΦ(y) :=
{
z ∈ CN | Φz = y

}
, (3)

NΦ := ker Φ =
{
z ∈ CN | Φz = 0

}
. (4)

Unless noted otherwise, we denote with Φ∗ the adjoint (conjugate transpose) matrix of a matrix Φ.
Thus, in the particular case of a scalar, x∗ denotes the complex conjugate of x ∈ C.

Definition 1 (Weighted `p-spaces). We define the quasi-Banach space `Np (w) := (CN , || · ||`p(w))
endowed with the weighted quasi-norm

‖x‖`p(w) :=

(
N∑
i=1

|xi|pwi

) 1
p

,

for a weight vector w ∈ RN with positive entries and 0 < p <∞. Furthermore, we define the `Np -spaces

by setting `Np := `Np (1), where 1 denotes the weight with entries identically set to 1. Below we may
ignore the superscript indicating the dimension N , when it is clear from the context, so that we write
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`p = `Np or `p(w) = `Np (w). The space `N2 (w) is a Hilbert space endowed with the weighted scalar
product

〈x, y〉`2(w) =
N∑
i=1

xiy
∗
iwi.

In the unweighted case w = 1 it reduces to the standard complex scalar product 〈·, ·〉`2.
For Φ ∈ Cm×N , we define the norm

‖Φ‖`Np →`mq := sup
‖x‖

`Np
=1
‖Φx‖`mq ,

and for the particular case of p = q = 2, ‖Φ‖ := ‖Φ‖`N2 →`m2 is the standard operator norm and can be
given explicitly by

‖Φ‖ =
√
λmax(Φ∗Φ),

where λmax(·) denotes the largest eigenvalue of a square matrix (compare Definition 5).

Definition 2 (K-sparse vector). A vector x ∈ CN is called K-sparse for K ∈ N, K 6 N , if the
number #{i|xi 6= 0} of its non-zero entries does not exceed K.

Definition 3 (Nonincreasing rearrangement). The nonincreasing rearrangement r(x) of the vector
x ∈ CN is defined by r(x) := (|xi1 |, . . . , |xiN |) with |xij | > |xij+1 | for j = 1, . . . , N − 1 and where
j 7→ ij is a permutation of {1, . . . , N}. Furthermore, the best K-term approximation error σK(x)`τ
in `τ is given by

σK(x)`τ := inf
z∈CN , K-sparse

‖x− z‖τ`τ =
N∑

j=K+1

|rj(x)|τ , 0 < τ <∞.

In this paper we restrict our attention to optimization problems of the type (1) for matrices
Φ ∈ Cm×N for m 6 N having certain spectral properties. Such matrices are used in the practice of
compressed sensing and we refer to [20] for more details. The following notion has been introduced in
[10, 11, 12, 22, 15, 16].

Definition 4 (Null Space Property (NSP)). A matrix Φ ∈ Cm×N satisfies the Null Space Property of
order K for γK > 0 and fixed 0 < τ 6 1 if

‖ηT ‖τ`τ ≤ γK ‖ηT c‖
τ
`τ
, (5)

for all sets T ⊆ {1, . . . , N} with #T ≤ K and all η ∈ ker Φ\{0}. We say in short that Φ has the
(K, γK)-NSP.

We give an important consequence of the NSP [15, 20], [16, Lemma 7.6].

Lemma 1. Assume that Φ ∈ Cm×N satisfies the (K, γK)-NSP for 0 < τ 6 1. Then for any vectors
z, z′ ∈ CN it holds

‖z′ − z‖τ`τ 6
1 + γK
1− γK

(
‖z′‖τ`τ − ‖z‖

τ
`τ + 2σK(z)`τ

)
.

It follows immediately from this lemma that the solution x] of `τ -minimization (1) run on y = Φx

satisfies ‖x]−x‖τ`τ 6
2(1+γK)

1−γK σK(z)`τ . Another consequence is the following statement, see [16, Lemma
4.3] for the case τ = 1.

5



Lemma 2. Assume that Φ has the (K, γK)-NSP (5). Suppose that FΦ(y) contains a K-sparse vector
x∗. Then this vector is the unique `τ -minimizer in FΦ(y). Moreover we have for all v ∈ FΦ(y)

‖v − x∗‖τ`τ ≤ 2
1 + γK
1− γK

σK(v)`τ . (6)

It is well-known that the NSP for 0 < τ 6 1 can be shown via the restricted isometry property
[11, 20], but also direct proofs of the NSP are available for certain random matrices giving often better
constants and working under weaker assumptions [8, 17, 20, 28, 33]. In particular, Gaussian random
matrices satisfy the NSP of order K with high probability if m > CK log(K/N). Structured random
matrices including random partial Fourier and discrete cosine matrices, and partial random circulant
matrices – both important in applications – satisfy the RIP and hence, the NSP with high probability
provided that m > CK log4(N) [7, 20, 30, 38, 39]. Note that for these types of structured matrices,
fast matrix vector multiplication routines are available.

Definition 5 (Set of eigenvalues and singular values). We denote with Λ(A) the set of eigenvalues of
a square matrix A. Respectively, λmin(A) and λmax(A) are the smallest and largest eigenvalues. We
define by σmin(A) and σmax(A) the smallest and largest singular value of a rectangular matrix A.

2.1 Conjugate gradient method (CG)

The CG method was originally proposed by Stiefel and Hestenes in [24] and generalized to complex
systems in [27]. For an Hermitian and positive semidefinite matrix A ∈ CN×N the CG method solves
the linear equation Ax = y or equivalently the minimization problem

arg min
x∈CN

(
F (x) :=

1

2
x∗Ax− x∗b

)
.

The algorithm is designed to iteratively compute the minimum xi of F on the Krylov subspace Vi :=
span{y,Ay, . . . , Ai−1y} ⊂ CN . The solution is found after N iterations in exact precision since VN =
CN , but usually, the algorithm is stopped after a significantly smaller number of steps.

Algorithm 1 Conjugate Gradient (CG) method

Input: initial vector x0 ∈ CN , matrix A ∈ CN×N , given vector y ∈ CN and optionally a desired
accuracy δ.

1: Set r0 = p0 = y −Ax0 and i = 0
2: while ri 6= 0 (or

∥∥ri∥∥
`2
> δ) do

3: ai = 〈ri, pi〉`2/〈Api, pi〉`2
4: xi+1 = xi + aip

i

5: ri+1 = y −Axi+1

6: bi+1 = 〈Api, ri+1〉`2/〈Api, pi〉`2
7: pi+1 = ri+1 − bi+1p

i

8: i = i+ 1
9: end while

Roughly speaking, CG iteratively searches for a minimum of the functional F along conjugate
directions pi with respect to A, i.e., (pi)∗Apj = 0, j < i. Thus, in step i + 1 of CG the new iterate
xi+1 is found by minimizing F (xi + aip

i) with respect to the scalar ai ∈ R along the search direction
pi. Since we perform a minimization in each iteration, this implies monotonicity of the iterates,
F (xi+1) 6 F (xi).

The following theorem establishes the convergence and the convergence rate of CG.
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Theorem 1 ([36, Theorem 4.12]). Let the matrix A be Hermitian and positive definite. The Algo-
rithm CG converges to the solution of the system Ax = y after at most N steps. Moreover, the error
xi − x is such that∥∥∥A 1

2 (xi − x)
∥∥∥
`2
6

2ciA
1 + c2i

A

∥∥∥A 1
2 (x0 − x)

∥∥∥
`2
, with cA =

√
κA − 1
√
κA + 1

,

where κA = σmax(A)
σmin(A) is the condition number of the matrix A and σmax(A) (resp. σmin(A)) is the

largest (resp. smallest) singular value of A.

Remark 1. Theorem 1 is slightly modified with respect to the formulation in [36]. There, the matrix
A is considered to be symmetric instead of being Hermitian. However, in the complex case, the proof
can be performed similarly by replacing the transpose by the conjugate transpose.

2.2 Modified conjugate gradient method (MCG)

In Section 3, we are interested in a vector which solves the weighted least-squares problem

x̂ = arg min
x∈FΦ(y)

‖x‖`2(w),

given Φ ∈ Cm×N with m 6 N . As we show below in Section 3.1, the minimizer x̂ is given explicitly
by the (weighted) Moore-Penrose pseudo-inverse

x̂ = DΦ∗(ΦDΦ∗)−1y,

where D := diag [w−1
i ]

N

i=1. Hence, in order to determine x̂, we first solve the system

ΦDΦ∗θ = y, (7)

and then we compute x̂ = DΦ∗θ. Notice that the system (7) has the general form

TT ∗θ = y, (8)

with T := ΦD
1
2 . We consider the application of CG to this system for the matrix A = TT ∗. This

approach leads to the modified conjugate gradient (MCG) method, presented in Algorithm 2 and pro-
posed by J.T. King in [29]. It provides a sequence (θi)i∈N with θi ∈ Ui := span{y, TT ∗y, . . . , (TT ∗)i−1y},
the Krylov subspace associated to (8), with the property that x̄i := T ∗θi minimizes

∥∥x̄i − x̄∥∥
`2

, where

x̄ = arg min
x∈FT (y)

‖x‖`2 . Finally, we compute x̂ = D
1
2 x̄.

Algorithm 2 Modified conjugate gradient (MCG) method

Input: initial vector θ0 ∈ Cm, T ∈ Cm×N , y ∈ Cm, desired accuracy δ (optional).

1: Set ρ0 = p0 = y and i = 0
2: while ρi 6= 0 (or

∥∥ρi∥∥
`2
> δ) do

3: αi = 〈ρi, pi〉`2/‖T ∗pi‖2`2
4: θi+1 = θi + αip

i

5: ρi+1 = y − TT ∗θi+1

6: βi+1 = 〈T ∗pi, T ∗ρi+1〉`2/‖T ∗pi‖2`2
7: pi+1 = ρi+1 − βi+1p

i

8: i = i+ 1
9: end while

10: Set x̄i+1 = T ∗θi+1
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The following theorem provides a precise rate of convergence of MCG. Additionally, we emphasize
the monotonic decrease of the error

∥∥x̂i − x̂∥∥
`2(w)

, which we use below in Lemma 11.

Theorem 2. Suppose the matrix T to be surjective. Then the sequence (x̄i)i∈N generated by the
Algorithm MCG converges to x̄ = T ∗(TT ∗)−1y in at most N steps, and

∥∥x̄i − x̄∥∥
`2
6

2ciTT ∗

1 + c2i
TT ∗

∥∥x̄0 − x̄
∥∥
`2
, (9)

for all i > 0, where cTT ∗=

√
κ(TT ∗)−1√
κ(TT ∗)+1

= σmax(T )−σmin(T )
σmax(T )+σmin(T ) is defined as in Theorem 1, and x̄0 = T ∗θ0 is

the initial vector. Moreover, by setting D := diag [w−1
i ]

N

i=1, and x̂i = D
1
2 x̄i as well as x̂ = D

1
2 x̄, we

obtain ∥∥x̂i − x̂∥∥
`2(w)

6
2ciTT ∗

1 + c2i
TT ∗

∥∥x̂0 − x̂
∥∥
`2(w)

. (10)

Proof. By Theorem 1, we have∥∥∥(TT ∗)
1
2 (θi − θ)

∥∥∥
`2
6

2ciTT ∗

1 + c2i
TT ∗

∥∥∥(TT ∗)
1
2 (θ0 − θ)

∥∥∥
`2
,

for θ as given in (8). By the identity∥∥∥(TT ∗)
1
2 (θi − θ)

∥∥∥2

`2
= 〈(TT ∗)

1
2 (θi − θ), (TT ∗)

1
2 (θi − θ)〉`2 = 〈(TT ∗)(θi − θ), θi − θ〉`2

= 〈T ∗(θi − θ), T ∗(θi − θ)〉`2 = 〈x̄i − x̄, x̄i − x̄〉`2 =
∥∥x̄i − x̄∥∥2

`2
,

we obtain the assertion (9). Inequality (10) follows then from the definition of the diagonal matrix D
and the weighted norm `2(w).

3 Conjugate gradient acceleration of the IRLS method for
`τ -minimization

In this section, we start with a detailed introduction of the IRLS algorithm and its modified version
that uses CG for the solution of the successive quadratic optimization problems. Afterwards, we
present two results providing the convergence and the rate of convergence of the modified algorithm.
As crucial feature, we give bounds on the accuracies of the (inexact) CG solutions of the intermediate
least squares problems which ensure convergence of the overall IRLS methods. In particular, these
tolerances must depend on the current iteration and should tend to zero with increasing iteration
count. In fact, without this condition, one may observe divergence of the method. The proofs of the
theorems are developed into several lemmas.

From now on, we consider a fixed parameter τ such that 0 < τ 6 1. At some points of the
presentation, we explicitly switch to the case of τ = 1 to prove additional properties of the algorithm
which are due to the convexity of the `1-norm minimization problem.

3.1 Iteratively Re-weighted Least Squares (IRLS) algorithm for `τ -minimization

The following functional turns out to be a crucial tool for the analysis of the IRLS algorithm and its
modified variant.
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Definition 6. Given a real number ε > 0, x ∈ CN , and a weight vector w ∈ RN with positive entries
wj > 0, j = 1, . . . , N , we define

Jτ (x,w, ε) :=
τ

2

 N∑
j=1

|xj |2wj +

N∑
j=1

(
ε2wj +

2− τ
τ

w
− τ

2−τ
j

) . (11)

We present IRLS as defined in [16, Section 7.2], see also [20, Chapter 15.3].

Algorithm 3 Iteratively Re-weighted Least Squares (IRLS)

Set w0 := (1, . . . , 1), ε0 := 1

1: while εn 6= 0 do
2: xn+1 := arg min

x∈FΦ(y)
Jτ (x,wn, εn) = arg min

x∈FΦ(y)
‖x‖`2(wn)

3: εn+1 := min(εn,
r(xn+1)K+1

N )

4: wn+1 := arg min
w>0

Jτ (xn+1, w, εn+1), i.e., wn+1
j = [|xn+1

j |2 + (εn+1)2]−
2−τ

2 , j = 1, . . . , N

5: end while

In this section we propose a practical method to solve approximatively the least squares problems
appearing in (2) of Algorithm 3. The following characterization of their solution turns out to be
very useful. Note that the `2(w)-norm is strictly convex, therefore its minimizer subject to an affine
constraint is unique.

Lemma 3 ([16, (2.6)], [20, Proposition A.23]). We have x̂ = arg min
x∈FΦ(y)

‖x‖`2(w) if and only if x̂ ∈ FΦ(y)

and
〈x̂, η〉w = 0 for all η ∈ NΦ. (12)

By means of Lemma 3, we are able to derive an explicit representation of the weighted `2-minimizer

x̂ := arg min
x∈FΦ(y)

‖x‖`2(w). Define D := diag
[
(wj)

−1
]N
j=1

and assume rank(Φ) = m. From (12), we have

the equivalent formulation
D−1x̂ ∈ R(Φ∗),

where R(·) denotes the range of a linear map. Therefore, there is a ξ ∈ Rm such that x̂ = DΦ∗ξ. To
compute ξ, we observe that

y = Φx̂ = (ΦDΦ∗)ξ,

and thus, since Φ has full rank and ΦDΦ∗ is invertible, we conclude

x̂ = DΦ∗ξ = DΦ∗(ΦDΦ∗)−1y.

As a consequence, we see that at step 2 of Algorithm IRLS the minimizer of the least squares problem
is explicitly given by the equation

xn+1 = DnΦ∗(ΦDnΦ∗)−1y, (13)

where we introduced the N ×N diagonal matrix

Dn := diag
[
(wnj )−1

]N
j=1

.

Furthermore, the new weight vector in step 4 of Algorithm IRLS is explicitly given by

wn+1
j = [|xn+1

j |2 + (εn+1)2]−
2−τ

2 , j = 1, . . . , N. (14)

Taking into consideration that wj > 0, this formula can be derived from the first order optimality
condition ∂Jτ (xn+1, w, εn+1)/∂w = 0.
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3.2 The algorithm CG-IRLS

Instead of solving exactly the system of linear equations (13) occurring in step 2 of algorithm IRLS, we
substitute the exact solution by the approximate solution provided by the iterative algorithm MCG
described in Section 2.2. We shall set a tolerance toln+1, which gives us an upper threshold for the
error between the optimal and the approximate solution in the weighted `2-norm. In this section, we
give a precise and implementable condition on the sequence (toln)n∈N of the tolerances that guarantees
convergence of the modified IRLS presented as Algorithm 4 below.

Algorithm 4 Iteratively Re-weighted Least Squares combined with CG (CG-IRLS)

Set w0 := (1, . . . , 1), ε0 := 1, β ∈ (0, 1]

1: while εn 6= 0 do
2: Compute x̃n+1 by means of MCG s.t. ‖x̂n+1 − x̃n+1‖2`2(wn) ≤ toln+1, where x̂n+1 :=

arg min
x∈FΦ(y)

Jτ (x,wn, εn) = arg min
z∈FΦ(y)

‖z‖`2(wn). Use the last iterate θn,i corresponding to x̃n = T ∗θn,i

from MCG of the previous IRLS iteration as initial vector θ0 = θn+1,0 for the present run of
MCG.

3: εn+1 := min(εn, βr(x̃n+1)K+1)

4: wn+1 := arg min
w>0

Jτ (x̃n+1, w, εn+1), i.e., wn+1
j = [|x̃n+1

j |2 + (εn+1)2]−
2−τ

2 , j = 1, . . . , N

5: end while

In contrast to Algorithm IRLS, the value β in step 3 is introduced to obtain flexibility in tuning
the performance of the algorithm. While we prove in Theorem 3 convergence for any positive value of

β, Theorem 3(iii) below guarantees instance optimality only for β <
(

1−γ
1+γ

K+1−k
N

) 1
τ

in the case that

lim
n→∞

εn 6= 0. Nevertheless in practice, choices of β which do not necessarily fulfill this condition may

work very well. Section 5, investigates good choices of β numerically.
From now on, we fix the notation x̂n+1 for the exact solution in step 2 of Algorithm 4, and x̃n+1,i

for its approximate solution in the i-th iteration of Algorithm MCG. We have to make sure that
‖x̂n+1 − x̃n+1,i‖2`2(wn) is sufficiently small to fall below the given tolerance. To this end, we could use

the bound on the error provided by (10), but this has the following two unpractical drawbacks:

(i) The vector x̂ = x̂n+1 is not known a priori;

(ii) The computation of the condition number cTT ∗ is possible, but it requires the computation of
eigenvalues with additional computational cost which we prefer to avoid.

Hence, we propose an alternative estimate of the error in order to guarantee ‖x̂n+1− x̃n+1‖2`2(wn) ≤
toln+1. We use the notation of Algorithm MCG, but add an additional upper index for the outer IRLS
iteration, e.g., θn+1,i is the θi in the n+ 1-th IRLS iteration. After i steps of MCG, we have

‖x̂n+1 − x̃n+1,i‖2`2(wn) = ‖DnΦ∗(ΦDnΦ∗)−1y −DnΦ∗θn+1,i‖2`2(wn).

We use θn+1,i = (ΦDnΦ∗)−1(y − ρn+1,i) from step 5 of MCG to obtain

‖x̂n+1 − x̃n+1,i‖2`2(wn) = ‖D
1
2
nΦ∗(ΦDnΦ∗)−1ρn+1,i‖2`2 6 ‖Dn‖‖Φ‖2‖(ΦDnΦ∗)−1‖2‖ρn+1,i‖2`2

=

max
16`6N

(
|x̃`|2 + (εn)2

) 2−τ
2 ‖Φ‖2

λmin (ΦDnΦ∗)
‖ρn+1,i‖2`2 ≤

(
1 + max

16`6N

(
|x̃n` |
εn

)2
) 2−τ

2 ‖Φ‖2

σmin (Φ)
‖ρn+1,i‖2`2 .

10



The last inequality above results from λmin (ΦDnΦ∗) = σ2
min

(
ΦD

1
2
n

)
and

σmin

(
ΦD

1
2
n

)
>σmin (Φ)σmin

(
D

1
2
n

)
> (εn)2−τσmin (Φ) .

Since εn and x̃n are known from the previous iteration, and ‖ρn+1,i‖`2 is explicitly calculated within
the MCG algorithm, ‖x̂n+1 − x̃n+1,i‖2`2(wn) ≤ toln+1 can be achieved by iterating until

‖ρn+1,i‖2`2 ≤
σmin (Φ)(

1 + max
16`6N

(
|x̃n` |
εn

)2
) 2−τ

2

‖Φ‖2
toln+1. (15)

Consequently, we shall use the minimal i ∈ N such that the above inequality is valid and set
x̃n+1 := x̃n+1,i, which will be the standard notation for the approximate solution.

In inequality (15), the computation of σmin (Φ) and ‖Φ‖ is necessary. The computation of these
constants might be demanding, but has to be performed only once before the algorithm starts. Fur-
thermore, in practice it is sufficient to compute approximations of these values and therefore these
operations are not critical for the computation time of the algorithm.

3.3 Convergence results

After introducing Algorithm CG-IRLS, we state below the two main results of this section. Theorem 3
shows the convergence of the algorithm to a limit point that obeys certain error guarantees with
respect to the solution of (1). Below K denotes the index used in the ε-update rule, i.e., step 3) of
Algorithm CG-IRLS.

Theorem 3. Let 0 < τ 6 1. Assume K is such that Φ satisfies the Null Space Property (5) of order
K, with γ < 1. If toln+1 in Algorithm CG-IRLS is chosen such that

√
toln+1 ≤

√(cn
2

)2
+

2an+1

τW̄ 2
n+1

− cn
2
, (16)

where

cn := 2Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
, with (17)

W̄n :=

√√√√max
i
|x̃n−1
i |2−τ + (εn−1)2−τ

(εn)2−τ , and Wn :=

∥∥∥∥D− 1
2

n D
1
2
n−1

∥∥∥∥ , (18)

for a sequence (an)n∈N, which fulfills an > 0 for all n ∈ N, and
∞∑
i=0

an < ∞, then, for each y ∈ Cm,

Algorithm CG-IRLS produces a non-empty set of accumulation points Zτ (y). Define ε := lim
n→∞

εn,

then the following holds:

(i) If ε = 0, then Zτ (y) consists of a single K-sparse vector x̄, which is the unique `τ -minimizer in
FΦ(y). Moreover, we have for any x ∈ FΦ(y):

‖x− x̄‖τ`τ ≤ c1σK(x)`τ , with c1 := 2
1 + γ

1− γ
. (19)

11



(ii) If ε > 0, then for each x̄ ∈ Zτ (y) 6= ∅, we have 〈x̄, η〉ŵ(x̄,ε,τ) = 0 for all η ∈ NΦ, where

ŵ(x̄, ε, τ) =
[∣∣|x̄i|2 + ε2

∣∣− 2−τ
2

]N
i=1

. Moreover, in the case of τ = 1, x̄ is the single element of

Zτ (y) and x̄ = xε,1 := arg min
x∈FΦ(y)

N∑
j=1
|x2
j + ε2|

1
2 (compare (42)).

(iii) Denote by Xε,τ (y) the set of global minimizers of fε,τ (x) :=
N∑
j=1
|x2
j + ε2|

τ
2 on FΦ(y). If ε > 0

and x̄ ∈ Zτ (y) ∩ Xε,τ (y), then for each x ∈ FΦ(y) and any β <
(

1−γ
1+γ

K+1−k
N

) 1
τ

, we have

‖x− x̄‖τ`τ 6 c2σk(x)`τ , with c2 :=
1 + γ

1− γ

(
2 + Nβτ

K+1−k

1− Nβτ

K+1−k
1+γ
1−γ

)
.

Knowing that the algorithm converges and leads to an adequate solution, one is also interested
in how fast one approaches this solution. Theorem 4 states that a linear rate of convergence can be
established in the case of τ = 1. In the case of 0 < τ < 1 this rate is even asymptotically super-linear.

Theorem 4. Assume Φ satisfies the NSP of order K with constant γ such that 0 < γ < 1 − 2
K+2 ,

and that FΦ(y) contains a k-sparse vector x∗. Define Λ := supp(x∗). Suppose that k < K − 2γ
1−γ and

0 < ν < 1 are such that

µ :=
γ(1 + γ)

(1− ν)τ(2−τ)

(
min
j∈Λ
|x∗j |
)τ(1−τ)

(
1 +

(N − k)βτ

K + 1− k

)2−τ
< 1,

R∗ :=

(
νmin
j∈Λ
|x∗j |
)τ

,

µ̃(R∗)1−τ 6 1, (20)

for some µ̃ satisfying µ < µ̃ < 1. Define the error

En := ‖x̃n − x∗‖τ`τ . (21)

Assume there exists n0 such that
En0 ≤ R∗. (22)

If an+1 and toln+1 are chosen as in Theorem 3 with the additional bound

toln+1 6

(
(µ̃− µ)E2−τ

n

(NC)
2−τ

2

) 2
τ

, (23)

then for all n > n0, we have

En+1 ≤ µE2−τ
n + (NC)1− τ

2 (toln+1)
τ
2 , (24)

and
En+1 ≤ µ̃E2−τ

n , (25)

where C := 3
∞∑
n=1

an + Jτ
(
x̃1, w0, ε0

)
. Consequently, x̃n converges globally and linearly to x∗ in the

case of τ = 1. The convergence is local and super-linear in the case of 0 < τ < 1.
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Remark 2. Note that the second bound in (23), which implies (25), is only of theoretical nature.
Since the value of En is unknown it cannot be computed in an implementation. However, heuristic
choices of toln+1 may fulfill this bound. Thus, in practice one can only guarantee the “asymptotic”
(super-)linear convergence (24).

In the remainder of this section we aim to prove both results by means of some technical lemmas
which are reported in Section 3.3.1 and Section 3.3.2.

3.3.1 Preliminary results concerning the functional Jτ (x,w, ε)

One important issue in the investigation of the dynamics of Algorithm CG-IRLS is the relationship
between the weighted norm of an iterate and the weighted norm of its predecessor. In the following
lemma, we present some helpful estimates.

Lemma 4. Let x̂n, x̂n+1, x̃n, x̃n+1 and the respective tolerances toln and toln+1 as defined in Algo-
rithm CG-IRLS. Then the inequalities∣∣∣∥∥x̂n+1

∥∥
`2(wn)

−
∥∥x̃n+1

∥∥
`2(wn)

∣∣∣ 6√toln+1, and (26)∥∥x̂n+1
∥∥
`2(wn)

6Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
, (27)

hold for all n > 1, where Wn :=

∥∥∥∥D− 1
2

n D
1
2
n−1

∥∥∥∥.

Proof. Inequality (26) is a direct consequence of the triangle inequality for norms and the property
that

∥∥x̂n+1 − x̃n+1
∥∥
`2(wn)

6
√

toln+1 of step 2 in Algorithm CG-IRLS.

In order to prove inequality (27), we first notice that x̂n, x̂n+1 ∈ FΦ(y). Using that x̂n+1 is the
minimizer of ‖·‖`2(wn) on FΦ(y), we obtain

∥∥x̂n+1
∥∥
`2(wn)

6 ‖x̂n‖`2(wn) =

∥∥∥∥D− 1
2

n x̂n
∥∥∥∥
`2

=

∥∥∥∥D− 1
2

n D
1
2
n−1D

− 1
2

n−1x̂
n

∥∥∥∥
`2

6

∥∥∥∥D− 1
2

n D
1
2
n−1

∥∥∥∥∥∥∥∥D− 1
2

n−1x̂
n

∥∥∥∥
`2

= Wn ‖x̂n‖`2(wn−1) 6Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
,

where the last inequality is due to (26).

The functional Jτ (x,w, ε) obeys the following monotonicity property.

Lemma 5. The inequalities

Jτ
(
x̃n+1, wn+1, εn+1

)
≤ Jτ

(
x̃n+1, wn, εn+1

)
≤ Jτ

(
x̃n+1, wn, εn

)
. (28)

hold for all n ≥ 0.

Proof. The first inequality follows from the minimization property of wn+1. The second inequality
follows from εn+1 ≤ εn.

The following lemma describes how the difference of the functional, evaluated in the exact and
the approximated solution can be controlled by a positive scalar an+1 and an appropriately chosen
tolerance toln+1.
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Lemma 6. Let an+1 be a positive scalar, x̃n+1, wn+1, and εn+1 as described in Algorithm CG-IRLS,
and x̂n+1 = arg min

x∈FΦ(y)
Jτ (x,wn, εn) . If we choose toln as in (16), then

∣∣Jτ (x̂n+1, wn+1, εn+1
)
− Jτ

(
x̃n+1, wn+1, εn+1

)∣∣ ≤ an+1, (29)∣∣Jτ (x̂n+1, wn, εn
)
− Jτ

(
x̃n+1, wn, εn

)∣∣ ≤ an+1, and (30)

Jτ
(
x̂n+1, wn+1, εn+1

)
≤ Jτ

(
x̂n+1, wn, εn

)
+ 2an+1. (31)

Proof. The core of this proof is to find a bound on the quotient of the weights from one iteration step
to the next and then to use the bound of the difference between x̂n+1 and x̃n+1 in the `2(wn)-norm
by toln+1. Starting with the definition of Wn+1 in Lemma 4, the quotient of two successive weights
can be estimated by

Wn+1 =

∥∥∥∥D− 1
2

n+1D
1
2
n

∥∥∥∥ =

√
max

`=1,...,N

wn+1
`

wn`
=

√√√√√ max
`=1,...,N

(
|x̃n` |2 + (εn)2

) 2−τ
2(

|x̃n+1
` |2 + (εn+1)2

) 2−τ
2

≤

√√√√ max
`=1,...,N

|x̃n` |2−τ + (εn)2−τ

(εn+1)2−τ = W̄n+1, (32)

where W̄n+1 was defined in (18). By choosing toln+1 as in (16), we obtain∣∣Jτ (x̂n+1, wn+1, εn+1
)
− Jτ

(
x̃n+1, wn+1, εn+1

)∣∣
=

∣∣∣∣∣∣τ2
N∑
j=1

(
|x̂n+1
j |2 − |x̃n+1

j |2
)
wn+1
j

∣∣∣∣∣∣
=

∣∣∣∣∣∣τ2
N∑
j=1

(
|x̂n+1
j | − |x̃n+1

j |
)(
|x̂n+1
j |+ |x̃n+1

j |
)
wn+1
j

∣∣∣∣∣∣
≤τ

2

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wn+1
j

 1
2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wn+1

j

 1
2

6
τ

2
max

`=1,...,N

wn+1
`

wn`

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wnj
 1

2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wnj

 1
2

6
τ

2
W̄ 2
n+1

∥∥x̂n+1 − x̃n+1
∥∥
`2(wn)

∥∥|x̂n+1|+ |x̃n+1|
∥∥
`2(wn)

6
τ

2
W̄ 2
n+1

√
toln+1

(∥∥x̂n+1
∥∥
`2(wn)

+
∥∥x̃n+1

∥∥
`2(wn)

)
6
τ

2
W̄ 2
n+1

√
toln+1

[
2Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
+
√

toln+1

]
6
τ

2
W̄ 2
n+1

√
toln+1

[
cn +

√
toln+1

]
6 an+1,

where we have used the Cauchy-Schwarz inequality in the first inequality, (26) and (27) in the fifth
inequality, (32) in the third inequality, the definition of cn in (17), and the Assumption (16) on toln+1

in the last inequality.

14



Since 1 6 W̄n+1, we obtain (30) by

|Jτ
(
x̃n+1, wn, εn

)
−Jτ

(
x̂n+1, wn, εn

)
| =

∣∣∣∣∣∣τ2
N∑
j=1

(
|x̂n+1
j |2 − |x̃n+1

j |2
)
wnj

∣∣∣∣∣∣
6
τ

2

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wnj
 1

2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wnj

 1
2

6
τ

2
W̄ 2
n+1

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wnj
 1

2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wnj

 1
2

6
τ

2
W̄ 2
n+1

√
toln+1

[
cn +

√
toln+1

]
6 an+1,

with the same arguments as above. Lemma 5 yields

Jτ
(
x̂n+1, wn+1, εn+1

)
≤ Jτ

(
x̃n+1, wn+1, εn+1

)
+ an+1 ≤ Jτ

(
x̃n+1, wn, εn+1

)
+ an+1

≤ Jτ
(
x̃n+1, wn, εn

)
+ an+1 ≤ Jτ

(
x̂n+1, wn, εn

)
+ 2an+1,

where the first inequality follows from (29), the second and third by (28), and the last by (30).

Setting the tolerances toln according to condition (16) may not be optimal in practice. Numerical
experiments show that also for looser bounds on the tolerance Algorithm CG-IRLS converges, in fact,
it is sometimes faster.

Notice, that (16) is an implicit bound on toln+1 since it depends on εn+1, which means that this
value has to be updated in the MCG loop of the algorithm. If x̃n+1,i is K-sparse in some iteration i

of MCG, then εn+1 = εn+1,i = min
{
εn, βr

(
x̃n+1,i

)
K+1

}
= 0 and toln+1 = 0 by (17) and (18). In this

case, MCG and IRLS are stopped by definition.
In the above lemma, we showed that the error of the evaluations of the functional Jτ on the

approximate solution x̃n and the weighted `2-minimizer x̂n can be bounded by choosing an appro-
priate tolerance in the algorithm. This result will be used to show that the difference between the
iterates x̃n+1 and x̃n becomes arbitrarily small for n→∞, as long as we choose the sequence (an)n∈N
summable. This will be the main result of this section. Before, we prove some further auxiliary
statements concerning the functional Jτ (x,w, ε) and the iterates x̃n and wn.

Lemma 7. Let (an)n∈N, an ∈ R+, be a summable sequence with A :=
∞∑
n=1

an < ∞, and define

C := 3A+ Jτ
(
x̃1, w0, ε0

)
as in Theorem 4. For each n ≥ 1 we have

Jτ
(
x̃n+1, wn+1, εn+1

)
=

N∑
j=1

(
|x̃n+1
j |2 + (εn+1)2

) τ
2
, (33)

‖x̃n‖τ`τ 6 C, (34)

wnj ≥ C−
2−τ
τ , j = 1, . . . , N, and (35)

‖x‖`2 6 C
2−τ
2τ ‖x‖`2(wn) for all x ∈ CN . (36)

Proof. Identity (33) follows by insertion of the definition of wn+1 in step 4 of Algorithm CG-IRLS.
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By the minimizing property of x̂n+1 and the fact that x̂n ∈ FΦ(y), we have

Jτ
(
x̂n+1, wn, εn

)
6 Jτ (x̂n, wn, εn) ,

and thus, together with (31), it follows that

Jτ
(
x̂n+1, wn+1, εn+1

)
6 Jτ

(
x̂n+1, wn, εn

)
+ 2an+1 6 Jτ (x̂n, wn, εn) + 2an+1.

Hence, the telescoping sum

n∑
k=1

(
Jτ
(
x̂k+1, wk+1, εk+1

)
− Jτ

(
x̂k, wk, εk

))
6 2

n∑
k=1

ak+1

leads to the estimate

Jτ
(
x̂n+1, wn+1, εn+1

)
6 Jτ

(
x̂1, w1, ε1

)
+ 2A 6 Jτ

(
x̃1, w0, ε0

)
+ 2A+ a1.

Inequality (34) then follows from (29) and

∥∥x̃n+1
∥∥τ
`τ
≤

N∑
j=1

[
|x̃n+1
j |2 + (εn+1)2

] τ
2

= Jτ
(
x̃n+1, wn+1, εn+1

)
6 Jτ

(
x̂n+1, wn+1, εn+1

)
+ an+1 6 C, for all n > 1.

Consequently, the bound (35) follows from

(wnj )−
τ

2−τ 6
2− τ
τ

(wnj )−
τ

2−τ ≤ Jτ (x̃n, wn, εn) ≤ C.

Inequality (36) is a direct consequence of (35).

Notice that (34) states the boundedness of the iterates. The lower bound (35) on the weights wn

will become useful in the proof of Lemma 8.
By using the estimates collected so far, we can adapt [16, Lemma 5.1] to our situation. First,

we shall prove that the differences between the n-th `2(wn−1)-minimizer and its successor become
arbitrarily small.

Lemma 8. Given a summable sequence (an)n∈N, an ∈ R+, the sequence (x̂n)n∈N satisfies

∞∑
n=1

∥∥x̂n+1 − x̂n
∥∥2

`2
≤ 2

τ
C

2
τ , (37)

where C is the constant of Lemma 7 and x̂n = arg min
x∈FΦ(y)

Jτ
(
x,wn−1, εn−1

)
. As a consequence we have

lim
n→∞

∥∥x̂n − x̂n+1
∥∥
`2

= 0. (38)

Proof. We have

2

τ

[
Jτ (x̂n, wn, εn)− Jτ

(
x̂n+1, wn+1, εn+1

)
+ 2an+1

]
≥ 2

τ

[
Jτ (x̂n, wn, εn)− Jτ

(
x̂n+1, wn, εn

)]
= 〈x̂n, x̂n〉wn −

〈
x̂n+1, x̂n+1

〉
wn

=
〈
x̂n + x̂n+1, x̂n − x̂n+1

〉
wn

=
〈
x̂n − x̂n+1, x̂n − x̂n+1

〉
wn

=

N∑
i=1

wnj |x̂nj − x̂n+1
j |2 ≥ C−

2−τ
τ

∥∥x̂n − x̂n+1
∥∥2

`2
.
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Here we used the fact that x̂n − x̂n+1 ∈ NΦ and therefore,
〈
x̂n+1, x̂n − x̂n+1

〉
= 0 and in the last step

we applied the bound (36). Summing these inequalities over n ≥ 1, we arrive at

N∑
n=1

∥∥x̂n − x̂n+1
∥∥2

`2
≤ C

2−τ
τ

N∑
n=1

2

τ

[
Jτ (x̂n, wn, εn)− Jτ

(
x̂n+1, wn+1, εn+1

)
+ 2an+1

]
≤ 2

τ
C

2−τ
τ

[
Jτ
(
x̂1, w1, ε1

)
+

N∑
n=1

2an+1

]
6

2

τ
C

2
τ .

Letting N →∞ yields the desired result.

The following lemma will play a major role in our proof of convergence since it shows that not
only (38) holds but that also the difference between successive iterates becomes arbitrarily small.

Lemma 9. Let x̃n be as described in Algorithm CG-IRLS and (an)n∈N be a summable sequence. Then

lim
n→∞

∥∥x̃n − x̃n+1
∥∥
`2

= 0. (39)

Proof. By (36) of Lemma 7 and the condition (16) on toln, we have

‖x̂n − x̃n‖`2 6 C
2−τ
2τ ‖x̂n − x̃n‖`2(wn−1) 6 C

2−τ
2τ

√
toln 6 C

2−τ
2τ

(
−cn

2
+

√(cn
2

)2
+

√
2an
τW̄ 2

n

)

6 C
2−τ
2τ

√
2

τ

√
an

since W̄n > 1 as defined in Lemma 6. Since (an)n∈N is summable, we conclude that

lim
n→∞

‖x̂n − x̃n‖`2 = 0. (40)

Together with Lemma 8 we can prove our statement:

lim
n→∞

∥∥x̃n − x̃n+1
∥∥
`2

= lim
n→∞

∥∥x̃n − x̂n + x̂n − x̂n+1 + x̂n+1 − x̃n+1
∥∥
`2

6 lim
n→∞

‖x̃n − x̂n‖`2 + lim
n→∞

∥∥x̂n − x̂n+1
∥∥
`2

+ lim
n→∞

∥∥x̂n+1 − x̃n+1
∥∥
`2

= 0,

where the first and last term vanish because of (40) and the other term due to (38).

3.3.2 The functional fε,τ (z)

In this section, we introduce an auxiliary functional which is useful for the proof of convergence.
From the monotonicity of εn, we know that ε = lim

n→∞
εn exists and is nonnegative. We introduce the

functional

fε,τ (x) :=
N∑
j=1

|x2
j + ε2|

τ
2 . (41)

Note that if we would know that x̃n converges to x, then in view of (33), fε,τ (x) would be the limit

of Jτ (x̃n, wn, εn). When ε > 0, the Hessian is given by H(fε,τ )(x) = diag

[
τ
x2
j (τ−1)+ε2

|x2
j+ε

2|
4−τ

2

]N
i=1

. Thus, in
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particular, H(fε,1)(x) is strictly positive definite, so that fε,1 is strictly convex and therefore has a
unique minimizer

xε,1 := arg min
x∈FΦ(y)

fε,1(x). (42)

In the case of 0 < τ < 1, we denote by Xε,τ (y) the set of global minimizers of fε,τ on FΦ(y). For both
cases, the minimizers are characterized by the following lemma.

Lemma 10. Let ε > 0 and x ∈ FΦ(y). If x = xε,1 or x ∈ Xε,τ (y), then 〈x, η〉ŵ(x,ε,τ) = 0 for all

η ∈ NΦ, where ŵ(x, ε, τ) =
[∣∣|xi|2 + ε2

∣∣− 2−τ
2

]N
i=1

. In the case of τ = 1 also the converse is true.

Proof. The proof is an adaptation of [16, Lemma 5.2, Section 7] and is presented for the sake of
completeness in Appendix A.

3.3.3 Proof of convergence

By the results of the previous section, we are able now to prove the convergence of Algorithm CG-
IRLS. The proof is inspired by the ones of [16, Theorem 5.3, Theorem 7.7], see also [20, Chapter 15.3],
which we adapted to our case.

Proof of Theorem 3. Since 0 6 εn+1 ≤ εn the sequence (εn)n∈N always converges to some ε > 0.
Case ε = 0: Following the first part of the proof of [16, Theorems 5.3 and 7.7], where the

boundedness of the sequence x̃n and the definition of εn is used, we can show that there is a subsequence
(x̃pj )pj∈N of (x̃n)n∈N such that x̃pj → x̄ ∈ FΦ(y) and x̄ is the unique `τ -minimizer. It remains to show
that also x̃n → x̄. To this end, we first notice that x̃pj → x̄ and εpj → 0 imply Jτ (x̃pj , wpj , εpj ) →
‖x̄‖τ`τ . The convergence of Jτ (x̃n, wn, εn)→ ‖x̄‖τ`τ is established by the following argument: For each
n ∈ N there is exactly one i = i(n) such that pi < n 6 pi+1. We use (31) and (29) to estimate the
telescoping sum

|Jτ (x̃n, wn, εn)− Jτ (x̃pi(n) , wpi(n) , εpi(n))| 6
n−1∑
k=pi

∣∣∣Jτ (x̃k+1, wk+1, εk+1
)
− Jτ

(
x̃k, wk, εk

)∣∣∣
6 4

n−1∑
k=pi(n)

ak+1.

Since
∑∞

k=0 ak <∞ this implies that limn→∞ |Jτ (x̃n, wn, εn)− Jτ (x̃pi(n) , wpi(n) , εpi(n))| = 0 so that

lim
n→∞

Jτ (x̃n, wn, εn) = ‖x̄‖τ`τ .

Moreover (33) implies

Jτ (x̃n, wn, εn)−N(εn)τ ≤ ‖x̃n‖τ`τ ≤ Jτ (x̃n, wn, εn) ,

and thus, ‖x̃n‖τ`τ → ‖x̄‖
τ
`τ

. Finally we invoke Lemma 1 with z′ = x̃n and z = x̄ to obtain

lim sup
n→∞

‖x̃n − x̄‖τ`τ ≤
1 + γ

1− γ

(
lim
n→∞

‖x̃n‖τ`τ − ‖x̄‖
τ
`τ

)
= 0,

which completes the proof of x̃n → x̄ in this case. To see (19) and establish (i), invoke Lemma 2.
Case ε > 0: By Lemma 7, we know that (x̃n)n∈N is a bounded sequence and hence has accu-

mulation points. Let (x̃ni) be any convergent subsequence of (x̃n)n∈N and let x̄ ∈ Zτ (y) its limit. By
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(40), we know that also x̄ ∈ FΦ(y). Following the proof of [16, Theorem 5.3 and Theorem 7.7], one
shows that 〈x̄, η〉ŵ(x̄,ε,τ) = 0 for all η ∈ NΦ, where ŵ(x̄, ε, τ) is defined as in Lemma 10. In the case

of τ = 1, Lemma 10 implies x̄ = xε,1. Hence, xε,1 is the unique accumulation point of (x̃n)n∈N. This
establishes (ii).

To prove (iii), assume that x̄ ∈ Zτ (y)∩Xε,τ (y), and follow the proof of [16, Theorem 5.3, and 7.7]
to conclude.

3.3.4 Proof of rate of convergence

The proof follows similar steps as in [16, Section 6]. We define the auxiliary sequences of error vectors
η̃n := x̃n − x∗ and η̂n := x̂n − x∗.

Proof of Theorem 4. We apply the characterization (12) with w = wn, x̂ = x̂n+1 = x∗ + η̂n+1, and
η = x̂n+1 − x∗ = η̂n+1, which gives

N∑
j=1

(x∗j + η̂n+1
j )η̂n+1

j wnj = 0.

Rearranging the terms and using the fact that x∗ is supported on Λ, we obtain

N∑
j=1

|η̂n+1
j |2wnj = −

N∑
j=1

x∗j η̂
n+1
j wnj = −

∑
j∈Λ

x∗j

[|x̃nj |2 + (εn)2]
2−τ

2

η̂n+1
j . (43)

By assumption there exists n0 such that En0 6 R∗. We prove (24), and En 6 R∗ ⇒ En+1 6 R∗ to
obtain the validity for all n > n0. Assuming En 6 R∗, we have for all j ∈ Λ,

|η̃nj | ≤ ‖η̃n‖`τ = τ
√
En ≤ ν|x∗j |,

and thus
|x̃nj | = |x∗j + η̃nj | > |x∗j | − |η̃nj | > |x∗j | − ν|x∗j |,

so that
|x∗j |

[|x̃nj |2 + (εn)2]
2−τ

2

≤
|x∗j |
|x̃nj |2−τ

≤ 1

(1− ν)2−τ |x∗j |1−τ
. (44)

Hence, (43) combined with (44) and the NSP leads to N∑
j=1

|η̂n+1
j |2wnj

τ

≤

(
(1− ν)2−τ

(
min
j∈Λ
|x∗j |
)1−τ

)−τ
‖η̂n+1

Λ ‖τ`1

≤

(
(1− ν)(2−τ)

(
min
j∈Λ
|x∗j |
)(1−τ)

)−τ
‖η̂n+1

Λ ‖τ`τ 6
γ

(1− ν)τ(2−τ)

(
min
j∈Λ
|x∗j |
)τ(1−τ)

‖η̂n+1
Λc ‖

τ
`τ .

Combining [16, Proposition 7.4] with the above estimate yields

‖η̂n+1
Λc ‖

2τ
`τ =

∥∥∥[η̂n+1
i (wni )−

1
τ

]
i∈Λc

∥∥∥2τ

`τ (wn)
6
∥∥η̂n+1

Λc

∥∥2τ

`2(wn)

∥∥∥[(wni )−
1
τ

]
i∈Λc

∥∥∥2τ

` 2τ
2−τ

(wn)
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6

 N∑
j=1

|η̂n+1
j |2wnj

τ ∑
j∈Λc

[
|η̃nj |+ εn

]τ2−τ

6
γ

(1− ν)τ(2−τ)

(
min
j∈Λ
|x∗j |
)τ(1−τ)

‖η̂n+1
Λc ‖

τ
`τ

(
‖η̃n‖τ`τ + (N − k) (εn)τ

)2−τ
. (45)

It follows that

‖η̂n+1
Λc ‖

τ
`τ ≤

γ

(1− ν)τ(2−τ)

(
min
j∈Λ
|x∗j |
)τ(1−τ)

(
‖η̃n‖τ`τ + (N − k) (εn)τ

)2−τ
.

Note that this is also valid if η̂n+1
Λc = 0 since then the left-hand side is zero and the right-hand side

non-negative. We furthermore obtain

‖η̂n+1‖τ`τ = ‖η̂n+1
Λ ‖τ`τ + ‖η̂n+1

Λc ‖
τ
`τ ≤ (1 + γ)‖η̂n+1

Λc ‖
τ
`τ

≤ γ(1 + γ)

(1− ν)τ(2−τ)

(
min
j∈Λ
|x∗j |
)τ(τ−1)

(
‖η̃n‖τ`τ + (N − k) (εn)τ

)2−τ
. (46)

In addition to this, we know by [16, Lemma 4.1, 7.5], that

(J − j)r(x)τJ ≤ ‖x− x′‖τ`τ + σj(x
′)`τ . (47)

for any J > j and x, x′ ∈ CN . Thus, we have by the definition of εn in step 3 of Algorithm CG-IRLS
that

(N − k)(εn)τ 6 (N − k)βτ (r(x̃n)K+1)τ ≤ (N − k)βτ

K + 1− k
(‖x̃n − x∗‖τ`τ + σk(x

∗)`τ )

=
(N − k)βτ

K + 1− k
‖η̃n‖τ`τ (48)

since by assumption σk(x
∗)`τ = 0. Together with (46) this yields

‖η̂n+1‖τ`τ ≤
γ(1 + γ)

(1− ν)τ(2−τ)

(
min
j∈Λ
|x∗j |
)τ(1−τ)

(
1 +

(N − k)βτ

K + 1− k

)2−τ
‖η̃n‖τ(2−τ)

`τ

≤ µE2−τ
n .

Finally, we obtain (24) by

En+1 =
∥∥η̃n+1

∥∥τ
`τ
6
∥∥η̂n+1

∥∥τ
`τ

+
∥∥x̃n+1 − x̂n+1

∥∥τ
`τ
6
∥∥η̂n+1

∥∥τ
`τ

+N1− τ
2

∥∥x̃n+1 − x̂n+1
∥∥τ
`2

6
∥∥η̂n+1

∥∥τ
`τ

+ (NC)1− τ
2

∥∥x̃n+1 − x̂n+1
∥∥τ
`2(wn)

6 µE2−τ
n + (NC)1− τ

2 (toln+1)
τ
2 ,

where we used the triangle inequality in the first inequality, (36) in the third inequality, and C is the
constant from Lemma 7. Equation (25) then follows by condition (23). By means of (20), we obtain

En+1 6 µ̃E
2−τ
n 6 µ̃ (R∗)2−τ 6 R∗,

and therefore the linear convergence for τ = 1, and the super-linear convergence for τ < 1 as soon as
n > n0.
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4 Conjugate gradient acceleration of IRLS method for `τ -norm reg-
ularization

In the previous chapter the solution x∗ was intended to solve the linear system Φx = y exactly. In
most engineering and physical applications such a setting may not be required since the measurements
are perturbed by noise. In this context, it is more appropriate to work with a functional that balances
the residual error in the linear system with an `τ -norm penalty, promoting sparsity. We consider the
problem

min
x

(
Fτ,λ(x) := ||x||τ`τ +

1

2λ
||Φx− y||2`2

)
, (49)

where λ > 0, Φ ∈ Cm×N , y ∈ Cm is a given measurement vector, and 0 < τ 6 1.

Definition 7. Given a real number ε > 0, x ∈ CN , and a weight vector w ∈ RN , w > 0, we define

Jτ,λ(x,w, ε) :=
τ

2

N∑
j=1

[
|xj |2wj + ε2wj +

2− τ
τ

w
− τ

2−τ
j

]
+

1

2λ
||Φx− y||2`2 . (50)

Lai, Xu, and Yin in [31] and Voronin in [42] showed independently that computing the optimizer
of the problem (49) can be approached by an alternating minimization of the functional Jτ,λ with
respect to x, w, and ε. The difference between these two works is the definition of the update rule for
ε. Here, we chose the rule in step 4 of Algorithm 5 proposed by Voronin because it allows us to show
that the algorithm converges to a minimizer of (49) for τ = 1 and to critical points of (49) for τ < 1
(more precise statements will be given below). However, we were not able to prove similar statements
for the rule of Lai, Xu, and Yin. It only allows to show the convergence of the algorithm to a critical
point of the smoothed functional

min
x
||x||τ`τ ,ε +

1

2λ
||Φx− y||2`2 ,

where ||x||τ`τ ,ε :=
N∑
j=1
|x2
j + ε2|

τ
2 with ε = limn→∞ ε

n.

Algorithm 5 IRLS-λ

1: Set w0 := (1, . . . , 1), ε0 := 1, α ∈ (0, 1], φ ∈ (0, 1
4−τ ).

2: while εn > 0 do
3: xn+1 := arg min

x
Jτ,λ(x,wn, εn)

4: εn+1 := min
{
εn, |Jτ,λ(x̃n−1, wn−1, εn−1)− Jτ,λ(x̃n, wn, εn)|φ + αn+1

}
5: wn+1 := arg min

w>0
Jτ,λ(xn+1, w, εn+1)

6: end while

We approach the first step of the algorithm by computing a critical point of Jτ,λ(·, w, ε) via the
first order optimality condition

τ
[
xjw

n
j

]
j=1,...,N

+
1

λ
Φ∗(Φx− y) = 0, (51)

or equivalently (
Φ∗Φ + diag

[
λτwnj

]N
j=1

)
x = Φ∗y. (52)
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We denote the solution of this system by xn+1. The new weight wn+1 is obtained in step 3 and can
be expressed componentwise by

wn+1
j = ((xn+1

j )2 + (εn+1)2)−
2−τ

2 . (53)

Similarly to the previous section we propose the combination of Algorithm 5 with the CG method. CG
is used to calculate an approximation of the solution of the linear system (52) in line 3 of the algorithm.
After including the CG method, the modified algorithm which we shall consider is Algorithm CG-
IRLS-λ.

Algorithm 6 CG-IRLS-λ

1: Set w0 := (1, . . . , 1), ε0 := 1, α ∈ (0, 1], φ ∈ (0, 1
4−τ ).

2: while εn > 0 do
3: Compute x̃n+1 by means of CG, s.t. ||x̃n+1 − x̂n+1||`2(wn) 6 toln+1,

where x̂n+1 := arg min
x

Jτ,λ(x,wn, εn). Use x̃n as the initial vector for CG.

4: εn+1 := min
{
εn, |Jτ,λ(x̃n−2, wn−2, εn−2)− Jτ,λ(x̃n−1, wn−1, εn−1)|φ + αn+1

}
5: wn+1 := arg min

w>0
Jτ,λ(x̃n+1, w, εn+1)

6: end while

Notice that x̃ always denotes the approximate solution of the minimization with respect to x in
line 3 and x̂ the corresponding exact solution. Thus x̂n+1 fulfills (52) but not x̃n+1.

Theorem 1 provides a stopping condition for the CG method, but as in the previous section it is
not practical for us, since we do not dispose of the minimizer and the computation of the condition
number is computationally expensive. Therefore, we provide an alternative stopping criterion to make
sure that ‖x̃n+1 − x̂n+1‖`2(wn) 6 toln+1 is fulfilled in line 3 of Algorithm CG-IRLS-λ.

Let x̃n+1,l be the l-th iterate of the CG method and define

An := Φ∗Φ + diag
[
λτwnj

]N
j=1

.

Notice that the matrix Φ∗Φ is positive semi-definite and λτD−1
n = λτ diag

[
wnj

]N
j=1

is positive definite.

Therefore, An is positive definite and invertible, and furthermore

λmin(An) > λmin(diag
[
λτwnj

]N
j=1

). (54)

We obtain∥∥∥x̂n+1 − x̃n+1,l
∥∥∥
`2(wn)

6
∥∥∥A−1

n

(
Φ∗y −Anx̃n+1,l

)∥∥∥
`2(wn)

6

∥∥∥∥D− 1
2

n

∥∥∥∥∥∥A−1
n

∥∥∥∥∥rn+1,l
∥∥∥
`2
, (55)

where rn+1,l := Φ∗y −Anx̃n+1,l is the residual as it appears in line 5 of Algorithm 1. The first factor
on the right-hand side of (55) can be estimated by∥∥∥∥D− 1

2
n

∥∥∥∥ = λmax

(
D
− 1

2
n

)
=
√

max
j
wnj =

√
max
j

((
x̃nj

)2
+ (εn)2

)− 2−τ
2

6 (εn)−
2−τ

2 .

The second factor of (55) is estimated by

∥∥A−1
n

∥∥ = (λmin(An))−1 6
(
λmin(diag

[
λτwnj

]N
j=1

)
)−1

=

λτ ((max
j
|x̃nj |

)2

+ (εn)2

)− 2−τ
2

−1

,
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where we used (54) in the inequality. Thus, we obtain

∥∥∥x̃n+1 − x̂n+1,l
∥∥∥
`2(wn)

6

((
max
j
|x̃nj |

)2

+ (εn)2

) 2−τ
2

(εn)
2−τ

2 λτ

∥∥∥rn+1,l
∥∥∥
`2
,

and the suitable stopping condition∥∥∥rn+1,l
∥∥∥
`2
6

(εn)
2−τ

2 λτ((
max
j
|x̃nj |

)2

+ (εn)2

) 2−τ
2

toln+1. (56)

In the remainder of this section, we clarify how to choose the tolerance toln+1, and establish a
convergence result of the algorithm. In the case of τ = 1, the problem (49) is the minimization of
the well-known LASSO functional. It is convex, and the optimality conditions can be stated in terms
of subdifferential inclusions. We are able to show that at least a subsequence of the algorithm is
converging to a solution of (49). If 0 < τ < 1, the problem is non-convex and non-smooth. Necessary
first order optimality conditions for a global minimizer of this functional were derived in [4, Proposition
3.14], and [26, Theorem 2.2]. In our case, we are able to show that the non-zero components of the
limits of the algorithm fulfill the respective conditions. However, as soon as the algorithm is producing
zeros in some components of the limit, so far, we were not able to verify the conditions mentioned
above. On this account, we pursue a different strategy, which originates from [43]. We do not directly
show that the algorithm computes a solution of problem (49). Instead we show that a subsequence of
the algorithm is at least computing a point x†, whose transformation x̆† = N−1

υ/τ (x†) is a critical point
of the new functional

F̆υ,λ(x) := ‖x‖υ`υ +
1

2λ

∥∥ΦNυ/τ (x)− y
∥∥2

`2
, (57)

where
Nζ : CN → CN , (Nζ(x))j := sign(xj)|xj |ζ , j = 1, . . . , N, (58)

is a continuous bijective mapping and 1 < υ 6 2. It was shown in [43, 37] that assuming x̆† is a global
minimizer of F̆υ,λ(x) implies that x† is a global minimizer of Fτ,λ, i.e., a solution of problem (49).
Furthermore, it was also shown that this result can be partially extended to local minimizers. We
comment on this issue in Remark 4. These considerations allow us to state the main convergence
result.

Theorem 5. Let 0 < τ 6 1, λ > 0, Φ ∈ Cm×N , and y ∈ Cm. Define the sequences (x̃n)n∈N,
(εn)n∈N and (wn)n∈N as the ones generated by Algorithm CG-IRLS-λ. Choose the accuracy toln of
the CG-method, such that

toln 6 min

an
√2J̄τCwn−1 + 2

√
2J̄

λ

√(
2− τ
τ J̄

)− 2−τ
τ

||Φ||

−1

,

√
an

(
τ

2
+
||Φ||2

2λ

(
2− τ
τ J̄

)− 2−τ
τ

)− 1
2

 , (59)

with Cwn−1 :=

max
j

(x̃n−1
j )2 + (εn−1)2

(εn)2

1− τ
2

, (60)
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where (an)n∈N is a positive sequence satisfying
∑∞

n=0 an <∞ and J̄ := Jτ,λ(x̃1, w0, ε0).
Then the sequence (x̃n)n∈N has at least one convergent subsequence (x̃nk)nk∈N. In the case that

τ = 1 and xλ 6= 0, any convergent subsequence is such that its limit xλ is a minimizer of F1,λ(x).
In the case that 0 < τ < 1, the subsequence (x̃nk)nk∈N can be chosen such that the transformation of
its limit x̆λ := N−1

υ/τ (xλ), 1 < υ 6 2, as defined in (58), is a critical point of (57). If x̆λ is a global

minimizer of (57), then xλ is also a global minimizer of Fτ,λ(x).

Remark 3. In the case 0 < τ < 1, the theorem includes the possibility that there may exist several
converging subsequences with different limits. Potentially only one of these limits may have the nice
property that its transformation is a critical point. In the proof of the theorem, which follows further
below, an appropriate subsequence is constructed. Actually this construction leads to the following
hint, how to practically choose the subsequence: Take a converging subsequence xnl for which the nl
satisfy equation (85).

It will be important below that a minimizer x] of F1,λ(x) is characterized by the conditions

−(Φ∗(y − Φx]))j = λ sign(x]j) if x]j 6= 0, (61)

|(Φ∗(y − Φx]))j | 6 λ if x]j = 0. (62)

Note that in the (less important) case xλ = 0, our theorem does not give a conclusion about xλ being
a minimizer of F1,λ(x).

Remark 4. The result of Theorem 5 for 0 < τ < 1 can be partially extended towards local minimizers.
For the sake of completeness we sketch the argument from [37]. Assume that x̆λ is a local minimizer.
Then there is a neighborhood Uε(x̆

λ) with ε > 0 such that for all x′ ∈ Uε(x̆λ):

F̆υ,λ(x′) > F̆υ,λ(x̆λ).

By continuity of Nυ/τ there exists an ε̂ > 0 such that the neighborhood Uε̂(x
λ) ⊂ Nυ/τ (Uε(x̆

λ)). Thus,

for all x ∈ Uε̂(xλ), we have x′ = N−1
υ/τ (x) ∈ Uε(x̆λ), and obtain

Fτ,λ(x) = ||x||τ`τ +
1

2λ
||Φx− y||2`2 = ||Nυ/τ (x′)||τ`τ +

1

2λ
||ΦNυ/τ (x′)− y||2`2

= ||x′||υ`υ +
1

2λ
||ΦNυ/τ (x′)− y||2`2 = F̆υ,λ(x′)

> F̆υ,λ(x̆λ) = ||x̆λ||υ`υ +
1

2λ
||ΦNυ/τ (x̆λ)− y||2`2

= ||xλ||τ`τ +
1

2λ
||Φxλ − y||2`2 = Fτ,λ(xλ).

For the proof of Theorem 5, we proceed similarly to Section 3, by first presenting a sequence of
auxiliary lemmas on properties of the functional Jτ,λ and the dynamics of Algorithm CG-IRLS-λ.

4.1 Properties of the functional Jτ,λ

Lemma 11. For the functional Jτ,λ defined in (50), and the iterates x̃n, wn, and εn produced by
Algorithm CG-IRLS-λ, the following inequalities hold true:

Jτ,λ(x̃n+1, wn+1, εn+1) 6 Jτ,λ(x̃n+1, wn, εn+1) (63)

6 Jτ,λ(x̃n+1, wn, εn) (64)

6 Jτ,λ(x̃n, wn, εn). (65)
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Proof. The first inequality holds because wn+1 is the minimizer and the second inequality holds since
εn+1 6 εn. In the third inequality we use the fact that the CG-method is a descent method, decreasing
the functional in each iteration. Since we take x̃n as the initial estimate in the first iteration of CG,
the output x̃n+1 of CG must have a value of the functional that is less or equal to the one of the initial
estimate.

The iterative application of Lemma 11 leads to the fact that for each n ∈ N+ the functional Jτ,λ
is bounded:

0 6 Jτ,λ(x̃n, wn, εn) 6 Jτ,λ(x̃1, w0, ε0) = J̄ . (66)

Since the functional is composed of positive summands, its definition and (66) imply

||Φx̃n − y||`2 6
√

2λJ̄,

||x̃n||`2(wn) =

√√√√ N∑
j=1

(
x̃nj

)2
wnj 6

√
2J̄

τ
, and (67)

wnj >

(
2− τ
τ J̄

) 2−τ
τ

, j = 1, . . . , N.

The last inequality leads to a general relationship between the `2-norm and `2(wn)-norm for arbitrary
x ∈ RN :

||x||`2(wn) >

√(
2− τ
τ J̄

) 2−τ
τ

||x||`2 . (68)

In order to show convergence to a critical point or minimizer of the functional Fτ,λ, we will use
the first order condition (51). Since this property is only valid for the exact solution x̂n+1, we need a
connection between x̂n+1 and x̃n+1. Observe that

Jτ,λ(x̂n+1, wn, εn) 6 Jτ,λ(x̃n+1, wn, εn) (69)

since x̂n+1 is the exact minimizer. From (69) we obtain

τ

2

N∑
j=1

(
x̂n+1
j

)2
wnj +

1

2λ
||Φx̂n+1 − y||2`2 6

τ

2

N∑
j=1

(
x̃n+1
j

)2
wnj +

1

2λ
||Φx̃n+1 − y||2`2

which leads to

τ

2
||x̂n+1||2`2(wn) 6

τ

2
||x̃n+1||2`2(wn) +

1

2λ

(
||Φx̃n+1 − y||2`2 − ||Φx̂

n+1 − y||2`2
)
. (70)

Since (69) holds in addition to (65) and (66), we conclude, also for the exact solution x̂n+1, the bound

||Φx̂n − y||`2 6
√

2λJτ,λ(x̂n, wn−1, εn−1) 6
√

2λJ̄, (71)

for all n ∈ N, and

||x̂n+1||`2(wn) 6

√
2Jτ,λ(x̂n+1, wn, εn)

τ
6

√
2J̄

τ
. (72)
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Additionally using (71), we are able to estimate the second summand of (70) by(
||Φx̃n+1 − y||2`2 − ||Φx̂

n+1 − y||2`2
)
6
∣∣(||Φx̃n+1 − y||2`2 − ||Φx̂

n+1 − y||2`2
)∣∣

=
∣∣∣||Φx̃n+1 − Φx̂n+1||2`2 + 2

〈
Φx̃n+1 − Φx̂n+1,Φx̂n+1 − y

〉
`2

∣∣∣
6||Φx̃n+1 − Φx̂n+1||`2

(
||Φx̃n+1 − Φx̂n+1||`2 + 2||Φx̂n+1 − y||`2

)
6||Φx̃n+1 − Φx̂n+1||`2

(
||Φx̃n+1 − y||`2 + 3||Φx̂n+1 − y||`2

)
6 4
√

2λJ̄ ||Φ|| ||x̃n+1 − x̂n+1||`2 ,

(73)

where we used the Cauchy-Schwarz inequality in the second inequality, the triangle inequality in the
third inequality, and the bounds in (67) and (71) in the last inequality.

The following pivotal result of this section allows us to control the difference between the exact
and approximate solution of the linear system in line 3 of Algorithm CG-IRLS-λ.

Lemma 12. For a given positive number an+1 and a choice of the accuracy toln+1 satisfying (59),
the functional Jτ,λ fulfills the two monotonicity properties

Jτ,λ(x̂n+1, wn+1, εn+1)− Jτ,λ(x̃n+1, wn+1, εn+1) 6 an+1 (74)

and
Jτ,λ(x̃n+1, wn, εn)− Jτ,λ(x̂n+1, wn, εn) 6 an+1. (75)

Proof. By means of the relation

wn+1
j = wnj

wn+1
j

wnj
6 wnj

(
(x̃nj )2 + (εn)2

(x̃n+1
j )2 + (εn+1)2

)1− τ
2

6 wnj

max
j

(x̃nj )2 + (εn)2

(εn+1)2

1− τ
2

= wnj Cwn ,

where Cwn was defined in (60), we can estimate

Jτ,λ(x̂n+1, wn+1, εn+1)− Jτ,λ(x̃n+1, wn+1, εn+1)

6
τ

2

N∑
j=1

(
x̂n+1
j − x̃n+1

j

)(
x̂n+1
j + x̃n+1

j

)
wn+1
j +

∣∣∣∣ 1

2λ
||Φx̂n+1 − y||2`2 − ||Φx̃

n+1 − y||2`2

∣∣∣∣
6
τ

2

∣∣∣〈x̂n+1 − x̃n+1, x̂n+1 + x̃n+1
〉
`2(wn+1)

∣∣∣+
4
√

2λJ̄

2λ
||Φ||||x̃n+1 − x̂n+1||`2

6
τ

2

√√√√ N∑
j=1

(x̂n+1
j − x̃n+1

j )2wn+1
j

√√√√ N∑
j=1

(x̂n+1
j + x̃n+1

j )2wn+1
j +

4
√

2λJ̄

2λ
||Φ||||x̃n+1 − x̂n+1||`2

6
τ

2
Cwn ||x̂n+1 − x̃n+1||`2(wn)||x̂n+1 + x̃n+1||`2(wn) +

4
√

2λJ̄

2λ
||Φ||||x̃n+1 − x̂n+1||`2

6 Cwn ||x̂n+1 − x̃n+1||`2(wn)2 max
{τ

2
||x̂n+1||`2(wn),

τ

2
||x̃n+1||`2(wn)

}
+

4
√

2λJ̄

2λ
||Φ||||x̃n+1 − x̂n+1||`2

6
√

2J̄τCwn ||x̂n+1 − x̃n+1||`2(wn) +
4
√

2λJ̄

2λ

√(
2− τ
τ J̄

)− 2−τ
τ

||Φ||||x̃n+1 − x̂n+1||`2(wn)

6

√2J̄τCwn +
4
√

2λJ̄

2λ

√(
2− τ
τ J̄

)− 2−τ
τ

||Φ||

 ||x̃n+1 − x̂n+1||`2(wn) 6 an+1,
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where we used (73) in the second inequality, Cauchy-Schwarz in the third inequality, and (68), (67),
and (72) in the sixth inequality. Thus we obtain (74). To show (75), we use (68) in the second to last
inequality, condition (59) in the last inequality and the fact that x̂n+1 = arg min

x
Jτ,λ(x,wn, εn) (and

thus fulfilling (51)) in the second identity below:

Jτ,λ(x̃n+1, wn, εn)− Jτ,λ(x̂n+1, wn, εn) (76)

=
τ

2

N∑
j=1

(
(x̃n+1
j )2 − (x̂n+1

j )2
)
wnj +

1

2λ

(
||Φx̃n+1 − Φx̂n+1||2`2 + 2

〈
Φ(x̃n+1 − x̂n+1),Φx̂n+1 − y

〉
`2

)
(77)

=
τ

2

N∑
j=1

(
(x̃n+1
j )2 − (x̂n+1

j )2 − 2x̂n+1
j x̃n+1

j + 2
(
x̂n+1
j

)2
)
wnj +

1

2λ
||Φx̃n+1 − Φx̂n+1||2`2 (78)

6
τ

2

N∑
j=1

(
(x̃n+1
j )2 + (x̂n+1

j )2 − 2x̂n+1
j x̃n+1

j

)
wnj +

1

2λ
||Φ||||x̃n+1 − x̂n+1||2`2 (79)

6

(
τ

2
+
||Φ||2

2λ

(
2− τ
τ J̄

)− 2−τ
τ

)
||x̃n+1 − x̂n+1||2`2(wn) 6 an+1. (80)

Besides Lemma 12 there are two more helpful properties of the functional. First, the identity

Jτ,λ(x̂n, wn, εn)− Jτ,λ(x̂n+1, wn, εn) =
τ

2
||x̂n − x̂n+1||2`2(wn) +

1

2λ
||Φx̂n − Φx̂n+1||2`2

can be shown by the same calculation as in (76), by means of replacing x̃n+1 by x̂n. Second, it follows
in particular that

τ

2

√(
2− τ
τ J̄

) 2−τ
τ

||x̂n+1 − x̂n||2`2 6
τ

2
||x̂n+1 − x̂n||2`2(wn)

6 Jτ,λ(x̂n, wn, εn)− Jτ,λ(x̂n+1, wn, εn). (81)

where the estimate (68) is used in the first inequality.

4.2 Proof of convergence

We need to show that the difference x̂n+1 − x̂n between two successive exact iterates and the one
between the exact and approximated iterates, x̂n − x̃n, become arbitrarily small. This result is used
in the proof of Theorem 5 to show that both (x̂n)n∈N and (x̃n)n∈N converge to the same limit.

Lemma 13. Consider a summable sequence (an)n∈N and choose the accuracy of the CG solution toln
satisfying (59) for the n-th iteration step. Then the sequences (x̂n)n∈N and (x̃n)n∈N have the properties

lim
n→∞

||x̂n − x̂n+1||`2 = 0 (82)

and
lim
n→∞

||x̃n+1 − x̂n+1||`2 = 0. (83)
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Proof. We use the properties of J , which we derived in the previous subsection. First, we show (82):

τ

2

√(
2− τ
τ J̄

) 2−τ
τ

M∑
n=1

||x̂n+1 − x̂n||2`2 6
M∑
n=1

Jτ,λ(x̂n, wn, εn)− Jτ,λ(x̂n+1, wn, εn)

6
M∑
n=1

Jτ,λ(x̂n, wn, εn)− Jτ,λ(x̃n+1, wn, εn) + an+1

6
M∑
n=1

Jτ,λ(x̂n, wn, εn)− Jτ,λ(x̃n+1, wn+1, εn+1) + an+1

6
M∑
n=1

Jτ,λ(x̂n, wn, εn)− Jτ,λ(x̂n+1, wn+1, εn+1) + 2an+1

= Jτ,λ(x̂1, w1, ε1)− Jτ,λ(x̃M+1, wM+1, εM+1) + 2
M∑
n=1

an+1

6 J̄ + 2
M∑
n=1

an+1.

We used (81) in the first inequality, (75) in the second inequality, (63) and (64) in the third in-
equality, (74) in the fourth inequality and a telescoping sum in the identity. Letting M → ∞ we
obtain

τ

2

(
2− τ
τ J̄

) 2−τ
τ
∞∑
n=1

||x̂n+1 − x̂n||2`2 6 J̄ + 2
∞∑
n=1

an+1 <∞

and thus (82).
Second, we show (83). From line 1 and 3 of (76) we know that

Jτ,λ(x̃n+1, wn, εn)− Jτ,λ(x̂n+1, wn, εn)

=
τ

2

N∑
j=1

(
(x̃n+1
j )2 − (x̂n+1

j )2 − 2x̂n+1
j x̃n+1

j + 2
(
x̂n+1
j

)2
)
wnj +

1

2λ
||Φx̃n+1 − Φx̂n+1||2`2

=
τ

2
||x̃n+1

j − x̂n+1
j ||2`2(wn) +

1

2λ
||Φx̃n+1 − Φx̂n+1||2`2 .

Since the second summand is positive, we conclude

Jτ,λ(x̃n+1, wn, εn)− Jτ,λ(x̂n+1, wn, εn) >
τ

2
||x̃n+1

j − x̂n+1
j ||2`2(wn).

Together with (75) we find that

τ

2

(
2− τ
τ J̄

) 2−τ
τ

||x̃n+1 − x̂n+1||2`2 6
τ

2
||x̃n+1 − x̂n+1||2`2(wn)

6 Jτ,λ(x̃n+1, wn, εn)− Jτ,λ(x̂n+1, wn, εn) 6 an+1,

and thus taking limits on both sides we get

τ

2

(
2− τ
τ J̄

) 2−τ
τ

lim sup
n→∞

||x̃n+1 − x̂n+1||2`2 6 lim
n→∞

an+1 = 0,

which implies (83).
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Remark 5. By means of Lemma 13 we obtain

lim
n→∞

||x̃n − x̃n+1||`2 6 lim
n→∞

||x̃n − x̂n||`2 + lim
n→∞

||x̂n − x̂n+1||`2 + lim
n→∞

||x̂n+1 − x̃n+1||`2 = 0. (84)

The following lemma provides a lower bound for the εn, which is used to show a contradiction in
the proof of Theorem 5. Recall that φ ∈

(
0, 1

4−τ
)

is the parameter appearing in the update rule for ε
in step 4 of both the algorithms CG-IRLS-λ and IRLS-λ.

Lemma 14 ([42, Lemma 4.5.4, Lemma 4.5.6]). Let τ = 1 and thus wnj =
(

(x̃nj )2 + (εn)2
)− 1

2
, j ∈

{1, . . . , N}. There exists a strictly increasing subsequence (nl)l∈N and some constant C > 0 such that

(εnl+1)2 > C((wnlj )−1)2τφ|(wnl−1
j )−1 − (wnlj )−1|4φ.

Proof. Since Jτ,λ(x̃n, wn, εn) is decreasing with n due to Lemma 11 and bounded below by 0, the
difference |Jτ,λ(x̃n−1, wn−1, εn−1)−Jτ,λ(x̃n, wn, εn)| is converging to 0 for n→∞. In addition αn+1 →
0 for n → ∞, and thus by definition also εn → 0. Consequently there exists a subsequence (nl)l∈N
such that

εnl+1 = |Jτ,λ(x̃nl−1, wnl−1, εnl−1)− Jτ,λ(x̃nl , wnl , εnl)|φ + αnl+1. (85)

Following exactly the steps of the proof of [42, Lemma 4.5.6.] yields the assertion. Observe that all of
these steps are also valid for 0 < τ < 1, although in [42, Lemma 4.5.6] the author restricted it to the
case τ > 1.

Remark 6. The observation in the previous proof that (εn) converges to 0 will be again important
below.

We are now prepared for the proof of Theorem (5).

Proof of Theorem 5. Consider the subsequence (x̃nl)l∈N of Lemma 14. Since ‖x̃nl‖`2 is bounded
by (67), there exists a converging subsequence (x̃nk)k∈N, which has limit xλ.

Consider the case τ = 1 and xλ 6= 0. We first show that

−∞ < lim
n→∞

x̃nk+1
j wnkj = lim

n→∞
x̂nk+1
j wnkj <∞, for all j = 1, . . . , N. (86)

It follows from equation (51) and the boundedness of the residual (71) that the sequence (x̂nk+1wnkj )nk
is bounded, i.e., ∥∥∥∥[x̂nk+1

j wnkj

]
j

∥∥∥∥
2

=
1

λ
‖Φ∗(Φx̂nk+1 − y)‖ 6 C.

Therefore, there exists a converging subsequence, for simplicity again denoted by (x̂nk+1wnkj )nk . To
show the identity in (86), we estimate

|x̂nk+1
j wnkj − x̃

nk+1
j wnkj | 6

tolnk+1√
(x̃nkj )2 + (εnk)2

6
ank+1√

2J̄Cwnk
√

(x̃nkj )2 + (εnk)2

=
ank+1ε

nk+1

√
2J̄
√

max
`

(x̃nk` )2 + (εnk)2
√

(x̃nkj )2 + (εnk)2
6

ank+1ε
nk+1

√
2J̄(max

`
|x̃nk` |)(εnk)

6
ank+1√

2J̄(max
`
|x̃nk` |)

,
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for all j = 1, . . . , N , where the second inequality follows by the upper bound of toln in (59), and the last

inequality is due to the definition of εn+1 which yields εn+1

εn 6 1. Since we assumed lim
k→∞

x̃nk = xλ 6= 0,

there is a k0 such that for all k > k0, we have that max
j
|x̃nkj | > c > 0. Since (ank) tends to 0, we

conclude that lim
n→∞

|x̂nk+1
j wnkj − x̃

nk+1
j wnkj | = 0, and therefore we have (86). Note that we will use the

notation k0 several times in the presentation of this proof, but for different arguments. We do not
mention it explicitly, but we assume a newly defined k0 to be always larger or equal to the previously
defined one.

Next we show that xλ is a minimizer of F1,λ by verifying conditions (61) and (62). To this end we

notice that by Lemma 13 and Remark 5 it follows that lim
k→∞

x̂nkj = lim
k→∞

x̃nkj = lim
k→∞

x̃nk−1
j = xλj . By

means of this result, in the case of xλj 6= 0, we have, due to continuity arguments, (51) and Remark 6,

−(Φ∗(y − Φxλ))j = lim
k→∞

−(Φ∗(y − Φx̂nk))j = lim
k→∞

λx̂nkj w
nk−1
j = λ lim

k→∞
x̂nkj ((x̃nk−1

j )2 + (εnk−1)2)−
1
2

= λxλj ((xλj )2 + (0)2)−
1
2 = λ sign(xλj ),

and thus (61).
In order to show condition (62) for j such that xλj = 0, we follow the main idea in the proof of

Lemma 4.5.9. in [42]. Assume
lim
k→∞

x̂nkj w
nk−1
j > 1. (87)

Then there exists an ε > 0 and a k0 ∈ N, such that for all k > k0 the inequality (x̂nkj w
nk−1
j )2 > 1 + ε

holds. Due to (86), we can furthermore choose k0 large enough such that also (x̃nkj w
nk−1
j )2 > 1 + ε for

all k > k0. Recalling the identity for wnj from Lemma 14, we obtain

(x̃nkj )2 > (1 + ε)((wnk−1
j )−1)2 (88)

= (1 + ε)((x̃nk−1
j )2 + (εnk−1)2) > (1 + ε)(εnk+1)2

> (1 + ε)C|(wnkj )−1|2φ|(wnk−1
j )−1 − (wnkj )−1|4φ > (1 + ε)C|x̃nkj |

2φ|(wnk−1
j )−1 − (wnkj )−1|4φ,

where the second inequality follows by the definition of the εn, and the third inequality follows from
Lemma 14. Furthermore, in the last inequality we used that wnj 6 |x̃nj |−1 which follows directly from
the definition of wnj . By means of this estimate, we conclude

(wnk−1
j )−1 > (wnkj )−1 − |(wnk−1

j )−1 − (wnkj )−1| > |x̃nkj | − ((1 + ε)C)
− 1

4φ |x̃nkj |
2−2φ

4φ . (89)

Since 0 < φ < 1
3 , the exponent 2−2φ

4φ > 1. In combination with the fact that x̃nkj is vanishing for

k →∞, we are able to choose k0 large enough to have ((1 + ε)C)
− 1

4φ |x̃nkj |
2−2φ

4φ
−1

< ε̄ := 1− (1 + ε)−
1
2

for all k > k0 and therefore
(wnk−1

j )−1 > |x̃nkj |(1− ε̄). (90)

The combination of (88) and (90) yields

|x̃nkj |
2 > (1 + ε)

(
wnk−1
j

)−2
> (1 + ε)|x̃nkj |

2(1− ε̄)2. (91)

Since we have |x̃nkj w
nk−1
j | > 1 + ε for all k > k0, we also have x̃nkj 6= 0, and thus, we can divide in (91)

by |x̃nkj | and insert the definition of ε̄ to obtain

1 > (1 + ε)(1− ε̄)2 = 1,
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which is a contradiction, and thus the assumption (87) is false. By means of this result and again a
continuity argument, we show condition (62) by

(ΦT (y − Φxλ))j = lim
k→∞

(ΦT (y − Φx̂nk))j = λ lim
k→∞

x̂nkj w
nk−1
j 6 λ.

At this point, we have shown that at least the convergent subsequence (x̃nk)nk∈N is such that its limit
xλ is a minimizer of F1,λ(x). To show that this is valid for any convergent subsequence of (x̃n)n∈N,
we remind that the subsequence (x̃nk)nk∈N is the one of Lemma 14, and therefore fulfills (85). Thus,
we can adapt [42, Lemma 4.6.1] to our case, following the arguments in the proof. These arguments
only require the monotonicity of the functional Jτ,λ, which we show in Lemma 11. Consequently the
limit xλ of any convergent subsequence of (x̃n)n∈N is a minimizer of F1,λ(x).

Consider the case 0 < τ < 1. The transformation Nζ(x) defined in (58) is continuous and bijective.
Thus, x̆λ := N−1

υ/τ (xλ) is well-defined, and xλj = 0 if and only if x̆λj = 0. At a critical point of the

differentiable functional F̆τ,λ, its first derivative has to vanish which is equivalent to the conditions

υ

τ
|xj |

υ−τ
τ
(
Φ∗y − Φ∗ΦNυ/τ (x)

)
j

+ λυ sign(xj)|xj |υ−1 = 0, j = 1, . . . , N. (92)

We show now that x̆λ fulfills this first order optimality condition. It is obvious that for all j such that
x̆λj = 0 the condition is trivially fulfilled. Thus, it remains to consider all j where x̆λj 6= 0. As in the

case of τ = 1, we conclude by Lemma 13 and Remark 5 that lim
k→∞

x̂nkj = lim
k→∞

x̃nkj = lim
k→∞

x̃nk−1
j = xλj .

Therefore continuity arguments as well as (51) yield

−(Φ∗(y − Φxλ))j = lim
k→∞

−(Φ∗(y − Φx̂nk))j = lim
k→∞

λτx̂nkj w
nk−1
j = λτ lim

k→∞
x̂nkj ((x̃nk−1

j )2 + (εnk−1)2)−
2−τ

2

= λτxλj ((xλj )2 + (0)2)−
2−τ

2 = λτ sign(xλj )|xj |τ−1.

We replace xλ = Nυ/τ (x̆λ) and obtain

−(Φ∗(y − ΦNυ/τ (x̆λ))j = λτ sign((Nυ/τ (x̆λ))j)|(Nυ/τ (x̆λ))j |τ−1

= λτ sign(x̆λj )|x̆λj |υ−
υ
τ .

We multiply this identity by υ
τ |xj |

υ−τ
τ and obtain (92).

If x̆λ is also a global minimizer of F̆υ,λ, then xλ is a global minimizer of Fτ,λ. This is due the
equivalence of the two problems which was shown in [37, Proposition 2.4] based on the continuity and
bijectivity of the mapping Nυ/τ [43, Proposition 3.4].

5 Numerical Results

We illustrate the theoretical results of this paper by several numerical experiments. We first show
that our modified versions of IRLS yield significant improvements in terms of computational time and
often outperform the state of the art methods Iterative Hard Thresholding (IHT) [3] and Fast Iterative
Soft-Thresholding Algorithm (FISTA) [1].

Before going into the detailed presentation of the numerical tests, we raise two plain numerical
disclaimers concerning the numerical stability of CG-IRLS and CG-IRLS-λ:

• The first issue concerns IRLS methods in general: The case where εn → 0, i.e., xnj → 0, for some
j ∈ {1, . . . , N} and n → ∞, is very likely since our goal is the computation of sparse vectors.
In this case wnj will for some n become too large to be properly represented by a computer.
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Thus, in practice, we have to provide a lower bound for ε by some εmin > 0. Imposing such
a limit has the theoretical disadvantage that in general the algorithms are only calculating an
approximation of the respective problems (1) and (49). Therefore, to obtain a “sufficiently good”
approximation, one has to choose εmin sufficiently small. This raises yet another numerical issue:
If we choose, e.g., εmin = 1e-8 and assume that also xnj � 1, then wnj is of the order 1e+8.
Compared to the entries of the matrix Φ, which are of the order 1, any multiplication or addition
by such a value will cause serious numerical errors. In this context we cannot expect that the
IRLS method reaches high accuracy, and saturation effects of the error are likely to occur before
machine precision.

• The second issue concerns the CG method: In Algorithm 1 and Algorithm 2 we have to divide
at some point by

∥∥T ∗pi∥∥2

`2
or 〈Api, pi〉`2 respectively. As soon as the residual decreases, also pi

decreases with the same order of magnitude. If the above vector products are at the level of
machine precision, e.g. 1e-16, this would mean that the norm of the residual is of the order of
its square-root, here 1e-8. But this is the measure of the stopping criterion. Thus, if we ask for
a higher precision of the CG method, the algorithm might become numerically unstable.

In the following, we start with a description of the general test settings, which will be common for
both Algorithms CG-IRLS and CG-IRLS-λ. Afterwards we independently analyze the speed of both
methods and compare them with state of the art algorithms, namely IHT and FISTA. We respectively
start with a single trial, followed by a speed-test on a variety of problems. We will also compare the
performance of both CG-IRLS and CG-IRLS-λ for the noiseless case which leads to surprising results.

5.1 Test settings

All tests are performed with MATLAB version R2014a. For the sake of faster tests (in some cases
experiments run for several days) and simplicity, we restrict ourselves to experiments with models de-
fined by real numbers although everything can be similarly done over the complex field. To exploit the
advantage of fast matrix-vector multiplications and to allow high dimensional tests, we use randomly
sampled partial discrete cosine transformation matrices Φ. We perform tests in three different dimen-
sional settings (later we will extend them to higher dimension) and choose different values N of the
dimension of the signal, the amount m of measurements, the respective sparsity k of the synthesized
solutions, and the index K in Algorithm (CG-)IRLS:

Setting A Setting B Setting C

N 2000 4000 8000
m 800 1600 3200
k 30 60 120
K 50 100 200

For each of these settings, we draw at random a set of 100 synthetic problems on which a speed-
test is performed. For each synthetic problem the support Λ is determined by the first k entries of
a random permutation of the numbers 1, . . . , N . Then we draw the sparse vector x∗ at random with
entries x∗i ∼ N (0, 1) for i ∈ Λ and x∗Λc = 0, and a randomly row sampled normalized discrete cosine
matrix Φ, where the full non-normalized discrete cosine matrix is given by

Φfull
i,j =

{
1, i = 1, j = 1, . . . , N,
√

2 cos
(
π(2j−1)(i−1)

2N

)
, 2 6 i 6 N, 1 6 j 6 N.

For a given noise vector e of entries ei ∼ N (0, σ2), we eventually obtain the measurements y = Φx∗+e.
Later we need to specify the noise level and we will do so by fixing a signal to noise ratio. By assuming
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that Φ has the Restricted Isometry Property of order k (compare, e.g., [20]), i.e., ‖Φz‖`2 ∼ ‖z‖`2 , for
all z ∈ RN with # supp(z) 6 k, we can estimate the measurement signal to noise ratio by

MSNR :=
E(‖Φx∗‖`2)

E(‖e‖`2)
∼
√
k√
mσ

.

In practice, we set the MSNR first and choose the noise level σ =
√
k

MSNR
√
m

. If MSNR = ∞, the

problem is noiseless, i.e., e = 0.

5.2 Algorithm CG-IRLS

Specific settings. We restrict the maximal number of outer iterations to 15. Furthermore, we
modify (16), so that the CG-algorithm also stops as soon as

∥∥ρn+1,i
∥∥
`2
6 1e-12. As soon as the

residual undergoes this particular threshold, we call the CG solution (numerically) “exact”. The ε-
update rule is extended by imposing the lower bound εn = εn ∨ εmin where εmin = 1e-9/N . The
summable sequence (an)n∈N in Theorem 3 is defined by an = 100 · (1/2)n.

As we define the synthetic tests by choosing the solution x∗ of the linear system Φx∗ = y (here we
assume e = 0), we can use it to determine the error of the iterations ‖x̃n − x∗‖`2 .

IRLS vs. CG-IRLS To get an immediate impression about the general behavior of CG-IRLS, we
compare its performance in terms of accuracy and speed to IRLS, where the intermediate linear systems
are solved exactly via Gaussian elimination (i.e., by the standard MATLAB backslash operator). We
choose IHT as a first order state of the art benchmark, to get a fair comparison with another method
which can exploit fast matrix-vector multiplications.

In this first single trial experiment, we choose an instance of setting B, and set τ = 1 for CG-
IRLS and compare it to IRLS with different values of τ . The result is presented in the left plot of
Figure 1. We show the decrease of the relative error in `2-norm as a function of the computational
time. One sees that the computational time of IRLS is significantly outperformed by CG-IRLS and by
the exploitation of fast matrix-vector multiplications. The standard IRLS is not competitive in terms
of computational time, even if we choose τ < 1, which is known to yield super-linear convergence [16].
With increasing dimension of the problem, in general the advantage of using the CG method becomes
even more significant. However CG-IRLS does not outperform yet IHT in terms of computational
time. We also observe the expected numerical error saturation (as mentioned at the beginning of this
section), which appears as soon as the accuracy falls below 1e-13.

For this test, we set the parameter β in the ε-update rule to 2. We comment on the choice of this
particular parameter in a dedicated paragraph below.

Modifications to CG-IRLS As we have shown by a single trial in the previous paragraph,
CG-IRLS as it is presented in Section 3.2 is not able to outperform IHT. Therefore, we introduce
the following practical modifications to the algorithm:

(i) We introduce the parameter maxiter cg, which defines the maximual number of inner CG
iterations. Thus, the inner loop of the algorithm stops as soon as maxiter cg iterations were
performed, even if the theoretical tolerance toln is not reached yet.

(ii) CG-IRLS includes a stopping criterion depending on toln+1, which is only implicitly given as a
function of εn+1 (compare Section 3.3.1, and in particular formulas (16) and (17)), which in turn
depends on the current x̃n+1 by means of sorting and a matrix-vector multiplication. To further
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Figure 1: Single trial of Setting B. Left: Relative error plotted against the computational time for
IRLS[τ = 1] (light green, ◦), IRLS[τ = 0.9] (green, �), IRLS[τ = 0.8] (dark green, ♦), CG-IRLS (blue,
×), and IHT (red, −). Right: Relative error plotted against computational time for CG-IRLS (blue,
×), CG-IRLSm (dark blue, +), IHT+CG-IRLSm (black, ∗), and IHT (red, −).

reduce the computational cost of each iteration, we avoid the aforementioned operations by only
updating toln+1 outside the MCG loop, i.e., after the computation of x̃n+1 with fixed toln+1 we
update εn+1 as in step 3 of Algorithm CG-IRLS and subsequently update toln+2 which again is
fixed for the computation of x̃n+2.

(iii) The left plot of Figure 1 reveals that in the beginning CG-IRLS reduces the error more slowly
than IHT, and it gets faster after it reached a certain ball around the solution. Therefore, we
use IHT as a warm up for CG-IRLS, in the sense that we apply a number start iht of IHT
iterations to compute a proper starting vector for CG-IRLS.

We call CG-IRLSm the algorithm with modifications (i) and (ii), and IHT+CG-IRLSm the algorithm
with modifications (i), (ii), and (iii). We set maxiter cg = bm/12c, start iht = 150, and we set
β to 0.5. If these algorithms are executed on the same trial as in the previous paragraph, we ob-
tain the result which is shown on the right plot in Figure 1. For this trial, the modified algorithms
show a significantly reduced computational time with respect to the unmodified version and they now
converge faster than IHT. However, the introduction of the practical modifications (i)–(iii) does not
necessarily comply anymore with the assumptions of Theorem 3. Therefore, we do not have rigorous
convergence and recovery guarantees anymore and recovery might potentially fail more often. In the
next paragraph, we empirically investigate the failure rate and explore the performance of the different
methods on a sufficiently large test set.

Another natural modification to CG-IRLS consists in the introduction of a preconditioner to com-
pensate for the deterioriation of the condition number of ΦDnΦ∗ as soon as εn becomes too small
(when wn becomes very large). The matrix ΦΦ∗ is very well conditioned, while the matrix ΦDnΦ∗

“sandwiching” Dn becomes more ill-conditioned as n gets larger, and, unfortunately, it is hard to
identify additional “sandwiching” preconditioners Pn such that the matrix PnΦDnΦ∗P ∗n is suitably
well-conditioned. In the numerical experiments standard preconditioners failed to yield any significant
improvement in terms of convergence speed. Hence, we refrained from introducing further precondi-
tioners. Instead, as we will show at the end of Subsection 5.3, a standard (Jacobi) preconditioning of
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the matrix (
Φ∗Φ + diag

[
λτwnj

]N
j=1

)
,

where the source of singularity is added to the product Φ∗Φ, leads to a dramatic improvement of
computational speed.

Empirical test on computational time and failure rate In the following, we define a method
to be “successful” if it is computing a solution x for which the relative error ‖x−x∗‖`2/‖x∗‖`2 6 1e-13.
The computational time of a method is measured by the time it needs to produce the first iterate which
reaches this accuracy. In the following, we present the results of a test which runs the methods CG-
IRLS, CG-IRLSm, IHT+CG-IRLSm, and IHT on 100 trials of Setting A, B, and C respectively and
τ ∈ {1, 0.9, 0.8}. For values of τ < 0.8 the methods become unstable, due to the severe nonconvexity
of the problem and it seems that good performance cannot be reached below this level. Therefore we
do not investigate further these cases. Let us stress that IHT does not depend on τ .

In each setting we check for each trial which methods succeeds or fails. If all methods succeed, we
compare the computational time, determine the fastest method, and count the computational time
of each method for the respective mean computational time. The results are shown in Figure 2. By
analyzing the diagrams, we are able to distill the following observations:

• Especially in Setting A and B, CG-IRLSm and IHT+CG-IRLSm are better or comparable to IHT
in terms of mean computational time and provide in most cases the fastest method. CG-IRLS
performs much worse. The failure rate of all the methods is negligible here.

• The gap in the computational time between all methods becomes larger when N is larger.

• With increasing dimension of the problem, the advantage of using the modified CG-IRLS meth-
ods subsides, in particular in Setting C.

• In the literature [10, 11, 12, 16] superlinear convergence is reported for τ < 1, and perhaps one
of the most surprising outcomes is that the best results for all CG-IRLS methods are instead
obtained for τ = 1. This can probably be explained by observing that superlinear convergence
kicks in only in a rather small ball around the solution and hence does not necessarily improve
the actual computation time!

• Not only the computational performance, but also the failure rate of the CG-IRLS based methods
increases with decreasing τ . However, as expected, CG-IRLS succeeds in the convex case of
τ = 1. The failure of CG-IRLS for τ < 1 can probably be attributed to non-convexity.

We conclude that CG-IRLSm and IHT+CG-IRLSm perform well for τ = 1 and for the problem
dimension N within the range of 1000 – 10000. They are even able to outperform IHT. However,
by extrapolation of the numerical results IHT is expected to be faster for N > 10000. (This is in
compliance with the general folklore that first order methods should be preferred for higher dimension.
However, as we will see in Subsection 5.3, a proper preconditioning of CG-IRLS-λ will win over IHT
for dimensions N > 105!) As soon as N < 1000, direct methods such as Gaussian elimination are
faster than CG, and thus, one should use standard IRLS with τ < 1.

Choice of β, maxiter cg, and start iht The numerical tests in the previous paragraph were
preceded by a careful and systematic investigation of the tuning of the parameters β, maxiter cg,
and start iht. While we fixed start iht to 100, 150, and 200 for Setting A, B, and C respectively to
produce a good starting value, we tried β ∈ {1/N, 0.01, 0.1, 0.5, 0.75, 1, 1.5, 2, 5, 10}, and maxiter cg ∈
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Figure 2: Empirical test on Setting A, B, and C for the methods CG-IRLS (blue), CG-IRLSm (white),
IHT+CG-IRLSm (black), and IHT (red). Upper: Mean computational time. Center: Fastest method
(in %). Lower: Failure rate (in %).

{bm/8c, bm/12c, bm/16c} for each setting. The results of this parameter sensitivity study can be
summarized as follows:

• The best computational time is obtained for β ∼ 1. In particular the computational time is
not depending substantially on β in this order of magnitude. More precisely, for CG-IRLS the
choice of β = 0.5 and for (IHT+)CG-IRLSm the choice of β = 2 works best.

• The choice of maxiter cg very much determines the tradeoff between failure and speed of the
method. The value bm/12c seems to be the best compromise. For a smaller value the failure
rate becomes too high, for a larger value the method is too slow.

Phase transition diagrams. Besides the empirical analysis of the speed of convergence, we also
investigate the robustness of CG-IRLS with respect to the achievable sparsity level for exact recovery
of x∗. Therefore, we fix N = 2000 and we compute a phase transition diagram for IHT and CG-IRLS
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on a regular Cartesian 50×40 grid, where one axis represents m/N and the other represents k/m. For
each grid point we plot the empirical success recovery rate, which is numerically realized by running
both algorithms on 20 random trials. CG-IRLS or IHT is successful if it is able to compute a solution
with a relative error of less than 1e-4 within 20 or 500 (outer) iterations respectively. Since we aim
at simulating a setting in which the sparsity k is not known exactly, we set the parameter K = 1.1 · k
for both IHT and CG-IRLS. The interpolated plot is shown in Figure 3. It turns out that CG-IRLS
has a significantly higher success recovery rate than IHT for less sparse solutions.
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Figure 3: Phase transition diagrams of IHT and CG-IRLS for N = 2000. The recovery rate is presented
in grayscale values from 0% (white) up to 100% (black). As a reference, in the right subfigure, the 90%
recovery rate level line of the CG-IRLS phase transition diagram is plotted to show more evidently
the improved success rate of the latter algorithm.

5.3 Algorithm CG-IRLS-λ

Specific settings We restrict the maximal number of outer iterations to 25. Furthermore, we modify
(56), so that the CG-algorithm also stops as soon as

∥∥ρn+1,i
∥∥
`2
6 1e-16·N3/2m. As soon as the residual

undergoes this particular threshold, we call the CG solution (numerically) “exact”. The ε-update rule
is extended by imposing the lower bound εn = εn∨εmin where εmin = 1e-9. Additionally we propose to
choose εn+1 6 0.8nεn, which practically turns out to increase dramatically the speed of convergence.
The summable sequence (an)n∈N in Theorem 5 is defined by setting an =

√
Nm ·104 · (1/2)n. We split

our investigation into a noisy and a noiseless setting.
For the noisy setting we set MSNR = 10. According to [2, 6], we choose λ = cσ

√
m logN as

a near-optimal regularization parameter, where we empirically determine c = 0.48. Since we work
with relatively large values of λ in the regularized problem (49), we cannot use the synthesized sparse
solution x∗ as a reference for the convergence analysis. Instead, we need another reliable method
to compute the minimizer of the functional. In the convex case of τ = 1, this is performed by the
well-known and fast algorithm FISTA [1], which shall also serve as a benchmark for the speed analysis.
In the non-convex case of τ < 1, there is no method which guarantees the computation of the global
minimizer, thus, we have to omit a detailed speed-test in this case. However, we describe the behavior
of Algorithm CG-IRLS-λ for τ changing.

If the problem is noiseless, i.e., e = 0, the solution xλ of (49) converges to the solution of (1)
for λ → 0. Thus, we choose λ = m · 1e-8, and assume the synthesized sparse solution x∗ as a good
proxy for the minimizer and a reference for the convergence analysis. (Actually, this can also be seen
the other way around, i.e., we use the minimizer xλ of the regularized functional to compute a good
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approximation to x∗.) It turns out that for λ ≈ 0, as we comment below in more detail, FISTA is
basically of no use.

CG-IRLS-λ vs. IRLS-λ As in the previous subsection, we first show that the CG-method within
IRLS-λ leads to significant improvements in terms of the computational speed. Therefore we choose a
noisy trial of Setting B, and compare the computational time of the methods IRLS-λ, CG-IRLS-λ, and
FISTA. The result is presented on the left plot of Figure 4. We observe, that CG-IRLS-λ computes the
first iterations in much less time than IRLS-λ, but due to bad conditioning of the inner CG problems
it performs much worse afterwards. Furthermore, as may be expected, the algorithm is not suitable
to compute a highly accurate solution. For the computation of a solution with a relative error in the
order of 1e-3, CG-IRLS-λ outperforms FISTA. FISTA is able to compute highly accurate solutions,
but a solution with a relative error of 1e-3 should be sufficient in most applications because the goal
in general is not to compute the minimizer of the Lagrangian functional but an approximation of the
sparse signal.
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Figure 4: Single trial of Setting B. Left: Relative error plotted against the computational time for
IRLS-λ (light green, ◦), CG-IRLS-λ (blue, ×), and FISTA (red, −). Right: Relative error plotted
against computational time for CG-IRLS-λ (blue, ×), PCG-IRLS-λ (dark blue, +), PCGm-IRLS-λ
(black, ∗), and FISTA (red, −).

Modifications to CG-IRLS-λ To further decrease the computational time of CG-IRLS-λ, we
propose the following modifications:

(i) To overcome the bad conditioning in the CG loop, we precondition the matrix An = Φ∗Φ +

diag
[
λτwnj

]N
j=1

by means of the Jacobi preconditioner, i.e., we pre-multiply the linear system

by the inverse of its diagonal, (diagAn)−1, which is a very efficient operation in practice.

(ii) We introduce the parameter maxiter cg which defines the maximal number of inner CG itera-
tions and is set to the value maxiter cg = 4 in the following.

The algorithm with modification (i) is called PCG-IRLS-λ, and the one with modification (i) and (ii)
PCGm-IRLS-λ. We run these algorithms on the same trial of Setting B as in the previous paragraph.
The respective result is shown on the right plot of Figure 4. This time, preconditioning effectively
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yields a strong decrease of computational time, especially in the final iterations where An is badly
conditioned. Furthermore, modification (ii) importantly increases the performance of the proposed
algorithm also in the initial iterations. However, again we have to take into consideration that we
may violate the assumptions of Theorem 5 so that convergence is not guaranteed anymore and failure
rates might potentially increase. In the following two paragraphs, we present simulations on noisy
and noiseless data, which give a more precise picture of the speed and failure rate of the previously
introduced methods in comparison to FISTA and IHT.

Empirical test on computational time and failure rate with noisy data In the previous
paragraph, we observed that the CG-IRLS-λ methods are only computing efficiently solutions with a
low relative error. Thus we now focus on this setting and compare the three methods PCG-IRLS-λ,
PCGm-IRLS-λ, and FISTA with respect to their computational time and failure rate in recovering
solutions with a relative error of 1e-1, 1e-2, and 1e-3. We only consider the convex case τ = 1.
Similarly to the procedure in Section 5.2, we run these algorithms on 100 trials for each setting with
the respectively chosen values of λ. In Figure 5 the upper bar plot shows the result for the mean
computational time and the lower stacked bar plot shows how often a method was the fastest one.
We do not present a plot of the failure rate since none of the methods failed at all. By means of
the plots, we demonstrate that both PCG-IRLS-λ, and PCGm-IRLS-λ are faster than FISTA, while
PCGm-IRLS-λ always performs best.
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Figure 5: Empirical test on Setting A, B, and C for the methods PCG-IRLS-λ (blue), PCGm-IRLS-λ
(black), and FISTA (red). Upper: Mean computational time. Lower: Fastest method (in %).

Empirical test on computational time and failure rate with noiseless data In the noiseless
case, we compare the computational time of FISTA and PCGm-IRLS-λ to IHT and IHT+CG-IRLSm.
We set maxiter cg = 40 for PCGm-IRLS-λ. In a first test, we run these algorithms on one trial of
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Setting A, and C respectively, and plot the results in Figure 6.
As already mentioned, FISTA is not suitable for small values of λ on the order ofm·1e-8 and converges
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Figure 6: Left: Setting A. Right: Setting C. Comparison of IHT (blue, −), FISTA (green, −−),
IHT+CG-IRLSm (black, ∗), and PCGm-IRLS-λ (red, ×).

then extremely slowly, but PCGm-IRLS-λ can compete with the remaining methods. IHT+CG-IRLSm
is in some settings able to outperform IHT, at least when a high accuracy is needed. PCGm-IRLS-λ
is always at least as fast as IHT with increasing relative performance gain for increasing dimensions.
This observation suggests the conjecture that PCGm-IRLS-λ provides the fastest method also in
rather high dimensional problems. To validate this hypothesis numerically, we introduce two new high
dimensional settings (to reach higher dimensionalities and retaining low computation times for the
extensive tests it is again very beneficial to use the real cosine transform as a model for Φ):

Setting D Setting E

N 100000 1000000
m 40000 400000
k 1500 15000
K 2500 25000

We run the most promising algorithms IHT and PCGm-IRLS-λ on a trial of the large scale settings
D and E. The result, which is plotted in Figure 7, shows that PCGm-IRLS-λ is able to outperform
IHT in these settings unless one requires an extremely low relative error (6 1e-8), because of the error
saturation effect. We confirm this outcome in a test on 100 trials for Setting D and E and present the
result in Figure 8.

Dependence on τ . In the last experiment of this paper, we are interested in the influence of
the parameter τ . Of course, changing τ also means modifying the problem resulting in a different
minimizer. Due to non-convexity also spurious local minimizers may appear. Therefore, we do not
compare the speed of the method to FISTA. In Figure 9, we show the performance of Algorithm
PCGm-IRLS-λ for a single trial of Setting C and the parameters τ ∈ {1, 0.9, 0.8, 0.7} for the noisy
and noiseless setting. As reference for the error analysis, we choose the sparse synthetic solution x∗,
which is actually not the minimizer here.
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Figure 7: Left: Setting D. Right: Setting E. Comparison of IHT (blue, −), and PCGm-IRLS-λ (red,
×).
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Figure 8: Empirical test on the mean computational time of Setting D and E for the methods IHT
(blue), and PCGm-IRLS-λ (red).

In both the noisy and noiseless setting, using a parameter τ < 1 improves the computational time
of the algorithm. In the noiseless case, τ = 0.9 seems to be a good choice, smaller values do not
improve the performance. In contrast, in the noisy setting the computational time decreases with
decreasing τ .

A Proof of Lemma 10

“⇒”(in the case 0 < τ 6 1)
Let x = xε,1 or x ∈ Xε,τ (y), and η ∈ NΦ arbitrary. Consider the function

Gε,τ (t) := fε,τ (x+ tη)− fε,τ (x)

with its first derivative

G′ε,τ (t) = τ

N∑
i=1

xiηi + tη2
i

[|xi + tηi|2 + ε2]
2−τ

2

.

Now Gε,τ (0) = 0 and from the minimization property of fε,τ (x), Gε,τ (t) ≥ 0. Therefore,

0 = G′ε,τ (0) =

N∑
i=1

xiηi[
x2
i + ε2

] 2−τ
2

= 〈x, η〉ŵ(x,ε,τ) .
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Figure 9: Results of Algorithm PCGm-IRLS-λ for a single trial of Setting C for different values of τ
with noise (right) and without noise (left).

“⇐”(only in the case τ = 1)
Now let x ∈ FΦ(y) and 〈x, η〉ŵ(x,ε,1) = 0 for all η ∈ NΦ. We want to show that x is the minimizer of

fε,1 in FΦ(y). Consider the convex univariate function g(u) := [u2 + ε2]1/2. For any point u0 we have
from convexity that

[u2 + ε2]1/2 > [u2
0 + ε2]1/2 + [u2

0 + ε2]−1/2u0(u− u0)

because the right-hand-side is the linear function which is tangent to g at u0. It follows, that for every
point v ∈ FΦ(y) we have

fε,1(v) > fε,1(x) +

N∑
i=1

[x2
i + ε2]−1/2xi(vi − xi) = fε,1(x) + 〈x, v − x〉ŵ(x,ε,1) = fε,1(x),

where we have used the orthogonality condition and the fact that (v − x) ∈ NΦ. Since v was chosen
arbitrarily, x = xε,1 as claimed.

Acknowledgments

Massimo Fornasier acknowledges the support of the ERC-Starting Grant HDSPCONTR “High-Dimensional
Sparse Optimal Control”. Steffen Peter acknowledges the support of the Project “SparsEO: Exploiting
the Sparsity in Remote Sensing for Earth Observation” funded by Munich Aerospace. Holger Rauhut
would like to thank the European Research Council (ERC) for support through the Starting Grant
StG 258926 SPALORA (Sparse and Low Rank Recovery) and the Hausdorff Center for Mathematics
at the University of Bonn where this project has started.

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[2] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of lasso and Dantzig selector. Ann.
Statist., 37(4):1705–1732, 2009.

42



[3] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Appl.
Comput. Harmon. Anal., 27(3):265–274, 2009.

[4] K. Bredies and D. A. Lorenz. Minimization of non-smooth, non-convex functionals by iterative
thresholding. J. Optim. Theory Appl., 165:78–112, 2015.

[5] E. J. Candès, J., T. Tao, and J. Romberg. Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509,
2006.

[6] E. J. Candès and Y. Plan. Near-ideal model selection by `1 minimization. Ann. Statist.,
37(5A):2145–2177, 2009.

[7] E. J. Candès and T. Tao. Near optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.
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