
Radon Series Comp. Appl. Math XX, 1–94 © de Gruyter 20YY

Compressive Sensing and Structured Random
Matrices
Holger Rauhut

Abstract. These notes give a mathematical introduction to compressive sensing focusing
on recovery using `1-minimization and structured random matrices. An emphasis is put on
techniques for proving probabilistic estimates for condition numbers of structured random ma-
trices. Estimates of this type are key to providing conditions that ensure exact or approximate
recovery of sparse vectors using `1-minimization.

Keywords. compressive sensing, `1-minimization, basis pursuit, structured random matrices,
condition numbers, random partial Fourier matrix, partial random circulant matrix, Khintchine
inequalities, bounded orthogonal systems.

AMS classification. 15A12, 15A60, 15B02, 15B19, 15B52, 42A05, 42A61, 46B09, 46B10,
60B20, 60G50, 90C05, 90C25, 90C90, 94A12, 94A20.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Recovery via `1-minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Sparse Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Null Space Property and Restricted Isometry Property . . . . . . . . . . . . . . 7
2.4 Recovery of Individual Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Restricted Isometry Property of Gaussian and Bernoulli Random Matrices . . . 15

3 Structured Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Nonuniform versus Uniform Recovery . . . . . . . . . . . . . . . . . . . . . . 18

4 Random Sampling in Bounded Orthonormal Systems . . . . . . . . . . . . . . . 18
4.1 Bounded Orthonormal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Nonuniform Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Uniform Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Partial Random Circulant Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Tools from Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Basics on Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Moments and Tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Rademacher Sums and Symmetrization . . . . . . . . . . . . . . . . . . . . . 33
6.4 Scalar Khintchine Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 34

H. R. acknowledges support by the Hausdorff Center for Mathematics and by the WWTF project
SPORTS (MA 07-004).
Version of June 12, 2011.



2 Holger Rauhut

6.5 Noncommutative Khintchine Inequalities . . . . . . . . . . . . . . . . . . . . 40
6.6 Rudelson’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.7 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.8 Noncommutative Khintchine Inequalities for Decoupled Rademacher Chaos . . 49
6.9 Dudley’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.10 Deviation Inequalities for Suprema of Empirical Processes . . . . . . . . . . . 59

7 Proof of Nonuniform Recovery Result for Bounded Orthonormal Systems . . . 60
7.1 Nonuniform Recovery with Coefficients of Random Signs . . . . . . . . . . . 61
7.2 Condition Number Estimate for Column Submatrices . . . . . . . . . . . . . . 62
7.3 Finishing the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Proof of Uniform Recovery Result for Bounded Orthonormal Systems . . . . . 67
8.1 Start of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 The Crucial Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Covering Number Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4 Finishing the Proof of the Crucial Lemma . . . . . . . . . . . . . . . . . . . . 72
8.5 Completing the Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . 74
8.6 Strengthening the Probability Estimate . . . . . . . . . . . . . . . . . . . . . . 75
8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Proof of Recovery Theorem for Partial Circulant Matrices . . . . . . . . . . . . 78
9.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Conditioning of Submatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.3 Completing the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.1 Covering Numbers for the Unit Ball . . . . . . . . . . . . . . . . . . . . . . . 84
10.2 Integral Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1 Introduction

Compressive sensing is a recent theory that predicts that sparse vectors in high di-
mensions can be recovered from what was previously believed to be incomplete in-
formation. The seminal papers by E. Candès, J. Romberg and T. Tao [19, 23] and
by D. Donoho [38] have caught significant attention and have triggered enormous re-
search activities after their appearance. These notes make an attempt to introduce to
some mathematical aspects of this vastly growing field. In particular, we focus on
`1-minimization as recovery method and on structured random measurement matrices
such as the random partial Fourier matrix and partial random circulant matrices. We
put emphasis on methods for showing probabilistic condition number estimates for
structured random matrices. Among the main tools are scalar and noncommutative
Khintchine inequalities. It should be noted that modified parts of these notes together
with much more material will appear in a monograph on compressive sensing [55] that
is currently under preparation by the author and Simon Foucart.
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The main motivation for compressive sensing is that many real-world signals can be
well-approximated by sparse ones, that is, they can be approximated by an expansion
in terms of a suitable basis, which has only a few non-vanishing terms. This is the
key why many (lossy) compression techniques such as JPEG or MP3 work so well.
To obtain a compressed representation one computes the coefficients in the basis (for
instance a wavelet basis) and then keeps only the largest coefficients. Only these will
be stored while the rest of them will be put to zero when recovering the compressed
signal.

When complete information on the signal or image is available this is certainly a
valid strategy. However, when the signal has to be acquired first with a somewhat
costly, difficult, or time-consuming measurement process, this seems to be a waste of
resources: First one spends huge efforts to collect complete information on the signal
and then one throws away most of the coefficients to obtain its compressed version.
One might ask whether there is a more clever way of obtaining somewhat more di-
rectly the compressed version of the signal. It is not obvious at first sight how to do
this: measuring directly the large coefficients is impossible since one usually does not
know a-priori, which of them are actually the large ones. Nevertheless, compressive
sensing provides a way of obtaining the compressed version of a signal using only
a small number of linear and non-adaptive measurements. Even more surprisingly,
compressive sensing predicts that recovering the signal from its undersampled mea-
surements can be done with computationally efficient methods, for instance convex
optimization, more precisely, `1-minimization.

Of course, arbitrary undersampled linear measurements – described by the so-called
measurement matrix – will not succeed in recovering sparse vectors. By now, neces-
sary and sufficient conditions are known for the matrix to recover sparse vectors using
`1-minimization: the null space property and the restricted isometry property. Basi-
cally, the restricted isometry property requires that all column submatrices of the mea-
surement matrix of a certain size are well-conditioned. It turns out to be quite difficult
to check this condition for deterministic matrices – at least when one aims to work
with the minimal amount of measurements. Indeed, the seminal papers [19, 38] ob-
tained their breakthrough by actually using random matrices. While the use of random
matrices in sparse signal processing was rather uncommon before the advent of com-
pressive sensing, we note that they were used quite successfully already much earlier,
for instance in the very related problem from Banach space geometry of estimating
Gelfand widths of `N1 -balls [54, 57, 74].

Introducing randomness allows to show optimal (or at least near-optimal) condi-
tions on the number of measurements in terms of the sparsity that allow recovery of
sparse vectors using `1-minimization. To this end, often Gaussian or Bernoulli matri-
ces are used, that is, random matrices with stochastically independent entries having a
standard normal or Bernoulli distribution.

Applications, however, often do not allow the use of “completely” random matri-
ces, but put certain physical constraints on the measurement process and limit the
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amount of randomness that can be used. For instance, when sampling a trigonomet-
ric polynomial having sparse coefficients one might only have the freedom to choose
the sampling points at random. This leads then to a structured random measurement
matrix, more precisely, a random partial Fourier type matrix. Indeed, such type of ma-
trices were already investigated in the initial papers [19, 23] on compressive sensing.
These notes will give an introduction on recovery results for `1-minimization that can
be obtained using such structured random matrices. A focus is put on methods for
probabilistic estimates of condition numbers such as the noncommutative Khintchine
inequalities and Dudley’s inequality.

Although we will not cover specific applications in these notes, let us mention that
compressive sensing may be applied in imaging [44, 109], A/D conversion [133], radar
[69, 49] and wireless communication [126, 95], to name a few.

These notes contain some improvements and generalizations of existing results, that
have not yet appeared elsewhere in the literature. In particular, we generalize from ran-
dom sampling of sparse trigonometric polynomials to random sampling of functions
having sparse expansions in terms of bounded orthonormal systems. The probability
estimate for the so-called restricted isometry constants for the corresponding matrix is
slightly improved. Further, also the sparse recovery result for partial random circulant
and Toeplitz matrices presented below is an improvement over the one in [105].

These lecture notes only require basic knowledge of analysis, linear algebra and
probability theory, as well as some basic facts about vector and matrix norms.

2 Recovery via `1-minimization

2.1 Preliminaries and Notation

Let us first introduce some notation. For a vector x = (x1, . . . , xN ) ∈ CN , the usual
p-norm is denoted

‖x‖p :=

(
N∑
`=1

|x`|p
)1/p

, 1 ≤ p <∞,

‖x‖∞ := max
`∈[N ]

|x`|,

where [N ] := {1, 2, . . . , N}. For a matrixA = (ajk) ∈ Cm×N we denoteA∗ = (akj)
its conjugate transpose. The operator norm of a matrix from `p into `p is defined as

‖A‖p→p := max
‖x‖p=1

‖Ax‖p.
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For the cases p = 1, 2,∞ an explicit expression for the operator norm of A is given by

‖A‖1→1 = max
k∈[N ]

m∑
j=1

|ajk|, (2.1)

‖A‖∞→∞ = max
j∈[m]

N∑
k=1

|ajk|,

‖A‖2→2 = σmax(A) =
√
λmax(A∗A),

where σmax(A) denotes the largest singular value of A and λmax(A
∗A) ≥ 0 is the

largest eigenvalue of A∗A. Clearly, ‖A‖1→1 = ‖A∗‖∞→∞. It follows from the Riesz-
Thorin interpolation theorem [118, 7] that

‖A‖2→2 ≤ max{‖A‖1→1, ‖A‖∞→∞}. (2.2)

The above inequality is sometimes called the Schur test, and it can also be derived
using Hölder’s inequality, see for instance [64]; or alternatively using Gershgorin’s
disc theorem [8, 71, 135]. In particular, if A = A∗ is hermitian, then

‖A‖2→2 ≤ ‖A‖1→1. (2.3)

All eigenvalues of a hermitian matrix A = A∗ ∈ Cn×n are contained in

{〈Ax,x〉 : x ∈ Cn, ‖x‖2 = 1} ⊂ R.

In particular, for hermitian A = A∗,

‖A‖2→2 = sup
‖x‖2=1

|〈Ax,x〉|. (2.4)

For real scalars α1, . . . , αn ∈ R and vectors z1, . . . , zn ∈ Cm the matrix
∑n

j=1 αjzjz
∗
j

is hermitian and we have

‖
n∑
j=1

αjzjz
∗
j‖2→2 = sup

‖x‖2=1

∣∣∣∣∣∣
〈

n∑
j=1

αjzjz
∗
jx,x

〉∣∣∣∣∣∣ = sup
‖x‖2=1

∣∣∣∣∣∣
n∑
j=1

αj |〈zj ,x〉|2
∣∣∣∣∣∣

≤ max
k∈[n]
|αk| sup

‖x‖2=1

n∑
j=1

|〈zj ,x〉|2 = ‖
n∑
j=1

zjz
∗
j‖2→2 max

k∈[n]
|αk|. (2.5)

Also the Frobenius norm will be of importance. For a matrix A = (ajk) it is defined
as

‖A‖F :=
√∑

j,k

|ajk|2 =
√

Tr(A∗A),
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where Tr denotes the trace. The Frobenius norm is induced by the inner product
〈A,B〉F = Tr(B∗A). The Cauchy Schwarz inequality for the trace states that

|〈A,B〉F | = |Tr(B∗A)| ≤ ‖A‖F ‖B‖F . (2.6)

The null space of a matrix A ∈ Cm×N is denoted by kerA = {x ∈ CN , Ax = 0}.
We usually write a` ∈ Cm, ` = 1, . . . , N , for the columns of a matrix A ∈ Cm×N .
The column submatrix of A consisting of the columns indexed by S will be written
AS = (aj)j∈S . If S ⊂ [N ], then for x ∈ CN we denote by xS ∈ CN the vector
that coincides with x on S and is set to zero on Sc = [N ] \ S. Similarly, xS ∈ CS
denotes the vector x restricted to the entries in S. The support of a vector is defined as
suppx = {`, x` 6= 0}. We write Id for the identity matrix. The complement of a set
S ⊂ [N ] is denoted Sc = [N ] \ S, while |S| is its cardinality.

IfA ∈ Cm×n,m ≥ n, is of full rank (i.e. injective), then its Moore-Penrose pseudo-
inverse is given by

A† = (A∗A)−1A∗. (2.7)

In this case, it satisfiesA†A = Id ∈ Cn×n. We refer to [8, 71, 59] for more information
on the pseudo inverse.

All the constants appearing in this note – usually denoted by C orD – are universal,
which means that they do not depend on any of the involved quantities.

2.2 Sparse Recovery

Let x ∈ CN be a (high-dimensional) vector that we will sometimes call signal. It is
called s-sparse if

‖x‖0 := |suppx| ≤ s. (2.8)

The quantity ‖ · ‖0 is often called `0-norm although it is actually not a norm, not even
a quasi-norm.

In practice it is generally not realistic that a signal x is exactly s-sparse, but rather
that its error of best s-term approximation σs(x)p is small,

σs(x)p := inf{‖x− z‖p, z is s-sparse}. (2.9)

(This is the standard notation in the literature, and we hope that no confusion with the
singular values of a matrix will arise.)

Taking linear measurements of x is modeled as the application of a measurement
matrix A ∈ Cm×N ,

y = Ax. (2.10)

The vector y ∈ Cm is called the measurement vector. We are interested in the case of
undersampled measurements, that is, m � N . Reconstructing x amounts to solving
(2.10). By basic linear algebra, this system of equations has infinitely many solutions
(at least if A has full rank). Hence, it seems impossible at first sight to guess the
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correct x among these solutions. If, however, we impose the additional requirement
(2.8) that x is s-sparse, the situation changes, as we will see. Intuitively, it is natural to
search then for the solution with smallest support, that is, to solve the `0-minimization
problem

min
z∈CN

‖z‖0 subject to Az = y. (2.11)

The hope is that the solution x# of this optimization problem coincides with x. Indeed,
rather easy recovery conditions on A ∈ Cm×N and on the sparsity s can be shown,
see for instance [28]. There exist matrices A ∈ Cm×N such that 2s ≤ m suffices to
always ensure recovery; choose the columns of A in general position.

Unfortunately, the combinatorial optimization problem (2.11) is NP hard in general
[35, 88]. In other words, an algorithm that solves (2.11) for any matrix A and any
vector y must be intractable (unless maybe the famous Millenium problem P = NP
is solved in the affirmative, on which we will not rely here). Therefore, (2.11) is
completely impractical for applications and tractable alternatives have to be found.
Essentially two approaches have mainly been pursued: greedy algorithms and convex
relaxation. We will concentrate here on the latter and refer the reader to the literature
[40, 58, 78, 90, 91, 103, 131, 127] for further information concerning greedy methods.

The `1-minimization problem

min
z∈CN

‖z‖1 subject to Az = y (2.12)

can be understood as convex relaxation of (2.11). Sometimes (2.12) is also referred to
as basis pursuit [25]. In contrast to (2.11), the `1-minimization problem can be solved
with efficient convex optimization methods. In the real-valued case (2.12) can be
rewritten as a linear program and can be solved with linear programming techniques,
while in the complex-valued case (2.12) is equivalent to a second order cone program
(SOCP), for which also efficient solvers exist [15]. We refer the interested reader to
[32, 33, 34, 43, 47, 76] for further efficient algorithms for `1-minimization.

Of course, our hope is that the solution of (2.12) coincides with the one of (2.11).
One purpose of these notes is to provide an understanding under which conditions this
is actually guaranteed.

2.3 Null Space Property and Restricted Isometry Property

In this section we present conditions on the matrix A that ensure exact reconstruction
of all s-sparse vectors using `1-minimization. Our first notion is the so-called null
space property.

Definition 2.1. A matrix A ∈ Cm×N satisfies the null space property of order s if for
all subsets S ⊂ [N ] with |S| = s it holds

‖vS‖1 < ‖vSc‖1 for all v ∈ kerA \ {0}. (2.13)
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Remark 2.2. We deal here with the complex case. For real-valued matrices one might
restrict the kernel to the real-valued vectors and define an obvious real-valued analogue
of the null space property above. However, it is not obvious that the real and the
complex null space property are the same for real-valued matrices. Nevertheless this
fact can be shown [52].

Based on this notion we have the following recovery result concerning `1-mini-
mization.

Theorem 2.3. Let A ∈ Cm×N . Then every s-sparse vector x ∈ CN is the unique
solution of the `1-minimization problem (2.12) with y = Ax if and only if A satisfies
the null space property of order s.

Proof. Assume first that every s-sparse vector x ∈ CN is the unique minimizer of ‖z‖1
subject toAz = Ax. Then, in particular, for any v ∈ kerA\{0} and any S ⊂ [N ] with
|S| = s, the s-sparse vector vS is the unique minimizer of ‖z‖1 subject to Az = AvS .
Observe that A(−vSc) = AvS and −vSc 6= vS , because A(vSc + vS) = Av = 0
and because v 6= 0. Therefore we must have ‖vS‖1 < ‖vSc‖1. This establishes the
null space property.

For the converse, let us assume that the null space property of order s holds. Then,
given an s-sparse vector x ∈ CN and a vector z ∈ CN , z 6= x, satisfying Az = Ax,
we consider v := x − z ∈ kerA \ {0} and S := supp(x). In view of the null space
property we obtain

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1 = ‖xS − zS‖+ ‖zS‖1 = ‖vS‖1 + ‖zS‖1

< ‖vSc‖1 + ‖zS‖1 = ‖ − zSc‖1 + ‖zS‖1 = ‖z‖1.

This establishes the required minimality of ‖x‖1.

This theorem seems to have first appeared explicitly in [60], although it was used
implicitly already in [41, 48, 97]. The term null space property was coined by A.
Cohen, W. Dahmen, and R. DeVore in [28]. One may obtain also a stable version
of the above theorem by passing from sparse vectors to compressible ones, for which
σs(x)1 is small. Then the condition (2.13) has to be strengthened to ‖vS‖1 < γ‖vSc‖1
for some γ ∈ (0, 1).

The null space property is usually somewhat difficult to show directly. Instead, the
so called restricted isometry property [22], which was introduced by E. Candès and
T. Tao in [23] under the term uniform uncertainty principle (UUP), has become very
popular in compressive sensing.

Definition 2.4. The restricted isometry constant δs of a matrix A ∈ Cm×N is defined
as the smallest δs such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 (2.14)
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for all s-sparse x ∈ CN .

We say that a matrix A satisfies the restricted isometry property (RIP) if δs is small
for reasonably large s (whatever "small" and "reasonably large" might mean in a con-
crete situation).

Before relating the restricted isometry property with the null space property let us
first provide some simple properties of the restricted isometry constants.

Proposition 2.5. Let A ∈ Cm×N with isometry constants δs.

(a) The restricted isometry constants are ordered, δ1 ≤ δ2 ≤ δ3 ≤ · · · .

(b) It holds

δs = max
S⊂[N ],|S|≤s

‖A∗SAS − Id‖2→2

= sup
x∈Ts
|〈(A∗A− Id)x,x〉|,

where Ts = {x ∈ CN , ‖x‖2 = 1, ‖x‖0 ≤ s}.

(c) Let u,v ⊂ CN with disjoint supports, suppu ∩ suppv = ∅. Let s = |suppu|+
|suppv|. Then

|〈Au, Av〉| ≤ δs‖u‖2‖v‖2.

Proof. Since an s-sparse vector is also s+ 1-sparse the statement (a) is immediate.
The definition (2.14) is equivalent to∣∣‖Ax‖2

2 − ‖x‖2
2
∣∣ ≤ δs‖x‖2

2 for all S ⊂ [N ], |S| ≤ s, for all x ∈ CN , suppx ⊂ S.

The term on the left hand side can be rewritten as |〈(A∗A − Id)x,x〉|. Taking the
supremum over all x ∈ CN with suppx ⊂ S and unit norm ‖x‖2 = 1 yields the
operator norm ‖A∗SAS − Id‖2→2 by (2.4). Taking also the maximum over all subsets
S of cardinality at most s completes the proof of (b).

For (c) we denote S = suppu,Ξ = suppv and let ũ, ṽ denote the vectors u,v
restricted to their supports. Then we write

〈Au, Av〉 = ũ∗A∗SAΞṽ = (ũ∗, 0∗Ξ)A
∗
S∪ΞAS∪Ξ(0∗S , ṽ

∗)∗

= (ũ∗, 0∗Ξ)(A
∗
S∪ΞAS∪Ξ − Id)(0∗S , ṽ

∗)∗,

where 0S is the zero-vector on the indices in S. Therefore, one may estimate

|〈Au, Av〉| ≤ ‖A∗S∪ΞAS∪Ξ − Id‖2→2‖u‖2‖v‖2.

Applying part (b) completes the proof.
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Part (b) shows that the restricted isometry property requires in particular that all
column submatrices of A of size s are well-conditioned. Indeed, all eigenvalues of
A∗SAS should be contained in the interval [1− δs, 1+ δs], which bounds the condition

number of A∗SAS by 1+δs
1−δs and therefore the one of AS by

√
1+δs
1−δs .

The restricted isometry property implies the null space property as stated in the next
theorem.

Theorem 2.6. Suppose the restricted isometry constants δ2s of a matrix A ∈ Cm×N
satisfies

δ2s <
1
3
, (2.15)

then the null space property of order s is satisfied. In particular, every s-sparse vector
x ∈ CN is recovered by `1-minimization.

Proof. Let v ∈ kerA be given. It is enough to consider an index set S0 of s largest
modulus entries of the vector v. We partition the complement of S0 as Sc0 = S1∪S2∪
. . ., where S1 is an index set of s largest absolute entries of v in [N ] \ S0, S2 is an
index set of s largest absolute entries of v in [N ]\ (S0∪S1) etc. In view of v ∈ kerA,
we have A(vS0) = −A(vS1 + vS2 + · · · ), so that

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖

2
2 =

1
1− δ2s

〈A(vS0), A(−vS1) +A(−vS2) + · · · 〉

=
1

1− δ2s

∑
k≥1

〈A(vS0), A(−vSk)〉. (2.16)

Proposition 2.5(c) yields then

〈A(vS0), A(−vSk)〉 ≤ δ2s‖vS0‖2‖vSk‖2. (2.17)

Substituting (2.17) into (2.16) and dividing by ‖vS0‖2 gives

‖vS0‖2 ≤
δ2s

1− δ2s

∑
k≥1

‖vSk‖2.

Since the s entries of vSk do not exceed the s entries of vSk−1 for k ≥ 1, we have

|vj | ≤
1
s

∑
`∈Sk−1

|v`| for all j ∈ Sk

and therefore

‖vSk‖2 =

∑
j∈Sk

|vj |2
1/2

≤ 1√
s
‖vSk−1‖1.
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We obtain by the Cauchy–Schwarz inequality

‖vS0‖1 ≤
√
s‖vS0‖2 ≤

δ2s

1− δ2s

∑
k≥1

‖vSk−1‖1 ≤
δ2s

1− δ2s
(‖vS0‖1 + ‖vSc‖1) (2.18)

as announced. Since δ2s
1−δ2s

< 1/2 by assumption, the null space property follows.

The restricted isometry property also implies stable recovery by `1-minimization for
vectors that can be well-approximated by sparse ones, and it further implies robustness
under noise on the measurements. This fact was first noted in [23, 21]. The sufficient
condition on the restricted isometry constants was successively improved in [18, 28,
53, 51]. We present without proof the so far best known result [51, 55] concerning
recovery using a noise aware variant of `1-minimization.

Theorem 2.7. Assume that the restricted isometry constant δ2s of the matrix A ∈
Cm×N satisfies

δ2s <
3

4 +
√

6
≈ 0.465. (2.19)

Then the following holds for all x ∈ CN . Let noisy measurements y = Ax + e be
given with ‖e‖2 ≤ η. Let x# be a solution of

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η. (2.20)

Then

‖x− x#‖2 ≤ cη + d
σs(x)1√

s

for some constants c, d > 0 that depend only on δ2s.

Note that the previous theorem ensures exact recovery of s-sparse signals using
`1-minimization (2.12) under condition (2.19) in the noise-free case η = 0.

In contrast to the null space property, the restricted isometry property is not neces-
sary for sparse recovery by `1-minimization. Indeed, the null space property of A is
invariant under multiplication from the left with an invertible matrix U ∈ Cm×m as
this does not change the null space, while the restricted isometry property is certainly
not invariant (simply take a matrix U with large condition number).

We will soon see examples of measurement matrices with small restricted isometry
constants.

2.4 Recovery of Individual Vectors

We will later need also a condition ensuring sparse recovery which not only depends
on the matrix A but also on the sparse vector x ∈ CN to be recovered. The follow-
ing theorem is due to J.J. Fuchs [56] in the real-valued case and was extended to the
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complex-valued case by J. Tropp [128]. Its statement requires introducing the sign
vector sgn(x) ∈ CN having entries

sgn(x)j :=


xj
|xj |

if xj 6= 0,

0 if xj = 0,
j ∈ [N ].

Theorem 2.8. Let A ∈ Cm×N and x ∈ CN with S := supp(x). Assume that AS is
injective and that there exists a vector h ∈ Cm such that

A∗Sh = sgn(xS),

|(A∗h)`| < 1, ` ∈ [N ] \ S. (2.21)

Then x is the unique solution to the `1-minimization problem (2.12) with y = Ax.

Proof. Let h ∈ Cm be the vector with the described property. We have

‖x‖1 = 〈A∗h,x〉 = 〈h, Ax〉.

Thus, for z ∈ CN , z 6= x, such that Az = y, we derive

‖x‖1 = 〈h, Az〉 = 〈A∗h, z〉 = 〈A∗h, zS〉+ 〈A∗h, zSc〉
≤ ‖(A∗h)S‖∞‖zS‖1 + ‖(A∗h)Sc‖∞‖zSc‖1 < ‖zS‖1 + ‖zSc‖1 = ‖z‖1.

The strict inequality follows from ‖zSc‖1 > 0, which holds because otherwise the
vector z would be supported on S and the equality Az = Ax would then be in con-
tradiction with the injectivity of AS . We have therefore shown that the vector x is the
unique minimizer of ‖z‖1 subject to Az = y, as desired.

The above result makes clear that the success of sparse recovery by `1-minimization
only depends on the support set S and on the sign pattern of the non-zero coefficients
of x.

Choosing the vector h =
(
A†S

)∗
sgn(xS) leads to the following corollary, which

will become a key tool later on.

Corollary 2.9. Let A ∈ Cm×N and x ∈ CN with S := supp(x). If the matrix AS is
injective and if

|〈A†Sa`, sgn(xS)〉| < 1 for all ` ∈ [N ] \ S, (2.22)

then the vector x is the unique solution to the `1-mininimization problem (2.12) with
y = Ax.

Proof. The vector h =
(
A†S

)∗
sgn(xS) satisfies A∗Sh = A∗SAS(A

∗
SAS)

−1sgn(xS) =

sgn(xS), and the condition (2.22) translates into (2.21). Hence, the statement follows
from Theorem 2.8.
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2.5 Coherence

A classical way to measure the quality of a measurement matrix A with normalized
columns, ‖aj‖2 = 1, j ∈ [N ], is the coherence [39, 40, 60, 61, 127], defined by

µ := max
j 6=k
|〈aj ,ak〉|.

If the coherence is small than the columns of A are almost mutually orthogonal. A
small coherence is desired in order to have good sparse recovery properties.

A refinement of the coherence is the 1-coherence function or Babel function, defined
by

µ1(s) := max
`∈[N ]

max
S⊂[N ]\{`}
|S|≤s

∑
j∈S
|〈aj ,a`〉| ≤ sµ.

The following proposition lists simple properties of µ and µ1 and relates the coherence
to the restricted isometry constants.

Proposition 2.10. Let A ∈ Cm×N with unit norm columns, coherence µ, 1-coherence
function µ1(s) and restricted isometry constants δs. Then

(a) µ = δ2,

(b) µ1(s) = maxS⊂[N ],|S|≤s+1 ‖A∗SAS − Id‖1→1,

(c) δs ≤ µ1(s− 1) ≤ (s− 1)µ.

Proof. (a) If S = {j, `} has cardinality two then

A∗SAS − Id =

(
0 〈aj ,a`〉

〈a`,aj〉 0

)
,

by the normalization ‖aj‖2 = ‖a`‖2 = 1. The operator norm of this matrix equals
|〈aj ,a`〉|. Taking the maximum over all two element subsets S shows that δ2 = µ by
Proposition 2.5(b).

(b) Again by normalization, the matrix A∗SAS − Id has zeros on the diagonal. The
explicit expression (2.1) for the operator norm on `1 then yields

‖A∗SAS − Id‖1→1 = max
j∈S

∑
k∈S\{j}

|〈aj ,ak〉|.

Taking also the maximum over all S ⊂ [N ] with |S| ≤ s+ 1 gives

max
S⊂[N ],|S|≤s+1

‖A∗SAS − Id‖1→1 = max
S⊂[N ],|S|≤s+1

max
j∈S

∑
k∈S\{j}

|〈aj ,ak〉|

= max
j∈[N ]

max
S⊂[N ]\{j},|S|≤s

∑
k∈S
|〈aj ,ak〉| = µ1(s),
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which establishes (b).
For (c) observe that by Proposition 2.5(b) and inequality (2.3) for hermitian matrices

δs = max
S⊂[N ],|S|≤s

‖A∗SAS − Id‖2→2 ≤ max
S⊂[N ],|S|≤s

‖A∗SAS − Id‖1→1 = µ1(s− 1)

≤ (s− 1)µ (2.23)

by part (b).

In combination with Theorem 2.6 (or Theorem 2.7) we see that s − 1 ≤ 1/(3µ)
or µ1(s − 1) ≤ 1/3 implies exact recovery (and also stable recovery) of all s-sparse
vectors by `1-minimization. We note that the slightly weaker sufficient conditions

µ1(s− 1) + µ1(s) < 1 (2.24)

or (2s − 1)µ < 1 ensuring recovery by `1-minimization can be shown by working
directly with the coherence or the 1-coherence function [39, 60, 127, 129] instead of
the restricted isometry constants. It is worth noting that (2.24) also implies recovery
by the greedy algorithm (orthogonal) matching pursuit [127, 62].

A simple example of a matrix A ∈ Cm×2m with small coherence is a concatenation
of the identity with a Fourier matrix F ∈ Cm×m, i.e., A = (Id|F ), where the entries
of F are given by

Fj,k =
1√
m
e2πijk/m.

It is well known that F is unitary and it is easy to see that µ = 1√
m

and µ1(s) =
s√
m

for s = 1, . . . ,m− 1. It follows that

δs ≤
s− 1√
m
. (2.25)

Hence, if

s <

√
m

6
+ 1 (2.26)

then recovery by `1-minimization is ensured. There exist also matrices with many
more columns still having coherence on the order 1/

√
m. Indeed, [2, 121] give exam-

ples of matrices A ∈ Cm×m2
satisfying

µ =
1√
m

(and one can also check that µ1(s) =
s√
m

for s = 1, . . . ,m− 1 for those matrices).
The drawback of these results is that the sparsity s is required to be tiny compared

to the number m of measurements in (2.26). Or in other words, the number m of
samples (measurements) required to recover an s-sparse vector scales quadratically in
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s. As we will see, there exists (random) matrices for which the quadratic scaling can
be improved to a much better linear scaling (up to log-factors). However, such results
cannot be obtained by analyzing the coherence or the 1-coherence function as follows
from the lower bounds in the next theorem.

Theorem 2.11. LetA ∈ Cm×N with normalized columns, coherence µ and 1-coherence
function µ1(s). Then

(a) µ ≥
√

N−m
m(N−1) ,

(b) µ1(s) ≥ s
√

N−m
m(N−1) whenever s ≤

√
N − 1.

The inequality in part (a) is also called Welch bound and can be found in [121, 111].
The proof of Part (b) is contained in [119]. Note that the case s >

√
N − 1 is of minor

importance to us, since then µ1(s) >
√
N − 1

√
N−m
m(N−1) =

√
N
m − 1 which will be

larger than 1 provided N ≥ 2m. The latter will be the case in all situations where
compressive sensing is interesting. Then Proposition 2.10 implies only that δs ≤ 1,
which does not allow any conclusion concerning `1-minimization.

For large enough N — say N ≥ 2m — the above lower bound for the coherence
scales like 1√

m
, while the one for µ1(s) scales like s√

m
. Hence, those bounds explain

to some extent why it is difficult to obtain significantly better recovery bounds than
(2.26) for deterministic matrices. Indeed, the estimate (2.3) – or Gershgorin’s theorem
[8, 71, 135] that is often applied in the sparse approximation literature [127, 37] –
which is used to establish Propostion 2.10(c), seems to be the optimal estimate one may
obtain by taking into account only the absolute values of the Gramian matrix A∗A. In
particular, it is not possible to improve on (2.25) by using Gershgorin’s disc theorem,
or by using Riesz-Thorin interpolation between ‖ · ‖1→1 and ‖ · ‖∞→∞ (Schur’s test).

Hence, to overcome the ’quadratic bottleneck’ (2.25) or (2.26), that is, m ≥ Cs2,
one should take into account cancellations that result from the signs of the entries of
the Gramian A∗A. This task seems to be rather difficult, however, for deterministic
matrices. The major breakthrough for beating the “quadratic bottleneck” was obtained
using random matrices [19, 23, 38]. The problem of exploiting cancellations in the
Gramian matrix is handled much easier with probabilistic methods than with deter-
ministic techniques. And indeed, it is presently still an open problem to come up with
deterministic matrices offering the same performance guarantees for sparse recovery
as the ones for random matrices we will see below.

2.6 Restricted Isometry Property of Gaussian and Bernoulli Random
Matrices

By now, many papers deal with Gaussian or Bernoulli random matrices in connection
with sparse recovery, or more generally, subgaussian random matrices, [5, 23, 38,
42, 87, 114, 116]. The entries of a random Bernoulli matrix take the value + 1√

m
or
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− 1√
m

with equal probability, while the entries of a Gaussian matrix are independent
and follow a normal distribution with expectation 0 and variance 1/m. With high
probability such random matrices satisfy the restricted isometry property with a (near)
optimal order in s, and therefore allow sparse recovery using `1-minimization.

Theorem 2.12. Let A ∈ Rm×N be a Gaussian or Bernoulli random matrix. Let ε, δ ∈
(0, 1) and assume

m ≥ Cδ−2(s ln(N/s) + ln(ε−1)) (2.27)

for a universal constant C > 0. Then with probability at least 1 − ε the restricted
isometry constant of A satisfies δs ≤ δ.

There are by now several proofs of this result. In [5] a particularly nice and sim-
ple proof is given, which, however, yields an additional log(δ−1)-term. It shows in
connection with Theorem 2.6 that with probability at least 1 − ε all s-sparse vectors
x ∈ CN can be recovered from y = Ax using `1-minimization (2.12) provided

m ≥ C ′(s ln(N/s) + ln(ε−1)). (2.28)

Moreover, Theorem 2.7 predicts also stable and robust recovery under this condition.
Note that choosing ε = exp (−cm) with c = 1/(2C ′), we obtain that recovery by
`1-minimization is successful with probability at least 1− e−cm provided

m ≥ 2C ′s ln(N/s). (2.29)

This is the statement usually found in the literature.
The important point in the bound (2.29) is that the number of required samples only

scales linearly in s up to the logarithmic factor ln(N/s) – in contrast to the quadratic
scaling in the relation m ≥ 36(s − 1)2 deduced from (2.26). Moreover, the ambient
dimension N enters only very mildly into (2.29), and if N is large and s is rather
small then m can be chosen significantly smaller than N and still allow for recovery
by `1-minimization. In particular, an s-sparse x can be reconstructed exactly although
at first sight the available information seems highly incomplete.

Let us note that (2.29) is optimal as can be shown by using lower bounds for Gelfand
widths of the `N1 ball [54, 57]. In particular, the factor ln(N/s) cannot be improved.

3 Structured Random Matrices
While Gaussian and Bernoulli matrices ensure sparse recovery via `1-minimization
with the optimal bound (2.28) on the number of measurements, they are of somewhat
limited use in applications for several reasons. Often the design of the measurement
matrix is subject to physical or other constraints of the application, or it is actually
given to us without having the freedom to design anything, and therefore it is often
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not justifiable that the matrix follows a Gaussian or Bernoulli distribution. Moreover,
Gaussian or other unstructured matrices have the disadvantage that no fast matrix mul-
tiplication is available, which may speed up recovery algorithms significantly, so that
large scale problems are not practicable with Gaussian or Bernoulli matrices. Even
storing an unstructured matrix may be difficult.

From a computational and an application oriented view point it is desirable to have
measurement matrices with structure. Since it is hard to rigorously prove good recov-
ery conditions for deterministic matrices as outlined above, we will nevertheless allow
randomness to come into play. This leads to the study of structured random matrices.

We will consider basically two types of structured random matrices. The larger
part of these notes will be devoted to the recovery of randomly sampled functions that
have a sparse expansion in terms of an orthonormal system {ψj , j = 1, . . . , N} with
uniformly bounded L∞-norm, supj∈[N ] ‖ψj‖∞ = supj∈[N ] supx |φj(x)| ≤ K. The
corresponding measurement matrix has entries (ψj(t`))`,j , where the t` are random
sampling points. So the structure is determined by the function system ψj , while the
randomness comes from the sampling locations.

The random partial Fourier matrix, which consists of randomly chosen rows of the
discrete Fourier matrix can be seen as a special case of this setup and was studied
already in the very first papers on compressive sensing [19, 23]. It is important to note
that in this case the fast Fourier transform (FFT) algorithm can be used to compute a
fast application of a partial Fourier matrix in O(N log(N)) operations [30, 59, 137] –
to be compared with the usual O(mN) operations for a matrix vector multiply with
an m × N matrix. Commonly, m ≥ Cs log(N) in compressive sensing, so that an
O(N log(N)) matrix multiply implies a substantial complexity gain.

The second type of structured random matrices we will study are partial random
circulant and Toeplitz matrices. They arise in applications where convolutions are
involved. Since circulant and Toeplitz matrices can be applied efficiently using again
the FFT, they are also of interest for computationally efficient sparse recovery.

Other types of structured random matrices, that will not be discussed here in detail,
are the following.

• Random Gabor System. On Cm a time-shift or translation is the circular shift
operator (Tkg)j = gj−k mod m, while a frequency shift is the modulation opera-
tor (M`g)j = e2πi`j/mgj . Now fix a vector g and construct a matrix A = Ag ∈
Cm×m2

by selecting its columns as the time-frequency shifts M`Tkg ∈ Cm,
`, k ∈ [m]. Here the entries of g are chosen independently and uniformly at
random from the torus {z ∈ C, |z| = 1}. Then A = Ag is a structured random
matrix called a random Gabor system. Corresponding sparse recovery results can
be found in [95, 96].

• Random Demodulator. This type of random matrix is motivated by analog to
digital conversion. We refer to [133] for details.
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3.1 Nonuniform versus Uniform Recovery

Showing recovery results for `1-minimization in connection with structured random
matrices is more delicate than for unstructured Gaussian matrices. Nevertheless, we
will try to get as close to the recovery condition (2.28) as possible. We will not be
able to obtain precisely this condition, but we will only suffer from a slightly larger
log-term. Our recovery bounds will have the form

m ≥ Cs logα(N/ε)

(or similar) for some α ≥ 1, where ε ∈ (0, 1) corresponds to the probability of failure.
In particular, the important linear scaling of m in s up to log-factors is retained.

We will pursue different strategies in order to come up with rigorous recovery re-
sults. In particular, we distinguish between uniform and nonuniform recovery guar-
antees. A uniform recovery guaranty means that once the random matrix is chosen,
then with high probability all sparse signals can be recovered. A nonuniform recovery
result states only that each fixed sparse signal can be recovered with high probability
using a random draw of the matrix. In particular, such weaker results allow in princi-
ple that the small exceptional set of matrices for which recovery may fail is dependent
on the signal, in contrast to a uniform statement. Clearly, uniform recovery implies
nonuniform recovery, but the converse is not true.

It is usually easier to obtain nonuniform recovery results for structured random ma-
trices, and the provable bounds on the maximal allowed sparsity (or on the minimal
number of measurements) are usually slightly worse for uniform recovery.

Uniform recovery is clearly guaranteed once we prove that the restricted isometry
property of a random matrix holds with high probability. Indeed, the corresponding
Theorems 2.6 or 2.7 are purely deterministic and guarantee recovery of all s-sparse
signals once the restricted isometry constant δ2s of the measurement matrix is small
enough.

In order to obtain nonuniform recovery results we will use the recovery condition
for individual vectors, Corollary 2.9. If the signal is fixed then also its support is
fixed, and hence, applying Corollary 2.9 means in the end that only a weaker property
than the restricted isometry property has to be checked for the random matrix. In
order to simplify arguments even further we can also choose the signs of the non-zero
coefficients of the sparse vector at random.

4 Random Sampling in Bounded Orthonormal Systems
An important class of structured random matrices is connected with random sampling
of functions in certain finite dimensional function spaces. We require an orthonormal
basis of functions which are uniformly bounded in the L∞-norm. The most prominent
example consists of the trigonometric system [19, 102, 104, 78]. In a discrete setup,
the resulting matrix is a random partial Fourier matrix, which actually was the first
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structured random matrix investigated in connection with compressive sensing [19,
23, 116].

4.1 Bounded Orthonormal Systems

Let D ⊂ Rd be endowed with a probability measure ν. Further, let ψ1, . . . , ψN be an
orthonormal system of complex-valued functions on D, that is, for j, k ∈ [N ],∫

D
ψj(t)ψk(t)dν(t) = δj,k =

{
0 if j 6= k,

1 if j = k.
(4.1)

The orthonormal system will be assumed to be uniformly bounded in L∞,

‖ψj‖∞ = sup
t∈D
|ψj(t)| ≤ K for all j ∈ [N ]. (4.2)

The smallest value that the constant K can take is K = 1. Indeed,

1 =

∫
D
|ψj(t)|2dν(x) ≤ sup

t∈D
|ψj(t)|2

∫
D
dν(t) = K2.

In the extreme case K = 1 we necessarily have |ψj(t)| = 1 for ν-almost all t ∈ D.

Remark 4.1. (a) Note that some bound K can be found for most reasonable sets of
functions ψj , j ∈ [N ]. The crucial point of the boundedness condition (4.2) is
that K = supj∈[N ] ‖ψj‖∞ should ideally be independent of N , or at least depend
only mildly on N , such as K ≤ C lnα(N) for some α > 0. Such a condition
excludes for instance that the functions ψj are very localized in small regions of
D.
Expressed differently, the quotients ‖ψj‖∞/‖ψj‖2 should be uniformly bounded
in j (in case that the functions ψj are not yet normalized); or at least grow only
very slowly.

(b) It is not essential that D is a (measurable) subset of Rd. This assumption was
only made for convenience. In fact, D can be any measure space endowed with a
probability measure ν.

We consider functions of the form

f(t) =

N∑
k=1

xkψk(t), t ∈ D (4.3)

with coefficients x1, . . . , xN ∈ C.
Let t1, . . . , tm ∈ D be some points and suppose we are given the sample values

y` = f(t`) =
N∑
k=1

xkψk(t`) , ` = 1, . . . ,m.
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Introducing the sampling matrix A ∈ Cm×N with entries

A`,k = ψk(t`) , ` = 1, . . . ,m, k = 1, . . . , N, (4.4)

the vector y = (y1, . . . , ym)
T of sample values (measurements) can be written in the

form
y = Ax, (4.5)

where x is the vector of coefficients in (4.3).
Our task is to reconstruct the polynomial f — or equivalently its vector x of coef-

ficients — from the vector of samples y. We wish to perform this task with as few
samples as possible. Without further knowledge this is clearly impossible if m < N .
As common in compressive sensing we therefore assume sparsity.

A polynomial f of the form (4.3) is called s-sparse if its coefficient vector x is
s-sparse. The problem of recovering an s-sparse polynomial from m sample values
reduces then to solving (4.5) with a sparsity constraint, where A is the matrix in (4.4).
We consider `1-minimization for this task.

Now we introduce randomness. We assume to this end that the sampling points
t1, . . . , tm are selected independently at random according to the probability measure
ν. This means in particular that P(t` ∈ B) = ν(B), ` = 1, . . . ,m, for a measurable
subset B ⊂ D. The matrix A in (4.4) becomes then a structured random matrix.

Let us give examples of bounded orthonormal systems.

(i) Trigonometric Polynomials. Let D = [0, 1] and for k ∈ Z set

ψk(t) = e2πikt, t ∈ [0, 1].

The probability measure ν is taken to be the Lebesgue measure on [0, 1]. Then
for all j, k ∈ Z, ∫ 1

0
ψk(t)ψj(t)dt = δj,k. (4.6)

The constant in (4.2) is clearly K = 1. For a subset Γ ⊂ Z of size N we then
consider the trigonometric polynomials of the form

f(t) =
∑
k∈Γ

xkψk(t) =
∑
k∈Γ

xke
2πikt.

A common choice is Γ = {−q,−q + 1, . . . , q − 1, q} resulting in trigonometric
polynomials of degree at most q (thenN = 2q+1). We emphasize, however, that
an arbitrary choice of Γ ⊂ Z of size |Γ| = N is possible. Introducing sparsity on
the coefficient vector x ∈ CN then leads to the notion of s-sparse trigonometric
polynomials.
The sampling points t1, . . . , tm will be chosen independently and uniformly at
random from [0, 1]. The entries of the associated structured random matrix A are
given by

A`,k = e2πikt` , ` = 1, . . . ,m , k ∈ Γ, (4.7)
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Such A is a Fourier type matrix, sometimes also called a nonequispaced Fourier
matrix.
This example extends to multivariate trigonometric polynomials on [0, 1]d, d ∈
N. Indeed, the monomials ψk(t) = e2πi〈k,t〉, k ∈ Zd, t ∈ [0, 1]d, form an
orthonormal system. For readers familiar with abstract harmonic analysis we
mention that this example can be further generalized to characters of a compact
commutative group. The corresponding measure will be the Haar measure of the
group [50, 117].
The matrix A in (4.7) has a fast (approximate) matrix multiplication algorithm,
called the non-equispaced fast Fourier transform (NFFT) [46, 101]. Similarly to
the FFT, it has complexity O(N log(N)).

(ii) Real Trigonometric Polynomials. Instead of the complex exponentials above
we may also take the real functions

ψ2k(t) =
√

2 cos(2πkt), k ∈ N0, ψ0(t) = 1,

ψ2k+1(t) =
√

2 sin(2πkt), k ∈ N. (4.8)

They also form an orthonormal system on [0, 1] with respect to the Lebesgue
measure and the constant in (4.2) is K =

√
2. The samples t1, . . . , tm are chosen

again according to the uniform distribution on [0, 1].

(iii) Discrete Orthonormal Systems. Let U = (Utk) ∈ CN×N be a unitary matrix.
The normalized columns

√
Nuk ∈ CN , k ∈ [N ], then form an orthonormal

system with respect to the discrete uniform probability measure on [N ], ν(B) =
|B|/N for B ⊂ [N ]; written out, this means

1
N

N∑
t=1

√
Nuk(t)

√
Nu`(t) = 〈uk,u`〉 = δk,` , k, ` ∈ [N ].

Here, uk(t) = Utk denotes the tth entry of the kth column of U . The bounded-
ness condition (4.2) requires that the normalized entries of U are bounded, i.e.,

√
N max

k,t∈[N ]
|Utk| = max

k,t∈[N ]
|
√
Nuk(t)| ≤ K. (4.9)

Choosing the points t1, . . . , tm independently and uniformly at random from [N ]
corresponds then to creating the random matrix A by selecting its rows indepen-
dently and uniformly at random from the rows of

√
NU , that is,

A =
√
NRTU ,

where RT : CN → Cm denotes the random subsampling operator

(RT z)` = zt` , ` = 1, . . . ,m. (4.10)
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Compressive sensing in this context yields the situation that only a small portion
of the entries of ỹ =

√
NUx ∈ CN are observed of a sparse vector x ∈ CN . In

other words, y = RT ỹ ∈ Cm, and we wish to recover x from the undersampled
y.
Note that it may happen with non-zero probability that a row of

√
NU is se-

lected more than once because the probability measure is discrete in this example.
Hence, A is allowed to have repeated rows. One can avoid this effect by passing
to a different probability model where the subset {t1, . . . , tm} ⊂ [N ] is selected
uniformly at random among all subsets of [N ] of cardinality m. This probability
model requires a slightly different analysis than the model described above, and
we refer to [19, 23, 20, 55, 116, 130] for more information. The difference be-
tween the two models, however, is very slight in practice and the corresponding
recovery results are almost the same.

(iv) Partial Discrete Fourier Transform. Our next example uses the discrete Fourier
matrix F ∈ CN×N with entries

F`,k =
1√
N
e2πi`k/N , `, k = 1, . . . , N. (4.11)

It is well-known (and easy to see) that F is unitary. The constant in (4.2) or
(4.9) is clearly K = 1. The result x̂ = Fx of a applying F to a vector is
called the Fourier transform of x. Applying the setup of the previous example
to this sitatuation results in the problem of reconstructing a sparse vector x from
m random entries of its Fourier transform x̂, that are independent and uniformly
distributed on ZN := { kN , k = 1, . . . , N}. The resulting matrix A is called
random partial Fourier matrix. Such a matrix can also be seen as a special case of
the non-equispaced Fourier type matrix in (4.7) with the points t` being chosen
from the grid ZN instead of from the whole interval [0, 1]. Note that the discrete
Fourier matrix in (4.11) can also be extended to higher dimensions, i.e., to grids
ZdN for d ∈ N.
A crucial point for applications is that the Fourier transform has a fast algorithm
for matrix-vector multiplication, the so called fast Fourier transform (FFT) [30,
137]. It computes the Fourier transform of a vector x ∈ CN in complexity
O(N log(N)).

(v) Incoherent Bases. Let V,W ∈ CN×N be two unitary matrices. Their columns
(v`)

N
`=1 and (w`)

N
`=1 form two orthonormal bases of CN . Assume that a vector

z ∈ CN is sparse with respect to the basis (v`) rather than the canonical basis,
that is, z = V x for a sparse vector x. Further, assume that z is sampled with
respect to the basis (w`), i.e., we obtain measurements

yk = 〈z,wtk〉, k = 1, . . . ,m

with T := {t1, . . . , tm} ⊂ [N ]. In matrix vector form this can be written as

y = RTW
∗z = RTW

∗V x,
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where RT is again the random sampling operator (4.10). Defining the unitary
matrix U = W ∗V ∈ CN×N we are back to the situation of the third example.
The condition (4.9) now reads

√
N max

`,k∈[N ]
|〈v`,wk〉| ≤ K. (4.12)

The quantity on the left hand side (without the
√
N ) is known as the mutual

coherence of the bases (v`), (w`), and they are called incoherent if K can be
chosen small. The two previous examples also fall into this setting by choosing
one of the bases as the canonical basis, W = Id ∈ CN . The Fourier basis and the
canonical basis are actually maximally incoherent, since then K = 1.

(vi) Haar-Wavelets and Noiselets. This example is a special case of the previous
one, which is potentially useful for image processing applications. It is conve-
nient to start with a continuous description of Haar-wavelets and noiselets [29],
and then pass to the discrete setup via sampling. The Haar scaling function on R
is defined as the characteristic function of the interval [0, 1),

φ(x) = χ[0,1)(x) =

{
1 if x ∈ [0, 1),
0 otherwise.

(4.13)

The Haar wavelet is then defined as

ψ(x) = φ(2x)− φ(2x− 1) =


1 if x ∈ [0, 1/2),
−1 if x ∈ [1/2, 1),
0 otherwise.

(4.14)

Further, denote

ψj,k(x) = 2j/2ψ(2jx−k), φk(x) = φ(x−k), x ∈ R, j ∈ Z, k ∈ Z. (4.15)

It is well-known [138] (and can easily be seen) that, for n ∈ N, the Haar-wavelet
system

Ψn := {φk, k ∈ Z} ∪ {ψj,k, k = 0, . . . , 2j − 1, j = 0, . . . , n− 1} (4.16)

forms an orthonormal basis of

Vn = {f ∈ L2([0, 1]) : f is constant on [k2−n, (k+1)2−n), k = 0, . . . , 2n−1}.

Now let N = 2n for some n ∈ N. Since the functions ψj,k, j ≤ n − 1, are
constant on intervals of the form [2−nk, 2−n(k+1)) we conclude that the vectors
φ̃, ψ̃(j,k) ∈ CN , j = 0, . . . , n− 1, k = 0, . . . , 2j − 1, with entries

φ̃t = 2−n/2φ(t/N), t = 0, . . . , N − 1

ψ̃
(j,k)
t = 2−n/2ψj,k(t/N), t = 0, . . . , N − 1
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form an orthonormal basis of CN . We collect these vectors as the columns of a
unitary matrix Ψ ∈ CN×N .
Next we introduce the noiselet system on [0, 1]. Let g1 = φ = χ[0,1) be the Haar
scaling function and define, for r ≥ 1, recursively the complex-valued functions

g2r(x) = (1− i)gr(2x) + (1 + i)gr(2x− 1),

g2r+1(x) = (1 + i)gr(2x) + (1− i)gr(2x− 1).

It is shown in [29] that the functions {2−n/2gr, r = 2n, . . . , 2n+1 − 1} form an
orthonormal basis of Vn. The key property for us consists in the fact that they are
maximally incoherent with respect to the Haar basis. Indeed, Lemma 10 in [29]
states that∣∣∣∣∫ 1

0
gr(x)ψj,k(x)dx

∣∣∣∣ = 1 provided r ≥ 2j − 1, 0 ≤ k ≤ 2j − 1. (4.17)

For the discrete noiselet basis on CN , N = 2n, we take the vectors

g̃
(r)
t = 2−ngN+r(t/N), r = 0, . . . , N − 1, t = 0, . . . , N − 1.

Again, since the functions gN+r, r = 0, . . . , N − 1, are constant on intervals of
the form [2−nk, 2−n(k + 1)) it follows that the vectors g̃(r), r = 0, . . . , N − 1,
form an orthonormal basis of CN . We collect these as columns into a unitary
matrix G ∈ CN×N . Due to (4.17) the unitary matrix U = G∗Ψ ∈ CN×N
satisfies (4.9) with K = 1 – or in other words, the incoherence condition (4.12)
for the Haar basis and the noiselet basis holds with the minimal constant K = 1.
Due to the their recursive definition, both the Haar wavelet transform and the
noiselet transform, that is, the application of Ψ and G and their adjoints, come
with a fast algorithm that computes a matrix vector multiply in O(N log(N))
time.
As a simple signal model, images or other types of signals are sparse in the Haar
wavelet basis. The described setup corresponds to randomly sampling such func-
tions with respect to noiselets. For more information on wavelets we refer to
[27, 31, 83, 138].

(vii) Legendre polynomials. The Legendre polynomials Pj are a system of orthogo-
nal polynomials, where Pj is a polynomial of precise degree j, and orthonormal-
ity is with respect to the normalized Lebesgue measure dx/2 on [−1, 1]. Their
supremum norm is given by ‖Pj‖∞ =

√
2j + 1, so considering the polynomi-

als Pj , j = 0, . . . , N − 1, yields the constant K =
√

2N − 1. Unfortunately,
K grows therefore rather quickly with N . This problem can be avoided with
a trick. One takes sampling points with respect to the “Chebyshev" measure
dν(x) = π−1(1 − x2)−1/2dx and uses a preconditioned measurement matrix.
We refer to [106] for details.
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Figure 1 shows an example of exact recovery of a 10-sparse vector in dimension 300
from 30 Fourier samples (example (iv) above) using `1-minimization. For comparison
the reconstruction via `2-minimization is also shown.
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Figure 1. (a) 10-sparse Fourier spectrum, (b) time domain signal of length 300 with
30 samples, (c) reconstruction via `2-minimization, (d) exact reconstruction via `1-
minimization

4.2 Nonuniform Recovery

We start with a nonuniform recovery result that additionally assumes that the signs of
the non-zero entries of the signal x are chosen at random.

Theorem 4.2. Let S ⊂ [N ] be of cardinality |S| = s and let εεε = (ε`)`∈S ∈ Cs be a
sequence of independent random variables that take the values ±1 with equal proba-
bility. Alternatively, the ε` may be uniformly distributed on the torus {z ∈ C, |z| = 1}.
Let x be an s-sparse vector with support S and sgn(xS) = εεε.

Let A ∈ Cm×N be the sampling matrix (4.4) associated to an orthonormal system
that satisfies the boundedness condition (4.2) for some constant K ≥ 1. Assume
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that the random sampling points t1, . . . , tm are chosen independently and distributed
according to the orthogonalization measure ν. Assume that

m ≥ CK2s ln2(6N/ε), (4.18)

where C ≈ 26.25. Set y = Ax. Then with probability at least 1 − ε the vector x is
the unique solution to the `1-minimization problem (2.12).

The proof will be contained in Chapter 7. With more effort (which we will not do
here), the exponent 2 at the log-term in (4.18) can be replaced by 1. More precisely,
one may obtain also the following sufficient recovery condition [55]

m ≥ C1K
2 max {s, C2 ln(6N/ε)} ln(6N/ε) (4.19)

with (reasonable) constants C1, C2 > 0. In the special case of a discrete orthonormal
system (see example (3) in the previous section), a version of Theorem 4.2 with recov-
ery condition (4.19) was shown in [20] under a slightly different probability model.

The constants provided in (4.18) and (4.19) are likely not optimal. Numerical ex-
periments suggest much better values. In the special case of the Fourier matrix (exam-
ples (1) and (4) in the previous section) indeed slightly better constants are available
[65, 102, 55]. However, we note that condition (4.19) gives an estimate that is valid
for any possible support set S of size |S| ≤ s. Clearly, it is impossible to test all such
subsets numerically. So only limited conclusions on the constants in (4.19) and (4.18)
can be drawn from numerical experiments.

In case of random sampling in the Fourier system (examples (1) and (4) in the
previous section) the assumption of randomness in the sign pattern of the non-zero
entries of x can be removed [19, 102].

Theorem 4.3. Let x ∈ CN be s-sparse. Assume A is the random Fourier type matrix
(4.7) or the random partial Fourier matrix of example (4) above. If

m ≥ Cs log(N/ε)

then x is the unique solution of the `1-minimization problem (2.12) with probability at
least 1− ε.

The techniques of the proof of this theorem [19, 102] heavily use the algebraic struc-
ture of the Fourier system and do not easily extend to general bounded orthonormal
systems. In fact, the general case is still open.

4.3 Uniform Recovery

Our main theorem concerning the recovery of sparse polynomials in bounded or-
thonormal systems from random samples reads as follows.
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Theorem 4.4. LetA ∈ Cm×N be the sampling matrix (4.4) associated to an orthonor-
mal system that satisfies the boundedness condition (4.2) for some constant K ≥ 1.
Assume that the random sampling points t1, . . . , tm are chosen independently at ran-
dom according to the orthogonalization measure ν. Suppose

m

ln(m)
≥ CK2s ln2(s) ln(N), (4.20)

m ≥ DK2s ln(ε−1), (4.21)

where C,D > 0 are some universal constants. Then with probability at least 1 − ε
every s-sparse vector x ∈ CN is recovered from the samples

y = Ax =

 N∑
j=1

xjφj(t`)

m

`=1

by `1-minimization (2.12).
Moreover, with probability at least 1− ε the following holds for every x ∈ CN . Let

noisy samples y = Ax+ e with

‖e‖2 =

√√√√ m∑
`=1

|e`|2 ≤ η
√
m

be given and let x∗ be the solution of the `1-minimization problem (2.20), where η is
replaced by η

√
m. Then

‖x− x∗‖2 ≤ c
σs(x)1√

s
+ dη

for suitable constants c, d > 0.

This result is proven in Chapter 8 by estimating the restricted isometry constants δs
of A. Thereby, also explicit constants are provided, see Theorem 8.4. The reader will
notice that its proof is considerably more involved than the one of Theorem 4.2.

Remark 4.5. We may choose ε such that there is equality in (4.21). Then condition
(4.20) implies recovery with probability at least

1−N−γ ln(m) ln2(s)

where γ = C/D. A condition that is easier to remember is derived by noting that
s ≤ N and m ≤ N (otherwise, we are not in the range of interest for compressive
sensing). Indeed,

m ≥ CK2s ln4(N) (4.22)

implies recovery by `1-minimization with probability at least 1−N−γ ln3(N).
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E. Candès and T. Tao [23] obtained the sufficient condition (4.22) in case of the
random partial Fourier matrix with an exponent 6 instead of 4 at the ln(N) term. M.
Rudelson and R. Vershynin [116] improved this to an exponent 5 at the ln(N)-term;
or alternatively to an exponent 4 for constant probability ε, see also Theorem 8.1 be-
low. The condition (4.22) with exponent 4 and super-polynomially decreasing failure
probability N−γ ln(N)3

is presently the best known result. (In the Fourier case this is
already contained in the proof of the main result in [104], but the author did not realize
at that time that this was actually a slight improvement over the estimate of Rudelson
and Vershynin in [116].) Our proof in Chapter 8 follows the ideas of Rudelson and
Vershynin in [116] with some modifications and the mentioned improvements.

5 Partial Random Circulant Matrices
This section will be devoted to a different type of structured random matrices, which
are important in applications such as wireless communications and radar, see [4, 68,
110]. We will study partial random circulant matrices and partial random Toeplitz ma-
trices. Presently, there are less recovery results available than for the structured ran-
dom matrices in the preceding section. In particular, a good estimate for the restricted
isometry constants is still under investigation at the time of writing. (The estimates in
[4, 68] only provide a quadratic scaling of the number of measurements in terms of the
sparsity, similar to (2.26).) Therefore, we will only be able to present a nonuniform
recovery result in the spirit of Theorem 4.2, which is a slight improvement of the main
result in [105]. We believe that the mathematical approach to its proof should be of
interest on its own.

We consider the following measurement matrices. For b = (b0, b1, . . . , bN−1) ∈
CN we define its associated circulant matrix Φ = Φ(b) ∈ CN×N by setting

Φk,j = bj−k mod N , k, j = 1, . . . , N.

Note that the application of Φ to a vector is the convolution,

(Φx)j = (x ∗ b̃)j =
N∑
`=1

x`b̃j−` mod N ,

where b̃j = bN−j . Similarly, for a vector c = (c−N+1, c−N+2, . . . , cN−1) its associ-
ated Toeplitz matrix Ψ = Ψ(c) ∈ CN×N has entries Ψk,j = cj−k, k, j = 1, . . . , N .

Now we choose an arbitrary subset Θ ⊂ [N ] of cardinality m < N and let the
partial circulant matrix ΦΘ = ΦΘ(b) ∈ Cm×N be the submatrix of Φ consisting
of the rows indexed by Θ. The partial Toeplitz matrix ΨΘ = ΨΘ(c) ∈ Cm×N is
defined similarly. For the purpose of this exposition we will choose the vectors b and
c as Rademacher sequences, that is, the entries of b and c are independent random
variables that take the value ±1 with equal probability. Standard Gaussian vectors or
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Steinhaus sequences (independent random variables that are uniformly distributed on
the complex torus) are possible as well.

It is important from a computational viewpoint that circulant matrices can be diago-
nalized using the discrete Fourier transform [59]. Therefore, there is a fast matrix vec-
tor multiplication algorithm for partial circulant matrices of complexityO(N log(N))
that uses the FFT. Since Toeplitz matrices can be seen as submatrices of circulant ma-
trices [59], this remark applies to partial Toeplitz matrices as well.

Of particular interest is the case N = mL with L ∈ N and Θ = {L, 2L, . . . ,mL}.
Then the application of ΦΘ(b) and ΨΘ(c) corresponds to (periodic or non-periodic)
convolution with the sequence b (or c, respectively) followed by a downsampling by
a factor of L. This setting was studied numerically in [132] by J. Tropp et al. (using
orthogonal matching pursuit instead of `1-minimization). Also of interest is the case
Θ = [m] which was investigated in [4, 68].

Since Toeplitz matrices can be embedded into circulant matrices as just mentioned,
we will deal only with the latter in the following. The result below (including its proof)
holds without a difference (and even with the same constants) for Toeplitz matrices as
well. Similarly to Theorem 4.2 we deal with nonuniform recovery, where additionally
the signs xj/|xj | of the non-zero coefficients of the vector x to be recovered are chosen
at random.

Theorem 5.1. Let Θ ⊂ [N ] be an arbitrary (deterministic) set of cardinality m. Let
x ∈ CN be s-sparse such that the signs of its non-zero entries form a Rademacher
or Steinhaus sequence. Choose b = εεε ∈ RN to be a Rademacher sequence. Let
y = ΦΘ(εεε)x ∈ Cm. Then

m ≥ 57s ln2(17N2/ε) (5.1)

implies that with probability at least 1 − ε the vector x is the unique solution to the
`1-minimization problem (2.12).

The proof of Theorem 5.1 will be presented in Chapter 9. We note that the exponent
2 of the log-term in (5.1) is a slight improvement over an exponent 3 present in the
main result of [105]. The constant 57 is very likely not optimal. With the much more
technical (and combinatorial) approach of [19, 102, 95] we expect that the randomness
in the signs can be removed and the exponent 2 at the log-factor can be improved to 1.

6 Tools from Probability Theory

The proofs of the results presented in the two previous chapters will require tools
from probability theory that might not be part of an introductory course on probability.
This chapter collects the necessary background. We will only assume familiarity of
the reader with basic probability theory that can be found in most textbooks on the
subject, see for instance [63, 112].
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In the following we discuss the relation of moments and tail estimates, symmetriza-
tion, decoupling, and scalar and noncommutative Khintchine inequalities. The latter
represent actually a very powerful tool that presently does not seem to be widely ac-
knowledged. Furthermore, we present Dudley’s inequality on the expectation of the
supremum of a subgaussian process. Much more material of a similar flavor can be
found in the monographs [36, 73, 79, 80, 125, 134].

6.1 Basics on Probability

In this section we recall some important facts from basic probability theory. Let
(Ω,Σ,P) be a probability space, where Σ denotes a σ-algebra on the sample space Ω

and P a probability measure on (Ω,Σ). The probability of an event B ∈ Σ is denoted
by

P(B) =

∫
B
dP(ω) =

∫
Ω

IB(ω)dP(ω),

where the characteristic function IB(ω) takes the value 1 if ω ∈ B and 0 otherwise.
The union bound (or Bonferroni’s inequality, or Boole’s inequality) states that for a
collection of events B` ∈ Σ, ` = 1, . . . , n, we have

P

(
n⋃
`=1

B`

)
≤

n∑
`=1

P(B`). (6.1)

We assume knowledge of basic facts on random variables. The expectation or mean
of a random variable X is denoted by

EX =

∫
Ω

X(ω)dP(ω).

The quantities E|X|p, 0 < p < ∞, are called (absolute) moments. For 1 ≤ p < ∞,
(E|X|p)1/p defines a norm on the Lp(Ω,P)-space of all p-integrable random variables,
in particular, the triangle inequality

(E|X + Y |p)1/p ≤ (E|X|p)1/p + (E|Y |p)1/p (6.2)

holds for X,Y ∈ Lp(Ω,P) = {X measurable ,E|X|p <∞}.
Let p, q ≥ 1 with 1/p + 1/q = 1, Hölder’s inequality states that |EXY | ≤

(E|X|p)1/p (E|Y |q)1/q for random variables X,Y . The special case p = q = 2
is the Cauchy-Schwarz inequality. It follows from Hölder’s inequality that for all
0 < p ≤ q <∞,

(E|X|p)1/p ≤ (E|X|q)1/q . (6.3)

Absolute moments can be computed by means of the following formula.
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Proposition 6.1. The absolute moments of a random variable X can be expressed as

E|X|p = p

∫ ∞
0

P(|X| ≥ t) tp−1dt, p > 0.

Proof. Recall that I{|X|p≥x} is the random variable that takes the value 1 on the event
|X|p ≥ x and 0 otherwise. Using Fubini’s theorem we derive

E|X|p =
∫

Ω

|X|pdP =

∫
Ω

∫ |X|p
0

dxdP =

∫
Ω

∫ ∞
0

I{|X|p≥x}dxdP

=

∫ ∞
0

∫
Ω

I{|X|p≥x}dPdx =

∫ ∞
0

P(|X|p ≥ x)dx

= p

∫ ∞
0

P(|X|p ≥ tp)tp−1dt = p

∫ ∞
0

P(|X| ≥ t)tp−1dt,

where we also applied a change of variables.

The function t 7→ P(|X| ≥ t) is called the tail of X . The Markov inequality is a
simple way of estimating a tail.

Theorem 6.2. (Markov inequality) Let X be a random variable. Then

P(|X| ≥ t) ≤ E|X|
t

for all t > 0.

Proof. Note that P(|X| ≥ t) = EI{|X|≥t} and tI{|X|≥t} ≤ |X|. Hence, tP(|X| ≥
t) = EtI{|X|≥t} ≤ E|X| and the proof is complete.

A random vector X = (X1, . . . , Xn)
T ∈ Rn is a collection of n random variables

X` on a common probability space. Its expectation is the vector

EX = (EX1, . . . ,EXn)
T ∈ Rn.

A complex random vector Z = X + iY ∈ Cn is a special case of a 2n-dimensional
real random vector (X,Y) ∈ R2n.

A collection of random vectors X1, . . . ,XN ∈ Cn is called (stochastically) inde-
pendent if for all measurable subsets B1, . . . , BN ⊂ Cn,

P(X1 ∈ B1,X2 ∈ B2, . . . ,XN ∈ BN ) = P(X1 ∈ B1)P(X2 ∈ B2) · · ·P(XN ∈ BN ).

Functions of independent random vectors are again independent. A random vector X′

in Cn will be called an independent copy of X if X and X′ are independent and have
the same distribution, that is, P(X ∈ B) = P(X′ ∈ B) for all measurable B ⊂ Cn.

Jensen’s inequality reads as follows.
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Theorem 6.3. (Jensen’s inequality) Let f : Cn → R be a convex function, and let
X ∈ Cn be a random vector. Then

f(EX) ≤ Ef(X) . (6.4)

Finally, we state the Borel-Cantelli lemma.

Lemma 6.4. (Borel-Cantelli) Let A1, A2, . . . ∈ Σ be events and let

A∗ = lim sup
n→∞

An = ∩∞n=1 ∪∞m=n Am.

If
∑∞

n=1 P(An) <∞ then P(A∗) = 0.

Proof. Since A∗ ⊂
⋃∞
m=nAm for all n, it holds P(A∗) ≤

∑∞
m=n P(Am) → 0 as

n→∞ whenever
∑∞

n=1 P(An) <∞.

6.2 Moments and Tails

It will be very crucial for us that tails of random variables can be estimated by means of
their moments. The next statement is rather simple but very effective, see also [130].

Proposition 6.5. Suppose Z is a random variable satisfying

(E|Z|p)1/p ≤ αβ1/pp1/γ for all p ≥ p0

for some constants α, β, γ, p0 > 0. Then

P(|Z| ≥ e1/γαu) ≤ βe−uγ/γ

for all u ≥ p1/γ
0 .

Proof. By Markov’s inequality, Theorem 6.2, we obtain for an arbitrary κ > 0

P(|Z| ≥ eκαu) ≤ E|Z|p

(eκαu)p
≤ β

(
αp1/γ

eκαu

)p
.

Choose p = uγ and the optimal value κ = 1/γ to obtain the claim.

Also a converse of the above proposition can be shown [55, 80]. Important special
cases are γ = 1, 2. In particular, if (E|Z|p)1/p ≤ αβ1/p√p for all p ≥ 2 then Z
satisfies the subgaussian tail estimate.

P(|Z| ≥ e1/2αu) ≤ βe−u2/2 for all u ≥
√

2. (6.5)

For random variables satisfying a subgaussian tail estimate, the following useful
estimate of the expectation of their maximum can be shown [80].
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Lemma 6.6. Let X1, . . . , XM be random variables satisfying

P(|X`| ≥ u) ≤ βe−u
2/2 for u ≥

√
2, ` = 1, . . . ,M,

for some β ≥ 1. Then

E max
`=1,...,M

|X`| ≤ Cβ
√

ln(4βM)

with Cβ ≤
√

2 + 1
4
√

2 ln(4β)
.

Proof. According to Proposition 6.1 we have, for some α ≥
√

2,

E max
`=1,...,M

|X`| =
∫ ∞

0
P
(

max
`=1,...,M

|X`| > u

)
du

≤
∫ α

0
1du+

∫ ∞
α

P
(

max
`=1,...,M

|X`| > u

)
du ≤ α+

∫ ∞
α

M∑
`=1

P(|X`| > u)du

≤ α+Mβ

∫ ∞
α

e−u
2/2du.

In the second line we have applied the union bound. Using Proposition 10.2 in the
Appendix we obtain

E max
`=1,...,M

|X`| ≤ α+
Mβ

α
e−α

2/2.

Now we choose α =
√

2 ln(4βM) ≥
√

2 ln(4) ≥
√

2. This yields

E max
`=1,...,M

|X`| ≤
√

2 ln(4βM) +
1

4
√

2 ln(4βM)

=

(√
2 +

1
4
√

2 ln(4βM)

)√
ln(4βM) ≤ Cβ

√
ln(4βM)

by our choice of Cβ . The proof is completed.

6.3 Rademacher Sums and Symmetrization

A Rademacher variable is presumably the simplest random variable. It takes the val-
ues +1 or −1, each with probability 1/2. A sequence εεε of independent Rademacher
variables εj , j = 1, . . . ,M , is called a Rademacher sequence. The technique of sym-
metrization leads to so called Rademacher sums

∑M
j=1 εjxj where the xj are scalars,

vectors or matrices. Although quite simple, symmetrization is very powerful because
there are nice estimates for Rademacher sums available – the so called Khintchine
inequalities to be treated later on.
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A random vector X is called symmetric, if X and −X have the same distribution.
In this case X and εX, where ε is a Rademacher variable independent of X, have the
same distribution as well.

The following lemma, see also [80, 36], is the key to symmetrization.

Lemma 6.7. (Symmetrization) Assume that ξξξ = (ξj)
M
j=1 is a sequence of independent

random vectors in Cn equipped with a (semi-)norm ‖·‖, having expectations xj = Eξj .
Then for 1 ≤ p <∞E‖

M∑
j=1

(ξj − xj)‖p
1/p

≤ 2

E‖
M∑
j=1

εjξj‖p
1/p

, (6.6)

where εεε = (εj)
N
j=1 is a Rademacher sequence independent of ξξξ.

Proof. Let ξξξ′ = (ξ′1, . . . , ξ
′
M ) denote an independent copy of the sequence of random

vectors (ξ1, . . . , ξM ). Since Eξ′j = xj an application of Jensen’s inequality (6.4) yields

E := E‖
M∑
j=1

(ξj − xj)‖p = E‖
M∑
j=1

(ξj − Eξ′j)‖p ≤ E‖
M∑
j=1

(ξj − ξ′j)‖p.

Now observe that (ξj− ξ′j)Mj=1 is a vector of independent symmetric random variables;
hence, it has the same distribution as (εj(ξj − ξ′j))Mj=1. The triangle inequality gives

E1/p ≤ (E‖
M∑
j=1

εj(ξj − ξ′j)‖p)1/p ≤ (E‖
M∑
j=1

εjξj‖p)1/p + (E‖
M∑
j=1

εjξ
′
j‖p)1/p

= 2(E‖
M∑
j=1

εjξj‖p)1/p.

The last equality is due to the fact that ξξξ′ is an independent copy of ξξξ.

Note that this lemma holds also in infinite-dimensional spaces [80]. Since it is rather
technical to introduce random vectors in infinite dimensions we stated the lemma only
for the finite-dimensional case. Further, also a converse inequality to (6.6) can be
shown [36, 80].

6.4 Scalar Khintchine Inequalities

Khintchine inequalities provide estimates of the moments of Rademacher and related
sums. In this section we present the scalar Khintchine inequalities, while in the next
section we concentrate on the noncommutative (matrix-valued) Khintchine inequali-
ties.
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Theorem 6.8. (Khintchine’s inequality) Let b ∈ CM and εεε = (ε1, . . . , εM ) be a
Rademacher sequence. Then, for all n ∈ N,

E|
M∑
j=1

εjbj |2n ≤
(2n)!
2nn!

‖b‖2n
2 . (6.7)

Proof. First assume that the bj are real-valued. Expanding the expectation on the left
hand side of (6.7) with the multinomial theorem, which states that M∑

j=1

xj

n

=
∑

k1+···+kM=n
ki∈{0,1,...n}

n!
k1! · · · kM !

xk1
1 · · ·x

kM
M , (6.8)

yields

E := E|
M∑
j=1

εjbj |2n

=
∑

j1+···+jM=n
ji∈{0,1,...,n}

(2n)!
(2j1)! · · · (2jM )!

|b1|2j1 · · · |bM |2jMEε2j1
1 · · ·Eε

2jM
M

=
∑

j1+···+jM=n
ji∈{0,1,...,n}

(2n)!
(2j1)! · · · (2jM )!

|b1|2j1 · · · |bM |2jM .

Hereby we used the independence of the εj and the fact that Eεkj = 0 if k is an odd
integer. For integers satisfying j1 + · · ·+ jM = n it holds

2nj1! · · · jM ! = 2j1j1! · · · 2jM jM ! ≤ (2j1)! · · · (2jM )!.

This implies

E ≤ (2n)!
2nn!

∑
j1+···+jM=n
ji∈{0,1,...,n}

n!
j1! · · · jn!

|b1|2j1 · · · |bM |2jM

=
(2n)!
2nn!

 M∑
j=1

|bj |2
n

=
(2n)!
2nn!

‖b‖2n
2 .

The general complex case is derived by splitting into real and imaginary parts as fol-
lows E|

M∑
j=1

εj(Re(bj) + i Im(bj))|2n
1/2n
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=

E

| M∑
j=1

εj Re(bj)|2 + |
M∑
j=1

εj Im(bj)|2
n1/2n

≤


E|

M∑
j=1

εj Re(bj)|2n
1/n

+

E|
M∑
j=1

εj Im(bj)|2n
1/n


1/2

≤

((
(2n)!
2nn!

)1/n

(‖Re(b)‖2
2 + ‖ Im(b)‖2

2)

)1/2

=

(
(2n)!
2nn!

)1/2n

‖b‖2.

This concludes the proof.

Except that we allowed the coefficient vector b to be complex valued, the above
formulation and the proof is due to Khintchine [75]. Using the central limit theorem,
one can show that the constants in (6.7) are optimal. Based on Theorem 6.8 we can
also estimate the general absolute pth moment of a Rademacher sum.

Corollary 6.9. (Khintchine’s inequality) Let b ∈ CM and εεε = (ε1, . . . , εM ) be a
Rademacher sequence. Then, for all p ≥ 2,E|

M∑
j=1

εjbj |p
1/p

≤ 23/(4p)e−1/2√p‖b‖2. (6.9)

Proof. Without loss of generality we assume that ‖b‖2 = 1. Stirling’s formula for the
factorial,

n! =
√

2πnnne−neλn , (6.10)

where 1
12n+1 ≤ λn ≤

1
12n , gives

(2n)!
2nn!

=

√
2π2n(2n/e)2neλ2n

2n
√

2πn(n/e)neλn
≤
√

2 (2/e)nnn. (6.11)

An application of Hölder’s inequality yields for θ ∈ [0, 1] and an arbitrary random
variable Z,

E|Z|2n+2θ = E[|Z|(1−θ)2n|Z|θ(2n+2)] ≤ (E|Z|2n)1−θ(E|Z|2n+2)θ. (6.12)

Combine the two estimates above and the Khintchine inequality (6.7) to get

E|
M∑
j=1

εjbj |2n+2θ ≤ (E|
M∑
j=1

εjbj |2n)1−θ(E|
M∑
j=1

εjbj |2n+2)θ

≤ (
√

2(2/e)nnn)1−θ(
√

2(2/e)n+1(n+ 1)n+1)θ

=
√

2(2/e)n+θnn(1−θ)(n+ 1)θ(n+1)
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=
√

2(2/e)n+θ(n1−θ(n+ 1)θ)n+θ
(
n+ 1
n

)θ(1−θ)
≤
√

2(2/e)n+θ(n+ θ)n+θ
(
n+ 1
n

)θ(1−θ)
≤ 23/4(2/e)n+θ(n+ θ)n+θ. (6.13)

In the second line from below the inequality of the geometric and arithmetic mean was
applied. The last step used that (n+ 1)/n ≤ 2 and θ(1− θ) ≤ 1/4. Replacing n+ θ
by p/2 completes the proof.

The optimal constants Cp =
(

2
p−1

2
Γ(p/2)
Γ(3/2)

)1/p
, p ≥ 2, instead of 23/(4p)e−1/2√p

for Khintchine’s inequality (6.9) are actually slightly better than the ones computed
above, but deriving these requires much more effort [67, 89].

Combining Corollary 6.9 with Proposition 6.5 yields the following special case of
Hoeffding’s inequality [70], also known as Chernoff’s bound [26].

Corollary 6.10. (Hoeffding’s inequality for Rademacher sums) Let b = (b1, . . . , bM ) ∈
CM and εεε = (ε1, . . . , εM ) be a Rademacher sequence. Then, for u ≥

√
2,

P

| M∑
j=1

εjbj | ≥ ‖b‖2u

 ≤ 23/4 exp(−u2/2). (6.14)

For completeness we also give the standard version and proof of Hoeffding’s in-
equality for (real) Rademacher sums.

Proposition 6.11. (Hoeffding’s inequality for Rademacher sums) Let b = (b1, . . . , bM ) ∈
RM and εεε = (ε1, . . . , εM ) be a Rademacher sequence. Then, for u > 0,

P

 M∑
j=1

εjbj ≥ ‖b‖2u

 ≤ exp(−u2/2) (6.15)

and consequently,

P

| M∑
j=1

εjbj | ≥ ‖b‖2u

 ≤ 2 exp(−u2/2). (6.16)

Proof. Without loss of generality we may assume ‖b‖2 = 1. By Markov’s inequality
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(Theorem 6.2) and independence we have, for λ > 0,

P

 M∑
j=1

εjbj ≥ u

 = P

exp(λ
M∑
j=1

εjbj) ≥ eλu
 ≤ e−λuE[exp(λ

M∑
j=1

εjbj)]

= e−λu
M∏
j=1

E[exp(εjλbj)].

Note that, for s ∈ R,

E[exp(εjs)] =
1
2
(e−s + es) =

1
2

( ∞∑
k=0

(−s)k

k!
+

∞∑
k=0

sk

k!

)
=

∞∑
k=0

s2k

(2k)!

≤
∞∑
k=0

s2k

2kk!
= es

2/2.

This yields

P

 M∑
j=1

εjbj ≥ u

 ≤ e−λu M∏
j=1

eλ
2b2
j/2 = e−λu+λ

2‖b‖2
2/2.

Choosing λ = u and recalling that ‖b‖2 = 1 yields (6.15). Finally,

P

| M∑
j=1

εjbj | ≥ ‖b‖2u

 = P

 M∑
j=1

εjbj ≥ ‖b‖2u

+ P

 M∑
j=1

εjbj ≤ −‖b‖2u


≤ 2e−u

2/2,

since −εj has the same distribution as εj .

As mentioned earlier, a complex random variable which is uniformly distributed
on the torus T = {z ∈ C, |z| = 1} is called a Steinhaus variable. A sequence εεε =
(ε1, . . . , εN ) of independent Steinhaus variables is called a Steinhaus sequence. There
is also a version of Khintchine’s inequality for Steinhaus sequences.

Theorem 6.12. (Khintchine’s inequality for Steinhaus sequences) Let εεε = (ε1, . . . , εM )
be a Steinhaus sequence and b = (b1, . . . , bM ) ∈ CM . Then

E|
M∑
j=1

εjbj |2n ≤ n!‖b‖2n
2 for all n ∈ N.
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Proof. Expand the moment of the Steinhaus sum using the multinomial theorem (6.8),

E|
M∑
j=1

εjbj |2n = E

 M∑
j=1

εjbj

n(
M∑
k=1

εkbk

)n

= E

 ∑
j1+···+jM=n

j`≥0

n!
j1! · · · jM !

bj1
1 · · · b

jM
M εj1

1 · · · ε
jM
M



×

 ∑
k1+···kM=n

k`≥0

n!
k1! · · · kM !

bk1
1 · · · b

kM
M εk1

1 · · · ε
kM
M


=

∑
j1+···+jM=n
k1+···kM=n
j`,k`≥0

n!
j1! · · · jM !

n!
k1! · · · kM !

bj1
1 b

k1
1 · · · b

jM
M bkMM E[εj1

1 ε
k1
1 · · · ε

jM
M εkMM ].

Since the εj are independent and uniformly distributed on the torus it holds

E[εj1
1 ε

k1
1 · · · ε

jM
M εkMM ] = E[εj1−k1

1 ] · · ·E[εjM−kMM ] = δj1,k1 · · · δjM ,kM .

This yields

E|
M∑
j=1

εjbj |2n =
∑

k1+···kM=n
k`≥0

(
n!

k1! · · · kM !

)2

|b1|2k1 · · · |bM |2kM

≤ n!
∑

k1+···kM=n
k`≥0

n!
k1! · · · kM !

|b1|2k1 · · · |bM |2kM

= n!

 M∑
j=1

|bj |2
2n

,

where the multinomial theorem (6.8) was applied once more in the last step.

The above moment estimate leads to a Hoeffding type inequality for Steinhaus sums.

Corollary 6.13. (Hoeffding’s inequality for Steinhaus sequences) Let εεε = (ε1, . . . , εM )
be a Steinhaus sequence, b = (b1, . . . , bM ) ∈ CM and 0 < λ < 1. Then

P(|
M∑
j=1

εjbj | ≥ u‖b‖2) ≤
1

1− λ
e−λu

2
for all u ≥ 0. (6.17)
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In particular, using the optimal choice λ = 1− u−2,

P(|
M∑
j=1

εjbj | ≥ u‖b‖2) ≤ exp(−u2 + log(u2) + 1) for all u ≥ 1. (6.18)

Note that the argument of the exponential in (6.18) is always negative for u > 1.

Proof. Without loss of generality assume ‖b‖2 = 1. Markov’s inequality gives

P(|
M∑
j=1

εjbj | ≥ u) = P(exp(λ|
M∑
j=1

εjbj |2) ≥ exp(λu2))

≤ E[exp(λ|
M∑
j=1

εjbj |2)] exp(−λu2) = exp(−λu2)
∞∑
n=0

λnE|
∑M

j=1 εjbj |2n

n!

≤ exp(−λu2)
∞∑
n=0

λn =
1

1− λ
e−λu

2
.

In the second line the Taylor expansion of the exponential function was used together
with Fubini’s theorem in order to interchange the expectation and the series. In the
third line Theorem 6.12 was applied.

For more information and extensions of scalar Khintchine inequalities we refer the
interested reader to [94, 93].

6.5 Noncommutative Khintchine Inequalities

The scalar Khintchine inequalities above can be generalized to the case where the co-
efficients are matrices. Combined with symmetrization the resulting noncommutative
Khintchine inequalities are a very powerful tool in the theory of random matrices.
Schatten class norms have to be introduced to formulate them.

For a matrix A we let σ(A) = (σ1(A), . . . , σn(A)) be its sequence of singular
values. Then the Schatten p-norm is defined as

‖A‖Sp := ‖σ(A)‖p, 1 ≤ p ≤ ∞. (6.19)

It is actually nontrivial to show the triangle inequality for Schatten p-norms. We refer
the interested reader to [8, 72, 120].

The hermitian matrix AA∗ can be diagonalized using a unitary matrix U ,

AA∗ = U∗D2U
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where D = diag(σ1(A), . . . , σn(A)) (possibly filled up with zeros). As the trace is
cyclic, that is Tr(AB) = Tr(BA), and since UU∗ = Id, we get for n ∈ N

‖A‖2n
S2n

= ‖σ(A)‖2n
2n = Tr(D2n) = Tr(D2nUU∗) = Tr(U∗D2nU)

= Tr((U∗D2U)n) = Tr((AA∗)n). (6.20)

As a special case, the Frobenius norm is the Schatten 2-norm, ‖A‖F = ‖A‖S2 . The
operator norm is also a Schatten norm,

‖A‖2→2 = σ1(A) = ‖σ(A)‖∞ = ‖A‖S∞ .

By the analogous property of the vector p-norm we have ‖A‖Sq ≤ ‖A‖Sp for q ≥ p.
In particular, the following estimate will be very useful,

‖A‖2→2 ≤ ‖A‖Sp for all 1 ≤ p ≤ ∞ . (6.21)

If A has rank r then it follows from the corresponding property of `p-norms that

‖A‖Sp ≤ r1/p‖A‖2→2. (6.22)

Let us now state the noncommutative Khintchine inequality for matrix-valued Rade-
macher sums, which was first formulated by F. Lust–Piquard [82] with unspecified
constants. The optimal constants were provided by A. Buchholz in [16, 17], although
it is not obvious at first sight that the results of his paper [16] allow to deduce our next
theorem, see also [130]. The proof follows the ideas of Buchholz [16].

Theorem 6.14. Let εεε = (ε1, . . . , εM ) be a Rademacher sequence, and let Bj , j =
1, . . . ,M , be complex matrices of the same dimension. Choose n ∈ N. Then

E‖
M∑
j=1

εjBj‖2n
S2n

≤ (2n)!
2nn!

max


∥∥∥∥∥∥∥
 M∑
j=1

BjB
∗
j

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
 M∑
j=1

B∗jBj

1/2
∥∥∥∥∥∥∥

2n

S2n

 . (6.23)

Note that the matrices BjB∗j and B∗jBj in (6.23) are self-adjoint and positive, so
that the square-roots in (6.23) are well-defined.

In order to prove the noncommutative Khintchine inequalities we need to introduce
the notion of pairings.

Definition 6.15.
(a) A pairing is a partition of the set [2n] into two-element subsets, called blocks. The
set P2n denotes the set of all pairings of [2n].
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(b) The canonical pairing 1 = {D1, . . . , Dn} has blocks Dj = {2j − 1, 2j}.
(c) Let π = {D1, . . . , Dn} be a pairing. Then its cyclic shift Tπ is the pairing with
blocks TD`, where T{j, k} = {j + 1, k + 1} with addition understood modulo 2n.

(d) The "symmetrized" pairing ←−π contains all blocks {j, k} of a pairing π satisfying
j, k ≤ n and in addition the "reflected" blocks {2n+1− j, 2n+1−k}. The blocks of
π with both elements being larger than n are omitted in←−π and the blocks {j, k} with
j ≤ n and k > n are replaced by the "symmetric" block {j, 2n+ 1− j}.

(e) Similarly, the pairing−→π contains all blocks {j, k} of the pairing π satisfying j, k >
n and in addition the "reflected" blocks {2n+1− j, 2n+1−k}. The blocks of π with
both elements smaller than n + 1 are omitted in −→π and the blocks {j, k} with j ≤ n
and k > n are replaced by the "symmetric" block {2n+ 1− k, k}.

Let B = (B1, . . . , BM ) be a sequence of matrices of the same dimension and π =
{D1, . . . , Dn} ∈ P2n. We define the mapping α = απ : [2n]→ [n] such that α(j) = `
iff j ∈ D`. Using this notation we introduce

π(B) =
M∑

k1,...,kn=1

Bkα(1)B
∗
kα(2)

Bkα(3)B
∗
kα(4)
· · ·Bkα(2n−1)B

∗
kα(2n)

. (6.24)

Note that π(B) is independent of the chosen numbering ofD1, . . . , Dn. The following
lemma will be the key to the proof of the noncommutative Khintchine inequalities.

Lemma 6.16. Let π ∈ P2n and B = (B1, . . . , BM ) a sequence of complex matrices
of the same dimension. Then there is γ ≥ 1/(4n) and non-negative numbers pρ =
pρ(π), ρ ∈ P2n, satisfying γ +

∑
ρ∈P2n

pρ = 1, such that

|Trπ(B)| (6.25)

≤ max


∥∥∥∥∥∥
(

M∑
k=1

BkB
∗
k

)1/2
∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥
(

M∑
k=1

B∗kBk

)1/2
∥∥∥∥∥∥

2n

S2n


γ ∏
ρ∈P2n

|Tr ρ(B)|pρ .

Proof. First observe that

1(B) =
N∑

k1,...,kn=1

n∏
j=1

BkjB
∗
kj

=

(
M∑
k=1

BkB
∗
k

)n
.

Since the matrix inside the bracket is self-adjoint and positive semi-definite we can
take its square root and (6.20) yields

Tr1(B) =

∥∥∥∥∥∥
(

M∑
k=1

BkB
∗
k

)1/2
∥∥∥∥∥∥

2n

S2n

. (6.26)
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Since the trace is cyclic we similarly obtain

TrT1(B) =

∥∥∥∥∥∥
(

M∑
k=1

B∗kBk

)1/2
∥∥∥∥∥∥

2n

S2n

. (6.27)

The idea of the proof is to successively provide estimates of |Trπ(B)| in terms of
traces of operators ρ(B) which become more and more ’similar’ to 1(B) or T1(B).

Let t ∈ {0, 1, . . . , n} be the maximal number such that, for some p, {p, p+1}, {p+
2, p + 3}, . . . , {p + 2t − 2, p + 2t − 1} are blocks of the partition π. If t = n then
π = 1 or π = T1 and we are done. We postpone the case t = 0 to later and assume
t ∈ [n− 1].

By cyclicity of the trace, it holds Trπ(B) = Tr(Tn−p−2t+1π)(B) if n−p is odd and
Trπ(B) = Tr(Tn−p−2t+1π)(B∗) if n − p is even, where B∗ = (B∗1 , . . . , B

∗
M ). Note

that the blocks {n−2t+1, n−2t+2}, {n−2t+3, n−2t+4}, . . . , {n−1, n} (with
addition modulo 2n) are part of the partition Tn−p−2t+1π. Assume n even and p odd
for the moment. Denote the blocks of Tn−p−2t+1π by D1, . . . , Dn and let α = απ :
[2n] → [n] be the mapping defined by α(j) = ` iff j ∈ D`. Divide [n] into three sets
L,R,U . The subset L (resp. R) contains the indices `, for which both elements of D`

are in {1, . . . , n} (resp. {n+ 1, . . . , 2n}), while U contains the remaining indices for
which the blocks have elements in both {1, . . . , n} and {n+ 1, . . . , 2n}.

The Cauchy Schwarz inequality for the trace (2.6) and for the usual Euclidean inner
product yields

|Trπ(B)| = |Tr(Tn−p−2t+1π)(B)|

=

∣∣∣∣∣∣
∑

ki∈[M ],i∈U

Tr

 ∑
ki∈[M ],i∈L

Bkα(1) · · ·B
∗
kα(n)

 ∑
ki∈[M ],i∈R

Bkα(n+1) · · ·B
∗
kα(2n)

∣∣∣∣∣∣
≤
∑
ki,i∈U

√√√√√Tr

 ∑
ki,i∈L

Bkα(1) · · ·B∗kα(n)

 ∑
ki,i∈L

Bkα(n) · · ·B∗kα(1)



×

√√√√√Tr

 ∑
ki,i∈R

Bkα(n+1) · · ·B∗kα(2n)

 ∑
ki,i∈R

Bkα(2n) · · ·B∗kα(n+1)



≤

√√√√√ ∑
ki,i∈U

Tr

 ∑
ki,i∈L

Bkα(1) · · ·B∗kα(n)

 ∑
ki,i∈L

Bkα(n) · · ·B∗kα(1)



×

√√√√√ ∑
ki,i∈U

Tr

 ∑
ki,i∈R

Bkα(n+1) · · ·B∗kα(2n)

 ∑
ki,i∈R

Bkα(2n) · · ·B∗kα(n+1)
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= |Tr
←−−−−−−−−−
(Tn−p−2t+1π)(B)|1/2|Tr ρ(B)|1/2 (6.28)

with ρ =
−−−−−−−−→
Tn−p−2t+1π ∈ P2n. If t ≥ n/2 then

←−−−−−−−−
Tn−p−2t+1π equals 1 or T1 and we

are done. If t < n/2 then
←−−−−−−−−
Tn−p−2t+1π contains the blocks {n − 2t + 1, n − 2t +

2}, . . . , {n−1, n}, {n+1, n+2}, . . . , {n+2t−1, n+2t}. Apply the same estimates

with t′ = 2t as above to T−2t
←−−−−−−−−−
(Tn−p−2t+1π) to obtain

|Trπ(B)| ≤ |Tr(
←−−−−−−−−−−−−−
T−2t

←−−−−−−−−−
(Tn−p−2t+1π)(B)|1/4|Tr ρ̃(B)|1/4|Tr ρ(B)|1/2

for suitable ρ̃, ρ ∈ P2n. Similarly, as above if t ≥ n/4 then
←−−−−−−−−−−−
T−2t

←−−−−−−−
(Tn−p−2tπ) equals

1 or T1 and we are done. If t < n/4 then we continue in this way, and after at
most dlog2(n)e estimation steps of the form (6.28) inequality (6.25) is obtained with
γ ≥ 1/2dlog2(n)e ≥ 1/(2n).

If initially t = 0, then we apply the above method to T qπ where q was chosen
such that {n, p} for some p > n is a block of T qπ. Using the same estimates as
in (6.28) yields |Trπ(B)| ≤ |Tr π̃(B)|1/2|Tr ρ(B)|1/2 for some partition ρ, where π̃
contains the block {n, n + 1}. Then invoke the above method to obtain (6.25) with
γ ≥ 1/(4n).

If n is odd and p even, then an obvious modification of the chain of inequalities
(6.28) applies. If n − p is even then B∗ instead of B appears after the first equality
in (6.28). Noting that Tr1(B∗) = TrT1(B) and TrT1(B∗) = Tr1(B) by cyclicity
concludes the proof.

Corollary 6.17. Under the same assumptions as in Lemma 6.16, for all π ∈ P2n,

|Trπ(B)| ≤ max


∥∥∥∥∥∥
(

M∑
k=1

BkB
∗
k

)1/2
∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥
(

M∑
k=1

B∗kBk

)1/2
∥∥∥∥∥∥

2n

S2n

 . (6.29)

Proof. Denote the right hand side of (6.29) by D. The constant γ in Lemma 6.16 may
be chosen the same for all partitions π ∈ P2n, for instance γ = γ1 = 1/(4n). Indeed,
if γ is initially larger, then by (6.26) and (6.27) simply move some weight from Dγ to
|Tr1(B)|p1(π) or to |TrT1(B)|pT1(π), whichever term is larger.

Apply Lemma 6.16 to itself to obtain

|Trπ(B)| ≤ Dγ1
∏
κ∈P2n

|Trκ(B)|pκ(π)

≤ Dγ1
∏
κ∈P2n

Dγ1pκ(π)
∏
ρ∈P2n

|Tr ρ(B)|pκ(π)pρ(κ)

= Dγ1+γ1(1−γ1)
∏
ρ∈P2n

|Tr ρ(B)|
∑
κ∈P2n

pρ(κ)pκ(π).



Compressive Sensing and Structured Random Matrices 45

This yields (6.25) with new constants

γ2 = γ1 + γ1(1− γ1), p(2)ρ (π) =
∑
κ∈P2n

pρ(κ)pκ(π).

Since γ1 = 1/(4n), in particular, 0 < γ1 < 1, the new constant γ2 is larger than γ1.
Iterating this process yields increasingly larger constants γ` defined recursively by

γ`+1 = γ` + γ`(1− γ`).

Elementary calculus shows that lim`→∞ γ` = 1. Since the corresponding constants
p
(`)
ρ (π) satisfy γ` +

∑
ρ∈P2n

p
(`)
ρ (π) = 1 for all ` one concludes lim`→∞ p

(`)
ρ (π) = 0

for all ρ ∈ P2n. This completes the proof.

Now we are in the position to complete the proof of the noncommutative Khintchine
inequalities.

Proof of Theorem 6.14. By (6.20)

E := E‖
M∑
k=1

εkBk‖2n
S2n

= ETr

 M∑
k=1

εkBk

M∑
j=1

εjB
∗
j

n
=

M∑
k1,...,k2n=1

E[εk1 · · · εk2n ]Tr(Bk1B
∗
k2
Bk3 · · ·B

∗
k2n

).

Observe that E[εk1 · · · εk2n ] = 1 if and only if each j ∈ [2n] can be paired with an
` ∈ [2n] such that kj = k` and E[εk1 · · · εk2n ] = 0 otherwise. Therefore, denoting
B = (B1, . . . , BM ), Corollary 6.17 yields (recall also the definition in (6.24))

E =
∑
π∈P2n

Trπ(B)

≤ |P2n|max


∥∥∥∥∥∥
(

M∑
k=1

BkB
∗
k

)1/2
∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥
(

M∑
k=1

B∗kBk

)1/2
∥∥∥∥∥∥

2n

S2n

 .

Elementary considerations show that the number |P2n| of pairings of a set with 2n
elements equals (2n)!

2nn! .

The noncommutative Khintchine inequalities may be extended to general p ≥ 2,
similarly to Corollary 6.9 in the scalar case, see also [130]. For our purposes the
present version will be sufficient.
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6.6 Rudelson’s Lemma

Rudelson’s lemma [113] is a very useful estimate for the operator norm of a Rademacher
sum of rank one matrices. The statement below is slightly different from the formula-
tion in [113], but allows to draw the same conclusions, and makes constants explicit.
Its proof is a nice application of the noncommutative Khintchine inequality.

Lemma 6.18. LetA ∈ Cm×M of rank r with columns a1, . . . ,aM . Let εεε = (ε1, . . . , εM )
be a Rademacher sequence. Then, for 2 ≤ p <∞,E‖

M∑
j=1

εjaja
∗
j‖
p
2→2

1/p

≤ 23/(4p)r1/p√pe−1/2‖A‖2→2 max
j=1,...,M

‖aj‖2. (6.30)

Proof. Write p = 2n + 2θ with n ∈ N and θ ∈ [0, 1). Denote Cn =
(
(2n)!
2nn!

)1/(2n)
.

Note that (aja∗j )
∗(aja

∗
j ) = (aja

∗
j )(aja

∗
j )
∗ = ‖aj‖2

2aja
∗
j . Therefore, the noncommu-

tative Khintchine inequality (6.23) yields

E :=

E‖
∑
j

εjaja
∗
j‖2n

2→2

1/(2n)

≤

E‖
∑
j

εjaja
∗
j‖2n
S2n

1/(2n)

≤ Cn

∥∥∥∥∥∥∥
∑

j

‖aj‖2
2aja

∗
j

1/2
∥∥∥∥∥∥∥
S2n

The operator
∑

j ‖aj‖2
2aja

∗
j has rank at most r. The estimate (6.22) of the Schatten

norm by the operator norm together with (2.5) gives therefore

E ≤ Cnr1/(2n)

∥∥∥∥∥∥∥
∑

j

‖aj‖2
2aja

∗
j

1/2
∥∥∥∥∥∥∥

2→2

≤ Cnr1/(2n)‖
∑
j

aja
∗
j‖

1/2
2→2 max

k=1,...,M
‖ak‖2.

Observing that ‖
∑

j aja
∗
j‖

1/2
2→2 = ‖AA∗‖1/2

2→2 = ‖A‖2→2 yields

E ≤ Cnr1/(2n)‖A‖2→2 max
j=1,...,M

‖aj‖2.

With the estimate (6.21) of the operator norm by the Schatten norm together with
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(6.12) we obtain

E‖
M∑
j=1

εjaja
∗
j‖2n+2θ

2→2 ≤ (E‖
∑
j

εjaja
∗
j‖2n
S2n

)1−θ(E‖
∑
j

εjaja
∗
j‖2n+2
S2n+2

)θ

≤
(
(2n)!
2nn!

)1−θ ( (2n+ 2)!
2n+1(n+ 1)!

)θ
r

(
‖A‖2→2 max

j=1,...,M
‖aj‖2

)2n+2θ

≤ 23/4(2/e)n+θ(n+ θ)n+θr

(
‖A‖2→2 max

j=1,...,M
‖aj‖2

)2n+2θ

.

Hereby, we applied (6.11) and the same chain of inequalities as in (6.13). Substituting
p/2 = n+ θ completes the proof.

Proposition 6.5 leads to the following statement.

Corollary 6.19. Let A ∈ Cm×M of rank r with columns a1, . . . ,aM . Let εεε ∈ RM be
a Rademacher sequence. Then for all u ≥

√
2

P

‖ M∑
j=1

εjaja
∗
j‖2→2 ≥ u‖A‖2→2 max

j=1,...,M
‖aj‖2

 ≤ 23/4re−u
2/2. (6.31)

The formulation of Rudelson’s lemma which is most commonly used follows then
from an application of Lemma 6.6 (where the “maximum” is taken only over one
random variable) after estimating 23/4 < 2.

Corollary 6.20. Let A ∈ Cm×M of rank r with columns a1, . . . ,aM . Let εεε ∈ RM be
a Rademacher sequence. Then

E‖
M∑
j=1

εjaja
∗
j‖2→2 ≤ C

√
ln(8r)‖A‖2→2 max

j=1,...,M
‖aj‖2

with C ≤
√

2 + 1
4
√

2 ln(8)
≈ 1.499 < 1.5.

6.7 Decoupling

Decoupling is a technique that reduces stochastic dependencies in certain sums of
random variables, called chaos variables. A typical example is a sum of the form∑

j 6=`
εjε`xj`

where xj` are some vectors and εεε = (εj) is a Rademacher series. Such a sum is called
Rademacher chaos of order 2. The following statement, taken from [13], provides a
way of "decoupling" the sum. Many more results concerning decoupling can be found
in the monograph [36].
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Lemma 6.21. Let ξξξ = (ξ1, . . . , ξM ) be a sequence of independent random variables
with Eξj = 0 for all j = 1, . . . ,M . Let Bj,k, j, k = 1, . . . ,M , be a double sequence
of elements in a vector space with norm ‖ · ‖, where Bj,j = 0 for all j = 1, . . . ,M .
Then for 1 ≤ p <∞

E

∥∥∥∥∥∥
M∑

j,k=1

ξjξkBj,k

∥∥∥∥∥∥
p

≤ 4pE

∥∥∥∥∥∥
M∑

j,k=1

ξjξ
′
kBj,k

∥∥∥∥∥∥
p

, (6.32)

where ξξξ′ denotes an independent copy of ξξξ.

Proof. Introduce a sequence δ = (δj)
M
j=1, of independent random variables δj taking

only the values 0 and 1 with probability 1/2. Then for j 6= k

Eδj(1− δk) = 1/4.

Since Bj,j = 0 this gives

E := E

∥∥∥∥∥∥
M∑

j,k=1

ξjξkBj,k

∥∥∥∥∥∥
p

= 4p Eξ

∥∥∥∥∥∥
M∑

j,k=1

Eδ[δj(1− δk)]ξjξkBj,k

∥∥∥∥∥∥
p

≤ 4p E

∥∥∥∥∥∥
M∑

j,k=1

δj(1− δk)ξjξkBj,k

∥∥∥∥∥∥
p

,

where Jensen’s inequality was applied in the last step. Now let

σ(δ) := {j = 1, . . . ,M : δj = 1}.

Then, by Fubini’s theorem,

E ≤ 4p EδEξ

∥∥∥∥∥∥
∑
j∈σ(δ)

∑
k/∈σ(δ)

ξjξkBj,k

∥∥∥∥∥∥
p

.

For a fixed δ the sequences (ξj)j∈σ(δ) and (ξk)k/∈σ(δ) are independent, and hence,

E ≤ 4p EδEξEξ′

∥∥∥∥∥∥
∑
j∈σ(δ)

∑
k/∈σ(δ)

ξjξ
′
kBj,k

∥∥∥∥∥∥
p

.

This implies the existence of a δ0, and hence a σ = σ(δ0) such that

E ≤ 4p EξEξ′

∥∥∥∥∥∥
∑
j∈σ

∑
k/∈σ

ξjξ
′
kBj,k

∥∥∥∥∥∥
p

.
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Since Eξj = Eξ′j = 0, an application of Jensen’s inequality yields

E ≤ 4p E

∥∥∥∥∥∥
∑
j∈σ

(∑
k/∈σ

ξjξ
′
kBj,k +

∑
k∈σ

ξjE[ξ′k]Bj,k

)
+
∑
j /∈σ

E[ξj ]
M∑
k=1

ξ′kBj,k

∥∥∥∥∥∥
p

≤ 4p E

∥∥∥∥∥∥
M∑
j=1

M∑
k=1

ξjξ
′
kBj,k

∥∥∥∥∥∥
p

,

and the proof is completed.

We note that the mean-zero assumption Eξj = 0 may be removed by introducing
a larger constant 8 instead of 4, see Theorem 3.1.1 in [36] and its proof. The sum∑

j,k ξjξ
′
kBj,k on the right hand side of (6.32) is called a decoupled chaos.

6.8 Noncommutative Khintchine Inequalities for Decoupled
Rademacher Chaos

The previous section showed the usefulness of studying decoupled chaoses. Next
we state the noncommutative Khintchine inequality for decoupled Rademacher chaos
[105], see also [100, p. 111] for a slightly more general inequality (without explicit
constants). A scalar version can be found, for instance, in [86].

Theorem 6.22. Let Bj,k ∈ Cr×t, j, k = 1, . . . ,M , be complex matrices of the same
dimension. Let εεε, εεε′ be independent Rademacher sequences. Then, for n ∈ N,E

∥∥∥∥∥∥
M∑

j,k=1

εjε
′
kBj,k

∥∥∥∥∥∥
2n

S2n


1/2n

≤ 21/(2n)
(
(2n)!
2nn!

)1/n

(6.33)

×max


∥∥∥∥∥∥∥
 M∑
j,k=1

Bj,kB
∗
j,k

1/2
∥∥∥∥∥∥∥
S2n

,

∥∥∥∥∥∥∥
 M∑
j,k=1

B∗j,kBj,k

1/2
∥∥∥∥∥∥∥
S2n

, ‖F‖S2n , ‖F̃‖S2n

 ,

where F , F̃ are the block matrices F = (Bj,k)
M
j,k=1 and F̃ = (B∗j,k)

M
j,k=1.

We note that the factor 21/(2n) may be removed with a more technical proof that uses
the same strategy as the proof of the (ordinary) noncommutative Khintchine inequal-
ity (6.25) above. Our proof below rather proceeds by applying (6.25) twice. Taking
scalars instead of matrices Bj,k results in a scalar Khintchine inequality for decoupled
Rademacher chaos. In the scalar case the first two terms in the maximum in (6.33)
coincide and the third one is always dominated by the first.
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Proof of Theorem 6.22. Denote Cn = (2n)!
2nn! . Fubini’s theorem and an application of

the noncommutative Khintchine inequality (6.23) yields

E := E

∥∥∥∥∥∥
M∑

j,k=1

εjε
′
kBj,k

∥∥∥∥∥∥
2n

S2n

(6.34)

≤ CnEε max


∥∥∥∥∥∥
(

M∑
k=1

Hk(ε)
∗Hk(ε)

)1/2
∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥
(

M∑
k=1

Hk(ε)Hk(ε)
∗

)1/2
∥∥∥∥∥∥

2n

S2n

 ,

where Hk(ε) :=
∑N

j=1 εjBj,k. We define

B̂j,k = (0| . . . |0|Bj,k|0| . . . |0) ∈ Cr×tM ,

and similarly

B̃j,k =
(
0| . . . |0|B∗j,k|0| . . . |0

)∗ ∈ CrM×t,

where in both cases the non-zero block Bj,k is the kth one. Then

B̂j,kB̂
∗
j′,k′ =

{
0 if k 6= k′,

Bj,kB
∗
j′,k if k = k′,

(6.35)

B̃∗j,kB̃j′,k′ =

{
0 if k 6= k′,

B∗j,kBj′,k if k = k′.

Since the singular values obey σk(A) = σk((AA
∗)1/2), the Schatten class norm satis-

fies ‖A‖S2n = ‖(AA∗)1/2‖S2n . This allows us to verify that∥∥∥∥∥∥
M∑
j=1

εj

M∑
k=1

B̂j,k

∥∥∥∥∥∥
S2n

=

∥∥∥∥∥∥∥
∑

j,j′

εjεj′
∑
k,k′

B̂j,kB̂
∗
j′,k′

1/2
∥∥∥∥∥∥∥
S2n

=

∥∥∥∥∥∥∥
∑

j,j′

εjεj′
∑
k

Bj,kB
∗
j′,k

1/2
∥∥∥∥∥∥∥
S2n

=

∥∥∥∥∥∥
(∑

k

Hk(ε)Hk(ε)
∗

)1/2
∥∥∥∥∥∥
S2n

.

Similarly, we also get∥∥∥∥∥∥
(∑

k

Hk(ε)
∗Hk(ε)

)1/2
∥∥∥∥∥∥
S2n

=

∥∥∥∥∥∥
M∑
j=1

εj

M∑
k=1

B̃j,k

∥∥∥∥∥∥
S2n

.
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Plugging the above expressions into (6.34) we can further estimate

E ≤ Cn

E

∥∥∥∥∥∥
M∑
j=1

εj

M∑
k=1

B̂j,k

∥∥∥∥∥∥
2n

S2n

+ E

∥∥∥∥∥∥
M∑
j=1

εj

M∑
k=1

B̃j,k

∥∥∥∥∥∥
2n

S2n

 .

Using Khintchine’s inequality (6.23) once more we obtain

E1 := E

∥∥∥∥∥∥
M∑
j=1

εj

M∑
k=1

B̂j,k

∥∥∥∥∥∥
2n

S2n

≤ Cn max


∥∥∥∥∥∥∥
∑

j

H̃jH̃
∗
j

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
∑

j

H̃∗j H̃j

1/2
∥∥∥∥∥∥∥

2n

S2n

 ,

where H̃j =
∑M

k=1 B̂j,k. Using (6.35) we see that∑
j

H̃jH̃
∗
j =

∑
k,j

Bj,kB
∗
j,k.

Furthermore, noting that

F =


B1,1 B1,2 . . . B1,M

B2,1 B2,2 . . . B2,M
...

...
...

...
BM,1 BM,2 . . . BM,M

 =


H̃1

H̃2
...

H̃M

 ,

we have
‖(
∑
j

H̃∗j H̃j)
1/2‖2n

S2n
= ‖(F ∗F )1/2‖2n

S2n
= ‖F‖2n

S2n
.

Hence,

E1 ≤ Cn max

‖(
M∑

j,k=1

Bj,kB
∗
j,k)

1/2‖2n
S2n
, ‖F‖2n

S2n

 .

As B̃j,k differs from B̂j,k only by interchanging Bj,k with B∗j,k we obtain similarly

E2 := E‖
M∑
j=1

εj

M∑
k=1

B̃j,k‖2n
S2n
≤ Cn max

‖
M∑

j,k=1

B∗j,kBj,k)
1/2‖2n

S2n
, ‖F̃‖2n

S2n

 .
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Finally,

E ≤ Cn(E1 +E2)

≤ 2 · C2
n max


∥∥∥∥∥∥∥
 M∑
j,k=1

B∗j,kBj,k

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
 M∑
j,k=1

Bj,kB
∗
j,k

1/2
∥∥∥∥∥∥∥

2n

S2n

,

‖F‖2n
S2n
, ‖F̃‖2n

S2n

}
.

This concludes the proof.

6.9 Dudley’s Inequality

A stochastic process is a collection Xt, t ∈ T̂ , of complex-valued random variables
indexed by some set T̂ . We are interested in bounding the moments of its supremum.
In order to avoid measurability issues (in general, the supremum of an uncountable
number of random variables might not be measurable any more) we define, for a subset
T ⊂ T̂ , the so called lattice supremum as

E sup
t∈T
|Xt| := sup{E sup

t∈F
|Xt|, F ⊂ T, F finite}. (6.36)

Note that for a countable set T , where no measurability problems can arise,
E(supt∈T |Xt|) equals the right hand side above. Dudley’s inequality, which was
originally formulated and shown in [45] for the expectation, bounds the moments
E supt∈T |Xt|p from above by a geometric quantity involving the covering numbers
of T .

We endow T̂ with the pseudometric

d(s, t) =
(
E|Xt −Xs|2

)1/2
. (6.37)

Recall that in contrast to a metric a pseudometric does not need to separate points, i.e.,
d(s, t) = 0 does not necessarily imply s = t. We assume that the increments of the
process satisfy,

P(|Xt −Xs| ≥ ud(t, s)) ≤ 2 exp
(
−u2/2

)
, t, s ∈ T̂ , u > 0. (6.38)

We will later apply Dudley’s inequality for the special case of Rademacher processes
of the form

Xt =

M∑
j=1

εjxj(t), t ∈ T̂ , (6.39)
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where εεε = (ε1, . . . , εM ) is a Rademacher sequence and the xj : T̂ → C are some
deterministic functions. Observe that

d(t, s)2 = E|Xt −Xs|2 = E|
M∑
j=1

εj(xj(t)− xj(s))|2

=

M∑
j=1

(xj(t)− xj(s))2 = ‖x(t)− x(s)‖2
2,

where x(t) denotes the vector with components xj(t), j = 1, . . . ,M . Therefore, we
define the (pseudo-)metric

d(s, t) =
(
E|Xt −Xs|2

)1/2
= ‖x(t)− x(s)‖2. (6.40)

Hoeffding’s inequality (Proposition 6.11) shows that the Rademacher process (6.39)
satisfies (6.38). Although we will need Dudley’s inequality only for Rademacher pro-
cesses here, we note that the original formulation was for Gaussian processes, see also
[3, 79, 80, 99, 125].

For a subset T ⊂ T̂ , the covering number N(T, d, ε) is defined as the smallest
integer N such that there exists a subset E ⊂ T̂ with cardinality |E| = N satisfying

T ⊂
⋃
t∈E

Bd(t, ε),

where Bd(t, ε) = {s ∈ T̂ , d(t, s) ≤ ε}. In words, T can be covered with N balls of
radius ε in the metric d. Note that some authors additionally require that E ⊂ T . For
us E ⊂ T̂ will be sufficient. Denote the diameter of T in the metric d by

∆(T ) := sup
s,t∈T

d(s, t).

With these concepts at hand our version of Dudley’s inequality reads as follows.

Theorem 6.23. LetXt, t ∈ T̂ , be a complex-valued process indexed by a pseudometric
space (T̂ , d) with pseudometric defined by (6.37) which satisfies (6.38). Then, for a
subset T ⊂ T̂ and any point t0 ∈ T it holds

E sup
t∈T
|Xt −Xt0 | ≤ C1

∫
∆(T )

0

√
ln(N(T, d, u))du+D1∆(T ) (6.41)

with constants C1 = 16.51 and D1 = 4.424. Furthermore, for p ≥ 2,(
E sup
t∈T
|Xt −Xt0 |

p

)1/p

≤ β1/p√p

(
C

∫
∆(T )

0

√
ln(N(T, d, u))du+D∆(T )

)
(6.42)

with constants C = 14.372, D = 5.818 and β = 6.028.
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We note that the estimate (6.42) also holds for 1 ≤ p ≤ 2 with possibly slightly
different constants (this can be seen, for instance, via interpolation between p = 1
and p = 2). Further, the theorem and its proof easily extend to Banach space valued
processes satisfying P(‖Xt − Xs‖ > ud(t, s)) ≤ 2e−u

2/2. Inequality (6.42) for the
increments of the process can be used in the following way to bound the supremum,(

E sup
t∈T
|Xt|p

)1/p

≤ inf
t0∈T

((
E sup
t∈T
|Xt −Xt0 |

p

)1/p

+ (E|Xt0 |
p)1/p

)

≤ β1/p√p

(∫
∆(T )

0

√
log(N(T, d, u))du+D∆(T )

)
+ inf
t0∈T

(E|Xt0 |
p)1/p .

The second term is usually easy to estimate. Further, note that for a centered real-
valued process, that is, EXt = 0 for all t ∈ T̂ , we have

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0) ≤ E sup
t∈T
|Xt −Xt0 |. (6.43)

For completeness we also state the usual version of Dudley’s inequality.

Corollary 6.24. Let Xt, t ∈ T , be a real-valued centered process indexed by a pseu-
dometric space (T, d) such that (6.38) holds. Then

E sup
t∈T

Xt ≤ 30
∫

∆(T )

0

√
ln(N(T, d, u))du. (6.44)

Proof. As in the proof of Theorem 6.23 below, we may assume without loss of gener-
ality that ∆(T ) = 1. Then it follows that N(T, d, u) ≥ 2 for all u < 1/2. Indeed, if
N(T, d, u) = 1 for some u < 1/2 then, for any ε > 0, there would be two points of
distance at least 1 − ε that are covered by one ball of radius u, a contradiction to the
triangle inequality. Therefore,∫

∆(T )

0

√
ln(N(T, d, u))du ≥

∫ 1/2

0

√
ln(2)du =

√
ln 2
2

∆(T ).

Therefore, (6.44) follows from (6.41) and (6.43) and the estimate

C1 +
2D1√

ln 2
< 30.

Generalizations of Dudley’s inequality are contained in [80, 125]; in particular, ex-
tensions to generic chaining inequalities, or bounds of suprema of random processes
by means of majorizing measure conditions.
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Proof of Theorem 6.23. Without loss of generality we may assume that the right hand
sides of (6.41) and (6.42) are finite and non-vanishing. Otherwise, the statement be-
comes trivial. In particular, 0 < ∆(T ) < ∞ and N(T, d, u) < ∞ for all u > 0. By
eventually passing to a rescaled process X ′t = Xt/∆(T ) we may assume ∆(T ) = 1.

Now let b > 1 to be specified later. According to the definition of the covering num-
bers, there exist finite subsetsEj ⊂ T̂ , j ∈ N\{0}, of cardinality |Ej | = N(T, d, b−j)
such that

T ⊂
⋃
t∈Ej

Bd(t, b
−j).

For each t ∈ T and j ∈ N \ {0} we can therefore define πj(t) ∈ Ej such that

d(t, πj(t)) ≤ b−j .

Further set π0(t) = t0. Then by the triangle inequality

d(πj(t), πj−1(t)) ≤ d(πj(t), t) + d(πj−1(t), t) ≤ (1 + b) · b−j for all j ≥ 2

and d(π1(t), π0(t)) ≤ ∆(T ) = 1. Therefore,

d(πj(t), πj−1(t)) ≤ (1 + b) · b−j , for all j ≥ 1. (6.45)

Now we claim the chaining identity

Xt −Xt0 =
∞∑
j=1

(Xπj(t) −Xπj−1(t)) almost surely. (6.46)

Indeed, by (6.38) we have

P(|Xπj(t) −Xπj−1(t)| ≥ b
−j/2)

≤ P

(
|Xπj(t) −Xπj−1(t)| ≥

bj/2

1 + b
d(πj(t), πj−1(t))

)
≤ 2 exp

(
− 1

2(1 + b)2 b
j

)
.

This implies that
∑∞

j=1 P(|Xπj(t)−Xπj−1(t)| ≥ b
−j/2) <∞. It follows from the Borel

Cantelli lemma (Lemma 6.4) that the event that there exists an increasing sequence
j`, ` = 1, 2, . . . of integers with j` → ∞ as ` → ∞ such that |Xπj` (t)

−Xπj`−1(t)| ≥
b−j/2 has zero probability. In conclusion, |Xπj(t) − Xπj−1(t)| < b−j/2 for all j ≥ j0
and some j0 holds almost surely. Consequently, the series on the right hand side of
(6.46) converges almost surely. Furthermore,

E

∣∣∣∣∣∣Xt −Xt0 −
J∑
j=1

(Xπj(t) −Xπj−1(t))

∣∣∣∣∣∣
2

= E|Xt −XπJ (t)|
2

= d(t, πJ(t))
2 → 0 (J →∞)
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by definition (6.37) of the metric d and construction of the πj(t). The chaining identity
(6.46) follows.

Now let F be a finite subset of T . Let aj > 0, j > 0, be numbers to be determined
later. For brevity of notation we write N(T, d, b−j) = N(b−j). Then

P

max
t∈F
|Xt −Xt0 | > u

∞∑
j=1

aj


≤ P

max
t∈F

∞∑
j=1

|Xπj(t) −Xπj−1(t)| > u
∞∑
j=1

aj


≤
∞∑
j=1

P
(

max
t∈F
|Xπj(t) −Xπj−1(t)| > uaj

)

≤
∞∑
j=1

N(b−j)N(b−(j−1))max
t∈F

P
(
|Xπj(t) −Xπj−1(t)| ≥ uaj

)

≤
∞∑
j=1

N(b−j)N(b−(j−1))max
t∈F

P
(
|Xπj(t) −Xπj−1(t)| ≥

uajd(πj(t), πj−1(t))

(1 + b) · b−j

)

≤ 2
∞∑
j=1

N(b−j)N(b−(j−1)) exp
(
−u

2(bjaj)
2

2(1 + b)2

)
. (6.47)

Hereby we used that the number of possible increments |Xπj(t)−Xπj−1(t)| is bounded
by the productN(b−j)N(b−(j−1)) of the cardinalities of the setsEj andEj−1. Further,
we have applied (6.45) and (6.38). Now for a number α > 0 to be determined later,
we choose

aj =
√

2α−1(1 + b) · b−j
√

ln(bjN(b−j)N(b−(j−1))), j ≥ 1.

Continuing the chain of inequalities (6.47) yields, for u ≥ α,

P

max
t∈F
|Xt −Xt0 | > u

∞∑
j=1

aj


≤ 2

∞∑
j=1

N(b−j)N(b−(j−1))
(
bjN(b−j)N(b−(j−1))

)−u2/α2

≤ 2
∞∑
j=1

b−ju
2/α2 ≤ 2b−u

2/α2
∞∑
j=0

b−j =
2b
b− 1

b−u
2/α2

.
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Using N(b−(j−1)) ≤ N(b−j) we further obtain

Θ :=
∞∑
j=1

aj ≤
√

2α−1(b+ 1)
∞∑
j=1

b−j
√
j ln(b) + 2 ln(N(b−j))

≤
√

2α−1(b+ 1)
∞∑
j=1

b−j
√
j ln(b) + 2α−1(b+ 1)

∞∑
j=1

b−j
√

ln(N(b−j)). (6.48)

By comparing sums and integrals, the second sum in (6.48) is upperbounded by
∞∑
j=1

b−j
√

ln(N(b−j)) =
b

b− 1

∞∑
j=1

√
ln(N(b−j))

∫ b−j

b−(j+1)
du

≤ b

b− 1

∫ b−1

0

√
ln(N(T, d, u))du ≤ b

b− 1

∫
∆(T )

0

√
ln(N(T, d, u))du,

where we additionally used that N(T, d, b−j) ≤ N(T, d, u) for all u ∈ [b−(j+1), b−j ].
Plugging into (6.48) shows that

Θ ≤ C(b, α)∆(T ) + 2b(b+ 1)
α(b− 1)

∫
∆(T )

0

√
ln(N(T, d, u))du (6.49)

with

C(b, α) :=
√

2α−1(b+ 1)
√

ln(b)
∞∑
j=1

b−j
√
j, (6.50)

while
P(max

t∈F
|Xt −Xt0 | > uΘ) ≤ 2b

b− 1
b−u

2/α2
, u ≥ α.

Using that any probability is bounded by 1, Proposition 6.1 yields for the moments

E sup
t∈F
|Xt −Xt0 |

p = p

∫ ∞
0

P(sup
t∈F
|Xt −Xt0 | ≥ v)v

p−1dv

= pΘ
p

∫ ∞
0

P(sup
t∈F
|Xt −Xt0 | ≥ uΘ)up−1du

≤ pΘ
p

(∫ α

0
up−1du+

2b
b− 1

∫ ∞
α

b−u
2/α2

up−1du

)
= pΘ

p

(
αp

p
+

2b
b− 1

∫ ∞
α

b−u
2/α2

up−1du

)
.

Taking the supremum over all finite subsets F ⊂ T yields(
E sup
t∈T
|Xt −Xt0 |

p

)1/p

≤ K1(p, b, α)

∫
∆(T )

0

√
ln(N(T, d, u))du

+K2(p, b, α)∆(T ),
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where

K1(p, b, α) = p1/p 2b(b+ 1)
α(b− 1)

(
αp

p
+

2b
b− 1

∫ ∞
α

b−u
2/α2

up−1du

)1/p

,

and

K2(p, b, α) = p1/pC(b, α)

(
αp

p
+

2b
b− 1

∫ ∞
α

b−u
2/α2

up−1du

)1/p

.

(Readers who do not care about the values of the constants may be satisfied at this
point.) We choose α =

√
2 ln(b). Consider first p = 1. Lemma 10.2 in the Appendix

yields ∫ ∞
α

b−u
2/α2

du =

∫ ∞
√

2 ln(b)
e−u

2/2du ≤ 1
b
√

2 ln(b)
.

Hence,

K̂1(b) := K1(1, b,
√

2 ln(b)) ≤ 2b(b+ 1)
b− 1

+
2b(b+ 1)

ln(b)(b− 1)2 .

In order to estimate K2 we note that, for x < 1,

∞∑
j=1

xj
√
j ≤

∞∑
j=1

xjj = x
d

dx
(

∞∑
j=1

xj) =
x

(1− x)2 .

Therefore,

C(b, α) ≤
√

2 ln(b)α−1 b(b+ 1)
(b− 1)2 , (6.51)

and

K̂2(b) := K2(1, b,
√

2 ln(b)) ≤ b(b+ 1)
(b− 1)2

√
2 ln(b) +

b(b+ 1)
(b− 1)3 ln(b)

.

The choice b = 3.8 yields K̂1(3.8) ≤ 16.51 = C1 and K̂2(3.8) ≤ 4.424 = D1. This
yields the claim for p = 1.

Now assume p ≥ 2. We use the Gamma function Γ(x) =
∫∞

0 e−ttx−1dt and the

inequality Γ(x) ≤ xx−1/2

ex−1 , for x ≥ 1, see [81], to estimate (recall α =
√

2 ln(b))∫ ∞
α

b−u
2/α2

up−1du =

∫ ∞
√

2 ln(b)
e−u

2/2up−1du ≤
∫ ∞

0
e−u

2/2up−1du

= 2p/2−1
∫ ∞

0
e−ttp/2−1dt = 2p/2−1

Γ(p/2) ≤ (2/e)p/2−1(p/2)p/2−1/2

=
e√
2p

(p/e)p/2.
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This yields, recalling that p ≥ 2 and using that p1/(2p) ≤ e1/(2e),

K̂1(p) := K1(p, b,
√

2 ln b)

≤ p1/p 2b(b+ 1)√
2 ln b(b− 1)

(
(2 ln b)p/2

p
+

2b
b− 1

e√
2p

(p/e)p/2

)1/p

≤ 2b(b+ 1)
b− 1

+ p1/(2p) 2b(b+ 1)√
2 ln b(b− 1)

(√
2eb

b− 1

)1/p

e−1/2√p

≤
√

2b(b+ 1)
b− 1

(√
2eb

b− 1

)1/p
√
p+

2e1/(2e)e−1/2b(b+ 1)√
2 ln b(b− 1)

(√
2eb

b− 1

)1/p
√
p

=
√

2b(b+ 1)

(
1

b− 1
+

e1/(2e)−1/2
√

ln b(b− 1)

)(√
2eb

b− 1

)1/p
√
p.

Using (6.51) we estimate similarly

K̂2(p) := K2(p, b,
√

2 ln b)

≤ p1/p b(b+ 1)
(b− 1)2

(
(2 ln b)p/2

p
+

2b
b− 1

e√
2p

(p/e)p/2

)1/p

≤ b(b+ 1)
√

2 ln b
(b− 1)2 + p1/(2p)e−1/2 b(b+ 1)

(b− 1)2

(√
2eb

b− 1

)1/p
√
p

≤

(
b(b+ 1)

√
ln b

(b− 1)2 +
e1/(2e)−1/2b(b+ 1)

(b− 1)2

)(√
2eb

b− 1

)1/p
√
p.

In conclusion, inequality (6.42) holds with

β =

√
2eb

b− 1
, C =

√
2b(b+ 1)

(
1

b− 1
+

e1/(2e)−1/2
√

ln b(b− 1)

)
,

D =
b(b+ 1)

√
ln b

(b− 1)2 +
e1/(2e)−1/2b(b+ 1)

(b− 1)2 .

Now we choose b = 2.76 to obtain β = 6.028, C = 14.372 and D = 5.818. This
completes the proof.

6.10 Deviation Inequalities for Suprema of Empirical Processes

The strong probability estimate of Theorem 4.4 depends on a deviation inequality for
suprema of empirical processes that we present in this section. Let Y1, . . . ,YM be
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independent random vectors in Cn and let F be a countable collection of functions
from Cn into R. We are interested in the random variable

Z = sup
f∈F

M∑
`=1

f(Y`), (6.52)

that is, the supremum of an empirical process. The next theorem estimates the proba-
bility that Z deviates much from its mean.

Theorem 6.25. Let F be a countable set of functions f : Cn → R. Let Y1, . . . ,YM

be independent copies of a random vector Y on Cn such that Ef(Y) = 0 for all
f ∈ F , and assume f(Y) ≤ 1 almost surely. Let Z be the random variable defined in
(6.52) and EZ its expectation. Let σ2 > 0 such that E

[
f(Y)2

]
≤ σ2 for all f ∈ F .

Set vM =Mσ2 + 2EZ. Then, for all t > 0,

P(Z ≥ EZ + t) ≤ exp(−vMh(t/vM )) ≤ exp
(
− t2

2vM + 2t/3

)
, (6.53)

where h(t) = (1 + t) ln(1 + t)− t.

This theorem, in particular, the left-hand inequality (6.53), is taken from [14]. The
second inequality in (6.53) follows from h(t) ≥ t2

2+2t/3 for all t > 0. IfF consists only
of a single function f , then Theorem 6.25 reduces to the ordinary Bernstein or Bennett
inequality [6, 134]. Hence, (6.53) can be viewed as a far reaching generalization of
these inequalities.

The proof of (6.53), which uses the concept of entropy, is beyond the scope of
these notes. We refer the interested reader to [14]. Deviation inequalities for suprema
of empirical processes were already investigated in the 1980ies by P. Massart and
others, see e.g. [84, 1]. M. Talagrand obtained major breakthroughs in [122, 123],
in particular, he obtained also a concentration inequality of the following type: Let
Y1, . . . ,YM be independent random vectors and |f(Y`)| ≤ 1 almost surely for all
f ∈ F and all ` = 1, . . . ,M . Then

P(|Z − EZ| ≥ t) ≤ 3 exp
(
− t

C
log
(

1 +
t

Mσ2

))
, (6.54)

where C > 0 is a universal constant. The constants in the deviation and concentra-
tion inequalities were successfully improved in [85, 107, 108, 14, 77]. Extensions of
deviation and concentration inequalities can be found in [10, 9, 79].

7 Proof of Nonuniform Recovery Result for Bounded
Orthonormal Systems

In this section we prove Theorem 4.2.
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7.1 Nonuniform Recovery with Coefficients of Random Signs

In order to obtain nonuniform recovery results we use the recovery condition for indi-
vidual vectors, Corollary 2.9. In order to simplify arguments we also choose the signs
of the non-zero coefficients of the sparse vector at random. A general recovery result
reads as follows.

Proposition 7.1. Let A = (a1, . . . ,aN ) ∈ Cm×N and let S ⊂ [N ] of size |S| = s.
Assume AS is injective and

‖A†Sa`‖2 ≤ α < 1/
√

2 for all ` /∈ S, (7.1)

where A† is the Moore-Penrose pseudo-inverse of AS . Let εεε = (εj)j∈S ∈ Cs be a
(random) Rademacher or Steinhaus sequence. Then with probability at least

1− 23/4(N − s) exp(−α−2/2)

every vector x ∈ CN with support S and sgn(xS) = εεε is the unique solution to the
`1-minimization problem (2.12).

Proof. In the Rademacher case the union bound and Hoeffding’s inequality, Corollary
6.10, yield

P(max
`/∈S
|〈A†Sa`, sgn(xS)〉| ≥ 1) ≤

∑
`/∈S

P
(
|〈A†Sa`, sgn(xS)〉| ≥ ‖A†Sa`‖2α

−1
)

≤ (N − s)23/4 exp(−α−2/2).

In the Steinhaus case we even obtain a better estimate from Corollary 6.13. An appli-
cation of Corollary 2.9 finishes the proof.

In view of the previous proposition it is enough to show that ‖A†Sa`‖2 is small. The
next statement indicates a way how to pursue this task.

Proposition 7.2. Let A ∈ Cm×N with coherence µ and let S ⊂ [N ] of size s. Assume
that

‖A∗SAS − Id‖2→2 ≤ δ (7.2)

for some δ ∈ (0, 1). Then

‖A†Sa`‖2 ≤
√
sµ

1− δ
for all ` /∈ S.

Proof. By definition of the operator norm

‖A†Sa`‖2 = ‖(A∗SAS)−1A∗Sa`‖2 ≤ ‖(A∗SAS)−1‖2→2‖A∗Sa`‖2. (7.3)
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The Neumann series yields

‖(A∗SAS)−1‖2→2 = ‖
∞∑
k=0

(Id−A∗SAS)k‖2→2 ≤
∞∑
k=0

‖Id−A∗SAS‖k2→2

≤
∞∑
k=0

δk =
1

1− δ

by the geometric series formula. The second term in (7.3) can be estimated using the
coherence,

‖A∗Sa`‖2 =

√∑
j∈S
|〈a`,aj〉|2 ≤

√
sµ.

Combining the two estimates completes the proof.

We note that in contrast to the usual definition of coherence, we do not require the
columns ofA to be normalized in the previous statement. Condition (7.2) is a different
way of saying that the eigenvalues of A∗SAS are contained in [1− δ, 1 + δ], or that the
singular values of AS are contained in [

√
1− δ,

√
1 + δ].

7.2 Condition Number Estimate for Column Submatrices

Let us return now to the situation of Theorem 4.4. Proposition 7.2 requires to provide
an estimate on the coherence of A and on ‖A∗SAS − Id‖2→2. The latter corresponds
to a probabilistic condition number estimate of a column submatrix of the structured
random matrix A of the form (4.4). The estimate of the coherence will follow as a
corollary. (Note, however, that the coherence alone might be estimated with simpler
tools, see for instance [78].) The main theorem of this section reads as follows.

Theorem 7.3. LetA ∈ Cm×N be the sampling matrix (4.4) associated to an orthonor-
mal system that satisfies the boundedness condition (4.2) for some constant K ≥ 1.
Let S ⊂ [N ] be of cardinality |S| = s ≥ 2. Assume that the random sampling points
t1, . . . , tm are chosen independently according to the orthogonalization measure ν.
Let δ ∈ (0, 1/2]. Then with probability at least

1− 23/4s exp
(
− mδ2

C̃K2s

)
, (7.4)

where C̃ = 9 +
√

17 ≈ 13.12, the normalized matrix Ã = 1√
m
A satisfies

‖Ã∗SÃS − Id‖2→2 ≤ δ.

We note that the theorem also holds for 1/2 ≤ δ < 1 with a slightly larger constant
C̃.
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Proof. Denote by X` = (ψj(t`))j∈S ∈ Cs a column vector of A∗S . By independence
of the t` these are i.i.d. random vectors. Their 2-norm is bounded by

‖X`‖2 =

√∑
j∈S
|ψj(t`)|2 ≤ K

√
s. (7.5)

Furthermore,

E (X`X
∗
` )j,k = E

[
ψk(t`)ψj(t`)

]
=

∫
D
ψj(t)ψk(t)dν(t) = δj,k, j, k ∈ S,

or in other words, EX`X
∗
` = Id. Using symmetrization, Lemma 6.7, we estimate, for

p ≥ 2,

Ep := E‖Ã∗SÃS − Id‖p2→2 = E‖ 1
m

m∑
`=1

(X`X
∗
` − EX`X

∗
` ) ‖

p
2→2

≤
(

2
m

)p
E‖

m∑
`=1

ε`X`X
∗
`‖
p
2→2,

where εεε = (ε1, . . . , εm) is a Rademacher sequence, independent of X1, . . . ,Xm. Now,
we are in the position to apply Rudelson’s lemma 6.18. To this end we note thatAS has
rank at most s. Using Fubini’s theorem and applying Rudelson’s lemma conditional
on (X1, . . . ,Xm) yields

Ep ≤
(

2
m

)p
23/4spp/2e−p/2E

[
‖AS‖p2→2 max

`∈[m]
‖X`‖p2

]

≤
(

2√
m

)p
23/4spp/2e−p/2

√
E‖Ã∗SÃS‖

p
2→2E

[
max
`∈[m]

‖X`‖2p
2

]
. (7.6)

In the last step we applied the Cauchy Schwarz inequality. Using the bound (7.5),
which holds for all realizations of X1, . . . ,Xm, inserting the identity Id into the oper-
ator norm and applying the triangle inequality yields

Ep ≤
(

2√
m

)p
23/4spp/2e−p/2sp/2Kp

√
E
[
(‖Ã∗SÃS − Id‖2→2 + 1)p

]
≤
(

2K
√

s

m

)p
23/4se−p/2pp/2

(
(E‖Ã∗SÃS − Id‖p2→2)

1/p + 1
)p/2

.

Denoting

Dp,m,s = 2K
√

s

m
23/(4p)s1/pe−1/2√p

we have deduced

E1/p
p ≤ Dp,m,s

√
E

1/p
p + 1.
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Squaring this inequality and completing the squares yields

(E1/p
p −D2

p,m,s/2)2 ≤ D2
p,m,s +D4

p,m,s/4,

which gives

E1/p
p ≤

√
D2
p,m,s +D4

p,m,s/4 +D2
p,m,s/2 (7.7)

Assuming Dp,m,s ≤ 1/2 this yields

E1/p
p ≤

√
1 +

1
16
Dp,m,s +

1
4
Dp,m,s = κDp,m,s (7.8)

with κ =
√

17+1
4 . Hence,(

Emin{1/2, ‖Ã∗SÃS − Id‖p2→2}
)1/p

≤ min{1/2, (E‖Ã∗SÃS − Id‖p2→2)
1/p)}

≤ κDp,M,s.

It follows from Proposition 6.5 that for u ≥
√

2,

P
(

min{1/2, ‖Ã∗SÃS − Id‖2→2} ≥ 2κK
√

s

m
u

)
≤ 23/4s exp(−u2/2),

hence, for 2κK
√

2s
m ≤ δ ≤ 1/2

P(‖A∗SAS − Id‖2→2 ≥ δ) ≤ 23/4s exp
(
− mδ2

8κ2K2s

)
. (7.9)

The right hand side in (7.9) is less than ε provided

m ≥ C̃K2s

δ2 ln(23/4s/ε) (7.10)

with C̃ = 8κ2 = (
√

17 + 1)2/2 = 9 +
√

17 ≈ 13.12. In order to have a non-trivial
statement we must have ε < 1. In fact, for s ≥ 2 condition (7.10) then implies that δ ≥
2κK

√
2s/m. We conclude that (7.9) holds trivially also for 0 < δ < 2κK

√
2s/m,

which finishes the proof.

The above proof followed ideas contained in [115, 136]. Similar techniques were
used in [92]. We remark that in the special case of the trigonometric system (examples
(1) and (4) in Section (4.1)), the constant 13.12 in (7.4) can be essentially improved
to 3e ≈ 8.15 (see [65] for the precise statement) by exploiting the algebraic structure
of the Fourier system [102, 65]. Indeed, one may estimate E‖ 1

mA
∗
SAS − Id‖2n

S2n
=

ETr
(
( 1
mASAS − Id)n

)
directly in this case, i.e., without Rudelson’s lemma or the
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Khintchine inequality. This approach, however, is more technical and uses elements
from combinatorics.

Note furthermore that the conclusion of the theorem can be reformulated as follows:
If for ε ∈ (0, 1), δ ∈ (0, 1/2] condition (7.10) holds, then with probability at least 1−ε
the normalized matrix Ã = 1√

m
A satisfies

‖Ã∗SÃS − Id‖2→2 ≤ δ.

The above proof also indicates how the boundedness condition (4.2) may be weak-
ened. Indeed, the term Emax`∈[m] ‖X`‖2p

2 in (7.6) was estimated by K2psp using the
boundedness condition (4.2). Instead, we might actually impose also finite moment
conditions of the form

sup
j∈[N ]

∫
D
|ψj(t)|pdν(t) ≤ Kp, 2 ≤ p <∞.

A suitable growth condition on the constants Kp should then still allow a probabilistic
estimate of ‖Ã∗SÃS − Id‖2→2 – possibly with a worse probability decay than in (7.4).
Details remain to be worked out.

Let us now turn to the probabilistic estimate of the coherence of the matrix A in
(4.4)

Corollary 7.4. LetA ∈ Cm×N be the sampling matrix (4.4) associated to an orthonor-
mal system that satisfies the boundedness condition (4.2) for some constant K ≥ 1.
Then the coherence of the renormalized matrix Ã = 1√

m
A satisfies

µ ≤

√
2C̃K2 ln(23/4N2/ε)

m

with probability at least 1 − ε – provided the right hand side is at most 1/2. The
constant is the same as in the previous statement, C̃ = 9 +

√
17 ≈ 13.12.

Proof. Let S = {j, k} be a two element set. Then the matrix Ã∗SÃS − Id contains
〈ãj , ãk〉 as a matrix entry. Since the absolute value of any entry of a matrix is bounded
by the operator norm of the matrix on `2, we have

|〈ãj , ãk〉| ≤ ‖Ã∗SÃS − Id‖2→2.

By Theorem 7.3 the probability that the operator norm on the right is not bounded by
δ ∈ (0, 1/2] is at most

23/4 · 2 exp
(
− mδ2

C̃K2 · 2

)
.
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Taking the union bound over all N(N − 1)/2 ≤ N2/2 two element sets S ⊂ [N ]
shows that

P(µ ≥ δ) ≤ 23/4N2 exp
(
− mδ2

2C̃K2

)
.

Requiring that the right hand side is at most ε leads to the desired conclusion.

7.3 Finishing the proof

Now we complete the proof of Theorem 4.2. Set α =
√
st

1−δ for some t, δ ∈ (0, 1/2]
to be chosen later. Let µ be the coherence of Ã = 1√

m
A. By Proposition 7.1 and

Proposition 7.2 the probability that recovery by `1-minimization fails is bounded from
above by

23/4(N − s)e−α−2/2 + P
(

max
`∈[N ]\S

‖Ã†S ã`‖2 ≥ α
)

≤ 23/4(N − s)e−α−2/2 + P(‖Ã∗SÃS − Id‖2→2 > δ) + P(µ > t). (7.11)

By Theorem 7.3 we have P(‖Ã∗SÃS − Id‖2→2 > δ) ≤ ε provided

m ≥ C̃K2

δ2 s ln(23/4s/ε), (7.12)

while Corollary 7.4 asserts that P(µ > t) ≤ ε provided

m ≥ 2C̃K2

t2
ln(23/4N2/ε). (7.13)

Set t = δ
√

2
s . Then (7.13) implies (7.12), and α = δ

√
2

1−δ . The first term in (7.11) is
then bounded by ε if

δ−2 = 4 ln(23/4N/ε).

Plugging this into the definition of t and then into (7.13) we find that recovery by
`1-minimization fails with probability at most 3ε provided

m ≥ C̃K2s ln(23/4N/ε) ln(23/4N2/ε)

= C̃K2s ln(23/4N/ε)
(

ln(N) + ln(23/4N/ε)
)
.

Replacing ε by ε/3, this is satisfied if (4.18) holds with C = 2C̃.
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8 Proof of Uniform Recovery Result for Bounded
Orthonormal Systems

In this chapter we first prove the theorem below concerning the restricted isometry
constants δs of Ã = 1√

m
A, associated to random sampling in bounded orthogonal

system, see (4.4). Rudelson and Vershynin have shown an analog result for discrete
orthonormal systems in [116]. Later in Section 8.6 we strengthen Theorem 8.1 to
Theorem 8.4, which ultimately shows Theorem 4.4.

Theorem 8.1. Let A ∈ Cm×N be the sampling matrix (4.4) associated to an or-
thonormal system that satisfies the boundedness condition (4.2) for some constant
K ≥ 1. Assume that the random sampling points t1, . . . , tm are chosen indepen-
dently at random according to the orthogonalization measure ν. Suppose, for some
ε ∈ (0, 1), δ ∈ (0, 1/2], that

m

ln(10m)
≥ DK2δ−2s ln2(100s) ln(4N) ln(7ε−1) (8.1)

where the constant D ≤ 243 150, then with probability at least 1 − ε the restricted
isometry constant of the renormalized matrix 1√

m
A satisfies δs ≤ δ.

8.1 Start of Proof

We use the characterization of the restricted isometry constants in Proposition 2.5(b),

δs = max
S⊂N,|S|≤s

‖Ã∗SÃS − Id‖2→2.

Let us introduce the set

D2
s,N := {z ∈ CN , ‖z‖2 ≤ 1, ‖z‖0 ≤ s} =

⋃
S⊂[N ],|S|=s

B2
S ,

where B2
S = {z ∈ CN , ‖z‖2 ≤ 1, supp z ⊂ S}. The quantity

|||B|||s := sup
z∈D2

s,N

|〈Bz, z〉|

defines a norm on self-adjoint matrices B = B∗ ∈ CN×N (a semi-norm on all of
CN×N ), and

δs = |||Ã∗Ã− Id|||s.

Let X` =
(
ψj(t`)

)N
j=1
∈ CN be the random column vector associated to the sam-

pling point t`, ` ∈ [m]. Then X∗` is a row of A. Observe that EX`X
∗
` = Id by the

orthogonality relation 4.1. We can express the restricted isometry constant of Ã as

δs = |||
1
m

m∑
`=1

X`X
∗
` − Id|||s =

1
m
|||
m∑
`=1

(X`X
∗
` − EX`X

∗
` )|||s. (8.2)
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Let us first consider the moments of δs. Using symmetrization (Lemma 6.7) we esti-
mate, for p ≥ 1,(

E|||
m∑
`=1

(X`X
∗
` − EX`X

∗
` )|||

p
s

)1/p

≤ 2

(
E|||

m∑
`=1

ε`X`X
∗
` |||
p
s

)1/p

. (8.3)

where εεε = (ε1, . . . , εm) is a Rademacher sequence, which is independent of the ran-
dom sampling points t`, ` ∈ [m].

8.2 The Crucial Lemma

The following lemma, which heavily relies on Dudley’s inequality, is key to the esti-
mate of the moments in (8.3).

Lemma 8.2. Let x1, . . . ,xm be vectors in CN with ‖x`‖∞ ≤ K for ` ∈ [m] and
assume s ≤ m. Then,

E|||
m∑
`=1

ε`x`x
∗
` |||s ≤ C̃1K

√
s ln(100s)

√
ln(4N) ln(10m)

√√√√||| m∑
`=1

x`x
∗
` |||s (8.4)

where C̃1 = 94.81. Furthermore, for p ≥ 2,(
E|||

m∑
`=1

ε`x`x
∗
` |||
p
s

)1/p

≤ β1/pC̃2
√
pK
√
s ln(100s)

√
ln(4N) ln(10m)

√√√√||| m∑
`=1

x`x
∗
` |||s, (8.5)

where C̃2 ≈ 82.56 and β = 6.028 is the constant in Dudley’s inequality (6.42).

PROOF. Observe that

Ep :=

(
E|||

m∑
`=1

ε`x`x
∗
` |||
p
s

)1/p

=

E sup
u∈D2

s,N

∣∣∣∣∣
m∑
`=1

ε`|〈x`,u〉|2
∣∣∣∣∣
p
1/p

.

This is moment of the supremum of a Rademacher process, Xu =
∑

`=1 ε`|〈x`,u〉|2,
which has associated pseudo-metric

d(u,v) =
(
E|Xu −Xv|2

)1/2
=

√√√√ m∑
`=1

(
|〈x`,u〉|2 − |〈x`,v〉|2

)2
,
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see also (6.40). Then, for u,v ∈ D2
s,N we can estimate

d(u,v) =

(
m∑
`=1

(|〈x`,u〉| − |〈x`,v〉|)2 (|〈x`,u〉|+ |〈x`,v〉|)2

)1/2

≤ max
`∈[m]

||〈x`,u〉| − |〈x`,v〉|| sup
u,v∈D2

s,N

√√√√ m∑
`=1

(|〈x`,u〉|+ |〈x`,v〉|)2

≤ 2R max
`∈[m]

|〈x`,u− v〉| ,

where

R = sup
u∈D2

s,N

√√√√ m∑
`=1

|〈x`,u〉|2 =

√√√√||| m∑
`=1

x`x
∗
` |||s .

We further introduce the auxiliary seminorm

‖u‖X := max
`∈[m]

|〈x`,u〉| ,u ∈ CN . (8.6)

We derived that the rescaled process Xu/(2R) satisfies(
E|Xu/(2R)−Xv/(2R)|2

)1/2 ≤ ‖u− v‖X .

It follows from Dudley’s inequality for Rademacher process, Theorem 6.23 with t0 =
0, that

Ep ≤ 2β1/pR

(
C

∫
∆(D2

s,N )

0

√
ln(N(D2

s,N , ‖ · ‖X , t))dt+D∆(D2
s,N )

)
. (8.7)

By the Cauchy-Schwarz inequality, for u ∈ D2
s,N ,

‖u‖X = max
`∈[m]

|〈x`,u〉| ≤ ‖u‖1 max
`∈[m]

‖x`‖∞ ≤ K
√
s‖u‖2 ≤ K

√
s . (8.8)

Therefore, the diameter ∆(D2
s,N ) in the ‖ · ‖X -norm satisfies

∆(D2
s,N ) = ∆(D2

s,N , ‖ · ‖X) ≤ 2K
√
s . (8.9)

Our next task is to estimate the covering numbers N(D2
s,N , ‖ · ‖X , t). We will do

this in two different ways. One estimate will be good for small values of t and the
other one for large values of t. For small values, we introduce the norm

‖z‖∗1 :=
N∑
j=1

(|Re(zj)|+ | Im(zj)|) , z ∈ CN ,
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which is the usual `1-norm after identification of CN with R2N . Then we have the
embedding

D2
s,N ⊂

√
2sBN

‖·‖∗1
, where BN

‖·‖∗1
= {x ∈ CN , ‖x‖∗1 ≤ 1}.

The next lemma provides an estimate of the covering numbers of an arbitrary subset
of BN

‖·‖∗1
.

8.3 Covering Number Estimate

The next lemma provides an estimate of the covering numbers of an arbitrary subset
of BN

‖·‖∗1
.

Lemma 8.3. Let U be a subset of BN
‖·‖∗1

and 0 < t <
√

2K. Then√
ln(N(U, ‖ · ‖X , t)) ≤ 3K

√
ln(10m) ln(4N)t−1.

Proof. Fix x ∈ U . The idea is to approximate x by a finite set of very sparse vectors.
In order to find a vector z from this finite set that is close to x we use the so called
empirical method of Maurey. To this end we define a random vector Z that takes
the value sgn(Re(xj))ej with probability |Re(xj)|, the value i sgn(Im(xj))ej with
probability | Im(xj)| for j = 1, . . . , N , and the zero vector 0 with probability 1−‖x‖∗1.
Here, ej denotes the jth canonical unit vector, (ej)k = δj,k. Since ‖x‖∗1 ≤ 1 this is a
valid probability distribution. Note that

EZ =

N∑
j=1

sgn(Re(xj))|Re(xj)|ej + i

N∑
j=1

sgn(Im(xj))| Im(xj)|ej = x.

Let Z1, . . . ,ZM be independent copies of Z, where M is a number to be determined
later. We attempt to approximate x with the M -sparse vector

z =
1
M

M∑
k=1

Zk.

We estimate the expected distance of z to x in ‖ · ‖X by first using symmetrization
(Lemma 6.7),

E‖z− x‖X = E‖ 1
M

M∑
k=1

(Zk − EZk)‖X ≤
2
M

E‖
M∑
k=1

εkZk‖X

=
2
M

E max
`∈[m]

∣∣∣∣∣
M∑
k=1

εk〈x`,Zk〉

∣∣∣∣∣ ,
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where εεε is a Rademacher sequence, which is independent of (Z1, . . . ,ZM ). Now we
fix a realization of (Z1, . . . ,ZM ) and consider only expectation and probability with
respect to εεε for the moment (that is, conditional on (Z1, . . . ,ZM )). Since ‖x`‖∞ ≤ K
and Zk has only a single non-zero component of magnitude 1, we have |〈x`,Zk〉| ≤ K.
It follows that

‖(〈x`,Zk〉)Mk=1‖2 ≤
√
MK, ` ∈ [m].

Using Hoeffding’s inequality (Proposition 6.11) we obtain

Pεεε

(
|
M∑
k=1

εk〈x`,Zk〉| > K
√
Mu

)
≤ Pεεε

(
|
M∑
k=1

εk〈x`,Zk〉| > ‖(〈x`,Zk〉)Mk=1‖2u

)
≤ 2e−u

2/2, for all u > 0, ` ∈ [m].

Lemma 6.6 yields

E max
`∈[m]

|
M∑
k=1

εk〈x`,Zk〉| ≤ CK
√
M
√

ln(8m) (8.10)

with C =
√

2 + 1
4
√

2 ln(8)
≈ 1.499 < 1.5. By Fubini’s theorem we finally obtain

E‖z− x‖X ≤
2
M

EZEεεε max
`∈[m]

∣∣∣∣∣
M∑
k=1

εk〈x`,Zk〉

∣∣∣∣∣ ≤ 3K√
M

√
ln(8m) .

This implies that there exists a vector of the form

z =
1
M

M∑
k=1

zk, (8.11)

where each zk is one of the vectors in {±ej ,±iej : j ∈ [N ]}, such that

‖z− x‖X ≤
3K√
M

√
ln(8m). (8.12)

(Note that z has sparsity at most M .) In particular,

‖z− x‖X ≤ t (8.13)

provided
3K√
M

√
ln(8m) ≤ t. (8.14)

Each zk takes 4N + 1 values, so that z can take at most (4N + 1)M values. (Actually,
it takes strictly less than (4N)M values, since if some ej appears more than once in
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the sum, then it always appears with the same sign.) For each x ∈ U we can therefore
find a vector z of the form (8.11) such that ‖x− z‖X ≤ t. The choice

M =

⌊
9K2

t2
ln(10m)

⌋
satisfies (8.14). Indeed, then

M ≥ 9K2

t2
ln(10m)− 1 =

9K2

t2
ln(8m) +

9K2 ln(10/8)
t2

− 1

≥ 9K2

t2
ln(8m) +

9 ln(10/8)
2

− 1 ≥ 9K2

t2
ln(8m)

since t ≤
√

2K and 9 ln(10/8)
2 > 1. Therefore, (8.14) is satisfied. We deduce that the

covering numbers can be estimated by

√
ln(N(U, ‖ · ‖X , t)) ≤

√
ln((4N)M ) ≤

√⌊
9K2

t2
ln(10m)

⌋
ln(4N)

≤ 3K
√

ln(10m) ln(4N)t−1,

This completes the proof of the lemma.

8.4 Finishing the Proof of the Crucial Lemma

The estimate of the covering number in the lemma of the previous section will be good
for larger values of t. For small values of t we use a volumetric argument. To this end,
we observe that

D2
s,N ⊂

√
sD1

s,N := {x ∈ CN , ‖x‖1 ≤ 1, ‖x‖0 ≤ s} =
⋃
|S|=s

BS1 ,

where BS1 = {x ∈ CN , ‖x‖1 ≤ 1, suppx ⊂ S}. The estimate (8.8) reveals that
‖u‖X ≤ K‖u‖1, so that

BS1 ⊂ KBSX = {x ∈ CN , ‖x‖X ≤ K, suppx ⊂ S} .

It follows from Proposition 10.1 after identifying Cs with R2s that

N(BS1 , ‖ · ‖X , t) ≤ N(BSX , ‖ · ‖X , t/K) ≤ (1 + 2K/t)2s .

There are(
N

s

)
=
N(N − 1) · · · (N − s+ 1)

s!
≤ N s

s!
=
ss

s!
N s

ss
≤ esN

s

ss
=

(
eN

s

)s
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subsets of [N ] of cardinality s. Hence, by subadditivity of the covering numbers we
obtain

N(D2
s,N , ‖ · ‖X , t) ≤

∑
|S|=s

N(B1
S , ‖ · ‖X , t/

√
s) ≤ (eN/s)2s(1 + 2K

√
s/t)2s .

Together with Lemma 8.3, and noting that D2
s,N ⊂

√
2sBN

‖·‖∗1
, we get the two bounds

√
ln(N(D2

s,N , ‖ · ‖X , t)) ≤ 3K
√

2s
√

ln(10m) ln(4N)t−1, 0 < t ≤ 2K
√
s,√

ln(N(D2
s,N , ‖ · ‖X , t)) ≤

√
2s
√

ln(eN/s) + ln(1 + 2K
√
s/t)

≤
√

2s
(√

ln(eN/s) +
√

ln(1 + 2K
√
s/t)

)
, t > 0 .

Next we combine these inequalities to estimate the “Dudley integral”. We obtain, for
κ > 0, noting also that ∆(D2

s,N ) ≤ 2K
√
s by (8.9),

I :=
∫

∆(D2
s,N )

0

√
ln(N(D2

s,N , ‖ · ‖X , t)dt

≤
√

2s
∫ κ

0

√
ln(eN/s) +

√
ln
(
1 + 2K

√
st−1

)
dt

+ 3K
√

2s
√

ln(10m) ln(4N)

∫ 2K
√
s

κ
t−1dt

≤ κ
√

2s
√

ln(eN/s) + 2
√

2Ks
∫ κ/(2K

√
s)

0

√
ln(1 + u−1)du

+ 3K
√

2s
√

ln(10m) ln(4N) ln(2K
√
s/κ)

≤ κ
√

2s
(√

ln(eN/s) +
√

ln(e(1 + 2K
√
s/κ))

)
+ 3K

√
2s
√

ln(10m) ln(4N) ln(2K
√
s/κ). (8.15)

In the last step we have applied Lemma 10.3. The choice κ = K/5 yields

I ≤ K

5

√
2s
(√

ln(eN/s) +
√

ln
(
e
(
1 + 10

√
s
)))

+ 3K
√

2s
√

ln(10m) ln(4N) ln
(√

100s
)

≤ C0K
√
s
√

ln(10m) ln(4N) ln (100s) .
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where C0 =
√

2
5 + 1√

ln(100)
+ 3√

2
≈ 2.87. Hereby, we applied the inequality

√
ln(e(1 + 20

√
s)) ≤

√
ln(100s)/2 + ln(11e/10)

≤ 1√
2 ln(100)

ln(100s)
√

ln(11e/10)

≤ 1√
2 ln(100)

ln(100s)
√

ln(10m) ln(4N).

Plugging the above estimate and (8.9) into (8.7) yields

Ep ≤ 2β1/p√s
(
C0CK

√
ln(10m) ln(4N) ln (100s) + 2DK

)
R

≤ β1/pC̃2
√
s
√

ln(10m) ln(4N) ln (100s)R,

where, for p ≥ 2, (and N,m ≥ 2),

C̃ = C̃2 = 2C0C +
4D

C0C
√

ln(20) ln(8) ln(100)
≈ 82.56.

For the case p = 1 we can use the slight better constants C1 and D1 in Dudley’s
inequality (6.41) to obtain

C̃ = C̃1 = 2C0C1 +
4D1

C1C
√

ln(20) ln(8) ln(100)
≈ 94.81.

The proof of Lemma 8.2 is completed.

8.5 Completing the Proof of Theorem 8.1

We proceed similarly as in Section 7.2. Denote, for p ≥ 2,

Ep := (Eδps)1/p =

(
E||| 1
m

m∑
`=1

X`X
∗
` − Id|||ps

)1/p

.

Then (8.3) together with Lemma (8.2) yields

Epp ≤
(

2DN,m,s,p√
m

)p
E||| 1
m

m∑
`=1

X`X
∗
` |||
p/2
s

≤
(

2DN,m,s,p√
m

)p
E

(
||| 1
m

m∑
`=1

X`X
∗
` − Id|||s + 1

)p/2

, (8.16)

where
DN,m,s,p = β1/pC̃2

√
pK
√
s ln(100s)

√
ln(4N) ln(10m)
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Using the triangle inequality we conclude that

Ep ≤
2DN,m,s,p√

m

√
Ep + 1.

Proceeding in the same way as in Section 7.2, see (7.8), and setting κ =
√

17+1
4 yields

(Emin{1/2, δs}p)1/p ≤
2κDN,m,s,p√

m

= β1/p2κC̃2
√
p

√
s

m

√
s ln(100s)

√
ln(4N) ln(10m), p ≥ 2.

(8.17)

Proposition (6.5) shows that for all u ≥ 2,

P
(

min{1/2, δs} ≥ 2κe1/2C̃2

√
s

m
ln(100s)

√
ln(4N) ln(10m) u

)
< 7e−u

2/2,

where we used that β < 7. Expressed differently, δs ≤ δ ≤ 1/2 with probability at
least 1− ε provided

m ≥ Dδ−2s ln2(100s) ln(4N) ln(10m) ln(7ε−1)

with D = 2(2κe1/2C̃2)
2 ≈ 243 150.

8.6 Strengthening the Probability Estimate

In this section we slightly improve on Theorem 8.1. The next theorem immediately
implies Theorem 4.4 by noting Theorems 2.6 and 2.7. Its proof uses the deviation
inequality of Section 6.10.

Theorem 8.4. Let A be the random sampling matrix (4.4) associated to random sam-
pling in a bounded orthonormal system obeying (4.2) with some constant K ≥ 1. Let
ε ∈ (0, 1), δ ∈ (0, 1/2]. If

m

ln(10m)
≥ Cδ−2K2s ln2 (100s) ln(4N), (8.18)

m ≥ Dδ−2K2s ln(ε−1),

then with probability at least 1−ε the restricted isometry constant δs of 1√
m
A satisfies

δs ≤ δ. The constants satisfy C ≤ 50 963 and D ≤ 456.

Proof. Set E = Eδs. Using Lemma 8.2 for p = 1 and proceeding similarly as in the
preceding section we obtain

E ≤
2DN,m,s,1√

m

√
E + 1 = GN,m,s

√
E + 1
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with

GN,m,s = C ′
√

s

m
ln(100s)

√
ln(10m) ln(4N)

and C ′ = 2C̃1. It follows from (7.7) that, if

GN,m,s ≤ σδ, with σ := 0.84 (8.19)

for δ ≤ 1/2, then
E ≤ Eδs < 8δ/9.

It remains to show that δs does not deviate much from its expectation with high prob-
ability. To this end we use the deviation inequality of Theorem 6.25. By definition of
the norm |||·|||s we can write

mδs = |||
m∑
`=1

(X`X
∗
` − Id)|||s = sup

S⊂[N ],|S|≤s
‖

m∑
`=1

(XS
` (X

S
` )
∗ − IdS)‖2→2

= sup
(z,w)∈Q2

s,N

Re

(
〈
m∑
`=1

(X`X
∗
` − Id)z,w〉

)

= sup
(z,w)∈Q2,∗

s,N

m∑
`=1

Re

(〈
m∑
`=1

(X`X
∗
` − Id)z,w

〉)
,

where XS
` denotes the vector X` restricted to the entries in S, and

Q2
s,N =

⋃
S⊂[N ],|S|≤s

QS,N ,

where QS,N = {(z,w) : z,w ∈ CN , ‖z‖2 = ‖w‖2 = 1, supp z, suppw ⊂ S}.
Further, let Q2,∗

s,N denote a dense countable subset of Q2
s,N . Introducing fz,w(X) =

Re(〈(XX∗ − Id)z,w〉) we therefore have

m−1δs = sup
(z,w)∈Q2,∗

s,N

m∑
`=1

fz,w(X`).

Since EXX∗ = Id it follows that fz,w(X) = 0. Let us check the boundedness of fz,w
for (z,w) ∈ QS,N with |S| ≤ s,

|fz,w(X)| ≤ |〈(XX∗ − Id)z,w〉| ≤ ‖z‖2‖w‖2‖XS(XS)∗ − IdS‖2→2

≤ ‖XS(XS)∗ − IdS‖1→1 = max
j∈S

∑
k∈S
|ψj(t)ψk(t)− δj,k|

≤ sK2
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by the boundedness condition (4.2). Hereby, we used that the operator norm on `2 is
bounded by the one on `1 for self-adjoint matrices, see (2.3) as well as the explicit
expression (2.1) for ‖ · ‖1→1. For the variance term σ2 we estimate

E|fz,w(X`)|2 ≤ E|〈(XX∗ − Id)z,w〉|2 = Ew∗(XX− Id)z((XX∗ − Id)z)∗w

≤ ‖w‖2
2E‖(XX− Id)z((XX∗ − Id)z)∗‖2→2 = E‖(XX∗ − Id)z‖2

2

= E
[
‖X‖2

2|〈X, z〉|2
]
− 2E|〈X, z〉|2 + 1.

Hereby we used that ‖uu∗‖2→2 = ‖u‖2
2. Observe that ‖X‖2 ≤

√
sK by the Cauchy

Schwarz inequality and the boundedness condition (4.2). Furthermore,

E|〈X, z〉|2 =
∑
j,k∈S

zjzkE[ψk(t)ψj(t)] = ‖z‖2
2 = 1

by orthogonality (4.1). Hence,

E|fz,w(X`)|2 ≤ E
[
‖X‖2

2|〈X, z〉|2
]
− 2E|〈X, z〉|2 + 1 ≤ (sK2 − 2)E|〈X, z〉|2 + 1

= sK2 − 1 < sK2.

Now we are prepared to apply Theorem 6.25. Under condition (8.19) it gives

P(δs ≥ δ) ≤ P(δs ≥ Eδs + δ/9)

= P(|||
m∑
`=1

(X`X
∗
` − Id)|||s ≥ E|||

m∑
`=1

(X`X
∗
` − Id)|||s + δm/9)

≤ exp
(
− (δm/9)2

2msK2 + 4(8δ/9)m+ 2(δm/9)/3

)
= exp

(
−mδ

2

sK2
1

92(2 + 4 8δ
9sK2 +

2δ
3·9sK2 )

)
≤ exp

(
−mδ

2

sK2
1

162 + 9 · 32 + 6

)

= exp
(
− mδ2

456sK2

)
.

In the third line, it was used a second time that E|||
∑m

`=1(X`X
∗
` − Id|||s = mEδs ≤

m8δ/9. Also, note that δ/(sK2) < 1. It follows that δs ≤ δ with probability at least
1− ε provided

m ≥ 456 δ−2K2s ln(ε−1).

Taking also (8.19) into account, we proved that δs ≤ δ with probability at least 1 − ε
provided that m satisfies the two conditions

m

ln(10m)
≥ Cδ−2K2s ln2 (100s) ln(4N),

m ≥ 456 δ−2K2s ln(ε−1).

with C = σ−2(C ′)2 = 4σ−2C̃2
1 < 50 963.
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8.7 Notes

The estimates of the restricted isometry constants are somewhat related to the Λ1-
set problem [11, 12], where one aims at selecting a subset of characters (or bounded
orthonormal functions), such that all their linear combinations have comparable L1
and L2-norms, up to a logarithmic factor, see [124, 66]. The paper [66] considers
also the more involved problem of providing a Kashin splitting of a set of bounded
orthonormal functions. It is interesting to note that the analysis in [66] also uses the
norm ‖ · ‖X introduced in (8.6).

9 Proof of Recovery Theorem for Partial Circulant Matrices

The proof of Theorem 5.1 is based on Proposition 7.2, which requires to estimate the
coherence of A = 1√

m
ΦΘ(b) and to provide a probabilistic estimate of ‖A∗SAS −

Id‖2→2, where S = supp(x). We start with the coherence estimate.

9.1 Coherence

The proof of the following coherence bound uses similar ideas as the one of Theorem
5.1 in [96].

Proposition 9.1. Let µ be the coherence of the partial random circulant matrix A =
1√
m

ΦΘ(εεε) ∈ Rm×N , where εεε is a Rademacher sequence and Θ ⊂ [N ] has cardinality
m. For convenience assume that m is divisible by three. Then with probability at least
1− ε the coherence satisfies

µ ≤
√

6 log(3N2/ε)

m
. (9.1)

Proof. The inner product between two different columns a`, ak, ` 6= k, of A can be
written

〈a`,ak〉 =
1
m

∑
j∈Θ

ε`−jεk−j ,

where here and in the following `− j and k− j is understood modulo N . The random
variables ε̃j = ε`−jεk−j , j ∈ Θ, are again Rademacher variables by independence of
the εj and since ` 6= k. We would like to apply Hoeffding’s inequality, but unfortu-
nately the ε̃j , j ∈ Θ, are not independent in general. Nevertheless, we claim that we
can always partition the ε̃j , j ∈ Θ into three sets Θ1,Θ2,Θ3 of cardinality m/3, such
that for each Θi the corresponding family {ε̃j , j ∈ Θi} forms a sequence of indepen-
dent Rademacher variables. To this end consider the sets Gj = {`− j, k − j}, j ∈ Θ,
and let

H = {j ∈ Θ : ∃j′ ∈ Θ such that Gj ∩Gj′ 6= ∅}.
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The random variables ε̃j , j ∈ H , are not independent. In order to construct the desired
splitting into three sets, consider the graph with vertices j ∈ Θ. The graph contains an
edge between j and j′ if and only if Gj ∩Gj′ 6= ∅. Since any r ∈ Θ can be contained
in at most two setsGj (once as `−j and once as k−j), this graph has degree at most 2.
The independence problems are caused by the connected components of the graph. In
order to start with the construction of the three sets Θ1,Θ2,Θ3 we choose a connected
component of the graph, and then one of its endpoints (that is, a vertex that is only
connected to one other vertex). If the connected component is a cycle then we choose
an arbitrary vertex as starting point. We then move along the connected component,
and add the starting vertex j to Θ1, the second vertex to Θ2, the third to Θ3, the fourth
to Θ1 etc. If the connected component is actually a cycle, and if the last vertex was
to be added to Θ1, then we add it to Θ2 instead. It is easily seen that after dealing
with the first connected component of the graph by this process, the random variables
{ε̃j , j ∈ Θi}, are independent for each i = 1, 2, 3. All random variables ε̃j with j
not being a member of the first connected component are independent of the already
treated ones. So we may repeat this process with the next connected component in the
same way, starting now with a Θi satisfying |Θi| ≤ |Θj |, j ∈ {1, 2, 3} \ {i}. After
going through all connected components in this way, we add each element of Θ \ H
arbitrarily to one of the Θi, such that at the end |Θi| = m/3 for i = 1, 2, 3. By
construction, the random variables ε̃j , j ∈ Θi, are independent for each i = 1, 2, 3. By
the triangle inequality, the union bound, and Hoeffding’s inequality (6.16) we obtain

P(|〈a`,ak〉| ≥ u) ≤
3∑
i=1

P

 1
m
|
∑
j∈Θi

ε̃j | ≥ u/3


=

3∑
i=1

P

|∑
j∈Θi

ε̃j | ≥
√
|Θi|

um

3
√
|Θi|

 ≤ 2
3∑
i=1

exp
(
− u

2m2

18|Θi|

)

≤ 6 exp
(
−u

2m

6

)
. (9.2)

Taking the union bound over all N(N − 1)/2 possible pairs {`, k} ⊂ [N ] we get the
coherence bound

P(µ ≥ u) ≤ 3N(N − 1)e−u
2m/6.

This implies that the coherence satisfies µ ≤ u with probability at least 1− ε provided

m ≥ 6
u2 ln(3N2/ε).

Yet another reformulation is the statement of the proposition.

Note that (9.1) is a slight improvement with respect to Proposition III.2 in [105]. It
implies a non-optimal estimate for the restricted isometry constants of A.
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Corollary 9.2. The restricted isometry constant of the renormalized partial random
circulant matrix A ∈ Rm×N (with m divisible by three) satisfies δs ≤ δ with proba-
bility exceeding 1− ε provided

m ≥ 6δ−2s2 ln(3N2/ε).

Proof. Combine Proposition 9.1 with Proposition 2.10(c).

9.2 Conditioning of Submatrices

Our key estimate, which will be presented next, is mainly based on the noncommuta-
tive Khintchine inequality for Rademacher chaos, Theorem 6.22.

Theorem 9.3. Let Θ, S ⊂ [N ] with |Θ| = m and |S| = s ∈ N. Let εεε ∈ RN be
a Rademacher sequence. Denote A = 1√

m
ΦΘ(εεε) and assume, for ε ∈ (0, 1/2], δ ∈

(0, 1),
m ≥ 16δ−2s ln2(25/2s2/ε), (9.3)

Then with probability at least 1− ε it holds ‖A∗SAS − Id‖2→2 ≤ δ.

Proof. Let us denote HS = A∗SAS− IdS . We introduce the elementary shift operators
on RN ,

(Tjx)` = x`−j mod N , j = 1, . . . , N.

Further, denote by RΘ : CN → CΘ the operator that restricts a vector to the indices in
Θ. Then we can write

Φ
Θ(εεε) = RΘ

N∑
j=1

εjTj . (9.4)

We introduce R∗S : CS → CN to be the extension operator that fills up a vector in CS
with zeros outside S. Observe that

A∗SAS =
1
m

N∑
j=1

εjRST
∗
j R
∗
Θ

N∑
k=1

εkRΘTkR
∗
S

=
1
m

N∑
j,k=1
j 6=k

εjεkRST
∗
j PΘTkR

∗
S +

1
m
RS

 N∑
j=1

T ∗j PΘTj

R∗S ,

where PΘ = R∗
Θ
RΘ denotes the projection operator which cancels all components of

a vector outside Θ. It is straightforward to check that

N∑
j=1

T ∗j PΘTj = mIdN , (9.5)
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where IdN is the identity on CN . Since RSR∗S = IdS we obtain

HS =
1
m

∑
j 6=k

εjεkRST
∗
j PΘTkR

∗
S =

1
m

∑
j 6=k

εjεkBj,k

with Bj,k = RST
∗
j PΘTkR

∗
S . Our goal is to apply the noncommutative Khintchine in-

equality for decoupled Rademacher chaos, Theorem 6.22. To this end we first observe
that by (9.5)

N∑
j=1

B∗j,kBj,` = RST
∗
kPΘ

 N∑
j=1

TjPST
∗
j

PΘT`R
∗
S = sRST

∗
kPΘT`R

∗
S .

Using (9.5) once more this yields

N∑
j,k=1

B∗j,kBj,k = sRS

(
N∑
k=1

T ∗kPΘTk

)
R∗S = smRSR

∗
S = smIdS .

Since the entries of all matrices Bj,k are non-negative we get

‖(
∑
j 6=k

B∗j,kBj,k)
1/2‖2n

S2n
= Tr

∑
j 6=k

B∗j,kBj,k

n

≤ Tr

∑
j,k

B∗j,kBj,k

n

= Tr (smIdS)
n = sn+1mn.

Furthermore, since B∗j,k = Bk,j we have
∑

j 6=k B
∗
j,kBj,k =

∑
j 6=k Bj,kB

∗
j,k. Let F

denote the block matrix F = (B̃j,k)j,k where B̃j,k = Bj,k if j 6= k and B̃j,j = 0.
Expressing the product (F ∗F )n as multiple sums over the block-components B̃j,k and
applying the trace yields

‖F‖2n
S2n

= Tr [(F ∗F )n]

= Tr

 N∑
j1,j2,...,jn=1
k1,k2,...,kn=1

B̃∗j1,k1
B̃j1,k2B̃

∗
j2,k2

B̃j2,k3 · · · B̃
∗
jn,knB̃jn,k1


≤ Tr

N∑
k1,...,kn=1

 N∑
j1=1

B∗j1,k1
Bj1,k2 · · ·

N∑
jn=1

B∗jn,knBjn,k1


= sn Tr

N∑
k1,...,kn=1

[
RST

∗
k1
PΘTk2R

∗
SRST

∗
k2
PΘTk3R

∗
S · · ·RST ∗knPΘTk1R

∗
S

]
,
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where we applied also (9.5) once more. In the inequality step we used again that the
entries of all matrices are non-negative. Using the cyclicity of the trace and applying
(9.5) another time, together with the fact that Tk = T ∗−k mod N , gives

‖F‖2n
S2n
≤ sn Tr

 N∑
k1=1

Tk1PST
∗
k1
PΘ

N∑
k2=1

Tk2PST
∗
k2
PΘ · · ·

N∑
kn=1

TknPST
∗
knPΘ


= s2n Tr[PΘ] = ms2n.

Next, let F̃ denote the block matrix F̃ = (B̃∗j,k)j,k. Similarly as above we get

‖F̃‖2n
S2n

= Tr

 N∑
j1,j2,...,jn=1
k1,k2,...,kn=1

B̃j1,k1B̃
∗
j1,k2

B̃j2,k2B̃
∗
j2,k3
· · · B̃jn,knB̃∗jn,k1



≤ Tr

 N∑
j1,j2,...,jn=1
k1,k2,...,kn=1

RST
∗
j1
PΘTk1PST

∗
k2
PΘTj1PS · · ·PST

∗
jnPΘTknPST

∗
k1
PΘTjnR

∗
S

 .
Using that T ∗kPΘ = PΘ−kTk and TjT ∗k = T ∗kTj we further obtain

‖F̃‖2n
S2n
≤ Tr

 N∑
j1,j2,...,jn=1
k1,k2,...,kn=1

RSTk1T
∗
j1
PΘ−k1PSPΘ−k2Tj1T

∗
k2
PS

· · ·PSTknT ∗jnPΘ−knPSTΘ−k1TjnT
∗
k1
R∗S
]

= Tr

 N∑
k1=1

|(Θ− k1) ∩ S ∩ (Θ− k2)|T ∗k1
PSTk1

· · ·
N∑

kn=1

|(Θ− kn) ∩ S ∩ (Θ− k1)|T ∗knPSTkn

 .
In the last step we have used that PΘ−k1PSPΘ−k2 = P(Θ−k1)∩S∩(Θ−k2) together with
(9.5), and in addition the cyclicity of the trace. Clearly,

|(Θ− k1) ∩ S ∩ (Θ− k2)| ≤ |(Θ− k1) ∩ S| ≤ |S| = s,
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and furthermore, |(Θ − k1) ∩ S| is non-zero if and only if k1 ∈ Θ − S. This implies
that
N∑
k1=1

|(Θ− k1) ∩ S ∩ (Θ− k2)|T ∗k1
PSTk1 ≤

N∑
k1=1

|(Θ− k1) ∩ S|PS−k1 ≤ s
2PS+S−Θ,

where the inequalities are understood entrywise. Combining the previous estimates
yields

‖F̃‖2n
S2n
≤ s2n Tr[PS+S−Θ] = s2n|S + S −Θ| ≤ s2ns2m.

Since by assumption (9.3) s ≤ m it follows that

max

‖(∑
j 6=k

B∗j,kBj,k)
1/2‖2n

S2n
, ‖(
∑
j 6=k

Bj,kB
∗
j,k)

1/2‖2n
S2n
, ‖F‖2n

S2n
, ‖F̃‖2n

S2n


≤ mnsn+2.

Using ‖HS‖2→2 = ‖HS‖S∞ ≤ ‖HS‖Sp and applying the decoupling Lemma 6.21
and the Khintchine inequality in Theorem 6.22 we obtain for an integer n

E‖HS‖2n
2→2 = E‖A∗SAS − IdS‖2n

2→2 ≤ E‖A∗SAS − IdS‖2n
S2n

=
1
m2nE‖

∑
j 6=k

εjεkBj,k‖2n
S2n
≤ 42n

m2nE‖
∑
j 6=k

εjε
′
kBj,k‖2n

S2n
≤ 2 · 42n

(
(2n)!
2nn!

)2 sn+2

mn
.

Here εεε′ denotes a Rademacher sequence, inpendent of εεε. Let p = 2n + 2θ = (1 −
θ)2n + θ(2n + 2) with θ ∈ [0, 1]. Applying Hölder’s inequality, see also (6.12), and
the series of inequalities in (6.13) yields

E‖HS‖2n+2θ
2→2 ≤ (E‖HS‖2n

2→2)
1−θ(E‖HS‖2n+2

2→2 )θ

≤ 2 · 42n+2θ

((
(2n)!
2nn!

)1−θ ( (2(n+ 1))!
2n+1(n+ 1)!

)θ)2
sn+θ+2

mn+θ

≤ 2 · 23/242n+2θ(2/e)2n+2θ(n+ θ)2n+2θ s
n+θ+2

mn+θ
.

In other words, for p ≥ 2,(
E‖HS‖p2→2

)1/p ≤ 4e−1
√

s

m
(25/2s2)1/pp.

An application of Proposition 6.5 yields

P
(
‖HS‖2→2 ≥ 4

√
s

m
u

)
≤ 25/2s2e−u (9.6)

for all u ≥ 2. Note that s ≥ 1 implies 25/2s2e−u ≥ 1/2 for u < 2. Therefore,
setting the right hand side equal ε ≤ 1/2 yields u ≥ 2. In particular, ‖HS‖ ≤ δ with
probability at least 1− ε provided (9.3) holds true.
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9.3 Completing the Proof

Let us now complete the proof of Theorem 5.1. Set

α =

√
st

1− δ
(9.7)

for some t, δ ∈ (0, 1) to be chosen later such that α < 1/
√

2. According to Proposi-
tions 7.1 and 7.2, the probability that recovery fails is bounded from above by

23/4(N − s)e−α−2/2 + P(‖A∗SAS − Id‖2→2 > δ) + P(µ > t). (9.8)

By Theorem 9.3 we have P(‖A∗SAS − Id‖2→2 > δ) ≤ ε/3 provided

m ≥ 16δ−2s ln2(3 · 25/2s2/ε), (9.9)

and Proposition 9.1 yields P(µ > t) ≤ ε/3 if

m ≥ 6t−2 ln(9N2/ε). (9.10)

The first term of (9.8) equals ε/3 for

α =
1√

2 ln(23/4 · 3(N − s)/ε)
<

1√
2
.

Solving for t in (9.7) gives

t =
1− δ√

2s ln(23/4 · 3(N − s)/ε)
,

and plugging into (9.10) yields the condition

m ≥ 12s
(1− δ)2 ln(9N2/ε) ln(23/4 · 3(N − s)/ε). (9.11)

Choose δ = 8/15. Then (5.1) implies both (9.9) and (9.11).

10 Appendix
Here we show some lemmas that are needed in some of the proofs.

10.1 Covering Numbers for the Unit Ball

Proposition 10.1. Let ‖ · ‖ be some semi-norm on Rn and let U be a subset of the unit
ball B = {x ∈ Rn, ‖x‖ ≤ 1}. Then the covering numbers satisfy, for t > 0,

N(U, ‖ · ‖, t) ≤
(

1 +
2
t

)n
. (10.1)



Compressive Sensing and Structured Random Matrices 85

Proof. If ‖ · ‖ fails to be a norm, we consider the quotient space X = Rn/N where
N = {x ∈ Rn, ‖x‖ = 0} is the kernel of ‖ · ‖. Then ‖ · ‖ is a norm on X , and the
latter is isomorphic to Rn−d, where d is the dimension of N . Hence, we may assume
without loss of generality that ‖ · ‖ is actually a norm.

Let {x1, . . . ,xN} ⊂ U be a maximal t packing of U , that is, a maximal set satisfy-
ing d(xi,xj) > t for all i 6= j. Then the ballsB(x`, t/2) = {x ∈ Rn, ‖x−x`‖ ≤ t/2}
do not intersect and they are contained in the scaled unit ball (1+t/2)B. By comparing
volumes (that is, Lebesgue measures) of the involved balls we get

vol

(
N⋃
`=1

B(x`, t/2)

)
= N vol ((t/2)B) ≤ vol ((1 + t/2)B) .

(Note that vol (B) <∞ since ‖ · ‖ is a norm.) On Rn the volume satisfies vol (tB) =
tn vol (B), hence, N(t/2)n vol (B) ≤ (1 + t/2)n vol (B) or N ≤ (1 + 2/t)n. To
conclude the proof, observe that the balls B(x`, t), ` = 1, . . . , N form a covering of
U . Indeed, if there were an x ∈ U that is not covered, then d(x`,x) > t, so that x
could be added to the packing. But this is a contradiction to the maximality of the
packing.

10.2 Integral Estimates

This section contains estimates for two integrals.

Lemma 10.2. For u > 0 it holds∫ ∞
u

e−t
2/2dt ≤ min

{√
π

2
,

1
u

}
exp(−u2/2).

Proof. A change of variables yields∫ ∞
u

e−t
2/2dt =

∫ ∞
0

e−
(t+u)2

2 dt = e−u
2/2
∫ ∞

0
e−tue−t

2/2dt.

On the one hand, using that e−tu ≤ 1 for t, u ≥ 0, we get∫ ∞
u

e−t
2/2dt ≤ e−u2/2

∫ ∞
0

e−t
2/2dt =

√
π

2
e−u

2/2.

On the other hand, using that e−t
2 ≤ 1 for t ≥ 0 yields∫ ∞

u
e−t

2/2dt ≤ e−u2/2
∫ ∞

0
e−tudt =

1
u
e−u

2/2. (10.2)

This shows the desired estimate.
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Lemma 10.3. For α > 0 it holds∫ α

0

√
ln(1 + t−1)dt ≤ α

√
ln(e(1 + α−1)). (10.3)

Proof. First apply the Cauchy-Schwarz inequality to obtain∫ α

0

√
ln(1 + t−1)dt ≤

√∫ α

0
1dt
∫ α

0
ln(1 + t−1)dt.

A change of variables and integration by parts yields∫ α

0
ln(1 + t−1)dt =

∫ ∞
α−1

u−2 ln(1 + u)du

= −u−1 ln(1 + u)
∣∣∞
α−1 +

∫ ∞
α−1

u−1 1
1 + u

du ≤ α ln(1 + α−1) +

∫ ∞
α−1

1
u2du

= α ln(1 + α−1) + α.

Combining the above estimates concludes the proof.
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