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Abstract. In this paper we consider memoryless one-bit compressed sensing

with randomly subsampled Gaussian circulant matrices. We show that in a

small sparsity regime and for small enough accuracy δ, m ∼ δ−4s log(N/sδ)
measurements suffice to reconstruct the direction of any s-sparse vector up

to accuracy δ via an efficient program. We derive this result by proving that

partial Gaussian circulant matrices satisfy an `1/`2 RIP-property. Under a
slightly worse dependence on δ, we establish stability with respect to approx-

imate sparsity, as well as full vector recovery results.

1. Introduction

In the past decade, compressed sensing has established itself as a new paradigm
in signal processing. It predicts that one can reconstruct signals from a small
number of linear measurements using efficient algorithms, by exploiting that many
real-world signals possess a sparse representation. In the traditional compressed
sensing literature, it is typically assumed that one can reconstruct a signal based on
its analog linear measurements. In a realistic sensing scenario, measurements need
to be quantized to a finite number of bits before they can be transmitted, stored,
and processed. Formally, this means that one needs to reconstruct a sparse signal
x based on non-linear measurements of the form y = Q(Ax), where Q : Rm → Am
is a quantizer and A denotes a finite quantization alphabet.

In this paper, we study the measurement model

(1) y = sign(Ax+ τ),

where A ∈ Rm×N , m � N , sign is the signum function applied element-wise and
τ ∈ Rm is a (possibly random) vector consisting of thresholds. Thus, every linear
measurement is quantized to a single bit in a memoryless fashion, i.e., each mea-
surement is quantized independently. This quantizer is attractive from a practical
point of view, as it can be implemented using an energy-efficient comparator to a
fixed voltage level (if τi = c for all i) combined with dithering (if τ is random). In
the case τ = 0, this model was coined one-bit compressed sensing by Boufounos
and Baraniuk [4]. Taking all thresholds equal to zero has the disadvantage that
the energy ‖x‖22 of the original signal is lost during quantization and one can only
hope to recover the direction of the signal. More recent works [15, 2] have shown
that by using random thresholds, it is under appropriate circumstances possible to
completely reconstruct the signal (up to any prescribed precision).

Until now, recovery results for the one-bit compressed sensing model (1) dealt
almost exclusively with a Gaussian measurement matrix A. The only exception
seems to be [1], which deals with subgaussian matrices. The goal of this paper is
to derive reconstruction guarantees in the case that A is a randomly subsampled
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Gaussian circulant matrix. This compressed sensing model is important for sev-
eral real-world applications, including SAR radar imaging, Fourier optical imaging
and channel estimation (see e.g. [24] and the references therein). Our work seems
to be the first to give rigorous reconstruction guarantees for memoryless one-bit
compressed sensing involving a structured random matrix.

Our results concern guarantees for uniform recovery under a small sparsity as-
sumption. Concretely, for a desired accuracy parameter 0 < ε ≤ 1, we assume that
the sparsity s is small enough, i.e.,

s .
√
εN/ log(N).

we suppose that the (expected) number of measurements satisfy

(2) m &

{
ε−1s log(eN/(sε)) if 0 < ε ≤

(
log2(s) log(N)

)−1

ε−1/2s log(s) log3/2(N) if
(
log2(s) log(N)

)−1
< ε ≤ 1.

Let us first phrase our results for τ = 0. We consider two different recovery methods
to reconstruct x, namely via a single hard thresholding step

(HT) x#
HT = Hs(A

∗ sign(Ax))

and via the program

(LP) min
z∈Rn

‖z‖1 s.t. sign(Az) = sign(Ax) and ‖Az‖1 = 1.

As the first constraint is equivalent to (Az)i sign((Ax)i) ≥ 0 for i = 1, . . . ,m and
due to the second constraint it can be written as

∑n
i=1 sign((Ax)i)(Az)i = 1, it

follows that (LP) is a linear program.
Our first result shows that under (2) the following holds with high probability:

for any s-sparse x with ‖x‖2 = 1 the hard thresholding reconstruction x#
HT satisfies

‖x− x#
HT‖2 ≤ ε1/4. Moreover, under slightly stronger conditions (see Theorem 4.2

with δ = ε1/4) for any vector satisfying ‖x‖1 ≤
√
s and ‖x‖2=1, any solution x#

LP

satisfies ‖x − x#
LP‖2 ≤ ε1/8. As a consequence, we can reconstruct the direction

x/‖x‖2 of any s-sparse (resp. effectively sparse) signal via an efficient program.
Our second result gives guarantees for the full recovery of effectively sparse vec-

tors, provided that an upper bound R on their energy is known. We suppose that
τ is a vector of independent, N (0, πR2/2)-distributed random variables. If a con-
dition similar to (2) is satisfied (see Theorem 4.2), then the following holds with
high probability: for any x ∈ RN with ‖x‖1 ≤

√
s‖x‖2 and ‖x‖2 ≤ R, the solution

x#
CP to the second-order cone program

(CP) min
z∈RN

‖z‖1 s.t. sign(Az + τ) = sign(Ax+ τ), ‖z‖2 ≤ R

satisfies ‖x− x#
CP‖2 ≤ Rε1/8.

Our analysis relies on an observation of Foucart [8], who showed that it is suf-
ficient for the matrix A to satisfy an `1/`2-RIP property to guarantee successful
uniform recovery via (HT) and (LP). In the same vein, we show that the program
(CP) is guaranteed to succeed under an `1/`2-RIP property for a modification of A.
We prove the required RIP-properties in Theorem 5.2. The final section of the pa-
per discusses two additional consequences of these RIP-results. In Corollary 6.1 we
follow the work [6] to derive a recovery guarantee for (unquantized) outlier-robust
compressed sensing with Gaussian circulant matrices. In Theorem 6.2 we use a
recent result from [12] to derive an improved guarantee for recovery from uniform
scalar quantized Gaussian circulant measurements.
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2. Related work

Standard compressive sensing with partial circulant matrices. In stan-
dard (unquantized) compressive sensing, the task is to recover an (approximately)
sparse vector x ∈ RN from measurements y = Ax, where A ∈ Rm×N with m� N .
A number of reconstruction algorithms have been introduced, most notably `1-
minimization which computes the minimizer of

min
z∈RN

‖z‖1 subject to Az = Ax.

The (`2-)restricted isometry property is a classical way of analyzing the performance
of compressive sensing [9]. The restricted isometry constant δs is defined as the
smallest constant δ such that

(3) (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x ∈ RN .

If δ2s < 1/
√

2 then all s-sparse signals can be reconstructed via `1-minimization
exactly, see e.g. [5, 9]. Stability under noise and sparsity defect can be shown as
well and similar guarantees also hold for other reconstruction algorithms [9]. It is
well-known that Gaussian random matrices satisfy δs ≤ δ with probability at least
1− η if m & δ−2(s log(eN/s) + log(1/η)) [9, Chapter 9].

The situation that A is a subsampled random circulant matrix (see below for a
formal definition) has been analyzed in several contributions [24, 22, 23, 16, 14, 18].
The best available result states [16] that a properly normalized (deterministically)
subsampled random circulant matrix (generated by a Gaussian random vector)
satisfies δs ≤ δ with probability at least 1− η if

m & δ−2s(log2(s) log2(N) + log(1/η)).

The original contribution [24] by Romberg uses random subsampling of a circulant
matrix and requires slightly more logarithmic factors, but is able to treat sparsity
with respect to an arbitrary basis. In the case of randomly subsampled random
convolutions and sparsity with respect to the standard basis, stable and robust
s-sparse recovery via `1-minimization could recently be shown via the null space
property [9] in [18] in a small sparsity regime s .

√
N/ log(N) under the optimal

condition

(4) m & s log(eN/s).

We note that the proof in [18] provides the lower RIP-bound in (3) and may be
extended to show the lower `1/`2 RIP bound in (8) below under condition (4).

Non-uniform recovery results have been shown in [22, 23, 14] which require only
m & s log(N) measurements for exact recovery from (deterministically) subsampled
random convolutions via `1-minimization.

One-bit compressive sensing with Gaussian measurements, τ = 0. The
majority of the known signal reconstruction results in one-bit compressed sensing
are restricted to standard Gaussian measurement matrices. Let us first consider
the results in the case τ = 0. It was shown in [13, Theorem 2] that if A is m×N
Gaussian and m & δ−1s log(N/δ) then, with high probability, any s-sparse x, x′

with ‖x‖2 = ‖x′‖2 = 1 and sign(Ax) = sign(Ax′) satisfy ‖x − x′‖2 ≤ δ. In
particular, this shows that one can approximate x up to error δ by the solution of
the non-convex program

min ‖z‖0 s.t. sign(Ax) = sign(Az), ‖z‖2 = 1.

This result is near-optimal in the following sense: any reconstruction x# based
on sign(Ax) satisfies ‖x# − x‖2 & s/(m + s3/2) [13, Theorem 1]. That is, the
dependence of m on δ can in general not be improved. It was shown in [10, Theorem
7] that this optimal error dependence can be obtained using a polynomial time
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algorithm if the measurement matrix is modified. Specifically, they showed that
if m & δ−1m′ log(m′/δ) if A = A2A1, where A2 is m × m′ Gaussian and A1 is
any m′ × N matrix with RIP constant bounded by 1/6 (so one can take m′ ∼
s log(N/s) if A1 is Gaussian), then with high probability one can recover any s-
sparse x with unit norm up to error δ from sign(Ax) using an efficient algorithm.
To recover efficiently from Gaussian one-bit measurements, Plan and Vershynin
[20] proposed the reconstruction program in (LP). They showed that using m &
δ−1s log2(N/s) Gaussian measurements one can recover every x with ‖x‖1 ≤

√
s

and ‖x‖2 = 1 via (LP) with reconstruction error δ1/5. In [21] they introduced
a different convex program and showed that if m & δ−1s log(N/s), then one can
achieve a reconstruction error δ1/6 even if there is (adversarial) quantization noise
present.

Thresholds. It was recently shown that one can recover full signals (instead
of just their directions) by incorporating appropriate thresholds. In [15] it was
shown that by taking Gaussian thresholds τi one can recover energy information
by slightly modifying the linear program (LP). A similar observation for recovery
using the program (CP) was made in [2]. The paper [15] also proposed a method
to estimate ‖x‖2 using a single deterministic threshold τi = τ that works well if one
has some prior knowledge of the energy range.

Subgaussian measurements. The results described above are all restricted
to Gaussian measurements. It seems that [1] is currently the only work on memo-
ryless one-bit compressed sensing for non-Gaussian matrices. Even though one-bit
compressed sensing can fail in general for subgaussian matrices, it is shown in [1]
that some non-uniform recovery results from [21] can be extended to subgaussian
matrices if the signal to be recovered is not too sparse (meaning that ‖x‖∞ is small)
or if the measurement vectors are close to Gaussian in terms of the total variation
distance.

Uniform scalar quantization. Some recovery results for circulant matrices are
essentially known for a different memoryless quantization scheme. Consider the uni-
form scalar quantizerQδ : Rm → (δZ+δ/2)m defined byQδ(z) =

(
δbzi/δc+δ/2

)m
i=1

.

As we point out in Appendix A, if A consists of m & s log2 s log2N deterministic
samples of a subgaussian circulant matrix, then it follows from [16] that with high
probability one can recover any s-sparse vector up to a reconstruction error δ from
its quantized measurements Qδ(Ax). By using random subsampling and imposing
a small sparsity assumption similar to ours, this number of measurements can be
decreased to m & s log(N/s) [18]. In these results, the recovery error does not
improve beyond the resolution δ of the quantizer, even if one takes more measure-
ments. In Theorem 6.2 we show that for a randomly subsampled Gaussian circulant
matrix it is possible to achieve a reconstruction error decay beyond the quantization
resolution, provided that one introduces an appropriate dithering in the quantizer.

Adaptive quantization methods. The results discussed above all concern
memoryless quantization schemes, meaning that each measurement is quantized
independently. By quantizing adaptively based on previous measurements, one
can improve the reconstruction error decay rate. In [2] it was shown for Gaussian
measurement matrices that by using adaptive thresholds, one can even achieve an
(optimal) exponential decay in terms of the number of measurements. Very recently,
it was shown that one can efficiently recover a signal from randomly subsampled
subgaussian partial circulant measurements that have been quantized using a popu-
lar scheme called sigma-delta quantization [7]. In particular, [7, Theorem 5] proves
that based on m ∼ s log2 s log2N one-bit sigma-delta quantized measurements,
one can use a convex program to find an approximant of the signal that exhibits
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polynomial reconstruction error decay. Although adaptive methods such as sigma-
delta quantization can achieve a better error decay than memoryless quantization
schemes, they require a more complicated hardware architecture and higher energy
consumption in operation than the memoryless quantizer studied in this work.

3. Notation

We use IdN to denote the N×N identity matrix. If A ∈ Rm×N and B ∈ Rm×M ,
then [A B] ∈ Rm×(N+M) is the matrix obtained by concatenating A and B. For
x ∈ RN and y ∈ RM let [x, y] ∈ RN+M be vector obtained by appending y at the
end of x. If I ⊂ [N ], then xI ∈ R|I| is the vector obtained by restricting x to its
entries in I. We let RI : RN → R|I|, RI(x) = xI denote the restriction operator.
Further, ‖x‖p denotes the usual `p-norm of a vector x, ‖A‖`2→`2 the spectral norm
of a matrix A and ‖A‖F its Frobenius norm. For an event E, 1E is the characteristic
function of E.

We let Σs,N denote the set of all s-sparse vectors with unit norm. We say that
x ∈ RN is s-effectively sparse if ‖x‖1 ≤

√
s‖x‖2. We let Σeff

s,N denote the set of all
s-effectively sparse vectors. Clearly, if x is s-sparse, then it is s-effectively sparse.
We let Hs denote the hard thresholding operator, which sets all coefficients of a
vector except the s largest ones (in absolute value) to 0.

For any x ∈ RN we let Γx ∈ RN×N and Dx ∈ RN be the circulant matrix and
diagonal matrix, respectively, generated by x. That is,

Dx =



x1 0 · · · 0 0
0 x1 0 0

0 0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xN

 , Γx =


xN x1 x2 · · · xN−2 xN−1

xN−1 xN x1 · · · xN−3 xN−2

xN−2 xN−1 xN · · · xN−4 xN−3

...
...

...
...

...
...

x1 x2 x3 · · · xN−1 xN

 .

We study the following linear measurement matrix. We consider a vector θ of i.i.d.
random selectors with mean m/N and let I = {i ∈ [N ] : θi = 1}. Let g be an
N -dimensional standard Gaussian vector that is independent of θ. We define the
randomly subsampled Gaussian circulant matrix by A = RIΓg. Note that E|I| = m,
so m corresponds to the expected number of measurements in this model.

4. Recovery via RIP1,2-properties

Let us start by stating our main recovery result for vectors with small sparsity
located on the unit sphere.

Theorem 4.1. Let 0 < δ, η ≤ 1 and s ∈ [N ] such that

(5) s . min{
√
δ2N/ log(N), δ2N/ log(1/η)}.

If 0 < δ ≤
(

log(s)
√

log(N)
)−1

suppose that

(6) m & δ−2s log(eN/(sδη)).

If
(

log(s)
√

log(N)
)−1

< δ ≤ 1 suppose that

(7) m & δ−1smax

{
log(s) log3/2(N),

log(1/η)

log(s)
√

log(N)
,

log(1/η) log(s)
√

log(N)

s

}
.

Let A = RIΓg. Then, with probability at least 1−η, for every x ∈ RN with ‖x‖0 ≤ s
and ‖x‖2 = 1, the hard thresholding reconstruction x#

HT satisfies ‖x−x#
HT‖2 .

√
δ.
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Let us remark that for polynomially scaling probabilities η = N−α the second
and third term in the maximum in (7) can be bounded by a constant cα times the
first term and then (7) reduces to

m & δ−1s log(s) log3/2(N),

which is implied by the even simpler condition m & δ−1s log5/2(N). We further

note that (5) also gives an implicit condition on δ. In fact, if δ .
√

log(N)/N ,
then (5) excludes all nontrivial sparsities s ≥ 1. However, we expect that the
requirement (5) of small sparsity is only an artefact of our proof and that recovery
can also be expected for larger sparsities under conditions similar to (6) and (7)
with possibly more logarithmic factors, see also [18] for an analogue phenomenon
for standard compressed sensing. In fact, our proof relies on the RIP1,2 and [18]
provides at least the lower RIP1,2 bound also for larger sparsities.

Let us now state our main result for the LP-reconstruction which unfortunately
requires worse scaling in δ than (6) and (7).

Theorem 4.2. Let 0 < δ, η ≤ 1. If 0 < δ ≤ (log2(s) log(N))−1/4 assume that

s . min{
√
δ4N/ log(N), δ2N/ log(1/η)},

m & δ−4s log(eN/s),

and if (log2(s) log(N))−1/4 < δ ≤ 1 assume that

s . min

{
δ4/3

√
N/ log2(N), δ2N/ log(1/η)

}
m & δ−4/3smax

{
log4/3(s) log5/3(N),

log(1/η)

log3/2(s) log1/3(N)
,

log2/3(s) log1/3(N)

δ4/3s

}
.

Then the following holds with probability exceeding 1 − η: for every x ∈ RN with

‖x‖1 ≤ s and ‖x‖2 = 1, the LP-reconstruction x#
LP satisfies ‖x− x#

LP‖2 .
√
δ.

We will prove Theorem 4.1 by using a recent observation of Foucart [8]. He
showed that one can accurately recover signals from one-bit measurements if the
measurement matrix satisfies an appropriate RIP-type property. Let us say that a
matrix A satisfies RIP1,2(s, δ) if

(8) (1− δ)‖x‖2 ≤ ‖Ax‖1 ≤ (1 + δ)‖x‖2, for all x ∈ Σs,N

and A satisfies RIPeff
1,2(s, δ) if

(9) (1− δ)‖x‖2 ≤ ‖Ax‖1 ≤ (1 + δ)‖x‖2, for all x ∈ Σeff
s,N .

Lemma 4.3. [8, Theorem 8] Suppose that A satisfies RIP1,2(2s, δ). Then, for
every x ∈ RN with ‖x‖0 ≤ s and ‖x‖2 = 1, the hard thresholding reconstruction

x#
HT satisfies ‖x− x#

HT‖2 ≤ 2
√

5δ.

Let δ ≤ 1/5. Suppose that A satisfies RIPeff
1,2(9s, δ). Then, for every x ∈ RN with

‖x‖1 ≤ s and ‖x‖2 = 1, the LP-reconstruction x#
LP satisfies ‖x− x#

LP‖2 ≤ 2
√

5δ.

Remark 4.4. It is in general not possible to extend Theorem 4.1 to subgaussian
circulant matrices. Indeed, suppose that the measurement matrix is a (rescaled,
subsampled) Bernoulli circulant matrix, the threshold vector τ in (1) is zero and
consider, for 0 < λ < 1, the normalized 2-sparse vectors

(10) x+λ = (1 + λ2)−1/2(1, λ, 0, . . . , 0), x−λ = (1 + λ2)−1/2(1,−λ, 0, . . . , 0).

Then

sign(〈(Γε)i, x+λ〉) = sign(εn+1−i + λεn+2−i)
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= sign(εn+1−i) = sign(εn+1−i − λεn+2−i) = sign(〈(Γε)i, x−λ〉)
That is, x+λ and x−λ produce identical one-bit measurements.

As a consequence, Lemma 4.3 implies that a subsampled Bernoulli circulant ma-
trix cannot satisfy the RIP1,2(4, δ) property for small values of δ, regardless of how
we subsample and scale the matrix. Indeed, suppose that A = αRIΓε satisfies
this property for a suitable I ⊂ [N ] and scaling factor α. Since sign(Ax+λ) =
sign(Ax−λ), we find using Lemma 4.3 and the triangle inequality

2λ

(1 + λ2)1/2
= ‖x+λ − x−λ‖2

≤ ‖x+λ −Hs(A
∗ sign(Ax+λ))‖2 + ‖Hs(A

∗ sign(Ax−λ))− x−λ‖2
≤ 4
√

5δ.

By taking λ→ 1 we find δ ≥ 1/40.
However, by excluding extremely sparse vectors via a suitable `∞-norm bound,

it might be possible to work around this counter example. In fact, in the case
of unstructured subgaussian random matrices, positive recovery results for sparse
vectors with such additional constraint were shown in [1].

So far, our recovery results only allow to recover vectors lying on the unit sphere.
By incorporating Gaussian dithering in the quantization process we can reconstruct
any effectively sparse vector, provided that we have an a-priori upper bound on its
energy.

Theorem 4.5. Let A = RIΓg and let τ1, . . . , τm be independent N (0, πR2/2)-
distributed random variables. Under the assumptions on s,m, n, δ, η of Theorem 4.2
the following holds with probability exceeding 1 − η: for any x ∈ RN with ‖x‖1 ≤√
s‖x‖2 and ‖x‖2 ≤ R, any solution x#

CP to the second-order cone program (CP)

satisfies ‖x− x#
CP‖2 ≤ R

√
δ.

To prove this result, we let C ∈ Rm×(N+1) and consider the following abstract
version of (CP):

(11) min
z∈RN

‖z‖1 s.t. sign(C[z,R]) = sign(C[x,R]), ‖z‖2 ≤ R.

It is straightforward to verify that (CP) is obtained by taking C = 1
m

√
π
2B, where

(12) B := RI [Γg h] = RI


gN g1 g2 · · · gN−2 gN−1 h1

gN−1 gN g1 · · · gN−3 gN−2 h2

gN−2 gN−1 gN · · · gN−4 gN−3 h3

...
...

...
...

...
...

...
g1 g2 g3 · · · gN−1 gN hN

 ,
and h is a standard Gaussian vector that is independent of θ and g.

Lemma 4.6. Let δ < 1/5. Suppose that C satisfies RIPeff
1,2(36(

√
s+ 1)2, δ). Then,

for any x ∈ RN satisfying ‖x‖1 ≤
√
s‖x‖2 and ‖x‖2 ≤ R, any solution x# to (11)

satisfies

‖x− x#‖2 ≤ 2R
√
δ.

The following proof is based on arguments in [8, Section 8.4] and [2, Corollary
9].

Proof. In the proof of [2, Corollary 9] it shown that

(13) ‖u− v‖2 ≤ 2

∥∥∥∥ [u, 1]

‖[u, 1]‖2
− [v, 1]

‖[v, 1]‖2

∥∥∥∥
2
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for any two vectors u, v ∈ B`N2 . Let x ∈ Σeff
s,N ∩ RB`N2 , x# be any solution to (11)

and write

x̄ = [x,R]/‖[x,R]‖2, x̄# = [x#, R]/‖[x#, R]‖2.
Since x/R, x#/R ∈ B`N2 , (13) implies that

‖x− x#‖2 ≤ 2R‖x̄− x̄#‖2.
By the parallellogram identity,

(14)
∥∥∥ x̄− x̄#

2

∥∥∥2

2
=
‖x̄‖22 + ‖x̄#‖22

2
−
∥∥∥∥ x̄+ x̄#

2

∥∥∥∥2

2

.

Let us observe that [x,R] and [x#, R] are (
√
s + 1)2-effectively sparse. Indeed, by

optimality of x# for (11) and s-effective sparsity of x,

‖[x#, R]‖1 ≤ ‖[x,R]‖1 ≤
√
s‖x‖2 +R ≤ R(

√
s+ 1)

and ‖[x,R]‖2, ‖[x#, R]‖2 ≥ R. We claim that

(15) z :=
x̄+ x̄#

2
∈ Σeff

36(
√
s+1)2,N+1 .

Once this is shown, we can use sign(Cx̄) = sign(Cx̄#) and the RIPeff
1,2(36(

√
s +

1)2, δ)-property of C to find∥∥∥∥ x̄+ x̄#

2

∥∥∥∥
2

≥ 1

1 + δ

∥∥∥∥C( x̄+ x̄#

2

)∥∥∥∥
1

=
‖Cx̄‖1 + ‖Cx̄#‖1

2(1 + δ)
≥ (1− δ)

(1 + δ)
.(16)

Hence, (14) implies ∥∥∥ x̄− x̄#

2

∥∥∥2

2
≤ 1− (1− δ)2

(1 + δ)2
≤ 4δ

(1 + δ)2
.

Let us now prove (15). Since [x,R] and [x#, R] are (
√
s+ 1)2-effectively sparse,

‖z‖1 ≤
1

2

∥∥∥ [x,R]

‖[x,R]‖2

∥∥∥
1

+
1

2

∥∥∥ [x#, R]

‖[x#, R]‖2

∥∥∥
1
≤
√
s+ 1.

It remains to bound ‖z‖2 from below. In (16) we already observed that

(17) ‖Cz‖1 =
1

2

∥∥∥ C[x,R]

‖[x,R]‖2

∥∥∥
1

+
1

2

∥∥∥ C[x#, R]

‖[x#, R]‖2

∥∥∥
1
≥ (1− δ).

Set t = 8s+ 8 ≥ 4(
√
s+ 1)2. Let T0 be the index set corresponding to the t largest

entries of z, T1 be the set corresponding to the next t largest entries of z, and so
on. Then, for all k ≥ 1,

‖zTk‖2 ≤
√
t‖zTk‖∞ ≤ ‖zTk−1

‖1/
√
t.

Since C satisfies RIPeff
1,2(36(

√
s+ 1)2, δ), it satisfies RIP1,2(t, δ) and hence

‖Cz‖1 ≤
∑
k≥0

‖CzTk‖1 ≤ (1 + δ)
(
‖zT0
‖2 +

∑
k≥1

‖zTk‖2
)

≤ (1 + δ)‖z‖2 +
(1 + δ)√

t
‖z‖1 ≤ (1 + δ)‖z‖2 +

(1 + δ)√
t

(
√
s+ 1).

≤ (1 + δ)‖z‖2 +
1

2
(1 + δ).(18)

Since δ ≤ 1/5, (17) and (18) together yield

‖z‖2 ≥
(1− δ)− 1

2 (1 + δ)

(1 + δ)
=

1
2 −

3
2δ

1 + δ
≥ 1

6
.

�
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5. Proof of the RIP1,2-properties

We will now prove the RIP-properties required in Lemmas 4.3 and 4.6. For
our analysis we recall two standard concentration inequalities. The Hanson-Wright
inequality [11] states that if g is a standard Gaussian vector and B ∈ RN×N , then

(19) P(|gTBg − EgTBg| ≥ t) ≤ exp
(
− cmin

{ t2

‖B‖2F
,

t

‖B‖`2→`2

})
,

where c is an absolute constant and ‖B‖F and ‖B‖`2→`2 are the Frobenius and
operator norms of B, respectively. We refer to [25] for a modern proof. In addition,
we will use a well-known concentration inequality for suprema of Gaussian processes
(see e.g. [3, Theorem 5.8]). If T ⊂ RN , then

(20) P
(∣∣∣ sup

x∈T
〈x, g〉 − E sup

x∈T
〈x, g〉

∣∣∣ ≥ t) ≤ 2e−t
2/2σ2

,

where σ2 = supx∈T ‖x‖22. We will use the following observation.

Lemma 5.1. Suppose that y ∈ RN satisfies ‖y‖1 ≤
√
s and ‖y‖2 = 1. Let g be a

standard Gaussian vector. For any t > 0,

(21) P
(∣∣∣ 1

N
‖Γgy‖22 − 1

∣∣∣ ≥ t) ≤ 2e−cN min{t2,t}/s

and

(22) P
(∣∣∣ 1

N

√
π

2
‖Γgy‖1 − 1

∣∣∣ ≥ t) ≤ 2e−Nt
2/πs.

If h is a standard Gaussian vector and y ∈ RN+1 satisfies ‖y‖1 ≤
√
s and ‖y‖2 = 1,

then

(23) P
(∣∣∣ 1

N

√
π

2
‖[Γg h]y‖1 − 1

∣∣∣ ≥ t) ≤ 2e−Nt
2/πs.

Proof. Note that Γgy = Γyg. By the Hanson-Wright inequality (19)

P
(
|‖Γyg‖22 −N‖y‖22| ≥ Nt

)
≤ exp

(
−cmin

{
t2N2

‖Γ∗yΓy‖2F
,

tN

‖Γ∗yΓy‖`2→`2
.

})
.

Recall that the convolution satisfies ‖Γyz‖2 = ‖y ∗ z‖2 ≤ ‖y‖1‖z‖2 ≤
√
s‖z‖2 for

all z ∈ RN , which implies

‖Γ∗yΓy‖`2→`2 = ‖Γy‖2`2→`2 ≤ s,(24)

‖Γ∗yΓy‖F ≤ ‖Γy‖`2→`2‖Γy‖F ≤
√
s
√
N‖y‖2 =

√
sN.

To prove (22) observe that

E
( 1

N

√
π

2
‖Γgy‖1

)
=

√
π

2
E|〈g, y〉| = ‖y‖2 = 1

and

‖Γgy‖1 = sup
z∈B`N∞

〈z,Γgy〉 = sup
z∈B`N∞

〈z,Γyg〉 = sup
z∈B`N∞

〈Γ∗yz, g〉.

Hence, by the concentration inequality (20) for suprema of Gaussian processes,

P
(∣∣∣ 1

N

√
π

2
‖Γgy‖1 − 1

∣∣∣ ≥ t) ≤ 2e−t
2/2σ2

y ,

where

σ2
y =

1

N2

π

2
sup

z∈B`N∞

‖Γ∗yz‖22.
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For any z ∈ B`N∞ , we obtain using (24)

‖Γ∗yz‖22 ≤ ‖Γy‖2`2→`2‖z‖
2
2 ≤ sN.

The proof of (23) is similar. By writing y = [y[N ], yN+1] we find

[Γg h]y = Γgy[N ] + yN+1h = [Γy[N]
yN+1IdN ][g, h].

It follows that

‖[Γg h]y‖1 = sup
z∈B`N∞

〈z, [Γy[N]
yN+1IdN ][g, h]〉 = sup

z∈B`N∞

〈[Γy[N]
yN+1IdN ]∗z, [g, h]〉.

Moreover,

E
( 1

N

√
π

2
‖[Γg h]y‖1

)
= ‖y‖2 = 1.

The concentration inequality (20) for suprema of Gaussian processes now implies

P
(∣∣∣ 1

N

√
π

2
‖Γgy‖1 − 1

∣∣∣ ≥ t) ≤ 2e−t
2/2σ2

y ,

where

σ2
y =

1

N2

π

2
sup

z∈B`N∞

‖[Γy[N]
yN+1IdN ]∗z‖22.

For any z ∈ B`N∞ , we obtain using (24) and the Cauchy-Schwarz inequality,

‖[Γy[N]
yN+1IdN ]∗z‖22 = ‖Γ∗y[N]

z‖22 + y2
N+1 ‖z‖22

≤ (‖Γy[N]
‖2`2→`2 + y2

N+1)‖z‖22 ≤ (s‖y[N ]‖22 + y2
N+1)N ≤ sN.

This completes the proof. �

By Lemmas 4.3 and 4.6, our main recovery results in Theorems 4.1 and 4.5 are
implied by the following theorem. As before, θ consists of i.i.d. random selectors
with mean m/N , I = {i ∈ [N ] : θi = 1} and g, h are independent n-dimensional
standard Gaussian vectors that are independent of θ.

Theorem 5.2. Fix δ > 0. Let A = RIΓg be a randomly subsampled Gaussian
circulant matrix and let B = RI [Γg h]. Under the assumptions on s,m,N, δ, η of
Theorem 4.1, 1

m

√
π
2A satisfies RIP1,2(s, δ) with probability at least 1−η. Moreover,

under the assumptions of Theorem 4.2 1
m

√
π
2A and 1

m

√
π
2B satisfy RIPeff

1,2(s, δ)
with probability at least 1− η.

Proof. Let κ > 0 be a number to be chosen later. LetNδ/(1+κ) ⊂ Σs,N be a minimal
δ/(1 + κ)-net for Σs,N with respect to the Euclidean norm. It is well known, see
e.g. [9, Proposition C.3], that

log |Nδ/(1+κ)| ≤ s log

(
3(1 + κ)eN

sδ

)
.

Fix x ∈ Σs,N and let y ∈ Nδ/(1+κ) be such that ‖x− y‖2 ≤ δ/(1 + κ). We consider
the events

EI =
{m

2
≤ |I| ≤ 3m

2

}
ERIP =

{
∀ z ∈ Σ2s,N :

1√
m
‖Az‖2 ≤ 1 + κ

}
EΓ,`1 =

{
∀y ∈ Nδ/(1+κ) :

∣∣∣ 1

N

√
π

2
‖Γgy‖1 − 1

∣∣∣ ≤ δ}
E =

{
∀y ∈ Nδ/(1+κ) :

∣∣∣ 1

m

√
π

2
‖Ay‖1 −

1

N

√
π

2
‖Γgy‖1

∣∣∣ ≤ 2δ
}

(25)
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respectively. Under EI and ERIP,∣∣∣ 1

m

√
π

2
‖Ax‖1 −

1

m

√
π

2
‖Ay‖1

∣∣∣ ≤ δ

1 + κ

1

m

√
π

2

∥∥∥A( x− y
‖x− y‖2

)∥∥∥
1

≤ δ

1 + κ

|I|
m

sup
z∈Σ2s,N

1√
|I|

√
π

2
‖Az‖2 ≤

√
9π

8
δ.

Therefore, if the events in (25) hold simultaneously, then by the triangle inequality∣∣∣ 1

m

√
π

2
‖Ax‖1 − 1

∣∣∣
≤
∣∣∣ 1

m

√
π

2
‖Ax‖1 −

1

m

√
π

2
‖Ay‖1

∣∣∣+
∣∣∣ 1

m

√
π

2
‖Ay‖1 −

1

N

√
π

2
‖Γgy‖1

∣∣∣
+
∣∣∣ 1

N

√
π

2
‖Γgy‖1 − 1

∣∣∣ ≤ (
√

9π/8 + 3)δ.

Hence, it remains to show that the events in (25) hold with probability at least
1 − η. The Chernoff bound immediately yields P(EcI) ≤ e−cm. By Theorem B.1,
under the event EI , if

(26) m & κ−2s(log2(s) log2(N) + log(1/η))

then

Pg(EcRIP) = Pg
(
∃z ∈ Σ2s,N :

1√
|I|
‖RIΓgz‖2 ≥ 1 + κ)

)
≤ η

Moreover, by (22) and a union bound,

P
(

sup
y∈Nδ/(1+κ)

∣∣∣ 1

N

√
π

2
‖Γgy‖1 − 1

∣∣∣ ≥ δ) ≤ |Nδ/(1+κ)|2e−δ
2N/πs

≤ 2es log(3e(1+κ)N/(sδ))−δ2N/πs,

so P(EcΓ,`1) ≤ 2η if

(27) N ≥ πδ−2s2 log(3eN(1 + κ)/sδ) + πδ−2s log(1/η).

Thus, it remains to show that P(Ec) ≤ η. To prove this, we consider

Xy =
1

m

√
π

2
‖DθΓgy‖1 −

1

N

√
π

2
‖Γgy‖1

and X ′y = 1
m

√
π
2 ‖Dθ′Γgy‖1 − 1

N

√
π
2 ‖Γgy‖1 for y ∈ Nδ, where θ′ is an independent

copy of θ. By symmetrization, see Lemma C.3,

Pθ
(

sup
y∈Nδ/(1+κ)

|Xy| ≥ 2δ
)
≤ Pθ

(
sup

y∈Nδ/(1+κ)

|Xy −X ′y| ≥ δ
)

+ sup
y∈Nδ/(1+κ)

Pθ(|Xy| ≥ δ)

and so

Pθ,g
(

sup
y∈Nδ/(1+κ)

|Xy| ≥ 2δ
)
≤ Pθ,g

(
sup

y∈Nδ/(1+κ)

|Xy −X ′y| ≥ δ
)

(28)

+ Eg sup
y∈Nδ/(1+κ)

Pθ(|Xy| ≥ δ).

To bound the first term on the right hand side, observe that Xy −X ′y and

1

m

√
π

2

N∑
i=1

εi(θi − θ′i)|〈ai, y〉|,
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where ε is a Rademacher vector, i.e., a vector of independent random signs, that is
independent of g, θ and θ′, are identically distributed and so

Pθ,θ′,g
(

sup
y∈Nδ/(1+κ)

|Xy −X ′y| ≥ δ
)

= Pε,θ,θ′,g
( 1

m

√
π

2
sup

y∈Nδ/(1+κ)

∣∣∣ N∑
i=1

εi(θi − θ′i)|〈ai, y〉|
∣∣∣ ≥ δ)

≤ 2Pε,θ,g
( 1

m

√
π

2
sup

y∈Nδ/(1+κ)

∣∣∣ N∑
i=1

εiθi|〈ai, y〉|
∣∣∣ ≥ δ/2)

≤ 2Pε,θ,g
( 1

m

√
π

2
sup

y∈Nδ/(1+κ)

∣∣∣ N∑
i=1

εiθi1ERIP
|〈ai, y〉|

∣∣∣ ≥ δ/2)+ Pθ,g(EcRIP).

By Hoeffding’s inequality and assuming EI ,

Pε
( 1

m

√
π

2

∣∣∣ N∑
i=1

εiθi1ERIP
|〈ai, y〉|

∣∣∣ ≥ δ/2) ≤ 2 exp
(
− m2δ2

2π
∑N
i=1 θi1ERIP |〈ai, y〉|2

)
= 2 exp

(
− mδ2

2π1ERIP

1
m‖Ay‖

2
2

)
≤ 2e

− mδ2

2π(1+κ)2

Hence a union bound yields

Pε,θ,g
( 1

m

√
π

2
sup

y∈Nδ/(1+κ)

∣∣∣ N∑
i=1

εiθi1ERIP
|〈ai, y〉|

∣∣∣ ≥ δ/2) ≤ 2|Nδ/(1+κ)|e
− mδ2

2π(1+κ)2 ≤ η

provided that

(29) m &
(1 + κ)2

δ2

(
s log

(
3e(1 + κ)N

δs

)
+ log(1/η)

)
.

To bound the second term on the right hand side of (28), consider the event

EΓ,`2 =
{
∀y ∈ Nδ/(1+κ) :

1√
N
‖Γgy‖2 ≤ 2

}
.

By (21) and a union bound,

Pg(EcΓ,`2) ≤ 2|Nδ/(1+κ)|e−cN/s ≤ η

under the condition N & δ−2s2 log
(

3e(1+κ)N
sδ

)
+ s log(1/η), which is weaker than

(27). This shows that

Eg sup
y∈Nδ/(1+κ)

Pθ(|Xy| ≥ δ) ≤ Eg sup
y∈Nδ/(1+κ)

Pθ(|Xy1EΓ,`2
| ≥ δ) + η.

Now recall the following facts. If X is a random variable, X ′ is an independent
copy, and med(X) is a median of X, then for any δ > 0 (see Lemma C.2)

P(|X −med(X)| ≥ δ) ≤ 2P(|X −X ′| ≥ δ)
and

|med(X)− EX| ≤ (E(X − EX)2)1/2.

Combining these, we find

P(|X − EX| ≥ δ) ≤ 2P(|X −X ′| ≥ δ − (E(X − EX)2)1/2).

We apply these inequalities with X = Xy1EΓ,`2
and X ′ = X ′y1EΓ,`2

. Note that

EθX = 0. By symmetrization, see e.g. [17, Lemma 6.3] or [9, Lemma 8.4],

(Eθ(X − EθX)2)1/2) =
(
Eθ
∣∣∣ 1

m

√
π

2
‖Ay‖1 − Eθ

( 1

m

√
π

2
‖Ay‖1

)∣∣∣2)1/2

1EΓ,`2
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≤ 2

m

√
π

2

(
Eθ,ε

∣∣∣ N∑
i=1

εiθi|〈ai, y〉|
∣∣∣2)1/2

1EΓ,`2

=
2

m

√
π

2

(
Eθ

N∑
i=1

θi|〈ai, y〉|2
)1/2

1EΓ,`2
=

1√
m

√
2π

1√
N
‖Γgy‖21EΓ,`2

≤ 2
√

2π√
m
≤ δ/2

if m ≥ 32πδ−2 the latter being a weaker condition than (29). In summary, we find

Pθ(|Xy1EΓ,`2
| ≥ δ) ≤ 2P(|Xy −X ′y|1EΓ,`2

≥ δ/2)

≤ 4Pθ,ε
( 1

m

√
π

2

N∑
i=1

εiθi|〈ai, y〉|1EΓ,`2
≥ δ

4

)
.

Now apply Hoeffding’s inequality to obtain

Pθ(|Xy1EΓ,`2
| ≥ δ) ≤ 4Eθ exp

( −m2 2
π δ

2

16
∑N
i=1 θi|〈ai, y〉|2

)
= 4Eθ exp

( −mδ2

8π 1
m‖Ay‖

2
2

)
≤ 4e

− mδ2

8π(1+κ)2 + 4Pθ(EcRIP).

If m ≥ 8π (1+κ)2

δ2 log(1/η) (which is again weaker than (29)), we find

Eg sup
y∈Nδ

Pθ(|Xy| ≥ δ) ≤ 5η + 4Pθ,g(EcRIP) ≤ 9η.

We still need to choose κ > 0 and distinguish two cases to this end.

Case 1: Assume that 0 < δ <
(

log(s)
√

log(N)
)−1

and choose κ = 1. A

nontrivial s ≥ 1 is only allowed by (5) if δ & 1/
√
N . In this situation we have

log(3e(1 + κ)N/(sδ)) � log(N). Then (5) implies (27). Moreover, (6) implies both
(29) and (26) for our conditions on the parameters κ and δ. Altogether, we obtain
P(Ec) ≤ 10η in this case.

Case 2: If
(

log(s)
√

log(N)
)−1

< δ ≤ 1 we choose κ =
√
δ log(s) log1/4(N) > 1.

Again a nontrivial s ≥ 1 implies δ & 1/
√
N by (5) and also in this case we have

log(3e(1 + κ)N/(sδ)) � log(N). Plugging our choice of κ into (29) and (26), we
observe that both these conditions are implied by (7) and P(Ec) ≤ 10η.

The proof of the second statement for A is similar, so we only indicate the
necessary changes in the argument. Let us write Cs,N = {x ∈ RN : ‖x‖1 ≤√
s, ‖x‖2 = 1}. It clearly suffices to show that

sup
x∈Cs,N

∣∣∣ 1

m

√
π

2
‖Ax‖1 − 1

∣∣∣ ≤ δ
with probability at least 1 − η. Let us first recall that Cs,N ⊂ 2conv(Σs,N ) [20,
Lemma 3.1]. Hence, under ERIP,

1√
m

sup
z∈Cs,N

‖Az‖2 ≤ 2
1√
m

sup
z∈Σs,N

‖Az‖2 ≤ 2(1 + κ).

We repeat the above argument with Nδ/(1+κ) replaced by a minimal δ/(1 + κ)-net
of Cs,N . Using Cs,N ⊂ 2conv(Σs,N ) and Sudakov’s inequality, Theorem C.1, we
find

log |Nδ/(1+κ)| .
(1 + κ)2

δ2

(
E sup
x∈Cs,N

〈g, x〉
)2

≤ 4(1 + κ)2

δ2

(
E sup
x∈Σs,N

〈g, x〉
)2

(30)

.
4(1 + κ)2

δ2
s log(eN/s),(31)
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where the final inequality is [21, Lemma 2.3]. By now chasing through the argument
above we arrive at the three conditions

N &
(1 + κ)2

δ4
s2 log(eN/s) + s

1

δ2
log(1/η)

m & κ−2s(log2(s) log2(N) + log(1/η))

m &
(1 + κ)4

δ4
s log(eN/s) +

(1 + κ)2

δ2
log(1/η).

(32)

Again, we distinguish two cases depending on δ and choose κ as

κ =

{
1 if 0 < δ ≤ (log2(s) log(N))−1/4,

(δ4 log2(s) log(N))1/6 if (log2(s) log(N))−1/4 < δ ≤ 1.

With this we can deduce the statement of the theorem (noting also that log(s) ≤
log(N)).

Finally, let us prove the second statement for B. Let Nδ/(1+κ) be a minimal
δ/(1 + κ)-net of Cs,N+1. By the first part of the proof, it is readily seen that the
result will follow once we show that the events

ERIP,B =
{
∀ z ∈ Σ2s,N+1 :

1√
m
‖Bz‖2 ≤ 3 + κ

}
EΓ,h,`2 =

{
∀y ∈ Nδ :

1√
N
‖[Γg h]y‖2 ≤ 4

}
EΓ,h,`1 =

{
∀y ∈ Nδ :

∣∣∣ 1

N

√
π

2
‖[Γg h]y‖1 − 1

∣∣∣ ≤ δ}
(33)

hold with probability at least 1 − cη. For EΓ,h,`1 this is immediate from (23) and
a union bound. For ERIP,B , observe that

1√
m
‖Bz‖2 ≤

1√
m
‖Az[N ]‖2 + |zN+1|

1√
m

√
π

2
‖Dθh‖2.

We have already seen that the event EI = {m2 ≤ |I| ≤
3m
2 } holds with probability

1− η. Under this event, the Hanson-Wright inequality (19) yields

Pg
( 1

m
‖Dθh‖22 ≥ 2

)
≤ Pg

( 1

|I|
‖Dθh‖22 ≥

4

3

)
≤ e−c|I| ≤ e−m/2 ≤ η

for m & log(1/η). Under the event ERIP we have

1√
m

sup
z∈Σ2s,N

‖Az[N ]‖2 ≤ 1 + κ

with probability 1− η, so that, with probability at least 1− 2η,

1√
m
‖Bz‖2 ≤ (1 + κ)‖z[N ]‖2 + 2|zN+1| ≤ (3 + κ)‖z‖2

under the conditions (32). Very similarly, one shows that EΓ,h,`2 holds with proba-
bility at least 1−η under (32). As before, distinguishing two cases for δ one arrives
at the statement of the theorem. �

6. Further applications

Apart from its usefulness for one-bit compressed sensing, the RIP1,2-property
is of interest for (unquantized) outlier robust compressed sensing [6] and for com-
pressed sensing involving uniformly scalar quantized measurements [12, 19]. In this
section, we briefly sketch the implications of Theorem 5.2 for these two directions.
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Corollary 6.1. Let A = RIΓg be a randomly subsampled Gaussian circulant ma-
trix. Let 0 < η < 1 and s ∈ [N ] such that

s . min

{√
N/ log2(N), N/ log(1/η)

}
and suppose that

(34) m & smax

{
log4/3(s) log5/3(N),

log(1/η)

log3/2(s) log1/3(N)
,

log2/3(s) log1/3(N)

s

}
.

Then, with probability exceeding 1 − η the following holds: for any x ∈ Cn and
y = Ax+ e, where ‖e‖1 ≤ ε, any solution x# to

min
z∈Cn

‖z‖1 subject to ‖y −Az‖1 ≤ ε.

satisfies

‖x− x#‖2 .
σs(x)1√

s
+

ε

m
.

Proof. As is argued in the proof of [6, Theorem III.3], it suffices to show that with
probability at least 1− η,

(35)
1

m
‖Ax‖1 ≥ c‖x‖2, for all x ∈ Σeff

s,N .

for a universal constant c > 0. Hence the result immediately follows from Theo-
rem 5.2 by choosing δ = c constant. �

Note that after estimating log(s) ≤ log(N) and for inverse polynomial probability
η = N−2, say, condition (34) takes the simpler form

m & s log3(N).

In addition, we can use Theorem 5.2 to derive the following reconstruction result
involving a uniform scalar quantizer that uses additional dithering. Let Qδ : Rm →
(δZ + δ/2)m be the uniform scalar quantizer with resolution δ defined by Qδ(z) =(
δbzi/δc+ δ/2

)m
i=1

.

Theorem 6.2. Let A = RIΓg be a randomly subsampled Gaussian circulant ma-
trix. Let τ be a vector of m independent N (0, πR2/2)-distributed random variables.
Suppose that u is a vector of m independent random variables that are uniformly
distributed on [0, δ] and are independent of τ . Assume that, for 0 < η, ε ≤ 1,

s . min

{√
N/ log2(N), N/ log(1/η)

}
m & smax

{
log4/3(s) log5/3(N),

log(1/η)

log3/2(s) log1/3(N)
,

log2/3(s) log1/3(N)

s
,

R2δ−2ε−6 log(1/η),
log(1/η)

ε2s

}
.

(36)

Then, with probability at least 1 − η the following holds: for any x ∈ RN with
‖x‖1 ≤

√
s‖x‖2 and ‖x‖2 ≤ R, any solution x# to the program

(37) min ‖z‖1 s. t. ‖z‖2 ≤ R, Qδ
(√π

2
Az + τ + u

)
= Qδ

(√π

2
Ax+ τ + u

)
satisfies ‖x# − x‖2 . δε.
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Note that the program (37) is convex. Indeed, the second condition in (37) is
equivalent to

δ

2
≤
(√π

2
Az + τ + u

)
i
−Qδ

(√π

2
Ax+ τ + u

)
i
<
δ

2
, i = 1, . . . ,m.

Proof. Let x# be any solution to (37). Since x is feasible for (37),

‖[x#, R]‖1 ≤ ‖[x,R]‖1 ≤
√
s‖x‖2 +R ≤ R(

√
s+ 1).

Since R ≤ ‖[x#, R]‖2, ‖[x,R]‖2 ≤
√

2R, it follows that

[x#, R], [x,R] ∈ Σeff
(
√
s+1)2,N+1 ∩

√
2R B`N+1

2
.

Moreover, the last condition in (37) precisely means that

Qδ

(√π

2
B[x#, R] + u

)
= Qδ

(√π

2
B[x,R] + u

)
,

where B = RI [Γg h], where h is an independent standard Gaussian that is inde-
pendent of g and θ. We will now show that this implies the reconstruction error
bound.

Under (36), Theorem 5.2 implies that

1

2
‖z‖2 ≤

1

m

√
π

2
‖Bz‖1 ≤

3

2
‖z‖2 for all z ∈ Σeff

(
√
s+1)2,N+1

with probability at least 1 − η. By [12, Proposition 1] we obtain that under this
event,

√
π
2B satisfies with probability at least 1− η a quantized version of RIP1,2:

for some universal constant c and any z, z′ ∈ Σeff
(
√
s+1)2,N+1

∩
√

2R B`N+1
2

(38)
1

2
‖z−z′‖2−cδε ≤

∥∥∥Qδ(√π

2
Bz+u

)
−Qδ

(√π

2
Bz′+u

)∥∥∥
1
≤ 1

2
‖z−z′‖2 +cδε

provided that

(39) m & ε−2N (Σeff
(
√
s+1)2,N+1 ∩

√
2R B`N+1

2
, ‖ · ‖2, δε2) + ε−2 log(1/η),

where N (·, ‖ · ‖2, t) denotes the covering number with respect to the Euclidean
norm. Now observe that

Σeff
(
√
s+1)2,N+1 ∩

√
2R B`N+1

2
⊂
√

2R{x ∈ RN+1 : ‖x‖1 ≤
√

2s, ‖x‖2 ≤ 1}

⊂ 2
√

2R conv(Σ2s,N+1),

where the final inclusion holds by [20, Lemma 3.1]. Therefore, similarly to (30),
Sudakov’s inequality (Theorem C.1) implies that

logN (Σeff
(
√
s+1)2,N+1 ∩

√
2R B`N+1

2
, ‖ · ‖2, δε2) . R2δ−2ε−4s log(eN/s)

and it follows that (39) is satisfied under our assumptions (36). We can now apply
(38) with z = [x, 1] and z′ = [x#, 1] and use ‖z − z′‖2 = ‖x − x#‖2 to obtain the
asserted error bound. �

Appendix A. Uniform scalar quantization and recovery via
`∞-constrained `1-minimization

Let Qδ : Rm(δZ + δ/2)m be the uniform scalar quantizer of resolution δ defined
in Section 6. Quantized measurements take the form y = Qδ(Ax). A reconstruction
procedure delivering x] should be quantization consistent, i.e., Qδ(Ax

]) = Qδ(Ax).
This motivates to consider an `1-minimization problem of the following type for the
reconstruction. Let

Bδ = {z ∈ Rm : −δ/2 ≤ zi ≤ δ/2, i = 1, . . . ,m}
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and let x] be the minimizer of

(40) min ‖z‖1 subject to Az − y ∈ Bδ.

Then Qδ(Ax
]) = y = Qδ(Ax). Note that taking the closure of Bδ instead of Bδ the

above problem becomes an `∞-constrained `1-minimization problem.
The following result concerning reconstruction via (40) based on the standard

RIP apparently has not been observed before (but see the discussion in [6] for
non-optimal results based on `p versions of the RIP for p 6= 2).

Theorem A.1. Suppose that A ∈ Rm×N is such that 1√
m
A satisfies the `2-RIP

(3) for δ2s < 4/
√

41 ≈ 0.62. Then for any x ∈ RN and y = Qδ(Ax) a solution x]

of (40) is quantization consistent and satisfies

(41) ‖x− x]‖∞ . δ + s−1/2 inf
w∈RN ,‖w‖0≤s

‖x− w‖1.

Proof. The optimization problem (40) is closely related to the `∞-constrained `1-
minimization problem

(42) min ‖z‖1 subject to ‖Az − y‖∞ ≤ δ/2.

In fact, either a minimizer of (40) exists in which case it is also a minimizer of (42)
or no minimizer of (40) exists in which case the theorem is void. (A minimizer of
(42) always exists so that it may be preferred in practice. The error bound (41)
still holds for (42), but every minimizer of (42) is quantization inconsistent in the
case that no minimizer of (40) exists.)

This close relation of (40) and (42) suggests to study versions of the null space
property, see e.g. [9, Chapter 4]. By Theorem [9, Theorem 6.13], the bound on the
restricted isometry constants of 1√

m
implies the `2-robust null space property in

the form

‖vS‖2 ≤
ρ√
s
‖vSc‖1 + τ

1√
m
‖Av‖2 for all v ∈ RN and all S ⊂ [N ],#S = s,

for constants ρ ∈ (0, 1) and τ > 0 that only depend on δ2s. Since ‖Av‖2 ≤√
m‖Av‖∞ this yields

‖vS‖2 ≤
ρ√
s
‖vSc‖1 + τ‖Av‖∞ for all v ∈ RN and all S ⊂ [N ],#S = s,

which is the `∞-robust null space property of order s. By [9, Theorem 4.12] this
implies the error bound for any minimizer x∗ of (42)

‖x− x∗‖2 .
infw∈RN ,‖w‖0≤s ‖x− w‖1√

s
+ δ.

This concludes the proof. �

By [16], see also Section 2, a partial random circulant matrix 1√
|I|
RIΓg with sub-

sampling on a fixed (deterministic) set I ⊂ [N ] generated by a standard Gaussian
random vector satisfies δ2s ≤ 0.6 with probability at least 1− η if

|I| & s(log2(s) log2(N) + log(1/η)).

Therefore, Theorem A.1 implies stable reconstruction from quantized measurements
y = Qδ(RIΓg) via (40) under this condition on the number of measurements.
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Appendix B. Upper RIP bound for partial random circulant matrices

The proof of our main result only requires the upper (`2)-RIP bound in (3).
For (deterministic) subsampling of random circulant matrices we can deduce the
following bound on m from [16], valid also for values of κ ≥ 1.

Theorem B.1. For a fixed (deterministic) subset I ⊂ [N ], let A = RIΓg be a draw
of a random circulant matrix generated by a standard Gaussian vector g and κ > 0.
If

|I| & κ−2s(log2(s) log(N) + log(1/η))

then supx∈Σs,N
1√
m
‖Ax‖2 ≤ 1 + κ with probability at least 1− η.

Proof. As argued in [16], we can write 1√
|I|
Ax = Vxg with Vx = 1√

|I|
RIΓx. Denote,

As,N = {Vx : x ∈ Σs,N}. It follows then from [16, Theorem 3.5(a)] that for every
p ≥ 1

(43)

(
E sup
x∈Σs,N

‖Vxg‖p2

)1/p

. γ2(As,N , ‖ · ‖`2→`2) + dF (As,N ) +
√
pd`2→`2(As,N ),

where γ2(As,N , ‖ · ‖`2→`2) denotes the γ2-functional of the set As,N with respect to
the spectral norm, d`2→`2 and dF denote the diameter in the spectral and Frobenius
norm, respecticely, of the set in the argument, see [16] for details. These parameters
have been estimated in [16, Section 4],

dF (As,N ) = 1, d`2→`2(As,N ) ≤
√
s/|I|

γ2(As,N , ‖ · ‖`2→`2) .
√
s/|I| log(s) log(N).

Moreover, the moment bound (43) implies a tail bound (see e.g. [16, Prop. 2.6]), so
that

P

(
sup

x∈Σs,N

‖Ax‖2 ≥ c(1 +
√
s/|I| log(s) log(N)) + t

)
≤ e−c

|I|t2
s .

Requiring that the right hand is bounded by η gives the statement of the theorem.
�

Appendix C. Some tools from probability

The Sudakov inequality provides a bound of the covering numbers in terms of
the Gaussian widths, see e.g. [17, Theorem 3.18].

Theorem C.1 (Sudakov). Let T ⊂ RN and δ > 0. Then the covering numbers
with respect to the Euclidean norm obey

logN(T, ‖ · ‖2, δ) . δ−2

(
E sup
x∈T
〈x, g〉

)2

,

where g is a standard Gaussian random vector in RN .

Lemma C.2. Let X denote a random variable and let med(X) denote a median
of X. Suppose that E(X −EX)2 is finite and let X ′ denote an independent copy of
X. Then the following inequalities hold true:

P(|X −med(X)| ≥ δ) ≤ 2P(|X −X ′| ≥ δ)

|EX − med(X)| ≤ (E(X − EX)2)
1
2

The estimates in Lemma C.2 are well known. We provide a proof for convenience.
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Proof. To show the first inequality, observe that since X and X ′ are identically
distributed the following holds for every δ > 0

P(X ′ ≤ med(X))P(X ≥ med(X) + δ) ≤ P(X ≥ X ′ + δ) .

Since P(X ′ ≤ med(X)) ≥ 1
2 we conclude that P(X ≥ med(X)+δ) ≤ 2P(X ≥ X ′+δ)

implying the estimate

P(X −med(X) ≥ δ) ≤ 2P(X −X ′ ≥ δ) .

Repeating the argument with P(X −med(X) ≤ −δ) and P(X ′ ≥ med(X)) ≥ 1
2 we

arrive at the estimate

P(X −med(X) ≤ −δ) ≤ 2P(X −X ′ ≤ −δ) .

Since the events {X − X ′ ≤ −δ}, {X − X ′ ≥ δ} and respectively the events
{X −med(X) ≤ −δ}, {X −med(X) ≥ δ} are disjoint, it follows that

P(|X −med(X)| ≥ δ) = P(X −med(X) ≤ −δ) + P(X −med(X) ≥ δ)
≤ 2P(X −X ′ ≤ −δ) + 2P(X −X ′ ≥ δ)
= 2P(|X −X ′| ≥ δ) .

To show the second inequality observe that with σ = (E(X − EX)2)1/2 Cantelli’s
inequality yields

P(X ≥ EX + σ) ≤ E(X − EX)2

σ2 + σ2
=

1

2
.

By using Cantelli’s inequality with σ replaced by −σ we obtain the estimate

P(X ≥ EX − σ) ≥ 1− E(X − EX)2

σ2 + σ2
=

1

2
.

Therefore P(X < EX − σ) ≤ 1
2 and P(X ≥ EX + σ) ≤ 1

2 , which shows that every
median of X must satisfy

EX − σ ≤ med(X) ≤ EX + σ .

This implies the second inequality and completes the proof. �

The following probability bound related to symmetrization follows in the same
way as in [17, eq. (6.3)].

Lemma C.3. Let (Xt), t ∈ T , be a family of random variables, indexed by a finite
or countable set T , and let (X ′t) be an independent copy of (Xt). Then, for x, y > 0,

P(sup
t∈T
|Xt| ≥ x+ y) ≤ P(sup

t∈T
|Xt −X ′t| ≥ x) + sup

t∈T
P(|Xt| ≥ y).
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