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Abstract. The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of

linear measurements arises in a number of areas such as quantum state tomography, machine learning and

the PhaseLift approach to phaseless reconstruction problems. In order to derive rigorous recovery results, the
measurement map is usually modeled probabilistically and convex optimization approaches including nuclear

norm minimization are often used as recovery method. In this article, we derive sufficient conditions on the

minimal amount of measurements that ensure recovery via convex optimization. We establish our results
via certain properties of the null space of the measurement map. In the setting where the measurements are

realized as Frobenius inner products with independent standard Gaussian random matrices we show that

m > 10r(n1 + n2) measurements are enough to uniformly and stably recover an n1 × n2 matrix of rank
at most r. Stability is meant both with respect to passing from exactly rank-r matrices to approximately

rank-r matrices and with respect to adding noise on the measurements. We then significantly generalize this
result by only requiring independent mean-zero, variance one entries with four finite moments at the cost of

replacing 10 by some universal constant. We also study the particular case of recovering Hermitian rank-r

matrices from measurement matrices proportional to rank-one projectors. For r = 1, such a problem reduces
to the PhaseLift approach to phaseless recovery, while the case of higher rank is relevant for quantum state

tomography. For m ≥ Crn rank-one projective measurements onto independent standard Gaussian vectors,

we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-r matrices with
high probability. Subsequently, we partially de-randomize this result by establishing an analogous statement

for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher

sampling rate m ≥ Crn logn. Complex projective t-designs are discrete sets of vectors whose uniform
distribution reproduces the first t moments of the uniform distribution on the sphere. Moreover, if the

Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm

minimization approach may be replaced by the simpler optimization program of minimizing the `2-norm
of the residual subject to the positive semidefinite constraint. This has the additional advantage that no

estimate of the noise level is required a priori. We discuss applications of such a result in quantum physics
and the phase retrieval problem. Apart from the case of independent Gaussian measurements, the analysis

exploits Mendelson’s small ball method.
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1. Introduction

In recent years, the recovery of objects (signals, images, matrices, quantum states etc.) from incomplete
linear measurements has gained significant interest. While standard compressive sensing considers the
reconstruction of (approximately) sparse vectors [26], we study extensions to the recovery of (approximately)
low rank matrices from a small number of random measurements. This problem arises in a number of areas
such as quantum tomography [30, 24, 6], signal processing [2], recommender systems [16, 11] and phaseless
recovery [12, 10, 28, 29]. On the one hand, we consider both random measurement maps generated by
independent random matrices with independent entries and on the other hand, measurements with respect
to independent rank one measurements. We derive bounds for the number of required measurements in
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terms of the matrix dimensions and the rank of the matrix that guarantee successful recovery via nuclear
norm minimization. Our results are uniform and stable with respect to noise on the measurements and with
respect to passing to approximately rank-r matrices. For rank-one measurements the latter stability result
is new.

Let us formally describe our setup. We consider measurements of an (approximately) low-rank matrix
X ∈ Cn1×n2 of the form b = A(X), where the linear measurement map A is given as

A : Cn1×n2 → Cm, Z 7→
m∑
j=1

tr(ZA∗j )ej . (1)

Here, e1, . . . , em denote the standard basis vectors in Cm and A1, . . . , Am ∈ Cn1×n2 are called measurement
matrices. A prominent approach [22, 56] for recovering the matrix X from b = A(X) consists in computing
the minimizer of the convex optimization problem

min
Z∈Cn1×n2

‖Z‖∗ subject to A(Z) = b, (2)

where ‖Z‖∗ = ‖Z‖1 =
∑n
j=1 σj(Z) denotes the nuclear norm with σj(Z) being the singular values of

Z ∈ Cn1×n2 and n = min{n1, n2}. Efficient optimization methods exist for this problem [55, 8]. In practice
the measurements are often perturbed by noise, i.e.,

b = A(X) + w, (3)

where w ∈ Cm is a vector of perturbations. In this case, we replace (2) by the noise constrained nuclear
norm minimization problem

min
Z∈Cn1×n2

‖Z‖∗ subject to ‖A(Z)− b‖`2 ≤ η, (4)

where η corresponds to a known estimate of the noise level, i.e., ‖w‖`2 ≤ η with ‖x‖`p = (
∑
j |xj |p)1/p being

the usual `p-norm. In some cases it is known a priori that the matrix X of interest is both Hermitian and
positive semidefinite (X < 0). Then one may replace (4) by the optimization problem

min
Z<0

tr(Z) subject to ‖A(Z)− b‖`2 ≤ η. (5)

However, as we will see, the simpler least squares problem

min
Z<0
‖A(Z)− b‖`2 (6)

works equally well or even better in terms of recovery under certain natural conditions. Apart from simplicity
and computational efficiency it has the additional advantage that no estimate η of the noise level is required.
We note that other efficient recovery methods exist as well [46, 25, 64], but we will not go into details here.

A question of central interest concerns the minimal number m of required measurements that guarantees
exact (in the noiseless case) or approximate recovery. While it is very hard to study this question for
deterministic measurement maps A, several results are available for certain models of random maps. We
will study several scenarios which all have in common that the matrices A1, . . . , Am ∈ Rn1×n2 in (1) are
independent draws of a random matrix Φ = (Xij)ij . We first consider the real-valued case, where all entries
Xij are independent and then move to a complex-valued scenario where Φ = aa∗ ∈ Cn×n is a rank one
matrix generated by a random vector a ∈ Cn. For the latter scenario we consider a being a complex
Gaussian random vector, or a being randomly drawn from a so-called (approximate) t-design. This last
setup has implications for quantum tomography and this part of the article can be seen as a continuation of
the investigations in [43]. Next, we describe the present state of the art of of the various setups and present
our results.
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1.1. Robust recovery from measurement matrices with independent entries. We call A a Gaussian
measurement map if the matrices A1, . . . , Am ∈ Rn1×n2 in (1) are independent realizations of Gaussian
random matrices, i.e., all entries of the Aj are independent standard Gaussian random variables. More
generally, A is called subgaussian, if the entries of all the Aj are independent, mean zero, variance one,
subgaussian random variables, where we recall that a random variable ξ is called subgaussian if P(|ξ| ≥ t) ≤
2e−ct

2

for some constant c > 0. If

m ≥ Cr(n1 + n2) (7)

for some universal constant C > 0, then with probability at least 1− e−cm any rank r matrix X ∈ Cn1×n2 is
reconstructed exactly from subgaussian measurements b = A(X) via nuclear norm minimization (2) [56, 15].
Moreover, if noisy measurements b = A(X) + w with ‖w‖2 ≤ η of an arbitrary matrix X ∈ Cn1×n2 are
taken, then the minimizer X] of (4) satisfies, again with probability at least 1− e−cm,

‖X −X]‖F ≤
C ′√
r

inf
Z:rank(Z)≤r

‖X − Z‖∗ +
C ′′η√
m
, (8)

where ‖A‖F =
√

tr(A∗A) denotes the Frobenius norm, tr being the trace. Note that

inf
Z:rank(Z)≤r

‖X − Z‖∗ =

n∑
j=r+1

σj(X) = ‖Xc‖∗,

where the singular values σj(X) are arranged in decreasing order and forX with singular value decomposition∑n
j=1 σj(X)ujv

∗
j the matrix Xc =

∑n
j=r+1 σj(X)ujv

∗
j . The error estimate (8) means that reconstruction is

robust with respect to noise on the measurements and stable with respect to passing to only approximately
low rank matrices. These statements are uniform in the sense that they hold for all matricesX simultaneously
once the matrix A has been drawn. They have been established in [15, 52, 56] via the rank restricted isometry
property (rank-RIP), see e.g. [26] for the standard RIP and its implications.

While the RIP is a standard tool by now, recovery of low rank matrices via nuclear norm minimization
is characterized by the so-called null space property [51, 58, 57, 26, 25], see below for details. By using this
concept, we are able to significantly relax from subgaussian distributions of the entries to distributions with
only four finite moments.

Theorem 1. Let A : Rn1×n2 → Rm, A(X) =
∑n
j=1 tr(XAj)ej, where the Aj are independent copies of a

random matrix Φ = (Xij)i,j with independent mean zero entries obeying EX2
ij = 1 and

EX4
ij ≤ C4 for all i, j and some constant C4.

Fix 1 ≤ r ≤ min{n1, n2} and 0 < ρ < 1 and set

m ≥ c1ρ−2r(n1 + n2).

Then with probability at least 1 − e−c2m, for any X ∈ Rn1×n2 the solution X] of (4) with b = A(X) + w,
‖w‖`2 ≤ η, approximates X with error

‖X −X]‖F ≤
2(1 + ρ)2

(1− ρ)
√
r
‖Xc‖∗ +

(3 + ρ)

(1− ρ)c3
· η√

m
. (9)

Here c1, c2, c3 are positive constants that only depend on C4.

In the special case, when Φ has independent standard Gaussian entries, we apply Gordon’s escape through
a mesh theorem [27] in order to obtain an explicit constant in the estimate for the number of measurements,
see Theorem 19. Roughly speaking, with high probability, any n1 × n2 matrix of rank r is stably recovered
from m > 10r(n1 + n2) Gaussian measurements. We remark that the explicit bound m > 3r(n1 + n2) has
been derived in [18], (see also [49] and [4, Section 4.4] for a phase transition result in this context), but
this bound considers nonuiform recovery, i.e. recovery of a fixed low rank matrix with a random draw of a
Gaussian measurement matrix with high probability. Moreover, no stability under passing to approximately
low rank matrices has been considered there. Our recovery result is therefore stronger than the one in [18],
but requires more measurements.
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1.2. Robust recovery of Hermitian matrices from rank-one projective measurements. Let us
now focus on the particular case of recovering complex Hermitian n× n matrices from noisy measurements
of the form (3), where the measurement matrices are proportional to rank-one projectors, i.e.,

Aj = aja
∗
j ∈ Hn (10)

where aj ∈ Cn. Here, Hn denotes the space of complex Hermitian n×n matrices, which has real dimension
n2. Measurements of that type occur naturally in convex relaxations of the phase retrieval problem [12, 10,
28, 29]. In fact, suppose phaseless measurements of the form bj = |〈x, aj〉|2 of a vector x ∈ Cn are given.
Then we can rewrite bj = tr(xx∗aja

∗
j ) = tr(XAj) as linear measurements of the rank one matrix X = xx∗.

We will expand on this aspect below in Section 2.1. Rank one measurements of low rank matrices feature
prominently in quantum state tomography as well, see also below.

The prior information that the desired matrix is Hermitian limits the search space in the convex opti-
mization problem (4) and it simplifies to

min
Z∈Hn

‖Z‖∗ subject to ‖A(Z)− b‖`2 ≤ η. (11)

Arguably, the most generic measurement matrices of the form (10) result from choosing each aj to be an
independent complex standard Gaussian vector. For the particular case of phase retrieval — i.e., where the
matrix of interest X = xx∗ is itself proportional to a rank-one projector — uniform recovery guarantees by
means of (11) have been established for m = Cn independent measurements in [13]. Recently, this result
has been generalized to recovery of any Hermitian rank r-matrix by means of m = Crn such measurements
in [43]. Our refined analysis of the null space property enables us to further strengthen this result by
additionally guaranteeing stability under passing to approximately low rank matrices:

Theorem 2. Consider the measurement process described in (1) with m measurement matrices of the form
(10),where each ai is an independent complex standard Gaussian vector. Fix r ≤ n, 0 < ρ < 1 and suppose
that

m ≥ C1ρ
−2nr.

Then with probability at least 1 − e−C2m it holds that for any X ∈ Hn, any solution X] to the convex
optimization problem (11) with noisy measurements b = A(X) + ε, where ‖ε‖`2 ≤ η, obeys

‖X −X]‖F ≤
2(1 + ρ)2

(1− ρ)
√
r
‖Xc‖∗ +

(3 + ρ)C3

(1− ρ)
· η√

m
. (12)

Here, C1, C2 and C3 denote positive universal constants. (In particular, for η = 0 and X of rank at most r
one has exact reconstruction.)

In addition to the Gaussian measurement setting, we also consider measurement matrices that arise
from taking the outer product of elements chosen independently from an approximate complex projective
4-design. Complex projective t-designs are finite sets of unit vectors in Cn that exhibit a very particular
structure. Roughly speaking, sampling independently from a complex projective t-design, reproduces the
first t moments of sampling uniformly from the complex unit sphere. Likewise, approximate complex pro-
jective t-designs obey such a structural requirement approximately — for a precise introduction, we refer
to Definition 27 below. As a consequence, they serve as a general purpose tool for partially de-randomizing
results that initially required Gaussian random vectors [42, 28]. This is also the case here and employing
complex projective 4-designs allows for partially de-randomizing Theorem 2 at the cost of a slightly larger
sampling rate. Here, we content ourselves with presenting and shortened version of this result and refer the
reader to Theorem 28 where precise requirements on the approximate design are stated.

Theorem 3. Let r, ρ be as in Theorem 2 and suppose that each measurement matrix Aj is of the form
(10), where aj, j = 1, . . . ,m, are chosen independently from a (sufficiently accurate approximate) complex
projective 4-design. If

m ≥ C4ρ
−2nr log n,

then the assertions of Theorem 2 remains valid, possibly with different universal constants.

Note that Theorems 1, 2, 3 resp. Theorem 19 below and their proofs are presented in condensed versions
in the conference papers [34] resp. [35].
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1.3. Recovery of positive semidefinite matrices reduces to a feasibility problem. Imposing ad-
ditional structure on the matrices to be recovered can further strengthen low rank recovery guarantees.
Positive semidefiniteness is one such structural prerequisite that, for instance, occurs naturally in the phase
retrieval problem, quantum mechanics and kernel-based learning methods [61]. Motivated by the former,
Demanet and Hand [21] pointed out that minimizing the nuclear norm — in the sense of algorithm (4) —
can be superfluous for recovering positive semidefinite matrices of rank one. Instead, they propose to reduce
the recovery algorithm to a mere feasibility problem and proved that such a reduction works w.h.p. for
rank one projective measurements onto Gaussian vectors (the measurement scenario considered in Theorem
2). Subsequently, this recovery guarantee was strengthened by Candès and Li [13]. Here, we go one step
further and generalize these results to cover uniform and stable recovery of positive semidefinite matrices
of arbitrary rank. Relying on ideas presented in [36], we establish the following statement. (We refer to
Section 1.4 for the definition of the Schatten p-norm ‖ · ‖p used in (13).)

Theorem 4. Fix r ≤ n and consider the measurement processes introduced in Theorem 2 (Gaussian vectors),
or Theorem 3 (complex projective 4-designs), respectively. Assume that m ≥ C1nr (in the Gaussian case)
resp. m ≥ C2snr log n (in the design case), where s ≥ 1 is arbitrary. Then, for 1 ≤ p ≤ 2 and any two
positive semidefinite matrices X,Z ∈ Hn,

‖Z −X‖p ≤
C3

r1−1/p
‖Xc‖1 +

C4r
1/p−1/2
√
m

‖A(Z)−A(X)‖`2 (13)

holds universally with probability exceeding 1− e−C5m for the Gaussian case and 1− e−sr in the design case.
Here, C1, . . . , C5 denote suitable positive universal constants.

This statement renders nuclear norm minimization in the sense of (4) redundant and allows for a
regularization-free estimation. Moreover, knowledge of a noise bound ‖w‖`2 ≤ η for the measurement
process (3) is no longer required, since we can estimate any X < 0 by solving a least squares problem of the
form (6), i.e.,

min
Z∈Hn

‖A(Z)− b‖`2 subject to Z < 0. (14)

Theorem 4 then in particular assures that the minimizer Z] of this optimization program obeys

‖Z] −X‖F ≤
C3√
r
‖Xc‖1 +

C4√
m

∥∥A(Z])−A(X)
∥∥
`2
≤ C3√

r
‖Xc‖1 +

2C4√
m
‖w‖`2 ,

where w ∈ Rm represents additive noise in the measurement process. It is worthwhile to mention that if
a matrix X of interest has rank at most r and no noise is present in the sampling process (3), Theorem 4
assures

{Z : Z < 0, A(Z) = A(X)} = {X} (15)

with high probability. Hence, recovering X from noiseless measurements indeed reduces to a feasibility
problem.

We emphasize that Theorem 4 is only established for rank one projective measurements. For the other
measurement ensembles considered here — matrices with independent entries — one cannot expect such
a statement to hold. This pessimistic prediction is due to negative results recently established in [63,
Proposition 2]. Focusing on real matrices, the authors show that if the measurement matrices Aj are chosen
independently from a Gaussian orthogonal ensemble, then estimating any symmetric, positive semidefinite
matrix X via (14) becomes ill-posed, unless the number of measurements obeys

m ≥ 1

4
n(n+ 1) = O(n2).

Finally, we want to point out that the fruitfulness of plain least squares regression for recovering positive
semidefinite matrices was already pointed out and explored by Slawski, Li and Hein [63]. However, there is
a crucial difference in the mindset of [63] and the results presented here. The main result [63, Theorem 2]
of Slawski et al. assumes a fixed signal X < 0 of interest and provides bounds for the reconstruction error
in terms of geometric properties of both X and the measurement ensemble. Conversely, Theorem 4 assumes
fixed measurements (e.g. m = Crn projectors onto Gaussian random vectors) and w.h.p. assures robust
recovery of all matrices X < 0 having approximately rank-r simultaneously.
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1.4. Notation. The Schatten p-norm of Z ∈ Cn1×n2 is given by

‖Z‖p =

 n∑
j=1

σj(Z)p

1/p

, p ≥ 1,

where σj(Z), j = 1, . . . , n, denote the singular values of Z. It reduces to the nuclear norm ‖ · ‖∗ for p = 1
and the Frobenius norm ‖ · ‖F for p = 2. It is a common convention that the singular values of Z are
non-increasingly ordered. We write Z = Zr + Zc, where Zr is the best rank-r approximation of Z with
respect to any Schatten p-norm of Z.

2. Applications

2.1. Phase retrieval. The problem of retrieving a complex signal x ∈ Cn from measurements that are
ignorant towards phase information has long been abundant in many areas of science. Measurements of that
type correspond to

bi = |〈ai, x〉|2 + wi i = 1, . . . ,m, (16)

where a1, . . . , am ∈ Cn are measurement vectors and wi denotes additive noise. Recently, the problem’s
mathematical structure has received considerable attention in its own right. It is clearly ill-posed, since
all phase information is lost in the measurement process and, moreover, the measurements (16) are of a
non-linear nature. This second obstacle can be overcome by a trick [5] well known in conic programming:
the quadratic expressions (16) are linear in the outer products xx∗ and aia

∗
i :

bi = |〈ai, x〉|2 + wi = tr
(
(aiai)

∗
(xx∗)

)
+ wi. (17)

Note that such a “lift” allows for reinterpreting the phase-less sampling process as A(xx∗) = b + w. Also,
the new object of interest X := xx∗ is an Hermitian, positive semidefinite matrix of rank one. In turn, the
measurement matrices Ai = aia

∗
i are constrained to be proportional to rank-one projectors. Consequently,

such a “lift” turns the phase retrieval problem into a very particular instance of low rank matrix recovery —
a fact that was first observed by Candès, Eldar, Strohmer and Voroninski [12, 10]. Subsequently, uniform
recovery guarantees for m = Cn complex standard Gaussian measurement vectors ai have been established
which are stable towards additive noise. The main result in [13] establishes with high probability that for
any X = xx∗, solving the convex optimization problem (PhaseLift)

min
Z∈Hn

‖A(Z)− b‖`1 subject to Z < 0 (18)

yields an estimator Z] obeying ‖Z] − xx∗‖2 ≤ C‖w‖1/m. If a bound ‖w‖`2 ≤ η on the noise in the
sampling process (16) is available, an extension of [43, Theorem 2] (see section 2.3.2 in loc. cit) establishes
a comparable recovery guarantee via solving

min
Z∈Hn

tr(Z) subject to ‖A(Z)− b‖`2 ≤ η, Z < 0 (19)

instead of PhaseLift. Our findings allow for establishing novel recovery guarantees for retrieving phases.
Indeed, since (17) assures that any signal of interest is positive semidefinite and has precisely rank one,
Theorem 4 is applicable and yields the following corollary.

Corollary 5. Consider m ≥ Cn phaseless measurements of the form (16), where each ai is a complex

standard Gaussian vector. Then with probability at least 1− e−C
′m these measurements allow for estimating

any signal x ∈ Cn via solving

min
Z∈Hn

‖A(Z)− b‖`2 subject to Z < 0. (20)

The resulting minimizer Z] of (20) obeys

‖Z] − xx∗‖`2 ≤
C‖w‖`2√

m
,

where C denotes a positive constant and w ∈ Rm represents additive noise in the sampling process (16).
An analogous statement is true — with a weaker probability of success 1 − e−s for s ≥ 1 — for m ≥

C ′sn log(n) rank one projective measurements onto independent elements of an approximate 4-design.
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This recovery procedure is in spirit very similar to (18), but it utilizes an `2-regression instead of an
`1-norm minimization. Numerical studies indicate that algorithm (20) outperforms (19) as well as (18).
These studies were motivated and accompany actual quantum mechanical experiments and will be published
elsewhere [41].

Finally, we want to relate Corollary 5 to a non-convex phaseless recovery procedure devised by Candès,
Li and Soltanolkotabi [14]. There, the authors refrain from applying the aforementioned “lifting” trick
to render the phase retrieval problem linear. Instead, they use a careful initialization step, followed by
a gradient descent scheme (based on Wirtinger derivatives) to minimize the problem’s least squares loss
function directly over complex vectors z ∈ Cn. Mathematically, such an optimization is equivalent to
solving

min
Z∈Hn

‖A(Z)− b‖`2 subject to Z < 0, rank(Z) = 1 (21)

and the rank-constraint manifests the problem’s non-convex nature. Hence, the convex optimization problem
(20) can be viewed as a convex relaxation of (21), obtained by omitting the non-convex rank constraint.

2.2. Quantum information. In this section we describe implications and possible applications of our
findings to problems in quantum information science. For the sake of being self-contained, we have included
a brief introduction to crucial notions of quantum mechanics in the appendix. Quantum mechanics postulates
that a finite n-dimensional quantum system is described by an Hermitian, positive semidefinite matrixX with
unit trace, called a density operator. This “quantum shape constraint” assures that all density operators
meet the requirements of Theorem 4. Furthermore, the rank-one projective measurements assumed in
that theorem can be recast as valid quantum mechanical measurements — see [43, Section 3] for possible
implementations and further discussion on this topic. Note, however, that such a reinterpretation is in general
not possible for the measurement matrices with independent entries considered in Theorem 1, because these
matrices fail to be Hermitian. With Theorem 4 at hand, we underline its implications for two prominent
issues in (finite dimensional) quantum mechanics.

2.2.1. Quantum state tomography. Inferring a quantum mechanical description of a physical system is equiv-
alent to assigning it a density operator (or quantum state) — a process referred to as quantum state tomog-
raphy [6, 23]. Tomography is now a routine task for designing, testing and tuning qubits in the quest of
building quantum information processing devices. Since the size of controllable quantum mechanical sys-
tems is ever increasing1 it is very desirable to exploit additional structure — if present — when performing
such a task. One such structural property — often encountered in actual experiments — is approximate
purity, i.e., the density operator X is well approximated by a low rank matrix. Performing quantum state
tomography under such a prior assumption therefore constitutes a particular instance of low rank matrix
recovery [30, 24].

The results presented in this paper provide recovery guarantees for tomography protocols that stably
tolerate noisy measurements and moreover are robust towards the prior assumption of approximate purity.
In the context of tomography, results of this type so far have already been established for m = Cnr log6 n
random (generalized) Pauli measurements [47, Proposition 2.3] via proving a rank-RIP for such measurement
matrices and then resorting to [15, Lemma 3.2]. However, this auxiliary result manifestly requires additive
Gaussian noise and using a type of Dantzig, or Lasso selector to recover the best rank-r approximation of a
given density operator. This is not the case for the result established here, where performing a plain least
squares regression of the form (14) is sufficient.

Corollary 6. Fix r ≤ n and suppose that the measurement operator A : Hn → Rm is of the form

A(X) =

m∑
i=1

√
(n+ 1)n

m
〈ai, Xai〉ei + w ∈ Rm with m ≥ C1rn log n,

1Nowadays, experimentalists are able to create and control multi-partite systems of overall dimension n = 28 in their
laboratories [60]. This results in a density operator of size 256 × 256 (a priori 65 536 parameters).
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where each ai ∈ Cn is chosen independently from an approximate 4-design and w ∈ Rm denotes additive
noise. Then, the best rank-r approximation of any density operator X can be obtained from such measure-
ments via solving

min
Z∈Hn

‖A(Z)−A(X)‖`2 subject to Z < 0, tr (Z) = 1. (22)

With probability at least 1− e−C2m, the minimizer Z] of this optimization obeys

‖X − Z]‖1 ≤ C3‖Xc‖1 + C4

√
r‖w‖`2 , (23)

where C1, C2, C3 and C4 denote positive constants.

This statement is a direct consequence of Theorem 4. For the sake of clarity, we have re-scaled each

projective measurement with
√

(n+1)n
m . This simplifies the resulting expression (23) and moreover facilitates2

direct comparison with the main result in [47], as it closely mimics the scaling employed there.
Corollary 6 is valid for any type of additive noise and no a priori knowledge of its magnitude is required.

This includes the particularly relevant case of a Bernoulli error model — see e.g. [17, Section 2.2.2] and
also [24] — which is particularly relevant for tomography experiments. Also, note that the recovery error is
bounded in nuclear norm, instead of Frobenius norm. Such a bound is very meaningful for tomography, since
quantum mechanics is a probabilistic theory and the nuclear norm encapsulates total variational distance.
Moreover, Helstrom’s theorem [32] provides an operational interpretation of the nuclear norm distance
bounded in (23): it is proportional to the maximal bias achievable in the task of distinguishing the two
quantum states X and Z], provided that any physical measurement can be implemented.

Finally, note that the bound on the probability of failure in Corollary 6 is much stronger than the one
provided in Theorem 4. Such a strengthening is possible, because the trace of any density operator equals
one. We comment on this in Remark 34 below.

2.2.2. Distinguishing quantum states. One crucial prerequisite in the task of inferring density operators from
measurement data, is the ability to faithfully distinguish any two density operators via quantum mechanical
measurements. The most general notion of a quantum measurement is a positive operator valued mea-
sure (POVM) M = {Em : Em < 0,

∑
mEm = id} [53, Chapter 2.2]. A POVM M is called informationally

complete (IC) [62] if for any two density operators X 6= Z ∈ Hn there exists Em ∈M ⊆ Hn such that

tr (EmX) 6= tr (EmZ) . (24)

This assures the possibility of discriminating any two quantum states via such a measurement in the absence
of noise. Without additional restrictions, such an IC POVM must contain at least n2 elements. However,
such a lower bound can be too pessimistic, if the density operators of interest have additional structure.
Approximate purity introduced in the previous subsection can serve as such an additional structural restric-
tion:

Definition 7 (Rank-r IC, Definition 1 in [31]). For r ≤ n, we call a POVM M = {Em}m∈I rank-r restricted
informationally complete (rank-r IC), if (24) holds for any two density operators of rank at most r.

Bounds for the number m of POVM elements required to assure rank-r-IC have been established in
[31, 37, 38]. These approaches exploit topological obstructions of embeddings for establishing lower bounds
and explicit POVM constructions for upper bounds. For instance, in [31] a particular rank-r-IC POVM
containing m = 4r(n− r)− 1 elements is constructed.

Focusing less on establishing tight bounds and more on identifying entire families of rank-r IC measure-
ments, Kalev et al. [36] observed that each measurement ensemble fulfilling the rank-RIP for some r ≤ n
is also rank-r IC. This in particular applies with high probability to m = C log6 n nr random (generalized)
Pauli measurements [47]. Theorem 4, and likewise Corollary 6, allow us to draw similar conclusions without
having to rely on any rank-RIP. Indeed, in the absence of noise, these results guarantee for any rank-r
density operator X

{Z : Z < 0, A(Z) = A(X)} = {X} (25)

2In fact by resorting to the Frobenius norm bound in Theorem 4 (instead of the nuclear norm bound employed to arrive at

Corollary 6), one obtains a performance guarantee that strongly resembles [47, Equation (8)] — the main recovery guarantee
in that paper.
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with high probability. If this is the case, the measurement operator A allows for uniquely identifying any
rank-r density operator X. This in turn implies that A is rank-r IC and the following corollary is immediate:

Corollary 8. Fix r ≤ n arbitrary and let C,C ′ be absolute constants of sufficient size. Then

(1) Any POVM containing m = Cnr projectors onto Haar3 random vectors is rank-r IC with probability
at least 1− eC2m.

(2) Any POVM containing m = C ′nr log n projectors onto random elements of a (sufficiently accurate

approximate) 4-design is rank-r IC with probability at least 1− e−C̃2m.

This statement is reminiscent of a conclusion drawn in [3, 48]: In the task of distinguishing quantum
states, a POVM containing a 4-design essentially performs as good as as the uniform POVM (the union of
all rank-one projectors).

Remark 9. In the process of finishing this article we became aware of recent work by Kech and Wolf [39],
who showed that the elements of a generic Parseval frame generate a rank-r IC map A if m ≥ 4r(n− r). In
fact, Xu showed in [68] that m ≥ 4r(n− r) is both a sufficient and necessary condition for identifiability of
complex rank r matrices in Cn×n. We emphasize, however, that these results are only concerned with pure
identifiability and do not come with a practical and stable recovery algorithm.

3. The null space property for low-rank matrix recovery

Let X ∈ Cn1×n2 . If X is only approximately of low-rank, then we would like to find a condition on the
measurement map A : Cn1×n2 → Cm that provides the control of the recovery error by the error of its best
approximation by low rank matrices. Moreover, it should also take into account that the measurements
might be noisy.

Definition 10. We say that A : Cn1×n2 → Cm satisfies the Frobenius robust rank null space property of
order r with constants 0 < ρ < 1 and τ > 0 if for all M ∈ Cn1×n2 , the singular values of M satisfy

‖Mr‖2 ≤
ρ√
r
‖Mc‖1 + τ‖A(M)‖`2 .

The stability and robustness of (4) are established by the following theorem.

Theorem 11. Let A : Cn1×n2 → Cm satisfy the Frobenius robust rank null space property of order r with
constants 0 < ρ < 1 and τ > 0. Let n = min{n1, n2}. Then for any X ∈ Cn1×n2 any solution X] of (4)
with b = A(X) + w, ‖w‖`2 ≤ η, approximates X with error

‖X −X]‖2 ≤
2(1 + ρ)2

(1− ρ)
√
r
‖Xc‖1 +

2τ(3 + ρ)

1− ρ
η.

Theorem 11 can be deduced from the following stronger result.

Theorem 12. Let 1 ≤ p ≤ 2 and n = min{n1, n2}. Suppose that A : Cn1×n2 → Cm satisfies the Frobenius
robust rank null space property of order r with constants 0 < ρ < 1 and τ > 0. Then for any X,Z ∈ Cn1×n2 ,

‖Z −X‖p ≤
(1 + ρ)2

(1− ρ)r1−1/p
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) +

τ(3 + ρ)

1− ρ
r1/p−1/2‖A(Z −X)‖`2 . (26)

The proof requires some auxiliary lemmas. We start with a matrix version of Stechkin’s bound.

Lemma 13. Let M ∈ Cn1×n2 and r ≤ min{n1, n2}. Then, for p > 0,

‖Mc‖p ≤
‖M‖1
r1−1/p

.

3 Haar random vectors are vectors drawn uniformly from the complex unit sphere in Cn. They can be obtained from

complex standard Gaussian vectors by rescaling them to unit length. Property (25) is invariant under such a re-scaling and
Theorem 2 therefore assures rank-r IC for both Gaussian and Haar random vectors.



10 MARYIA KABANAVA1, RICHARD KUENG2,3,4, HOLGER RAUHUT1, ULRICH TERSTIEGE1

Proof. This follows immediately from [26, Proposition 2.3], but for convenience we give the proof. Since the
singular values of M are non-increasingly ordered, it holds

‖Mc‖pp =

n∑
j=r+1

(σj(M))p ≤ (σr(M))p−1
n∑

j=r+1

σj(M) ≤

1

r

r∑
j=1

σj(M)

p−1 n∑
j=r+1

σj(M)

≤ 1

rp−1
‖M‖p−11 ‖M‖1 =

‖M‖p1
rp−1

.

�

The next result shows that under the Frobenius robust rank null space property the distance between
two matrices is controlled by the difference between their norms and the `2-norm of the difference between
their measurements.

Lemma 14. Suppose that A : Cn1×n2 → Cm satisfies the Frobenius robust rank null space property of order
r with constants 0 < ρ < 1 and τ > 0. Let X,Z ∈ Cn1×n2 and n = min{n1, n2}. Then

‖X − Z‖1 ≤
1 + ρ

1− ρ
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) +

2τ
√
r

1− ρ
‖A(X − Z)‖`2 .

Proof. Theorem 7.4.9.1 in [33] states that for matrices A,B of the same size over C

‖A−B‖ ≥ ‖Σ(A)− Σ(B)‖,
where ‖ · ‖ is any unitarily invariant norm and Σ(·) denotes the diagonal matrix of singular values of its
argument. Hence,

‖Z‖1 = ‖X − (X − Z)‖1 ≥
n∑
j=1

|σj(X)− σj(X − Z)|

=

r∑
j=1

|σj(X)− σj(X − Z)|+
n∑

j=r+1

|σj(X)− σj(X − Z)|

≥
r∑
j=1

(σj(X)− σj(X − Z)) +

n∑
j=r+1

(σj(X − Z)− σj(X)) .

Hence,

‖(X − Z)c‖1 =

n∑
j=r+1

σj(X − Z) ≤ ‖Z‖1 −
r∑
j=1

σj(X) +

r∑
j=1

σj(X − Z) + ‖Xc‖1

≤ ‖Z‖1 − ‖X‖1 +
√
r‖(X − Z)r‖2 + 2‖Xc‖1.

Applying the Frobenius robust null space property of A we obtain

‖(X − Z)c‖1 ≤ ‖Z‖1 − ‖X‖1 + ρ‖(X − Z)c‖1 + τ
√
r‖A(X − Z)‖`2 + 2‖Xc‖1.

By rearranging the terms in the above inequality we obtain

‖(X − Z)c‖1 ≤
1

1− ρ
(
‖Z‖1 − ‖X‖1 + τ

√
r‖A(X − Z)‖`2 + 2‖Xc‖1

)
.

In order to bound ‖X −Z‖1 we use Hölder’s inequality, the Frobenius robust rank null space property of A
and the inequality above,

‖X − Z‖1 = ‖(X − Z)r‖1 + ‖(X − Z)c‖1 ≤
√
r‖(X − Z)r‖2 + ‖(X − Z)c‖1

≤ (1 + ρ)‖(X − Z)c‖1 + τ
√
r‖A(Z −X)‖`2

≤ 1 + ρ

1− ρ
(
‖Z‖1 − ‖X‖1 + τ

√
r‖A(X − Z)‖`2 + 2‖Xc‖1

)
+ τ
√
r‖A(X − Z)‖`2

=
1 + ρ

1− ρ
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) +

2τ
√
r

1− ρ
‖A(X − Z)‖`2 .
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This concludes the proof. �

Now we return to the proof of the theorem.

Proof of Theorem 12. By Hölder’s inequality, Lemma 13 and the Frobenius robust rank null space property
of A

‖Z −X‖p ≤ ‖(X − Z)r‖p + ‖(X − Z)c‖p ≤ r1/p−1/2‖(X − Z)r‖2 + ‖(X − Z)c‖p

≤ ρ

r1−1/p
‖(X − Z)c‖1 + τr1/p−1/2‖A(X − Z)‖`2 +

1

r1−1/p
‖X − Z‖1

≤ 1 + ρ

r1−1/p
‖X − Z‖1 + τr1/p−1/2‖A(X − Z)‖`2 . (27)

Substituting the result of Lemma 14 into (27) yields the desired inequality. �

As a corollary of Theorem 12 we obtain that if X ∈ Cn1×n2 is a matrix of rank at most r and the
measurements are noiseless (η = 0), then the Frobenius robust rank null space property implies that X is
the unique solution of

min
Z∈Cn1×n2

‖Z‖1 subject to A(Z) = b. (28)

It was first stated in [57] that a slightly weaker property is actually equivalent to the successful recovery of
X via (28).

Theorem 15 (Null space property). Given A : Cn1×n2 → Cm, every X ∈ Cn1×n2 of rank at most r is the
unique solution of (28) with b = A(X) if and only if, for all M ∈ kerA \ {0}, it holds

‖Mr‖1 < ‖Mc‖1. (29)

For the proof we refer to [57] and [26, Chapter 4.6]. According to Lemma 14, another implication of the
Frobenius robust rank null space property consists in the following error estimate in ‖ · ‖1 for the case of
noiseless measurements,

‖X −X]‖1 ≤
2(1 + ρ)

1− ρ
‖Xc‖1.

The above estimate remains true, if we require that for all M ∈ kerA, the singular values of M satisfy

‖Mr‖1 ≤ ρ‖Mc‖1, 0 < ρ < 1.

This property is known as the stable rank null space property of order r with constant ρ. It is clear that if
A : Cn1×n2 → Cm satisfies the Frobenius robust rank null space property, then it satisfies the stable rank
null space property. The approach used in [54] to verify that the stable null space property accounts for
stable recovery of matrices which are not exactly of low rank, exploits the similarity between the sparse
vector recovery and the low-rank matrix recovery. It shows that if some condition is sufficient for stable and
robust recovery of any sparse vector with at most r non-zero entries, then the extension of this condition to
the matrix case is sufficient for the stable and robust recovery of any matrix up to rank r.

In order to check whether the measurement map A : Cn1×n2 → Cm satisfies the Frobenius robust rank
null space property, we introduce the set

Tρ,r :=

{
M ∈ Cn1×n2 : ‖M‖2 = 1, ‖Mr‖2 >

ρ√
r
‖Mc‖1

}
.

Lemma 16. If

inf{‖A(M)‖`2 : M ∈ Tρ,r} >
1

τ
,

then A satisfies the Frobenius robust rank null space property of order r with constants ρ and τ .

Proof. Suppose that

inf{‖A(M)‖`2 : M ∈ Tρ,r} >
1

τ
. (30)
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It follows that for any M ∈ Cn1×n2 such that ‖A(M)‖`2 ≤
‖M‖2
τ it holds

‖Mr‖2 ≤
ρ√
r
‖Mc‖1. (31)

For the remaining M ∈ Cn1×n2 with ‖A(M)‖`2 >
‖M‖2
τ we have

‖Mr‖2 ≤ ‖M‖2 < τ‖A(M)‖`2 .

Together with (31) this leads to

‖Mr‖2 ≤
ρ√
r
‖Mc‖1 + τ‖A(M)‖`2 .

for any M ∈ Cn1×n2 . �

It is natural to expect that the recovery error gets smaller as the number of measurements increases. This
can be taken into account by establishing the null space property for τ = κ√

m
. Then the error bound reads

as follows

‖X −X]‖2 ≤
2(1 + ρ)2

(1− ρ)
√
r
‖Xc‖1 +

2κ(3 + ρ)√
m(1− ρ)

η.

An important property of the set Tρ,r is that it is imbedded in a set with a simple structure. The next
lemma relies on the ideas presented in [59] for the compressed sensing setting.

Lemma 17. Let D be the set defined by

D := conv
{
M ∈ Cn1×n2 : ‖M‖2 = 1, rankM ≤ r

}
, (32)

where conv stands for the convex hull.

(a) Then D is the unit ball with respect to the norm

‖M‖D :=

L∑
j=1

∑
i∈Ij

(σi(M))
2

1/2

,

where L = dnr e,

Ij =

{
{r(j − 1) + 1, . . . , rj} , j = 1, . . . , L− 1,
{r(L− 1) + 1, . . . , n} , j = L.

(b) It holds

Tρ,r ⊂
√

1 + (1 + ρ−1)2D. (33)

Let us argue briefly why ‖ · ‖D is a norm. Define g : Cn → [0,∞) by

g(x) :=

L∑
j=1

∑
i∈Ij

(x∗i )
2

1/2

,

where L and Ij are defined in the same way as in item (a) of Lemma 17. Then g is a symmetric gauge
function and ‖M‖D = g(σ(M)) for any M ∈ Cn1×n2 . The norm property follows from [33, Theorem 7.4.7.2].

Proof of Lemma 17. (a) Any M ∈ D can be written as

M =
∑
i

αiXi

with

rankXi ≤ r, ‖Xi‖2 = 1, αi ≥ 0,
∑
i

αi = 1.

Thus

‖M‖D ≤
∑
i

αi‖Xi‖D =
∑
i

αi‖Xi‖2 =
∑
i

αi = 1.
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Conversely, suppose that ‖M‖D ≤ 1, and let M have a singular value decomposition M = UΣV ∗ =
L∑
j=1

∑
i∈Ij

σi(M)uiv
∗
i , where ui ∈ Cn1 and vi ∈ Cn2 are column vectors of U and V respectively. Set Mj :=∑

i∈Ij
σi(M)uiv

∗
i and αj := ‖Mj‖2, j = 1, . . . , L. Then each Mj is a sum of r rank-one matrices, so that

rankMj ≤ r, and we can write M as

M =
∑

j:αj 6=0

αj

(
1

αj
Mj

)
with ∑

j:αj 6=0

αj =
∑
j

‖Mj‖2 = ‖M‖D ≤ 1 and ‖ 1

αj
Mj‖2 =

1

αj
‖Mj‖2 = 1.

Hence M ∈ D.
(b) To prove the embedding of Tρ,r into a scaled version of D, we estimate the norm of an arbitrary

element M of Tρ,r. According to the definition of the ‖ · ‖D-norm

‖M‖D =

L∑
`=1

[∑
i∈I`

(σi(M))
2

] 1
2

= ‖Mr‖2 +

[
2r∑

i=r+1

(σi(M))
2

] 1
2

+

L∑
`≥3

[∑
i∈I`

(σi(M))
2

] 1
2

. (34)

To bound the last term in the inequality above, we first note that for each i ∈ I`, ` ≥ 3,

σi(M) ≤ 1

r

∑
j∈I`−1

σj(M)

and hence [∑
i∈I`

(σi(M))2

]1/2
≤ 1√

r

∑
j∈I`−1

σj(M).

Summing up over ` ≥ 3 yields

L∑
`≥3

[∑
i∈I`

(σi(M))
2

] 1
2

≤ 1√
r

∑
l≥2

∑
j∈I`

σj(M) =
1√
r

n∑
j=r+1

σj(M) =
1√
r
‖Mc‖1.

and taking into account the inequality for the singular values of M ∈ Tρ,r
L∑
`≥3

[∑
i∈I`

(σi(M))
2

] 1
2

≤ ρ−1‖Mr‖2.

Applying the last estimate to (34) we derive that

‖M‖D ≤ (1 + ρ−1)‖Mr‖2+

[
2r∑

i=r+1

(σi(M))
2

] 1
2

≤ (1 + ρ−1)‖Mr‖2 +
(
1− ‖Mr‖22

) 1
2 .

Set a = ‖Mr‖2. The maximum of the function

f(a) := (1 + ρ−1)a+
√

1− a2, 0 ≤ a ≤ 1,

is attained at the point

a =
1 + ρ−1√

1 + (1 + ρ−1)2

and is equal to
√

1 + (1 + ρ−1)2. Thus for any M ∈ Tρ,r it holds

‖M‖D ≤
√

1 + (1 + ρ−1)2,

which proves (33). �
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Remark 18. The previous results hold true in the real-valued case and in the case of Hermitian matrices,
when the nuclear norm minimization problem is solved over the set of matrices of that special type. As a
set D we then take the convex hull of corresponding matrices of rank r and unit Frobenius norm. The only
difference in the proof of Lemma 17 occurs at the point, where we have to show that any M with ‖M‖D ≤ 1

belongs to D. Say, M ∈ Cn×n is Hermitian and ‖M‖D ≤ 1. Then M = UΛU∗ =
L∑
j=1

∑
i∈Ij

σi(M)uiu
∗
i , where

ui ∈ Cn, and Mj :=
∑
i∈Ij

σi(M)uiu
∗
i is Hermitian. The rest of the proof remains unchained.

Employing the matrix representation of the measurement map A, the problem of estimating the prob-
ability of the event (30) is reduced to the problem of giving a lower bound for the quantities of the form
inf
x∈T
‖Ax‖2. This is not an easy task for deterministic matrices, but the situation significantly changes for

matrices chosen at random.

4. Gaussian measurements

Our main result for Gaussian measurements reads as follows.

Theorem 19. Let A : Rn1×n2 → Rm be the linear map (1) generated by a sequence A1, . . . , Am of indepen-
dent standard Gaussian matrices, let 0 < ρ < 1, κ > 1 and 0 < ε < 1. If

m2

m+ 1
≥ r(1 + (1 + ρ−1)2)κ2

(κ− 1)2

[
√
n1 +

√
n2 +

√
2 ln(ε−1)

r(1 + (1 + ρ−1)2)

]2
, (35)

then with probability at least 1−ε, for every X ∈ Rn1×n2 , a solution X] of (4) with b = A(X)+w, ‖w‖`2 ≤ η,
approximates X with error

‖X −X]‖2 ≤
2(1 + ρ)2

(1− ρ)
√
r
‖Xc‖1 +

2κ
√

2(3 + ρ)√
m(1− ρ)

η.

In order to prove Theorem 19 we employ Gordon’s escape through a mesh theorem that provides an
estimate of the probability of the event (30). First we recall some definitions. Let g ∈ Rm be a standard
Gaussian random vector, that is, a vector of independent mean zero, variance one normal distributed random
variables. Then for

Em := E ‖g‖2 =
√

2
Γ ((m+ 1)/2)

Γ (m/2)

we have
m√
m+ 1

≤ Em ≤
√
m,

see [27, 26]. For a set T ⊂ Rn we define its Gaussian width by

`(T ) := E sup
x∈T
〈x, g〉,

where g ∈ Rn is a standard Gaussian random vector.

Theorem 20 (Gordon’s escape through a mesh [27]). Let A ∈ Rm×n be a Gaussian random matrix and T
be a subset of the unit sphere Sn−1. Then, for t > 0,

P
(

inf
x∈T
‖Ax‖2 > Em − `(T )− t

)
≥ 1− e− t

2

2 . (36)

In order to apply this result to our measurement process (1) we unravel the columns of Aj , j = 1, . . . ,m,
into a single row and collect all of these in a m × n1n2-matrix A, so that n = n1n2 when applying (36).
In order to give a bound on the number of Gaussian measurements, Theorem 20 requires to estimate the
Gaussian width of the set Tρ,r from above. As it was pointed out in the previous section, Tρ,r is a subset of
a scaled version of D, which has a relatively simple structure. So instead of evaluating `(Tρ,r), we consider
`(D).
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Lemma 21. For the set D defined by (32) it holds

`(D) ≤
√
r(
√
n1 +

√
n2). (37)

Proof. Let Γ ∈ Rn1×n2 have independent standard normal distributed entries. Then `(D) = E sup
M∈D

〈Γ,M〉.

Since a convex continuous real-valued function attains its maximum value at one of the extreme points, it
holds `(D) = E sup

‖M‖2=1
rankM≤r

〈Γ,M〉. By Hölder’s inequality,

`(D) ≤ E sup
‖M‖2=1
rankM≤r

‖Γ‖∞‖M‖1 ≤
√
r sup
‖M‖2=1
rankM≤r

‖M‖2 Eσ1(Γ) ≤
√
r(
√
n1 +

√
n2),

where the last inequality follows from an estimate for the expectation of the largest singular value of a
Gaussian matrix, see [26, Chapter 9.3]. �

Proof of Theorem 19. Set t :=
√

2 ln(ε−1). If m satisfies (35), then

Em

(
1− 1

κ

)
≥
√
r(1 + (1 + ρ−1)2)(

√
n1 +

√
n2) + t.

Together with (33) and (37) this yields

Em − `(Tρ,r)− t ≥
Em
κ
≥ 1

κ

√
m

2
.

According to Theorem 20

P
(

inf
M∈Tρ,r

‖A(M)‖2 >
√
m

κ
√

2

)
≥ 1− ε,

which means that with probability at least 1 − ε map A satisfies the Frobenius robust rank null space

property with constants ρ and κ
√
2√
m

. The error estimate follows from Theorem 11. �

5. Measurement matrices with independent entries and four finite moments

In this section we prove Theorem 1, which is the generalization of Theorem 19 to the case when the
map A : Rn1×n2 → Rm is obtained from m independent samples of a random matrix Φ = (Xij)i,j with the
following properties:

• The Xij are independent random variables of mean zero,
• EX2

ij = 1 and EX4
ij ≤ C4 for all i, j and some constant C4.

Note that (by Hölder’s inequality) C4 ≥ 1.
As before the idea of the proof is to show that the event (30) holds with high probability. In order to do

so we apply Mendelson’s small ball method [40, 50, 66] in the manner of [66].

Theorem 22 ([40, 50, 66]). Fix E ⊂ Rd and let φ1, . . . , φm be independent copies of a random vector φ in
Rd. For ξ > 0 let

Qξ(E;φ) = inf
u∈E

P{|〈φ, u〉| ≥ ξ}

and
Wm(E;φ) = E sup

u∈E
〈h, u〉,

where h = 1√
m

∑m
j=1 εjφj with (εj) being a Rademacher sequence 4. Then for any ξ > 0 and any t ≥ 0 with

probability at least 1− e−2t2

inf
u∈E

(
m∑
i=1

|〈φi, u〉|2
)1/2

≥ ξ
√
mQ2ξ(E;φ)− 2Wm(E;φ)− ξt.

We start with two lemmas.

4i.e., the εj are independent and assume the values 1 and −1 with probability 1/2, respectively.
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Lemma 23.

inf
{Y,‖Y ‖2=1}

P(|〈Φ, Y 〉| ≥ 1√
2

) ≥ 1

4C5
,

where C5 = max{3, C4}.

Proof. Assume that Y has Frobenius norm one. The Payley-Zygmund inequality (see e.g. [26, Lemma 7.16],
and also [66]), implies

P{|〈Φ, Y 〉|2 ≥ 1

2
(E|〈Φ, Y 〉|2)} ≥ 1

4
· (E|〈Φ, Y 〉|2)2

E|〈Φ, Y 〉|4
. (38)

We compute numerator and denominator.

E|〈Φ, Y 〉|2 =
∑
i,j,k,l

E(XijXkl) · YijYkl =
∑
i,j

EX2
ij · Y 2

ij =
∑
i,j

Y 2
ij = 1.

Likewise,

E|〈Φ, Y 〉|4 =
∑

i1,...,i4,j1,...,j4

E(Xi1j1 · · ·Xi4j4) · Yi1j1 · · ·Yi4j4

=
∑
i,j

EX4
ij · Y 4

ij + 3
∑

i1,i2,j1,j2
(i1,j1)6=(i2,j2)

E(X2
i1j1X

2
i2j2) · Y 2

i1j1Y
2
i2j2

=
∑
i,j

EX4
ij · Y 4

ij + 3
∑

i1,i2,j1,j2
(i1,j1)6=(i2,j2)

Y 2
i1j1Y

2
i2j2 ≤

∑
i,j

C4 · Y 4
ij + 3

∑
i1,i2,j1,j2

(i1,j1)6=(i2,j2)

Y 2
i1j1Y

2
i2j2

≤ C5

∑
i1,i2,j1,j2

Y 2
i1j1Y

2
i2j2 = C5(

∑
i,j

Y 2
ij)

2 = C5.

Combining this with (E|〈Φ, Y 〉|2)2 = 1 and the estimate (38), the claim follows. �

Lemma 24. Let Φ1, . . . ,Φm be independent copies of a random matrix Φ as above. Let ε1, . . . , εm be
independent Rademacher variables independent of everything else and let H = 1√

m

∑m
k=1 εkΦk. Then

E‖H‖∞ ≤ C1

√
n.

Here C1 is a constant that only depends on C4.

Proof. Let S =
∑m
k=1 Φk. We first desymmetrize the sum H (see [45, Lemma 6.3]) and obtain

E‖H‖∞ ≤
2√
m
E‖S‖∞.

Therefore, it is enough to show that E‖S‖∞ ≤ c3
√
mn for a suitable constant c3. The matrix S has

independent mean zero entries, hence by a result Lata la (see [44]) the following estimate holds for some
universal constant C2,

E‖S‖∞ ≤ C2

max
i

√∑
j

ES2
ij + max

j

√∑
i

ES2
ij + 4

√∑
i,j

ES4
ij

 .

Denoting the entries of Φk by Xk;ij , we have Sij =
∑
kXk;ij . Hence, using the independence of the Xk;ij , we

obtain ES2
ij = E(

∑
kXk;ij)

2 =
∑
k EX2

k;ij = m. Thus,
√∑

j ES2
ij ≤

√
nm for any i and

√∑
i ES2

ij ≤
√
nm

for any j. Finally to estimate 4

√∑
i,j ES4

ij we calculate ES4
ij = E(

∑
kXk;ij)

4. Using again that the Xk;ij

are independent and have mean zero we obtain

ES4
ij =

∑
k

EX4
k;ij + 3

∑
k1 6=k2

EX2
k1;ijEX

2
k2;ij .
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Using that EX2
k;ij = 1 for all i, j, k, we obtain ES4

ij ≤ C5m
2, where C5 = max{3, C4} and hence

4

√∑
i,j

ES4
ij ≤

4
√
C5m2n2 = 4

√
C4

√
mn.

Hence, indeed E‖S‖∞ ≤ c3
√
mn for a suitable constant c3 that depends only on C4. �

Proof Theorem 1. Let now Tρ,r and D be the sets defined in Section 3, but restricted to the real-valued
matrices. By Hölder’s inequality, for any n1 × n2 matrix Y of Frobenius norm 1 and rank at most r and
any n1 × n2 matrix H,

〈H,Y 〉 ≤ ‖Y ‖1‖H‖∞ ≤
√
r‖H‖∞.

Hence

sup
Y ∈D
〈H,Y 〉 ≤

√
r‖H‖∞. (39)

Let H = 1√
m

∑m
j=1 εjΦj and let ξ = 1

2
√
2

and E = Tρ,r. Then it follows from Theorem 22 that for any t ≥ 0

with probability at least 1− e−2t2

inf
Y ∈Tρ,r

(
m∑
i=1

|〈Φi, Y 〉|2
)1/2

≥
√
m

2
√

2
Q 1√

2
(Tρ,r; Φ)− 2Wm(Tρ,r,Φ)− 1

2
√

2
t. (40)

Using Lemma 23 and the fact that all elements of Tρ,r have Frobenius norm 1, we obtain

Q 1√
2
(Tρ,r; Φ) ≥ 1

4C5
. (41)

Combining now the fact that Tρ,r ⊆
√

1 + (1 + ρ−1)2D (see Lemma 17) with estimate (39) and Lemma 24
leads to

Wm(Tρ,r,Φ) ≤
√

1 + (1 + ρ−1)2
√
r E‖H‖∞ ≤ C1

√
1 + (1 + ρ−1)2

√
r
√
n. (42)

Using (40), (41) and (42) we see that choosing m ≥ c1ρ
−2nr and t = c4m for suitable constants c1, c4, we

obtain with probability at least 1− e−c2m

inf
Y ∈Tρ,r

(
m∑
i=1

|〈Φi, Y 〉|2
)1/2

≥ c3
√
m

for suitable constants c2, c3. Now the claim follows from Lemma 16 and Theorem 11 (both of which also
hold in the real valued version by the same proofs respectively). �

6. Rank one Gaussian measurements

In this section we prove Theorem 2. The proof technique is an application of Mendelson’s small ball
method analogous to the proof of Theorem 1. Let

TH
ρ,r :=

{
M ∈ Hn : ‖M‖2 = 1, ‖Mr‖2 >

ρ√
r
‖Mc‖1

}
.

Let Tρ,r be defined as TH
ρ,r but with Hn replaced by the set of all complex n× n-matrices (i.e. it is defined

as before with n1 = n2 = n). Then TH
ρ,r ⊆ Tρ,r. It is enough to show that with high probabiliy

inf
Y ∈TH

ρ,r

 m∑
j=1

|〈aja∗j , Y 〉|2
1/2

≥
√
m/C3 (43)

We apply Theorem 22 with E = TH
ρ,r. The next lemma estimates the small ball probability Q 1√

2
(E;φ) used

in Mendelson’s method.

Lemma 25 (see [43]). Q 1√
2
(E;φ) := infu∈E P{|〈aa∗, u〉| ≥ 1√

2
} ≥ 1

96 .
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Let now (as in [66, 43])

H =
1√
m

m∑
j=1

εjaja
∗
j , (44)

where the εj form a Rademacher sequence. For any M ∈ Hn and any n× n matrix Y of Frobenius norm 1
and rank at most r

〈M,Y 〉 ≤ ‖Y ‖1‖M‖∞ ≤
√
r‖M‖∞.

Since E = TH
ρ,r ⊆ Tρ,r ⊆

√
1 + (1 + ρ−1)2D, this implies

Wm(E, φ) = E sup
Y ∈E
〈H,Y 〉 ≤

√
1 + (1 + ρ−1)2

√
rE‖H‖∞.

As in [43] we use now that by the arguments in [67, Section 5.4.1] we have E‖H‖∞ ≤ c2
√
n if m ≥ c3n for

suitable constants c2, c3, see also [66, Section 8]. Now the claim of Theorem 2 follows from Theorem 22,
comp. the proof of Theorem 1. �

Remark 26. Inspecting the above proof, resp. the proofs of the cited statements in [43], we see that the real
valued analogue of Theorem 2 is also true. We even may assume for this that the aj are i.i.d. subgaussian
with k-th moments, where k ≤ 8, equal to the corresponding k-th moments of the Gaussian standard
distribution. The constants then depend only on the distribution of the aj . We also note that a similar
statement in the real case for the recovery of positive semidefinite matrices using subgaussian measurements
has been shown by Chen, Chi and Goldsmith in [19] using the rank restricted isometry property.

7. Rank one measurements generated by 4-designs

Recall the definition of an approximate, weighted t-design.

Definition 27 (Approximate t-design, Definition 2 in [3]). We call a weighted set {pi, wi}Ni=1 of normalized
vectors an approximate t-design of p-norm accuracy θp, if∥∥∥∥∥

N∑
i=1

pi (wiw
∗
i )
⊗t −

∫
‖w‖`2=1

(ww∗)
⊗t

dw

∥∥∥∥∥
p

≤
(
n+ t− 1

t

)−1
θp. (45)

A set of unit vectors obeying θp = 0 for 1 ≤ p ≤ ∞ is called an exact t-design, see [62] and also [43, 28].

Theorem 28. Let {pi, wi}Ni=1 be a an approximate 4-design with either θ∞ ≤ 1/(16r2), or θ1 ≤ 1/4 that

furthermore obeys
∥∥∥∑N

i=1 piwiw
∗
i − 1

n id
∥∥∥
∞
≤ 1

n . Suppose that the measurement operator A is generated by

m ≥ C4ρ
−2nr log n

measurement matrices Aj =
√
n(n+ 1)aja

∗
j , where each aj is drawn independently from {pi, wi}Ni=1. Then,

with probability at least 1 − e−C5m, A obeys the Frobenius robust rank null space property of order r with
constants 0 < ρ < 1 and τ = C6/

√
m. Here, C4, C5 and C6 denote positive constants depending only on the

design.

Theorem 3 readily follows from combining this statement with Theorem 12.

Proof of Theorem 28. We start by presenting a proof for measurements drawn from an exact 4-design.
Paralleling the proof of Theorem 2, the statement can be deduced from Theorem 22 by utilizing results from
[43]. Provided that a is randomly chosen from a re-scaled, weighted 4-design (such that each element has

Euclidean length ‖wi‖`2 = 4
√

(n+ 1)n), [43, Proposition 12] implies that

inf
Z∈Tρ,r

P (|tr (aa∗Z) | ≥ ξ) ≥ inf
‖Z‖2=1

P (|tr (aa∗Z) | ≥ ξ) ≥ (1− ξ2)2

24
(46)
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is valid for all ξ ∈ [0, 1]. Now let H =
∑m
i=1 εiaia

∗
i be as in Theorem 22. Lemma 17 together with the fact

that D is the convex hull of all matrices of rank at most r and Frobenius norm 1 allows us to conclude for
m ≥ 2n log n, that,

Wm (Tρ,r, aa
∗) = E sup

M∈Tρ,r
tr (HM) ≤

√
1 + (1 + ρ−1)2 E sup

M∈D
tr (HM)

≤
√

1 + (1 + ρ−1)2 sup
M∈D

‖M‖1E‖H‖∞ ≤
√

1 + (1 + ρ−1)2
√
r E‖H‖∞

≤ 3.1049
√

1 + (1 + ρ−1)2rn log(2n),

where the last bound is due to [43, Proposition 13]. Fixing 0 < ξ < 1/2 arbitrarily and inserting these two
bounds into Theorem 22 completes the proof.

An analogous statement for approximate 4-designs — with slightly worse absolute constants — can be
obtained by resorting to the generalized versions of [43, Propositions 12 and 13] presented in Section 4.5.1
in loc. cit. which are valid for approximate 4-designs that satisfy the conditions stated in Theorem 28. �

8. The positive semidefinite case

Finally, we focus on the case, where the matrices of interest are Hermitian and positive semidefinite and
establish Theorem 4. In order to arrive at such a statement, we closely follow the ideas presented in [36]
which in turn were inspired by [9] containing an analogous statement for a non-negative compressed sensing
scenario.

We require two further concepts from matrix analysis. For every positive semidefinite matrix W < 0 with
eigenvalue decomposition W =

∑n
i=1 λiwiw

∗
i we define its square root to be W 1/2 :=

∑n
i=1

√
λiwiw

∗
i . In

other words, W 1/2 is the unique positive semidefinite matrix which acts on the eigenspace corresponding
to the eigenvalue λi of W by multiplication by

√
λi. Note that this matrix obeys W 1/2 ·W 1/2 = W . Also,

recall that the condition number κ(W ) of a matrix W is the ratio between its largest and smallest nonzero
singular value. For an invertible Hermitian matrix with inverse W−1 this number equals

κ(W ) = ‖W‖∞‖W−1‖∞.
Suppose that the measurement process (3) is such that there exists t ∈ Rm which assures that W :=∑m
j=1 tjAj is positive definite. We define the artificial measurement map

AW 1/2 : Hn → Rm, Z 7→ A(W−1/2ZW−1/2) (47)

and the endomorphism
Z 7→ Z̃ := W 1/2ZW 1/2 (48)

of Hn. Note that these definitions assure

A(Z) = AW 1/2(Z̃) for all Z ∈ Hn (49)

and the singular values of Z and Z̃ satisfy

σj(Z̃) ≤ ‖W 1/2‖2∞σj(Z) = ‖W‖∞σj(Z), σj(Z) ≤ ‖W−1/2‖2∞σj(Z̃) = ‖W−1‖∞σj(Z̃), (50)

see [7, p. 75]. Consequently, the mapping (48) preserves the rank of any matrix. The following result assures
that the artificial measurement operator AW 1/2 obeys the Frobenius robust rank null space property, if the
original A does.

Lemma 29. Suppose that A satifies the Frobenius robust rank null space property of order r with constants
ρ and τ and suppose that W =

∑m
j=1 tjAj is positive definite. Then AW 1/2 also obeys the Frobenius robust

rank null space property of order r, but with constants ρ̃ = κ(W )ρ and τ̃ = ‖W‖∞τ .

Proof. Let Z̃ ∈ Hn. Relations (49), (50) together with the Frobenius robust rank null space property of A
imply that

‖Z̃r‖2 ≤ ‖W 1/2‖2∞‖Zr‖2 ≤ ‖W‖∞
(
ρ√
r
‖Zc‖1 + τ‖A(Z)‖`2

)
≤ ‖W‖∞‖W

−1‖∞ρ√
r

‖Z̃c‖1 + ‖W‖∞τ‖AW 1/2(Z̃)‖`2 .
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�

Lemma 30. Suppose there is t ∈ Rm such that W :=
∑m
j=1 tjAj is positive definite. Let X̃, Z̃ be positive

semidefinite. Then,
‖Z̃‖1 − ‖X̃‖1 ≤ ‖t‖`2‖AW 1/2(Z̃ − X̃)‖`2 .

Proof. The claim follows from positive semidefiniteness of both Z̃ and X̃ and our choice of the endomorphism
(48). Indeed,

‖Z̃‖1 = tr(Z̃ − X̃) + ‖X̃‖1 = tr(W 1/2(Z −X)W 1/2) + ‖X̃‖1 = tr(W (Z −X)) + ‖X̃‖1

=

m∑
j=1

tj tr(Aj(Z −X)) + ‖X̃‖1 = 〈t,A(Z −X)〉+ ‖X̃‖1

= 〈t,AW 1/2(Z̃ − X̃)〉+ ‖X̃‖1 ≤ ‖t‖`2‖AW 1/2(Z̃ − X̃)‖`2 + ‖X̃‖1.

Here X resp. Z denote the preimage of X̃ resp Z̃ under the map (48). �

This simple technical statement allows us to establish the main result of this section.

Theorem 31. Suppose there exists t ∈ Rm such that W :=
∑m
j=1 tjAj is positive definite and A satisfies

the Frobenius robust rank null space property with constants 0 < ρ < 1
κ(W ) and τ > 0. Let 1 ≤ p ≤ 2. Then,

for any X,Z < 0,

‖Z −X‖p ≤
2Cκ(W )

r1−1/p
‖Xc‖1 + r1/p−1/2‖A(Z)−A(X)‖`2‖W−1‖∞

(
C‖t‖2√

r
+D‖W‖∞τ

)
(51)

with constants C = (1+κ(W )ρ)2

1−κ(W )ρ and D = 3+κ(W )ρ
1−κ(W )ρ .

Proof. Let X,Z < 0 be arbitrary. Then

‖Z −X‖p =
∥∥∥W−1/2 (Z̃ − X̃)W−1/2∥∥∥

p
≤ ‖W−1‖∞‖Z̃ − X̃‖p

holds and the resulting matrices Z̃, X̃ are again positive-semidefinite. Also, since A satisfies the Frobenius
robust rank null space property with constants 0 < ρ < 1

κ(W ) and τ > 0, Lemma 29 assures that AW 1/2 does

the same with constants 0 < ρ̃ < 1 and τ̃ = ‖W‖∞τ > 0. Combining this with Theorem 12 and Lemma 30
implies

‖Z̃ − X̃‖p ≤
C

r1−1/p

(
‖Z̃‖1 − ‖X̃‖1 + 2‖X̃c‖1

)
+D‖W‖∞τr1/p−1/2‖AW 1/2(Z̃ − X̃)‖`2

≤ C

r1−1/p

(
‖t‖`2‖AW 1/2(Z̃ − X̃)‖`2 + 2‖X̃c‖1

)
+D‖W‖∞τr1/p−1/2‖AW 1/2(Z̃ − X̃)‖`2

≤ 2C

r1−1/p
‖X̃c‖1 + r1/p−1/2‖AW 1/2(Z̃ − X̃)‖`2

(
C‖t‖`2√

r
+D‖W‖∞τ

)
.

The desired statement follows from this estimate by taking into account (49) and (50). �

Note that in contrast to other recovery guarantees established here, Theorem 31 does not require any
convex optimization procedure. However, it does require the measurement process to obey an additional
criterion: the intersection of the span of measurement matrices with the cone of positive definite matrices
must be non-empty. We show that this is the case for the rank-one projective measurements introduced
in the previous section with high probability. Since it has already been established that sufficiently many
measurements of this kind obey the Frobenius robust rank null space property with high probability (see
Theorems 2 and 28 and their respective proofs), Theorem 4 can then be established by taking the union
bound over the individual probabilities of failure.

Proposition 32. Suppose m ≥ 4n and let A1, . . . , Am be matrices of the form aja
∗
j , where each ai ∈ Cn is

a random complex standard Gaussian vector. Then with probability at least 1− 2e−C10m, W := 1
m

∑m
j=1Aj

is positive definite and obeys
max

{
‖W‖∞, ‖W−1‖∞, κ(W )

}
≤ C11. (52)
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Here, C9, C10, C11 > 0 denote universal positive constants.

Note that such a construction corresponds to setting t = 1
m (1, . . . , 1)T ∈ Rm which obeys ‖t‖`2 = 1/

√
m.

Proof. For the sake of simplicity, we are going to establish the statement for real standard Gaussian vec-
tors. Establishing the complex case can be done analogously and leads to slightly different constants. Let
e1, . . . , em denote the standard basis in Rm. We define the auxiliary m × n matrix A :=

∑m
i=1 eia

∗
i which

obeys

1

m
ATA =

1

m

m∑
i=1

aie
∗
i

m∑
j=1

eja
∗
j =

1

m

m∑
i=1

aia
∗
i =

1

m

m∑
i=1

Ai = W.

Also, by construction, A is a random matrix with standard Gaussian entries. Essentially, this relation
implies that mW is Wishart-distributed. From (8) and the defining properties of eigen- and singular values
we infer that √

λmin(W ) =
1√
m

√
λmin (ATA) =

1√
m
λmin

(√
ATA

)
=

1√
m
σmin(A) (53)

and an analogous statement is true for the largest eigenvalue λmax(W ). Since A is a Gaussian m×n matrix,
concentration of measure implies that for any τ̃ > 0

√
m−

√
n− τ̃ ≤ σmin(A) ≤ σmax(A) ≤

√
m+

√
n+ τ̃ (54)

with probability at least 1− 2e−τ̃
2/2 — see e.g. [67, Corollary 5.35] or [26, Theorem 9.26]. Combining this

with (53), recalling the assumption m ≥ 4n and defining τ = τ̃ /
√
m allows for establishing

1

2
− τ ≤ 1−

√
n

m
− τ ≤

√
λmin(W ) ≤

√
λmax(W ) ≤ 1 +

√
n

m
+ τ ≤ 3

2
+ τ

with probability at least 1−2e−mτ
2/2. This inequality chain remains valid, if we square the individual terms.

Setting τ = 1/4 thus allows us to conclude

max

{
λmax(W ), λ−1min(W ),

λmax(W )

λmin(W )

}
≤
(

3/2 + τ

1/2− τ

)2

= 49 = C11, (55)

with probability at least 1− 2e−m/32. �

Alternatively, we could have relied on bounds on the condition number of Gaussian random matrices
presented in [20]. While these bounds would be slightly tighter, we feel that our derivation is more illustrative
and it suffices for our purpose.

Proposition 33. Suppose m ≥ C̃4nr log n and let A1, . . . , Am be matrices of the form aja
∗
j , where each

aj ∈ Cn is chosen independently from a weighted set {pi, wi}Ni=1 of vectors obeying ‖wi‖2`2 =
√
n(n+ 1) for

all 1 ≤ i ≤ N and ∥∥∥∥∥
N∑
i=1

piwiw
∗
i −

√
n+ 1

n
id

∥∥∥∥∥
∞

≤ 1

2
. (56)

Then with probability at least 1− e−γC̃4r, the matrix W := 1
m

∑m
j=1Aj is positive definite and obeys

max
{
‖W‖∞, ‖W−1‖∞, κ(W )

}
≤ 8. (57)

Here, C̃4 > 1 and 0 < γ ≤ 1 denote absolute constants of adequate size.

Note that condition (56) is slightly stronger than the corresponding condition in Theorem 28. Also, the

construction of W again uses t = 1
m (1 . . . , 1)

T ∈ Rm.
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Proof. In order to show this statement, we are going to employ the matrix Bernstein inequality5 [65, Theorem
6.1], see also [1], in order to establish ∥∥∥∥∥W −

√
n+ 1

n
id

∥∥∥∥∥
∞

≤ 3

4
(58)

with high probability. Let λ1(W ), . . . , λn(W ) denote the eigenvalues of W . Then such a bound together
with the definition of the operator norm assures

1− λmin(W ) ≤
√
n+ 1

n
− λmin(W ) ≤

∣∣∣∣∣
√
n+ 1

n
− λmin(W )

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣
√
n+ 1

n
− λi(W )

∣∣∣∣∣
=

∥∥∥∥∥
√
n+ 1

n
id−W

∥∥∥∥∥
∞

≤ 3/4,

λmax(W )−
√
n+ 1

n
≤

∣∣∣∣∣λmax(W )−
√
n+ 1

n

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣
√
n+ 1

n
− λi(W )

∣∣∣∣∣
=

∥∥∥∥∥W −
√
n+ 1

n
id

∥∥∥∥∥
∞

≤ 3/4.

This in turn implies λmin(W ) ≥ 1/4 as well as λmax(W ) ≤ 3/4+
√

n+1
n ≤ 2 for n ≥ 2 and the desired bound

(57) readily follows.
It remains to assure the validity of (58) with high probability. To this end, for 1 ≤ k ≤ m, we define the

random matrices Mk := 1
m (aka

∗
k − E [aka

∗
k]), where each ak is chosen independently at random from the

weighted set {pi, wi}Ni=1. This definition assures∥∥∥∥∥W −
√
n+ 1

n
id

∥∥∥∥∥
∞

=

∥∥∥∥∥
m∑
k=1

(
Mk + E [aka

∗
k]
)
−
√
n+ 1

n
id

∥∥∥∥∥
∞

≤

∥∥∥∥∥
m∑
k=1

Mk

∥∥∥∥∥
∞

+
1

2
(59)

via the triangle inequality and assumption (56) and along similar lines

‖E [aka
∗
k]‖∞ ≤

1

2
+

√
n+ 1

n
≤ 2 (60)

readily follows for any 1 ≤ k ≤ m. The random matrices Mk have mean-zero by construction and each of
them obeys

‖Mk‖∞ =
1

m
‖aka∗k − E [aka

∗
k]‖∞ ≤

1

m
max {‖aka∗k‖∞, ‖E [aka

∗
k] ‖∞} =

1

m
‖ak‖2`2 =

√
(n+ 1)n

m
,

as well as∥∥E [M2
k

]∥∥
∞ =

1

m2

∥∥∥E [(aka∗k)
2
]
− E [aka

∗
k]

2
∥∥∥
∞

=
1

m2

∥∥∥√(n+ 1)nE [aka
∗
k]− E [aka

∗
k]

2
∥∥∥
∞

=
2

m2
max

{√
(n+ 1)n ‖E [aka

∗
k]‖∞ , ‖E [aka

∗
k]‖2∞

}
≤

2
√

(n+ 1)n

m2
.

Hence ∥∥∥∥∥
m∑
k=1

E
[
M2
k

]∥∥∥∥∥
∞

≤
2
√

(n+ 1)n

m
.

5Resorting to the matrix Chernoff inequality would allow for establishing a similar result. However, in the case of an exact
tight frame, the numerical constants obtained by doing so are slightly worse.
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These bounds allow us to set R :=

√
(n+1)n

m , σ2 :=
2
√

(n+1)n

m and apply the matrix Bernstein inequality
([65, Theorem 6.1], [1]) in order to establish

Pr

[∥∥∥∥∥
m∑
k=1

Mk

∥∥∥∥∥
∞

≥ τ

]
≤ n exp

(
− τ2/2

σ2 +Rτ

)
≤ n exp

(
− 3τ2m

16
√

(n+ 1)n

)
for 0 < τ ≤ σ2/R = 2. Setting τ = 1/4 and inserting m ≥ C̃4nr log(n) (where C̃4 is large enough) assures

that (58) holds with probability of failure smaller than e−γC̃4r via (59) for a suitable γ > 0. �

Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. We content ourselves with establishing the design case and point out that the Gaussian
case can be proved analogously (albeit with different constants). Fix 0 < ρ < 1/8 and suppose that

m ≥ C3

(
1 +

(
1 + ρ−1

)2)
nr log n

measurement vectors have been chosen independently from an approximate 4-design. Theorem 28 then
assures that the resulting measurement operator A obeys the robust Frobenius rank null space property

with constants ρ < 1/8 and τ ≤ C̃6/
√
m with probability at least 1 − e−C̃5m. Likewise, Proposition 33

assures that with probability at least 1− e−γC̃4r, setting t = 1√
m

(1, . . . , 1)T ∈ Rm leads to a positive definite

W =
∑m
j=1 tjAj obeying κ(W ) ≤ 8. Note that such a t obeys ‖t‖`2 = 1/

√
m and also 0 < ρ < 1/8 ≤ 1/κ(W )

holds by construction. The union bound over these two assertions failing implies that the requirements of
Theorem 31 are met with probability at least

1− e−C̃5m − e−γC̃4r ≥ 1− e−γ̃C̃4r,

where γ̃ denotes a sufficiently small absolute constant and C̃4 = m/nr log n. The constants C4 and s

presented in Theorem 4 then amount to s = γ̃C̃4 and C2 ≥ C̃4. Inserting ‖t‖`2 = 1/
√
m and the bounds on

‖W‖∞, ‖W−1‖∞, κ(W ) from Proposition 33 into (51) yields

‖Z −X‖p ≤
2Cκ(W )

r1−1/p
‖Xc‖1 + r1/p−1/2‖A(Z)−A(X)‖`2‖W−1‖∞

(
C‖t‖2√

r
+D‖W‖∞τ

)
≤ 16C

r1−1/p
‖Xc‖1 + 8r1/p−1/2‖A(Z)−A(X)‖`2

(
C√
rm

+
9DC̃6√
m

)

≤ C3

r1−1/p
‖Xc‖1 +

C4r
1/p−1/2
√
m

‖A(Z)−A(X)‖`2

with constants C3 = 16C and C4 = 8C+8DC̃6 (where C,D were introduced in Theorem 31 and C̃6 is ). �

Remark 34. In Corollary 6 we focus on recovering density operators, i.e., positive semidefinite matrices X
with trace one. This trace constraint can be re-interpreted as an additional perfectly noiseless measurement

b0 = tr (idX) = tr(X) = 1

corresponding to the measurement matrix A0 = id. Setting t = (1, 0, . . . , 0)T ∈ Rm+1 in Theorem 31
then leads to W = id which obeys ‖W‖∞ = ‖W−1‖∞ = κ(W ) = 1 and furthermore assures that the

endomorphism (48) is trivial, i.e. Z̃ = Z for all Z ∈ Hn. Moreover, these properties render the estimate
provided in Lemma 30 redundant, because any two density operators X,Z obey

‖Z̃‖1 − ‖X̃‖1 = ‖Z‖1 − ‖Z‖1 = tr (Z)− tr (X) = 0.

Such a refinement then allows for dropping the term containing ‖t‖`2 in (51) and by inserting W = id we
arrive at the following conclusion: Any measurement operator A that obeys the Frobenius robust rank null
space property with constants 0 < ρ < 1 and τ > 0 assures for 1 ≤ p ≤ 2 and any two density operators
X,Z:

‖Z −X‖p ≤
2 (1 + ρ)

2

1− ρ
‖Xc‖1 + τ

r1/p−1/2(3 + ρ)

1− ρ
‖A(Z)−A(X)‖`2 .

Corollary 6 then follows from combining this assertion with Theorem 28 and setting p = 1.
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Appendix

A brief review of finite-dimensional quantum mechanics. For the sake of being self-contained we
briefly recapitulate crucial concepts of (finite dimensional) quantum mechanics without going too much into
detail. For further reading on the topics introduced here, we defer the interested reader to [53, Chapter 2.2].

An isolated quantum mechanical system is fully described by its density operator. For a finite n-
dimensional quantum system, such a density operator corresponds to an Hermitian, positive semidefinite
matrix ρ with unit trace.

The most general notion of a measurement is that of a positive operator-valued measure (POVM). For an
n-dimensional quantum system, a POVM corresponds to a collection M = {Em}m∈I of positive semidefinite
n× n matrices that sum up to identity, i.e., ∑

m∈I
Em = id .

The indices m ∈ I indicate the possible measurement outcomes of performing such a POVM measurement.
Upon performing M on a system described by ρ, quantum mechanics then postulates that the probability
of obtaining the outcome (labeled by) m corresponds to

p(m, ρ) = tr (Emρ) .

Repeating the same measurement (i.e., preparing ρ and measuring M) many times allows one to estimate
the n probabilities p(λi, ρ) ever more accurately.

Note that the definitions of ρ and M assure that p(m, ρ)m∈I is in fact a valid probability distribution.
Indeed, p(m, ρ) ≥ 0 follows from positive-semidefiniteness of both ρ and Em. Unit trace of ρ assures proper
normalization via ∑

m∈I
p(m, ρ) =

∑
m∈I

tr (Emρ) = tr (id ρ) = tr(ρ) = 1.
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