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Abstract Analysis `1-recovery is a strategy of reconstructing a signal that is sparse
in some transform domain from incomplete observations. In this chapter we give
an overview of the analysis sparsity model and present theoretical conditions that
guarantee successful recovery of corresponding signals from noisy measurements.
We derive a bound on the number of Gaussian and subgaussian measurements by
examining the provided theoretical guarantees under the additional assumption that
the transform is generated by a frame, which means that there are just few non-zero
inner products of the signal with the frame elements.

1 Introduction

As already outlined in this book (see in particular Chapter 1), compressed sensing
aims at acquiring signals from undersampled and possibly corrupted measurements.
In mathematical terms, the available data about a signal x ∈ Rn is given by a set of
measurements

y = Ax+ e, (1)

where A ∈ Rm×n with m� n is the sensing matrix and e ∈ Rm represents a noise
vector. Since this system is undetermined it is hopeless to recover x from y without
additional information. The key idea is to take into account prior knowledge about
the structure of x.
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The standard assumption in compressed sensing is that the signal is sparse in
some orthonormal basis (as outlined in Chapter 1), which means that it can be repre-
sented as a linear combination of only few basis elements. This setting corresponds
to the synthesis sparsity model. This chapter is concerned with a more general spar-
sity model, where one assumes that the signal is sparse after a possibly redundant
transform, see for instance [33, 34, 43, 6, 16] for initial papers on this subject. This
analysis sparsity model – also called cosparsity model – leads to more flexibility
in the modeling of sparse signals. Many sparse recovery methods can be adapted
to this setting including convex relaxation leading to analysis `1-minimization (see
below) and greedy-like methods [34, 22]. Relevant analysis operators can be gener-
ated by the discrete Fourier transform, wavelet [31, 36, 39], curvelet [5] or Gabor
transforms [25]. The popular method of total variation minimization [38, 9, 35, 4]
corresponds to analysis with respect to a difference operator.

This chapter gives an overview on the analysis sparsity model and its use in
compressed sensing. We will present in particular recovery guarantees for `1-
minimization including versions of the null space property and the restricted isome-
try property. Moreover, we give estimates on the number of measurements required
for (approximate) recovery of signals using random Gaussian and subgaussian mea-
surements. Parts of these results (or their proofs) are new and have not appeared
elsewhere in the literature yet.

Notation: We use ΩΛ to refer to a submatrix of Ω with the rows indexed by
Λ (we emphasize that our notation differs from the general notation of the book,
where this is rather the submatrix corresponding to the columns of Ω ); αΛ stands
for the vector whose entries indexed by Λ coincide with the entries of α and the
rest are filled by zeros. On some occasions with a slight abuse of notation we refer
to αΛ as an element of R|Λ |. We use [p] to denote the set of all natural numbers not
exceeding p, i.e., [p] = {1,2, . . . , p}. The sign of a real number r 6= 0 is sgn(r) = r

|r| .
For a vector α ∈ Rp we define its sign vector sgn(α) ∈ Rp by

(sgn(α))i =

{ αi
|αi| , for all i such that αi 6= 0,
0, otherwise.

The operator norm of a matrix A is given by ‖A‖2→2 := sup
‖x‖2≤1

‖Ax‖2; AT is the

transpose of A. The orthogonal complement of a subspace S⊂Rp is denoted by S⊥.
The orthogonal projection onto S is performed by the operator PS. The notation Bp

2
stands for the unit ball with respect to the `2-norm and Sn−1 is the unit sphere in Rn.
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2 Analysis vs. synthesis sparsity

We recall from Chapter 1 that a vector x∈Rn is k-sparse, if ‖x‖0 = |{` : x` 6= 0}| ≤ k.
For signals arising in applications it is more common to have a sparse expansion in
some basis or dictionary rather than being sparse themselves This means, that for
a matrix D ∈ Rn×q, q ≥ n, whose columns form a so-called dictionary of Rn (a
spanning set), x can be represented as

x = Dα, α ∈ Rq,

where α is k-sparse. It is common to choose an orthogonal matrix D ∈Rn×n, so that
we have sparsity with respect to an orthonormal basis. However, also a redundant
frame may be used. Here, we “synthesize” x from a few columns d j of D, which is
the reason why this is also called the synthesis sparsity model. The set of all k-sparse
signals can be described as

⋃

T⊂[n]:|T |=k

VT =
⋃

T⊂[n]:|T |=k

span{d j : j ∈ T}, (2)

i.e., it is a union of subspaces which are generated by k columns of D.
The analysis sparsity model assumes that Ωx is (approximately) sparse, where

Ω ∈ Rp×n is a so-called analysis operator. Denoting the rows of Ω by ω j ∈ Rn,
j = 1, . . . , p, the entries of Ωx are given as 〈ω j,x〉, j = 1, . . . , p, i.e., we analyze x
by taking inner products with the ω j. If Ωx is k-sparse, then x is called `-cosparse,
where the number ` := p− k is referred to as cosparsity of x. The index set of the
zero entries of Ωx is called the cosupport of x. The motivation to work with the
cosupport rather than the support in the context of analysis sparsity is that it is the
location of the zero-elements which define a corresponding subspace. In fact, if Λ

is the cosupport of x, then

〈ω j,x〉= 0, for all j ∈Λ .

Hence, the set of `-cosparse signals can be written as
⋃

Λ⊂[p]:#Λ=`

WΛ , (3)

where WΛ denotes the orthogonal complement of the linear span of {ω j : j ∈Λ}. In
this sense, the analysis sparsity model falls into the larger class of union of subspaces
models [2].

When Ω ∈ Rn×n is an orthogonal matrix, then the analysis sparsity model coin-
cides with the synthesis sparsity model. More precisely, if x = Ω T α for a k-sparse
α ∈ Rn (so taking D = Ω T as the basis) then Ωx = α is k-sparse as well, meaning
that x is (n− k)-cosparse.

Taking Ω ∈ Rp×n with p > n, the analysis sparsity model is more general and
offers more flexibility than synthesis sparsity. The following considerations on di-
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mensionality and number of subspaces in (2) and (3) illustrate this point, see also
[34, Section 2.3].

Let us first consider the generic case that both the rows ω j ∈ Rn, j = 1, . . . , p, of
the analysis operator as well as the columns d j ∈ Rn, j = 1, . . . ,q, of the dictionary
are in general linear position, i.e., any collection of at most n of these vectors are
linearly independent. Then the following table comparing the s-sparse model (2)
and the `-cosparse model (3) applies.

model subspaces no. subspaces subspace dim.

synthesis VT := span{d j, j ∈ t}
(

q
k

)
k

analysis WΛ := span{ω j, j ∈Λ}⊥
(

p
`

)
n− `

As suggested in [34] one way of comparing the two models is to consider an
`-cosparse analysis model and an (n− `)-sparse synthesis model so that the cor-
responding subspaces have the same dimensions. If for instance ` = n− 1 so that

the subspace dimension is n− ` = 1, there are
(

q
1

)
= q subspaces in the synthesis

model, while there are
(

p
n−1

)
subspaces in the analysis sparsity model. Typically

p is somewhat larger than n, and if q is not extremely large, the number of subspaces
of dimension 1 is much larger for the analysis sparsity model than for the synthesis
sparsity model. Or in other words, if one is looking for a synthesis sparsity model
having the same one-dimensional subspaces as in a given analysis sparsity model

then one needs q =

(
p

n−1

)
many dictionary elements – usually way too many to

be handled efficiently. More generally speaking, the analysis sparsity model con-
tains many more low-dimensional subspaces than the synthesis sparsity model, but
the situation reverses for high-dimensional subspaces [34].

As another difference to the synthesis sparsity model where any value of the
sparsity k between 1 and n can occur, the dimension of WΛ is restricted to a value
between 0 and n and in the case of “generic” analysis operator (i.e., any set of at most
n rows of Ω is linearly independent) the cosparsity is restricted to values between
p−n and p so that the sparsity of Ωx must be at least p−n for a non-trivial vector x.
However, if one considers only approximate sparsity (see below), then also smaller
values of the sparsity make sense.

Sometimes it is desired not too have too many low dimensional subspaces in the
model and then it is beneficial if there are linear dependencies among the rows of
the analysis operator Ω . In this case, the above table does no longer apply and the
number of subspace may be significantly smaller. A particular situation where this
happens is connected to the popular method of total variation. Here the analysis
operator is a one or two dimensional difference operator (many linear dependencies
appear for the two-dimensional case). In the one dimensional case, let Ω = ΩDIF ∈
R(n−1)×n be the matrix with entries
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ΩDIF =




1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . .
...

0 · · · 0 1 −1




Analysis `1-minimization with the analysis operator given by ΩDIF promotes piece-
wise constant signals with sparse gradient. In the two dimensional case this operator
is applied in the vertical and horizontal direction separately.

Another important case that we will consider in more detail in this Chapter ap-
pears when the rows ω j of Ω ∈ Rp×n form a frame [14, 8, 12, 25], i.e., there exist
constants 0 < a≤ b < ∞ such that

a‖x‖2
2 ≤ ‖Ωx‖2

2 =
p

∑
j=1
|〈ω j,x〉|2 ≤ b‖x‖2

2. (4)

Clearly, in our finite dimensional case such constants always exist if the ω j span
Rn. For simplicity, we will often refer to Ω itself as a frame. If a = b, then Ω is
called a tight frame. Frames are more general than orthonormal bases and allow for
stable expansions. They are useful, for instance, when orthonormal bases with cer-
tain properties do not exist (see e.g. the Balian-Low theorem in [1, 25]). Moreover,
their redundancy can be useful for tasks like error corrections in transmission of
information etc.

Any signal x is uniquely determined by its frame coefficients Ωx. To reconstruct
x from Ωx we can make use of the canonical dual frame. Its elements are given by
the columns of the Moore–Penrose pseudo inverse Ω † = (Ω T Ω)−1Ω T and for any
x we have x = Ω †(Ωx). Lower and upper frame bounds of the canonical dual frame
are b−1 and a−1, respectively.

Particular frames of importance include Gabor frames [25], wavelet frames [31,
36, 39], shearlet [26] and curvelet frames [5].

In practice, signals are usually not exactly sparse or cosparse. In order to measure
the error of approximation we recall that the error of k-term approximation of x∈Rn

in `1 is defined as
σk(x)1 := inf

z:‖z‖0≤k
‖x− z‖1.

In the cosparse case we use the quantity σk(Ωx)1 as a measure of how close x is
to being (p− k)-cosparse. We remark that although for generic analysis operators
Ω ∈ Rp×n, the vector Ωx has at least p− n nonzero entries (unless x is trivial),
the approximation error σk(Ωx)1 may nevertheless become small for values of k <
p− n. A particular case, where this occurs arises in the setting of localized frames
[18], where the Gramian ΩΩ T has quick off-diagonal decay. It is shown in [6,
Section 1.4] that Ωx has small approximation error σk(Ωx)1 if x = Ω T α for an
(approximately) k-sparse vector α .
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3 Recovery of cosparse signals

We now turn to the compressed sensing problem of recovering an (approximately)
cosparse vector x ∈ Rn from underdetermined linear measurements

y = Ax,

where A∈Rm×n is a measurement matrix with m < n. Let Ω ∈Rp×n be the analysis
operator generating the analysis cosparsity model.

In analogy with the standard sparsity case (synthesis sparsity model) outlined in
Chapter 1, Section 1.3, one might start with the `0-minimization problem

min
z∈Rn
‖Ωz‖0 subject to Az = y. (5)

However, this combinatorial optimization problem is again NP-hard in general. As
an alternative, we may use its `1-relaxation

min
z∈Rn
‖Ωz‖1 subject to Az = y (6)

or in the noisy case

min
z∈Rn
‖Ωz‖1 subject to ‖Az− y‖2 ≤ ε. (7)

Alternative approaches include greedy-type algorithms such as Greedy Analysis
Pursuit (GAP) [33, 34] or thresholding-based methods such as iterative hard thresh-
olding, see [22].

We start by presenting conditions under which the solution of (6) coincides with
the solution of (5), so that the original cosparse vector is recovered. We discuss
versions of the null space property and the restricted isometry property. When the
measurement matrix A ∈ Rm×n is taken at random (as usual in compressed sens-
ing), then an analysis of these concepts leads to so-called uniform recovery bounds
stating that with a random draw of the measurement matrix one can with high prob-
ability recover all k-sparse vectors under a certain lower bound on the number of
measurements. In contrast, nonuniform recovery results state that a given (fixed)
cosparse vector can be recovered from a random draw of the measurement matrix
with a certain probability. Such nonuniform guarantees can be derived with condi-
tions that depend both on the matrix A and the vector x to be recovered. We will
state such conditions later on in this section.

3.1 Analysis null space property

As in the standard synthesis sparsity case, the null space property of the measure-
ment matrix A characterizes recovery via analysis `1-minimization. In analogy to
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the null space property described in Section 1.3.2 of the introductory chapter, we
say that given an analysis operator Ω ∈Rp×n, a measurement matrix A ∈Rm×n sat-
isfies the Ω -null space property of order k if, for all subsets Λ ∈ [p] of cardinality
|Λ | ≥ p− k, it holds

‖ΩΛ cv‖1 < ‖ΩΛ v‖1 for all v ∈ kerA\{0}.

Analogously to Theorem 1.2 of Chapter 1 it can be shown that every (p− k)-
cosparse vector can be recovered exactly via analysis `1-minimization (6). In or-
der to guarantee stable and robust recovery we use the following version of the
null space property extending the corresponding notions from the standard synthe-
sis sparsity case [20, Chapter 4].

Definition 1. A matrix A ∈Rm×n is said to satisfy the robust `2-stable Ω -null space
property of order k with constant 0 < ρ < 1 and τ > 0, if for any set Λ ⊂ [p] with
|Λ | ≥ p− k it holds

‖ΩΛ cv‖2 <
ρ√

k
‖ΩΛ v‖1 + τ‖Av‖2 for all v ∈ Rn. (8)

The following theorem has been shown in [28], similarly to [20, Theorem 4.22]

Theorem 1. Let Ω ∈Rp×n be a frame with lower frame bound a > 0. Let A ∈Rm×n

satisfy the robust `2-stable Ω -null space property of order k with constant 0< ρ < 1
and τ > 0. Then for any x ∈ Rn the solution x̂ of (7) with y = Ax+ e, ‖e‖2 ≤ ε ,
approximates the vector x with `2-error

‖x− x̂‖2 ≤
2(1+ρ)2
√

a(1−ρ)

σk(Ωx)1√
k

+
2τ(3+ρ)√

a(1−ρ)
ε. (9)

We will analyze the stable null space property for Gaussian random matrices A
directly in Section 4.4.

3.2 Restricted isometry property

It is a by now classical approach to analyze sparse recovery algorithms via the re-
stricted isometry property. A version for the analysis sparsity called the D-RIP (dic-
tionary RIP) was introduced in [6].

Definition 2. A measurement matrix A ∈ Rm×n satisfies the restricted isometry
property adapted to Ω ∈ Rp×n (the D-RIP) with constant δk if

(1−δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δk)‖x‖2
2 (10)

holds for all x = Ω T α with ‖α‖0 ≤ k.
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If Ω = Id, then we obtain the standard RIP.
In the important case that the rows of Ω form a frame, see (4), we have the

following recovery result generalizing the one from the synthesis sparsity case. For
the case of tight frames, it has been shown in [6], while the general case can be
found in [19, Proposition 9].

Theorem 2. Let Ω ∈ Rp×n be a frame with frame bounds a,b > 0 and (Ω †)T its
canonical dual frame. Suppose that the measurement matrix A ∈ Rm×n obeys the
restricted isometry property with respect to (Ω †)T with constant δ2k <

√
a/b/9.

Let y = Ax+ e with ‖e‖2 ≤ ε . Then the solution x̂ of (6) satisfies

√
a‖x− x̂‖2 ≤ c0

σk(Ωx)1√
k

+ c1ε (11)

for constants c0,c1 that depend only on δ2k.

For the case that Ω is a one or two dimensional difference operator corresponding
to total variation minimization, recovery guarantees have been provided in [35].

3.3 Recovery conditions via tangent cones

The null space property and the restricted isometry property of A guarantee that all
cosparse vectors can be recovered via analysis `1-minimization from measurements
obtained by applying A. It is also useful to have recovery conditions that not only
depend on A but also on the vector to be recovered. In fact, such conditions are at
the basis for the nonuniform recovery guarantees stated later.

This section follows the approach of [10] that works with tangent cones of ‖Ω ·‖1
at the vector to be recovered. For fixed x ∈ Rn we define the convex cone

T (x) = cone{z− x : z ∈ Rn, ‖Ωz‖1 ≤ ‖Ωx‖1}, (12)

where the notation “cone” stands for the conic hull of the indicated set. The set T (x)
consists of the directions from x, which do not increase the value of ‖Ωx‖1. The
following result describes a geometric property, which guarantees exact recovery,
see Figure 1. It was proved in [28] and is analogous to Proposition 2.1 in [10], see
also [20, Theorem 4.35].

Theorem 3. Let A∈Rm×n. A vector x∈Rn is the unique minimizer of ‖Ωz‖1 subject
to Az = Ax if and only if kerA∩T (x) = {0}.

Proof. For convenience we prove that the condition kerA∩T (x) = {0} implies re-
covery. For the other direction we refer to [28].

Suppose there is z∈Rn such that Az=Ax and ‖Ωz‖1≤‖Ωx‖1. Then z−x∈ T (x)
and z− x ∈ kerA. Since kerA∩T (x) = {0}, we conclude that z− x = 0, so that x is
the unique minimizer. ut
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Fig. 1 Geometry of suc-
cessful recovery. The dashed
region corresponds to the set
{z : ‖Ωz‖1 ≤ ‖Ωx‖1}.

Together with (7) this gives

c√
B
!(Ω(T )) ≤ !(T ) ≤ C√

A
!(Ω(T ))

for some c, C > 0.
We can reformulate Theorem 1 in the following way.

Theorem 2. Let Ω ∈ Rp×d be a frame with lower bound A, T ⊂ Sd−1, Xi, i = 1, . . . ,m be
independent isotropic subgaussian random vectors with ‖Xi‖ψ2 ≤ α and 0 < θ < 1. Define M ∈
Rm×d as M = (X1, . . . ,Xm)t. If

m ≥ c1α
4

Aθ2
!(Ω(T ))2, (8)

then with probability at least 1 − exp
(
−c2θ

2m/α4
)

for all x ∈ T it holds

1 − θ ≤ ‖Mx‖2
2

m
≤ 1 + θ,

where c1, c2 are absolute constants.

3 Nonuniform recovery

3.1 Recovery via tangent cones

Conditions which ensure the successful recovery of cosparse signals can be formulated via tangent
cones. For fixed x ∈ Rd we define the convex cone

T (x) = cone{z − x : z ∈ Rd, ‖Ωz‖1 ≤ ‖Ωx‖1},

where the notation “cone” stands for the conic hull of the indicated set. T (x) consists of descent
directions of ‖Ω · ‖1 at the point x. The following result describes the geometric property, which
guarantees the exact recovery of an unknown signal, see Figure 2. It was proved in [3] and is
analogous to Proposition 2.1 in [2].

x + ker A

x

x + T (x)

Figure 2: Geometry of successful recovery. The dashed region corresponds to the set {z : ‖Ωz‖1 ≤
‖Ωx‖1}.

Theorem 3. Let M ∈ Rm×d. A vector x ∈ Rd is the unique minimizer of ‖Ωz‖1 subject to
Mz = Mx if and only if ker M ∩ T (x) = {0}.

4

When the measurements are noisy, we use the following criteria for robust re-
covery [28].

Theorem 4. Let x ∈ Rn, A ∈ Rm×n and y = Ax+ e with ‖e‖2 ≤ ε . If

inf
v∈T (x)
‖v‖2=1

‖Av‖2 ≥ τ (13)

for some τ > 0, then a solution x̂ of the analysis `1 minimization problem (7) satisfies

‖x− x̂‖2 ≤
2ε

τ
.

Proof. Since x̂ is a minimizer of (7), we have ‖Ω x̂‖1 ≤ ‖Ωx‖1 and x̂− x ∈ T (x).
Our assumption (13) implies

‖A(x̂− x)‖2 ≥ τ‖x̂− x‖2. (14)

On the other hand, an upper bound for ‖Ax̂−Ax‖2 is given by

‖Ax̂−Ax‖2 ≤ ‖Ax̂− y‖+‖Ax− y‖2 ≤ 2ε. (15)

Combining (14) and (15) we get the desired estimate. ut

3.4 Dual certificates

Another common approach for recovery conditions is based on duality. For the stan-
dard synthesis sparsity model corresponding results have been obtained for instance
in [21, 41], see also [20, Theorem 4.26–4.33]. In fact, the first contribution to com-
pressed sensing by Candès et al. [7] is based on such an approach.

Apparently, Haltmeier [27] first addressed the problem of robust recovery of a
signal by analysis `1-minimization, when the analysis operator is given by a frame.
His result has been generalized in [17], which for our particular case is stated in the
following theorem. In order to formulate it, we recall that the subdifferential of a
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convex function f : Rn→ R is defined as

∂ f (x) = {v ∈ Rn : f (z)≥ f (x)+ 〈z− x,v〉 for all z ∈ Rn}.

The subdifferential of the `1-norm is given as ∂‖ · ‖(x) = {(v j) j : v j ∈ ∂ | · |(x j)},
where the subdifferential of the absolute value function is

∂ | · |(u) =
{
[−1,1] if u = 0,
sgn(u) if u 6= 0.

Theorem 5. Let x ∈ Rn be cosparse with cosupport Λ and let noisy measurements
y = Ax+ e be given with ‖e‖2 ≤ ε . Assume the following:

1. There exists η ∈ Rm (the dual vector) and α ∈ ∂‖ · ‖1(Ωx) such that

AT
η = Ω

T
α, with ‖αΛ‖∞ ≤ κ < 1. (16)

2. The sensing matrix A is injective on WΛ = kerΩΛ implying that there exists CA >
0 such that

‖Ax‖2 ≥CA‖x‖2, for any x ∈WΛ . (17)

Then any solution x̂ of the analysis `1-minimization problem (7) approximates x with
`2-error

‖x− x̂‖2 ≤Cε.

In the inverse problems community (16) is also referred to as source (range)
condition, while (17) is called injectivity condition and they are commonly used to
provide error estimates for the sparsity promoting regularizations [3, 24]. In [3] the
error is measured by the Bregman distance. The work of Grasmair [24] provides
a more general result, where the error is measured in terms of the regularization
functional. The first results concerning the `2-error estimates (as stated above) are
given in [27], where the analysis operator is assumed to be a frame. The result [17]
extends it to general analysis operators and so-called decomposable norms.

We close this section by showing that the conditions in Theorem 5 are stronger
than the tangent cone condition of Theorem 4.

Theorem 6. Let A ∈ Rm×n and x ∈ Rn with cosupport Λ satisfy (16) and (17) with
vectors α ∈ ∂‖ · ‖1(Ωx), ‖αΛ‖∞ ≤ κ < 1, and η ∈ Rm. Then

inf
v∈T (x)
‖v‖2=1

‖Av‖2 ≥ τ

with

τ =

(
C−1

A +
(CA +‖A‖2→2)‖η‖2

CΩ ,ΛCA(1−κ)

)−1

,

where CΩ ,Λ depends only on Ω and Λ .

The proof follows the same lines as the proof of the main result in [17]. We start
with the following lemma.
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Lemma 1. Let A ∈ Rm×n and x ∈ Rn with cosupport Λ satisfy (16) and (17) with
vectors α ∈ ∂‖ · ‖1(Ωx), ‖αΛ‖∞ ≤ κ < 1, and η ∈ Rm. Then for any v ∈ T (x)

‖ΩΛ v‖1 ≤
‖η‖2

1−κ
‖Av‖2.

Proof. For v ∈ T (x), there exists βΛ ∈ Rp (that is, βΛ is zero on Λ c) such that
‖βΛ‖∞ ≤ 1 and ‖(Ωv)Λ‖1 = 〈(Ωv)Λ ,βΛ 〉. The subdifferential ∂‖ · ‖1(Ωx) of the
`1-norm at the point Ωx consists of all vectors α , such that any β ∈ Rp satisfies

‖β‖1 ≥ ‖Ωx‖1 + 〈α,β −Ωx〉.

Since x ∈ Rn is cosparse with cosupport Λ , we can explicitly write

∂‖ · ‖1(Ωx) = {α ∈ Rp : αΛ c = sgn(Ωx), ‖αΛ‖∞ ≤ 1} .

Taking into account that the vector βΛ has zero-entries on the index set Λ c and
‖βΛ‖∞ ≤ 1, it follows that sgn(Ωx)+βΛ ∈ ∂‖ · ‖1(Ωx). Every v ∈ T (x) is repre-
sented as

v = ∑
j

t jv j, v j = z j− x, ‖Ωz j‖1 ≤ ‖Ωx‖1, t j ≥ 0.

Let α ∈ ∂‖ · ‖1(Ωx), so that αΛ c = sgn(Ωx). The definition of the subdifferential
implies then that

0≥ ‖Ωz j‖1−‖Ωx‖1 ≥ 〈sgn(Ωx)+βΛ ,Ω(z j− x)〉
= 〈sgn(Ωx)+βΛ −α,Ωv j〉+ 〈α,Ωv j〉 ≥ 〈βΛ −αΛ ,ΩΛ v j〉+ 〈α,Ωv j〉.

Multiplying by t j ≥ 0 and summing up over all j gives

0≥ 〈βΛ −αΛ ,ΩΛ (∑
j

t jv j)〉+ 〈α,Ω(∑
j

t jv j)〉= 〈βΛ −αΛ ,(Ωv)Λ 〉+ 〈α,Ωv〉.

Due to the choice of βΛ and duality of the `1-norm and `∞ norm we obtain

0≥ ‖ΩΛ v‖1−‖αΛ‖∞‖ΩΛ v‖1 + 〈α,Ωv〉,

which together with (16) gives

‖ΩΛ v‖1 ≤−
〈α,Ωv〉

1−‖αΛ‖∞
=− 〈Ω

T α,v〉
1−‖αΛ‖∞

=− 〈A
T η ,v〉

1−‖αΛ‖∞

=− 〈η ,Av〉
1−‖αΛ‖∞

≤ ‖η‖2

1−κ
‖Av‖2.

This concludes the proof. ut
Proof (of Theorem 6). The idea is to split v ∈ T (x) into its projections onto the
subspace WΛ = kerΩΛ and its complement W⊥

Λ
. Since we are in finite dimensions,

it follows that ‖ΩΛ w‖2 ≥CΩ ,Λ‖w‖2 for all w∈W⊥
Λ

for some constant CΩ ,Λ . Taking
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into account (17) we obtain

‖v‖2 ≤ ‖PWΛ
v‖2 +‖PW⊥

Λ

v‖2 ≤C−1
A ‖APWΛ

v‖2 +‖PW⊥
Λ

v‖2

=C−1
A ‖A(v−PW⊥

Λ

v)‖2 +‖PW⊥
Λ

v‖2

≤C−1
A ‖Av‖2 +C−1

A ‖APW⊥
Λ

v‖2 +‖PW⊥
Λ

v‖2

≤C−1
A ‖Av‖2 +(1+C−1

A ‖A‖2→2)‖PW⊥
Λ

v‖2

≤C−1
A ‖Av‖2 +(1+C−1

A ‖A‖2→2)C−1
Ω ,Λ‖ΩΛ PW⊥

Λ

v‖2.

Since ΩΛ PWΛ
v = 0 and ΩΛ PW⊥

Λ

v = ΩΛ (v−PWΛ
v) = ΩΛ v by definition of WΛ ,

the estimate above can be continued to obtain

‖v‖2 ≤C−1
A ‖Av‖2 +

CA +‖A‖2→2

CΩ ,ΛCA
‖ΩΛ v‖2 ≤C−1

A ‖Av‖2 +
CA +‖A‖2→2

CΩ ,ΛCA
‖ΩΛ v‖1.

As a final step we apply Lemma 1. ut

4 Recovery from random measurements

A main task in compressed sensing is to obtain bounds for the minimal number of
linear measurements required to recover a (co-)sparse vector via certain recovery
methods, say analysis `1-minimization. It is up till now open to rigorously prove
such guarantees – and in particular, verify the conditions of the previous sections
– for deterministic sensing matrix constructions in the optimal parameter regime,
see for instance [20, Chapter 6.1] for a discussion. Therefore, we pass to random
matrices.

A matrix that is populated with independent standard normal distributed entries
(see also Chapter 1) is called a Gaussian matrix. We will also consider subgaussian
matrices. To this end, we introduce the the ψ2-norm of a random variable X which
is defined as

‖X‖ψ2 := inf
{

c > 0 : Eexp
(
|X |2 /c2

)
≤ 2
}
.

A random variable X is called subgaussian, if ‖X‖ψ2 < ∞. Boundedness of the
ψ2-norm of a random variable X is equivalent to the fact that its tail satisfies
P(|X | > t) ≤ 2e−ct2

and its moments (E |X |p)1/p do not grow faster than
√

p.
Standard examples of subgaussian random variables are Gaussian, Bernoulli and
bounded random variables. A matrix with independent mean-zero and variance one
subgaussian entries is called a subgaussian matrix.

Definition 3. A random vector X in Rn is called isotropic, if E |〈X ,x〉|2 = ‖x‖2
2 for

every x ∈ Rn. A random vector X ∈ Rn is subgaussian, if 〈X ,x〉 are subgaussian
random variables for all x ∈ Rn. The ψ2 norm of X is defined as
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‖X‖ψ2 = sup
u∈Sn−1

‖〈X ,u〉‖ψ2 .

A random matrix whose rows are independent, isotropic and subgaussian is
called an isotropic subgaussian ensemble. Subgaussian random matrices are exam-
ples of such matrices.

We will give an overview on recovery results for analysis `1-minimization where
the analysis operator is a frame and the measurement matrix is Gaussian or more
generally comes from an isotropic subgaussian ensemble. We cover both uniform
recovery, which is studied via the Ω -null space property or via the D-RIP, as well as
nonuniform recovery bounds, where especially for the Gaussian case, it is possible
to derive explicit bounds with small constants. For some of these results, new proofs
are provided.

4.1 Uniform recovery via the restricted isometry property

We recall from Chapter 1 (Theorem 1.5) that a rescaled Gaussian random matrix A∈
Rm×n satisfies the standard restricted isometry property, i.e. δk ≤ δ with probability
at least 1−θ provided that m≥Cδ−2(k ln(eN/k)+ ln(2θ−1)). A similar estimate,
derived for the first time in [6], holds for the D-RIP in (2).

Theorem 7. Let A ∈ Rm×n be a draw of a Gaussian random matrix and let Ω ∈
Rp×n be an analysis operator. If

m≥Cδ
−2(k ln(ep/k)+ ln(2θ

−1)) (18)

then with probability at least 1−θ the matrix 1√
m A satisfies the restricted isometry

property adapted to Ω with constant δk ≤ δ .

Proof. This is a generalization of the standard restricted isometry property of Gaus-
sian matrices. The proof relies on the concentration of measure phenomenon for-
mulated in Theorem 1.4 of Chapt. 1 and the covering argument presented in the
same chapter in Lemma 1.3. The only difference in comparison to the proof of The-
orem 1.5 in Chapt. 1 occurs in the step of taking a union bound with respect to all
k-dimensional subspaces. In our case, there are

(p
k

)
≤
( ep

k

)k subspaces, which is
reflected in the term k ln(ep/k). ut

The above result including its proof extends to isotropic subgaussian random
matrices. An alternative proof approach may be based on Theorem 14 below.

Theorem 8 (Corollary 3.1 of [13]). Let A ∈ Rm×n be a draw of an isotropic sub-
gaussian ensemble and let Ω ∈ Rp×n be an analysis operator. If

m≥Cδ
−2(k ln(ep/k)+ ln(2θ

−1)
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then with probability at least 1−θ the matrix 1√
m A satisfies the restricted isometry

property adapted to Ω with constant δk ≤ δ .

An extension of the above bound to Weibull matrices has been shown in [19].
Applying the above results for the canonical dual frame (Ω †)T of a frame Ω in

combination with Theorem 2 shows that the analysis `1-program

min‖Ωz‖1 subject to Az = Ax

with a random draw of a (sub-)gaussian matrix A ∈Rm×n recovers every `-cosparse
vector x with `= p− k exactly with high probability provided

m≥ Cb
a

k ln(ep/k). (19)

The difference to the standard synthesis sparsity case is merely the appearance of
p instead of n inside the logarithmic factor as well as the ratio b/a of the frame
bounds. Clearly, this ratio is one for a tight frame.

We will return to uniform recovery with Gaussian measurements in Subsec-
tion 4.4, where we will study the Ω -null space property directly which allows to
give an explicit and small constant in the bound (18) on the number of measure-
ments. The approach relies on techniques that are introduced in the next section
concerning nonuniform recovery. (These methods are easier to apply in the nonuni-
form setting which is the reason why we postpone an analysis of the Ω -null space
property to later.)

4.2 Nonuniform recovery from Gaussian measurements

We now turn to nonuniform results for recovery of cosparse signals with respect to a
frame being the analysis operator and using Gaussian measurement matrices, which
state that a given (fixed) cosparse vector can be recovered with high probability
under a certain bound on the number of measurements. We will not qualitatively
improve over (19), but we will obtain a very good constant, which is in fact optimal
in a certain “asymptotic” sense. The main result stated next appeared in [28], but
we give a slightly different proof here, which allows us later to extend this approach
also to the subgaussian case.

Theorem 9. Let Ω ∈ Rp×n be a frame with frame bounds a, b > 0 and x ∈ Rn be
an `-cosparse vector and k = p− `. Let A ∈ Rm×n be a Gaussian random matrix
and let noisy measurements y = Ax+e be taken with ‖e‖2 ≤ ε . If for 0 < θ < 1 and
some τ > 0

m2

m+1
≥ 2k

(√
b
a

ln
(ep

k

)
+

√
ln(θ−1)

k
+ τ

√
1
2k

)2

, (20)
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then with probability at least 1−θ , every minimizer x̂ of (7) satisfies

‖x− x̂‖2 ≤
2ε

τ
.

Setting ε = 0 yields exact recovery via (6). Roughly speaking, i.e., for rather large
k,m, p the bound (20) reads

m > 2
b
a

k ln(ep/k)

for having recovery with “high probability”.
Our proof relies on the recovery condition of Theorem 4 based on tangent cones

as well as on convex geometry and Gordon’s escape through a mesh theorem [23]
and is inspired by [10], see also [20, Chapter 9].

According to (13) the successful recovery of a signal is achieved, when the mini-
mal gain of the measurement matrix over the tangent cone is greater than some pos-
itive constant. For Gaussian matrices the probability of this event can be estimated
by Gordon’s escape through a mesh theorem [23], [20, Theorem 9.21]. To present it
formally we introduce some notation. For a set T ⊂Rn we define its Gaussian width
by

`(T ) := Esup
x∈T
〈x,g〉, (21)

where g ∈Rn is a standard Gaussian random vector. Due to rotation invariance (21)
can be written as

`(T ) = E‖g‖2 ·Esup
x∈T
〈x,u〉,

where u is uniformly distributed on Sn−1. We recall [20, Theorem 8.1] that

En := E‖g‖2 =
√

2
Γ ((n+1)/2)

Γ (n/2)

satisfies n√
n+1

≤ En ≤
√

n,

so that up to some factor of order
√

n the Gaussian width is basically equivalent to
the mean width of a set, see Figure 2.

In order to gain more intuition about the Gaussian width we remark that a d-
dimensional subspace U ⊂ Rn intersected with the sphere Sn−1 satisfies `(U ∩
Sn−1) ∼

√
d so that for a subset T of the sphere the quantity `(T )2 can somehow

be interpreted as its dimension (although this interpretation should be handled with
care.)

Next we state the version of Gordon’s escape through a mesh theorem from [20,
Theorem 9.21].

Theorem 10 (Gordon’s escape through a mesh). Let A ∈ Rm×n be a Gaussian
random matrix and T be a subset of the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.
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Fig. 2 The mean width of a
set T in the direction u. When
T is symmetric, 2sup

x∈T
〈x,u〉=

sup
x∈T
〈x,u〉− inf

z∈T
〈z,u〉, which

corresponds to the smallest
distance between two hy-
perplanes orthogonal to the
direction u, such that T is
contained between them.

Analysis ℓ1-recovery with frames and subgaussian measurements 3

2sup
x∈T

⟨x,u⟩ = sup
x∈T

⟨x,u⟩− inf
z∈T

⟨z,u⟩,

which corresponds to the smallest distance between two hyperplanes orthogonal to
the direction u, such that T is contained between them, see Figure 1. Recall that
E∥g∥2 ∼

√
d. Thus, up to some factor of order

√
d Gaussian width is equivalent to

the mean width of a set.

u

T

width

Fig. 1: Width of a set T in the direction u.

Let {Gt : t ∈ T} be a centered Gaussian process indexed by T and define the
distance between any s and t ∈ T by

d2(s, t) = E |Gs − Gt |2 . (6)

According to the majoring measure theorem [?]

c1γ2(T,d) ≤ Esup
t∈T

Gt ≤ c2γ2(T,d)

for some absolute constant c1 and c2. In particular, if T ⊂ Rd and Gt =
d
∑

i=1
giti, where

gi are independent standard Gaussian random variables, then the distance induced
by (6) coincides with the Euclidean distance ∥ ·∥2. Thus

c1γ2(T,∥ ·∥2) ≤ ℓ(T ) ≤ c2γ2(T,∥ ·∥2). (7)

Theorem 1 (Corollary 2.7 in [?]). Let T ⊂ Sd−1, Xi, i = 1, . . . ,m be independent
isotropic subgaussian random vectors with ∥Xi∥ψ2 ≤ α and 0 < θ < 1. Define M ∈
Rm×d as M = (X1, . . . ,Xm)t . If

Then, for t > 0, it holds

P
(

inf
x∈T
‖Ax‖2 > Em− `(T )− t

)
≥ 1− e−

t2
2 . (22)

Recall the set

T (x) = cone{z− x : z ∈ Rn, ‖Ωz‖1 ≤ ‖Ωx‖1},

from (12) and set T := T (x)∩Sn−1. To provide a bound on the number of Gaussian
measurements, we compute the Gaussian width of T . We start with establishing a
connection between `(T ) and `(Ω(T )), where Ω(T ) is the set obtained by applying
the operator Ω to each element T .

Theorem 11. Let Ω ∈Rp×n be a frame with a lower frame bound a> 0 and T ⊂Rn.
Then

`(T )≤ a−1/2`(Ω(T )).

Before giving the proof of Theorem 11, we recall Slepian’s inequality, see [29]
or [20, Chapter 8.7] for details. For a random variable X we define ‖X‖2 =(
E |X |2

)1/2
.

Theorem 12. Let (Xt)t∈T and (Yt)t∈T be Gaussian centered processes. If for all s,
t ∈ T

‖Xt −Xs‖2 ≤ ‖Yt −Ys‖2,

then
Esup

t∈T
Xt ≤ Esup

t∈T
Yt .

Proof (of Theorem 11). By the definition of the Gaussian width

`(T ) = Esup
v∈T
〈g,v〉= Esup

v∈T
〈g,Ω †

Ωv〉

= E sup
w∈Ω(T )

〈(Ω †)T g,w〉. (23)
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We consider two Gaussian processes,

Xw = 〈(Ω †)T g,w〉 and Yw = ‖(Ω †)T‖2→2〈h,w〉,

where w ∈ Ω(T ) and g ∈ Rn, h ∈ Rp are both standard Gaussian vectors. For any
standard Gaussian vector h it holds E |〈h,w〉|2 = ‖w‖2

2. So if w, w′ ∈Ω(T ), then

‖Xw−Xw′‖2 ≤ ‖(Ω †)T‖2→2‖w−w′‖2 = ‖Yw−Yw′‖2.

It follows from Theorem 12 that

E sup
w∈Ω(T )

〈(Ω †)T g,w〉 ≤ ‖(Ω †)T‖2→2E sup
w∈Ω(T )

〈h,w〉. (24)

An upper bound of the canonical dual frame is (Ω †)T is a−1. Hence, ‖(Ω †)T‖2→2 ≤
a−1/2. Together with (23) and (24) this gives

`(T )≤ a−1/2E sup
w∈Ω(T )

〈h,w〉= a−1/2`(Ω(T )).

ut

The next theorem from [28, Section 2.2] provides a good bound on `(Ω(T )).

Theorem 13. Let Ω ∈ Rp×n be a frame with upper frame bound b > 0 and x ∈ Rn

be `-cosparse with `= p− k. For T := T (x)∩Sn−1, it holds

`(Ω(T ))2 ≤ 2bk ln
(ep

k

)
. (25)

Proof. Since Ω is a frame with an upper frame constant b, we have

Ω(T )⊂Ω(T (x))∩Ω(Sn−1)⊂ K(Ωx)∩
(√

bBp
2

)
,

where
K(Ωx) = cone{y−Ωx : y ∈ Rp, ‖y‖1 ≤ ‖Ωx‖1} .

The supremum over a larger set can only increase, hence

`(Ω(T ))≤
√

b`
(
K(Ωx)∩Bp

2

)
. (26)

An upper bound for the Gaussian width `
(
K(Ωx)∩Bp

2

)
can be given in terms of the

the polar cone N(Ωx) = K(Ωx)◦ defined by

N(Ωx) = {z ∈ Rp : 〈z,y−Ωx〉 ≤ 0 for all y ∈ Rp such that ‖y‖1 ≤ ‖Ωx‖1} .

By duality of convex programming, see [10] or [20, Proposition 9.22], we have

`
(
K(Ωx)∩Bp

2

)
≤ E min

z∈N(Ωx)
‖g− z‖2
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and by Hölder’s inequality

`
(
K(Ωx)∩Bp

2

)2 ≤
(
E min

z∈N(Ωx)
‖g− z‖2

)2

≤ E min
z∈N(Ωx)

‖g− z‖2
2. (27)

Let Λ be the cosupport of x. Then one can verify that

N(Ωx) =
⋃

t≥0

{z ∈ Rp : zi = t sgn(Ωx)i, i ∈Λ
c, |zi| ≤ t, i ∈Λ} . (28)

To proceed, we fix t, minimize ‖g− z‖2
2 over all possible entries z j, take the expec-

tation of the obtained expression and finally optimize over t. Taking into account
(28), we have

min
z∈N(Ωx)

‖g− z‖2
2 = min

t≥0
|zi|≤t, i∈Λ

∑
i∈Λ c

(gi− t sgn(Ωx)i)
2 + ∑

i∈Λ

(gi− zi)
2

= min
t≥0

∑
i∈Λ c

(gi− t sgn(Ωx)i)
2 + ∑

i∈Λ

St(gi)
2,

where St is the soft-thresholding operator given by

St(x) =





x+ t if x <−t,
0 if − t ≤ x≤ t,
x− t if x > t.

Taking expectation we arrive at

E min
z∈N(Ωx)

‖g− z‖2
2 ≤ E

[
∑

i∈Λ c
(gi− t sgn(Ωx)i)

2

]
+E

[
∑
i∈Λ

St(gi)
2

]

= k(1+ t2)+(p− k)ESt(g)2, (29)

where g is a univariate standard Gaussian random variable. The expectation of
St(g)2 is estimated by integration,

ESt(g)2 =
1√
2π



−t∫

−∞

(x+ t)2e−
x2
2 dx+

∞∫

t

(x− t)2e−
x2
2 dx




=
2√
2π

∞∫

0

x2e−
(x+t)2

2 dx =
2e−

t2
2√

2π

∞∫

0

x2e−
x2
2 e−xt dx

≤ e−
t2
2

√
2
π

∞∫

0

x2e−
x2
2 dx = e−

t2
2 . (30)

Substituting the estimate (30) into (29) gives
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E min
z∈N(Ωx)

‖g− z‖2
2 ≤ k(1+ t2)+(p− k)e−

t2
2 .

Setting t =
√

2ln(p/k) finally leads to

`
(
K(Ωx)∩Bp

2

)2 ≤ k (1+2ln(p/k))+ k = 2k ln(ep/k). (31)

By combining inequalities (26) and (31) we obtain

`(Ω(T ))2 ≤ 2bk ln
ep
k
.

ut

By Theorem 11 and Theorem 13 we obtain

`(T )≤
√

2bk
a

ln
ep
k
.

At this point we are ready to prove our main result (Theorem 9) concerning the
number of Gaussian measurements that guarantee the robust recovery of a fixed
cosparse vector.

Set t =
√

2ln(θ−1). The choice of m in (20) guarantees that

Em− `(T )− t ≥ m√
m+1

−
√

bk
a

ln
ep
k
−
√

2ln(θ−1)≥ τ.

Theorem 10 yields

P
(

inf
x∈T
‖Ax‖2 ≥ τ

)
≥ P

(
inf
x∈T
‖Ax‖2 ≥ Em− `(T )− t

)
≥ 1−θ .

This completes the proof.

4.3 Nonuniform recovery from subgaussian measurements

Based on the estimates of the previous section in combination with the following
result due to Mendelson et al. [32], we may extend the nonuniform recovery re-
sult also to subgaussian matrices. We remark, however, that due to an unspecified
constant in (32) this technique does not necessarily improve over the uniform es-
timate (19) derived via the restricted isometry property. Nevertheless, we feel that
this proof method is interesting.

Theorem 14 (Corollary 2.7 in [32]). Let T ⊂ Sn−1, Xi ∈ Rn, i = 1, . . . ,m be in-
dependent isotropic subgaussian random vectors with ‖Xi‖ψ2 ≤ α and 0 < δ < 1.
Define A ∈ Rm×n as A = (X1, . . . ,Xm)

T . If
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m≥ c1α4

δ 2 `(T )2, (32)

then with probability at least 1− exp
(
−c2δ 2m/α4

)
for all x ∈ T it holds

1−δ ≤ ‖Ax‖2
2

m
≤ 1+δ , (33)

where c1, c2 are absolute constants.

Theorem 15. Let Ω ∈ Rp×n be a frame with frame bounds a, b > 0, x ∈ Rn be an
`-cosparse vector and k = p− l. Let Xi ∈ Rn, i = 1, . . . ,m, be independent isotropic
subgaussian random vectors with ‖Xi‖ψ2 ≤ α and 0 < δ < 1. Define A ∈ Rm×n as
A = (X1, . . . ,Xm)

T . If

m≥ c1bα4

aδ 2 s ln
ep
k
,

then with probability at least 1− exp
(
−c2δ 2m/α4

)
every minimizer x̂ of (7) ap-

proximates x with the following `2-error

‖x− x̂‖2 ≤
2ε√
1−δ

.

Proof. Inserting the estimate of Gaussian width (25) and (37) in (32) provides the
above bound on the number of subgaussian measurements that guarantees success-
ful nonuniform recovery via (6). ut

4.4 Uniform recovery via the Ω -null space property

Let us now consider the stable Ω -null space property introduced in (8), which im-
plies (uniform) recovery of all cosparse vectors via analysis `1-minimization, see
Theorem 1. Since the restricted isometry property adapted to (Ω †)T implies the Ω -
null space property, see Theorem 2, we already know that Gaussian (and subgaus-
sian) measurement matrices satisfy the Ω -null space property with high probability
under Condition (18). The constant C in (18), however, is unspecified and inspecting
the proof would reveal a rather large value. We follow now a different path based
on convex geometry and Gordon’s escape through a mesh theorem that leads to a
direct estimate for the Ω -null space property and yields an explicit and small con-
stant. This approach is inspired by [10] and has been applied in [20, Chapter 9.4]
for the synthesis sparsity model for the first time. The next theorem was shown in
[28] using additionally some ideas of [37].

Theorem 16. Let A ∈ Rm×n be a Gaussian random matrix, 0 < ρ < 1, 0 < θ < 1
and τ > 0. If
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m2

m+1
≥ 2k

(
(1+ρ

−1)

√
b
a

ln
ep
k
+

b(1+ρ−1)

a
√

2
+

√
ln(θ−1)

k
+

1
τ

√
1
2k

)2

,

then with probability at least 1−θ for every vector x ∈ Rn and perturbed measure-
ments y = Ax+ e with ‖e‖2 ≤ ε a minimizer x̂ of (7) approximates x with `2-error

‖x− x̂‖2 ≤
2(1+ρ)2
√

a(1−ρ)

σk(Ωx)1√
k

+
2τ
√

b(3+ρ)√
a(1−ρ)

ε.

Proof. (Sketch) We verify that A satisfies the `2-stable Ω -null space property (8).
To this end we introduce the set

Wρ,k :=
{

w ∈ Rn : ‖ΩΛ cw‖2 ≥ ρ/
√

k‖ΩΛ w‖1 for some Λ ⊂ [p], |Λ |= p− k
}
.

If
inf
{
‖Aw‖2 : w ∈Wρ,k ∩Sn−1}> 1

τ
, (34)

then for any w ∈Rn such that ‖Aw‖2 ≤ 1
τ
‖w‖2 and any set Λ ⊂ [p] with |Λ | ≥ p−k

it holds
‖ΩΛ c w‖2 <

ρ√
k
‖ΩΛ w‖1.

For the remaining vectors w ∈ Rn, we have ‖Aw‖2 > 1
τ
‖w‖2, which together with

the fact that Ω is a frame with upper frame bound b leads to

‖ΩΛ cw‖2 ≤ ‖Ωw‖2 ≤
√

b‖w‖2 < τ
√

b‖Aw‖2.

Thus, for any w ∈ Rn,

‖ΩΛ c w‖2 <
ρ√

k
‖ΩΛ w‖1 + τ

√
b‖Aw‖2.

To show (34), we have to study the Gaussian width of the set Wρ,k∩Sn−1. According
to Theorem 11

`(Wρ,k ∩Sn−1)≤ a−1/2`(Ω(Wρ,k ∩Sn−1). (35)

Since Ω is a frame with an upper frame bound b, we have

Ω
(
Wρ,k ∩Sn−1)⊂Ω

(
Wρ,k

)
∩
(√

bBp
2

)
⊂ Tρ,k∩

(√
bBp

2

)
=
√

b
(
Tρ,k ∩Bp

2

)
, (36)

with

Tρ,k =
{

u ∈ Rp : ‖uS‖2 ≥ ρ/
√

k‖uSc‖1 for some S⊂ [p], |S|= k
}
.

Inspired by [37] it was shown in [28, Section 3.2] that
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`
(
Ω
(
Wρ,k ∩Sn−1))≤

√
b
(
1+ρ

−1)
(√

2k ln
ep
k
+
√

k
)
.

Together with (35) this gives

`(Wρ,k ∩Sn−1)≤
√

b
a

(
1+ρ

−1)
(√

2k ln
ep
k
+
√

k
)
. (37)

An application of Theorem 10 and inequality (37) complete the proof. ut

Roughly speaking, with high probability every `-cosparse vector can be recov-
ered via analysis `1-minimization using a single random draw of a Gaussian matrix
if, for k = p− `,

m > 8(b/a)k ln(ep/k). (38)

Moreover, the recovery is stable under passing to approximately cosparse vectors
when adding slightly more measurements.

With the approach outlined in Section 4.3 it is also possible to extend the above
bound on the number of measurements to subgaussian random matrices. This fol-
lows from a combination of Theorem 14 with the estimate (37) of the Gaussian
width of the set Wρ,k ∩Sn−1.
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