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Abstract. We investigate the functioning of a classifying biological neural network from the per-
spective of statistical learning theory, modelled, in a simplified setting, as a continuous-time sto-
chastic recurrent neural network (RNN) with identity activation function. In the purely stochastic
(robust) regime, we give a generalisation error bound that holds with high probability, thus show-
ing that the empirical risk minimiser is the best-in-class hypothesis. We show that RNNs retain
a partial signature of the paths they are fed as the unique information exploited for training and
classification tasks. We argue that these RNNs are easy to train and robust and back these obser-
vations with numerical experiments on both synthetic and real data. We also exhibit a trade-off
phenomenon between accuracy and robustness.

1. Introduction

Recurrent neural networks (RNNs) constitute the simplest machine learning paradigm that is
able to handle variable-length data sequences while tracking long term dependencies and taking
into account the temporal order of the received information. These data streams appear naturally
in many fields such as (audio or video) signal processing or financial data. The RNN architecture
is inspired from biological neural networks where both recurrent connectivity and stochasticity in
the temporal dynamics are ubiquitous. Despite the empirical success of RNNs and their many
variants (long short-term memory networks (LSTMs), gated recurrent units (GRUs), etc.), several
fundamental mathematical questions related to the functioning of these networks remain open:

• What is the exact type of information that an RNN learns from the input sequences?
• Training artificial RNNs with classical methods like gradient descent suffer from fundamen-

tal problems such as instability, non-convergence, exploding gradient errors [Doy92] and
plateauing [LHEL21]. On the other hand, biological networks seem to be robust and easy
to train. How does stochasticity contribute in regard to this?
• What is the amount of data needed for such a network to achieve a small estimation error

with high probability?

In the current paper, we set out to answer these questions by modelling a biological neural network
as a continuous-time (stochastic) RNN with a randomly chosen connectivity matrix and an identity
activation function in view of classifying data streams (in this case, time-dependent paths.) Let us
say a few words about each of our three working assumptions:

• The continuous-time dynamics are a generalisation of the classical discrete-time dynamics
frequently encountered in the literature [GGO20b]. The latter can be seen as an Euler
discretisation of the former as the data stream gets sampled at shorter time intervals.
Working with continuous-time dynamics provides us with a richer mathematical toolbox
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while still being applicable to the discrete-time case and keeping key features and issues of
such systems such as the dependence on the whole data sequence and its order.
• Randomly generating the connectivity matrix of an RNN is the cornerstone of reservoir

computing [JH04, MJS07]. This paradigm is based on the idea that universal approximation
properties can be achieved for several dynamical systems without the need to optimise all
parameters and has shown exceptional performances in a variety of tasks. This working
assumption has also the benefit of simplifying the training process (as will be clear from
the formulas in this paper, optimising over this matrix is computationally heavy, even in
the linear case.) This will consist in our case in finding a pre-processing projection vector
and the parameters of a read-out map. This simplicity can be practically exploited for
instance to deploy the same network to deal with several tasks (i.e. multi-tasking) without
the need for heavy retraining or storing a large number of parameters, in a fashion that is
reminiscent of biological networks. Compared to the existing literature (e.g. [DCR+18]),
we included the pre-processing map (input projection vector) as a tunable parameter in
order to increase the performance compared to a classical reservoir computer.
• We choose to work with identity activation functions in order to build the intuition as to

the answer to the questions above. In this case, we obtain precise formulas. We aim to
generalise the results of this study to the non-linear case in a later work.

Before setting out our roadmap, let us note for the sake of completeness that there exists a
number of ways in which one may avoid altogether recurrent architectures in order to handle data
streams and use instead a feed-forward network, which is a more studied and understood paradigm.
These are usually based on the transformation of paths into fixed length vectors that can then be
fed to the feed-forward structure. In particular, we cite the Independent Component Analysis
[HM17, HH20, OS21], the signature methods [Gra13, KO19, LLN13] and the PCA-type dimension
reduction introduced in [BHKS20]. However, these methods work best when the whole signal is
processed (which may be computationally heavy) before being fed to the network while RNNs are
able to work with these signals in a continuous manner as they come, rendering them more suitable
to real-time situations. As to the approximation properties of these recurrent architectures, there
are several works which go into the direction of indicating that such properties may also hold for
the path classification problem treated in this paper, although a precise statement in the stochastic
case, which is of interest to us, is still missing. For example, rigorous results providing the approx-
imation properties of (discrete-time) RNNs with a randomly generated connectivity matrix can be
found in [GGO20a]. In [FN93], it is shown that every continuous path can be approximated (in the
uniform convergence norm) as the outcome of an RNN with a suitable activation function while,
more recently in [LHEL21], the authors show that an RNN with the identity activation function
can approximate any functional on a path space provided it is continuous, linear, regular and time-
homogeneous.

We will approach the problem of the binary classification of continuous-time paths with RNNs
in the presence of noise from the point of view of statistical learning theory. After introducing the
necessary mathematical notation and the learning setup (model, loss function, etc.) in Section 2, we
will give a generalisation error bound that holds with high probability in Section 3. The uniform
bound that we derive controls the difference between the risk of a hypothesis and its empirical
counterpart and answers practical questions concerning the size of the sample and the bounds on the
pre-processing and read-out maps needed to achieve a certain accuracy. Consequently, minimising
the empirical risk achieves agnostic PAC learnability and gives guarantees on the ability of the
empirical risk minimiser to generalise to unseen data. Section 4 looks more in details into the
empirical risk minimisation (ERM) procedure:
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• we compare its output to that of the popular Support Vector Machine (SVM) considered
for example in [NKD+20],
• argue heuristically that noise, which is a natural assumption in modelling biological neural

networks, provides stability and robustness against different types of perturbations to the
dataset,
• show rigorously that in the linear case, the RNN retains a “partial signature” of the time-

lifted input signal as global information about said signal. The empirical risk is a function
of the tunable parameters of the model and the partial signatures of the training data.

Finally, we look into the numerical minimisation of the empirical risk using gradient descent in
Section 5. With the explicit formulas we obtain, the global effect through time of the tunable
parameters on the loss function is taken into account and we do not need some sort of unrolling
of the network to apply back-propagation through time. The experiments are performed using the
Japanese vowels dataset and classes of trigonometric polynomials.

2. The learning setup

2.1. The recurrent network input-output map. Let r, n and d be integers. The input and the
hidden state of the RNN are modelled, respectively, as r and n-dimensional time-dependent continu-
ous paths x and y. Given a filtered probability space (Ω,A, (Ft)0≤t≤T ,P), a simple continuous-time
model describing the time-evolution of input-output dynamics is given by the following stochastic
differential equation (SDE) (which can be seen as a stochastic version of the one in [SCS88])

(1) dy(t) = (−y(t) +Wφ(y(t)) + u(x(t)))dt+ ΣdB(t), t ≤ T.
with initial condition taken to be y(0) = 0. Here, u ∈ L(Rr,Rn) is a linear pre-processing map
(identified as a matrix in Rn×r), W ∈ Rn×n is the network matrix that models the connection
strength between neurons, φ is an activation function (applied element-wise) and Σ ∈ Rn×d is
a matrix (which we will call the noise matrix) describing the random effect of a d-dimensional
Brownian noise B. In this paper, we will consider the linear case when φ is the identity function.
The more interesting case where φ is non-linear will be the subject of a future work.

Given a path x, we will denote by y(T, x) (or yu(T, x) to emphasise the dependence on the pre-
processing map u) the terminal value (i.e. at time T ) of the solution to the equation (1). A readout
map h is then combined with the final hidden state of the neural network to produce a prediction
v = h(y(T, x)). In our case, h will be a labelling function, and more specifically, a hyperplane
classifier.

Figure 2.1. A sketch of the recurrent learning architecture

Given a training set of labelled inputs, we aim to train this network by changing the values of the
parameters in order to increase the accuracy of future predictions (in a sense to be made clear in
the following subsections). In the classical framework of reservoir computing, the network’s tunable
parameter is the hyperplane h while the connectivity matrix W and the pre-processing map u are
generated randomly. In our case, we aim to increase the performance by considering u a tunable
parameter to be optimised according to the learning task at hand.
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2.2. Hypothesis class and read-out maps. As we have alluded to above, our global hypothesis
class H comprises of maps that can be written as the composition of the reservoir-solution map
yu(T, .) and a read-out map h chosen from a read-out hypothesis class H∗. As the read-out map h
will be applied to the random vector yu(T, x), we can think of the hypothesis class H as a class of
random learners

H : X −→ VΩ,
x 7−→ h(yu(T, x)) = v(x),

where X denotes the space of input paths and V the target set of outputs; for example the labels
{−1,+1} as will be in our case. If one identifies random variables and their probability distri-
butions, then one may think of the result of the learners applied to an input x as probability
distributions instead of a single label. In our very simple setting, this translates into thinking of
the hypothesis H as a regression function x 7−→ P(H(x) = 1) ∈ [0, 1]. This discussion fits into
the framework of probabilistic binary classification or in the wider one of probabilistic supervised
learning as introduced in [GKMO18]. However, let us emphasize the fundamental difference that
in our case we label inputs based on one realisation of the hypothesis rather than produce a prob-
ability distribution on the space of labels.

In the current work, and in line with most common practices, we will take the read-out hypothesis
class H∗ to be the class of hyperplane classifiers. We will adopt the following notations:

Notation 2.1. (1) For ω ∈ Rn and b ∈ R, we denote by hω,b the hyperplane classifier with
normal direction ω ∈ Rn and shift b

hω,b(y) = sign(〈y, ω〉+ b) ∈ {−1,+1}, for all y ∈ Rn,

with the convention sign(0) = 1.
(2) If u ∈ Rn×r, Hu,ω,b denotes the global classifier of the stochastic RNN with pre-processing

map u

Hu,ω,b(x) = hω,b(yu(T, x)), for all x ∈ X .

2.3. Loss functions and associated risk. The goal of supervised learning is to maximise the
ability, with high probability and measured against a loss function, of the predicted outputs to
generalise to unseen data. As our learner is generating a random variable instead of a deterministic
label, we need to consider loss functions of the type l : VΩ×V → R+. Given a classical loss function
l̃ : V × V → R+ (e.g. the square loss or the binary loss), we may construct loss functions suitable
to our framework in two manners amongst others. The first way is by defining the loss function l
to be a statistic of the random variable ω 7→ l̃(ṽ(ω), v), for example

l : VΩ × V −→ R+,

(ṽ, v) 7−→ El̃(ṽ, v).

For a fixed input and label, the sole source of randomness in our example is the d-dimensional
Brownian motion B with respect to which we will take the expectation. An explicit example would
be the binary loss function l̃(ṽ, v) = 1ṽ 6=v to which we associate the loss l(ṽ, v) = P(ṽ 6= v). This is
the loss function that we will consider in our case. We choose this loss function as it is simpler to
analyse than other popular types of losses (square loss, hinge loss, etc.) while involving similar key
quantities (the Gaussian cumulative distribution function as will be seen later) in the classification
process and risk minimisation.
A second type of loss function can be obtained by defining a statistical functional Ψ : VΩ → V
(here V can be understood in a broader sense, for example R, instead of the labels {−1,+1}) then

define l(ṽ, v) = l̃(Ψ(ṽ), v). This type of loss functions depends on the distribution produced by the
hypothesis rather than on its single realisations and defines therefore a probabilistic loss function
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in the sense of [GKMO18]. An instance of such type would be to take Ψ = E and the square loss

l̃(ṽ, v) = |ṽ − v|2 to obtain l(ṽ, v) = |Eṽ − v|2.
The generalisation error (also called risk) of a hypothesis H ∈ H associated to a loss function l

is then classically given by R(H) = E(x,v)l(H(x), v), where the expectation is taken with respect
to the (unknown) distribution according to which an input and its label (x, v) are generated. One
usually interprets the generalisation error as the ability of the learned hypothesis to generalise
well for unseen data, assuming it is sampled according to the same unknown distribution which
generated the training sample. As no assumptions are made in regard to the distribution of the
data, the generalisation error remains unknown and thus its minimisation as such impossible.
Instead, one classically aims to minimise its empirical counterpart based on a training sample
(X,V ) = {(xi, vi)}mi=1

R̂(X,V )(H) =
1

m

m∑
i=1

l(H(xi), vi).

Obviously, one also needs to provide theoretical arguments justifying the use of the empirical error
instead of the generalised one. These often come in the form of a concentration inequality. We
will recall such an argument using the notion of Rademacher complexity in a subsequent subsection.

If we denote by H the set of all measurable hypotheses, we can then decompose the difference
between the true risk of a hypothesis H ∈ H and the smallest possible risk in the following manner

R(H)− inf
H0∈H

R(H0) = R(H)− inf
H0∈H

R(H0)︸ ︷︷ ︸
Eest

+ inf
H0∈H

R(H0)− inf
H0∈H

R(H0)︸ ︷︷ ︸
Eapp

.

On the one hand, the estimation error Eest depends on the ability to solve the problem of minimising
the risk over the chosen hypotheses class H. Intuitively, this problem gets harder with larger classes
of hypotheses. In many situations where the concentration inequalities mentioned above apply, one
obtains quantitative guarantees on how small the estimation error Eest can be made in the case of
an empirical risk minimiser

(2) HERM ∈ argmin
H∈H

R̂(X,V )(H).

On the other hand, the approximation error Eapp depends on how accurately the hypotheses in H
can approximate any measurable hypothesis.

3. Generalisation error bounds

3.1. Solution to the SDE. In our simplified case of the identity function as an activation function,
and similarly to an Ornstein-Uhlenbeck process, the solution to the SDE (1) is explicitly given by

y(t) =

∫ t

0
e(W−I)(t−s)u(x(s))ds+

∫ t

0
e(W−I)(t−s)ΣdB(s), t ≤ T.

Notation 3.1. For convenience, we will write W0 = W − I.

The final hidden state y(T, x) is then a Gaussian random vector with mean and covariance matrix
given by

y(T, x) ∼ N
(∫ T

0
eW0(T−s)u(x(s))ds,

∫ T

0
eW0(T−s)ΣΣ>eW

>
0 (T−s)ds

)
.

Notation 3.2. For the rest of this paper, we will denote

νx,u =

∫ T

0
eW0(T−s)u(x(s))ds ∈ Rn and A =

∫ T

0
eW0(T−s)ΣΣ>eW

>
0 (T−s)ds ∈ Rn×n.
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Remark 3.3. Note that the covariance matrix A is independent from the tunable parameters u, ω
and b and the input signals. As will be seen later, this is a key property of this algorithm.

It is also interesting to note that in this linear case, the hidden states of different inputs have
similar distributions (Gaussian) differing only by their means. Loosely speaking, the role of the
parameter u will be then to separate as much as possible the data xi according to their labels
vi’s through their processed weighted averages νxi,u, while the covariance matrix A quantifies by
how much the hidden states are likely to deviate from their means. As in [NKD+20], one may be
tempted to apply traditional separating algorithms such as soft SVM as a classification technique.
However, we follow here a strategy dictated by the risk minimisation and the learning guarantees
given by the generalisation error bounds that we will obtain. We will compare these two techniques
in a subsequent subsection.

3.2. Empirical risk for the binary loss. As stated in Subsection 2.3, we consider the case of
the binary loss function. We will denote by l̃ the classical binary loss function (ṽ, v) 7→ 1ṽ 6=v, while
l denotes its counterpart associated with random labels (assuming measurability)

l : (ṽ, v) 7−→ El̃(ṽ, v) = P (ṽ 6= v) .

We will give first the exact formula of the loss in the pure stochastic regime, which shows the
smoothing effect of the noise on the binary loss function. For a lighter notation, we will sometimes
avoid making the dependence on other variables explicit. For example, we may write y instead of
yu(T, x).

Proposition 3.4. Let (x, v) ∈ X × {−1, 1}, u ∈ Rn×r, ω ∈ Rn and b ∈ R. If ω /∈ Ker(A), then

(3) l(Hu,ω,b(x), v) = Φ

(
−v · 〈νx,u, ω〉+ b√

ω>Aω

)
,

where Φ denotes the standard Gaussian cumulative distribution function (CDF).

Proof. First note that

l̃(Hu,ω,b(x), v) = 1sign(〈y,ω〉+b) 6=v ≤ 1v(〈y,ω〉+b)≤0

and that this inequality is not an identity if and only if v = 1 and 〈y, ω〉 + b = 0 (because of the
convention on the sign of 0). Next, recall that 〈y, ω〉+ b is a Gaussian random variable

〈y, ω〉+ b ∼ N
(
〈νx,u, ω〉+ b, ω>Aω

)
.

We assume that ω /∈ Ker(A). Then 〈y, ω〉 + b is a non-trivial Gaussian random variable (and
P (〈y, ω〉+ b = 0) = 0.) Consequently

l(Hu,ω,b(x), v) = EB l̃(Hu,ω,b(x), v) = P(v(〈y, ω〉+ b) ≤ 0) = Φ

(
−v · 〈νx,u, ω〉+ b√

ω>Aω

)
,

which completes the proof. �

Remark 3.5. Note that if ω /∈ Ker(A), then one cannot obtain a null empirical risk because of the
Gaussian CDF. The quantity

〈νx,u, ω〉+ b√
ω>Aω

resembles a distance from a hyperplane (more details will be provided in the next section). Similar
in spirit to the soft-SVM problem, the loss function (3) penalises both misclassification and close
proximity to said hyperplane.
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Remark 3.6. If ω ∈ Ker(A), then 〈y, ω〉 = 〈νx,u, ω〉. We are then in a non-stochastic regime where
full accuracy on the training set can be achieved if the averages νxi,u are separable since then

l(Hu,ω,b(x), v) = 1sign(〈νx,u,ω〉+b)6=v.

In this regime, only misclassification is penalised.

Remark 3.7. Note that the expression of the loss that we obtained in Proposition 3.4 is the same
(in the case A = In) as the one obtained by considering a Bayesian-type loss with multivariate
normal prior and posterior for the classification of the terminal hidden states νx,u of the noiseless
RNN (c.f. [Lan05, GLLM09]).

3.3. Main result. Classically, quantitative guarantees for the minimisation of the estimation error
within a chosen hypothesis class (agnostic PAC-learnability) is obtained by first showing that the
hypothesis set satisfies the uniform convergence property (c.f. [SSBD14]), i.e., by obtaining proba-
bilistic bounds for the worst-in-class difference between the generalisation error and the empirical
error

P
(

sup
H∈H

∣∣∣R(H)− R̂(X,V )(H)
∣∣∣ > ε

)
.

In turn, a way to achieve this is through controlling the Rademacher complexity (or the growth
function or the VC-dimension) of the hypothesis class. Given a state space Z, a sample Z =
{zi}mi=1 of points in Z and a class G of real valued maps defined on Z, the (empirical) Rademacher
complexity of G with respect to the sample Z is defined by (c.f. [MRT12])

RZ(G) =
1

m
Eε

(
sup
g∈G

m∑
i=1

εig(zi)

)
,

where the εi’s are independent Rademacher (i.e. symmetric Bernoulli) random variables and ε =
(ε1, . . . , εm)1. The Rademacher complexity can be seen as a measure of the richness of the class
of functions G and its ability to provide a variety of labels {g(zi)}mi=1 for the sample S. If we
assume that the sample Z is drawn in an i.i.d. manner according to a distribution D, we obtain
the following concentration inequality

Theorem 3.8. [BBL02, KP00, MRT12] Let G be a family of real-valued maps defined over a sample
space Z with values in the interval [0, 1]. Let D be a distribution over Z and Z = {zi}mi=1 ∼ Dm be
a random sample. Denote by z a random variable distributed according to D. Let δ > 0. Then the
following holds with probability at least 1− δ

sup
g∈G

∣∣∣∣∣Eg(z)− 1

m

m∑
i=1

g(zi)

∣∣∣∣∣ ≤ 4RZ(G) +
2 + 5

√
log(2/δ)/2√
m

.

We will estimate the Rademacher complexity in our setting then apply the above theorem to
quantify the error in estimating the true risk by its empirical counterpart. This will yield our main
theoretical result below. For matrices, ‖ · ‖ denotes the spectral norm.

Theorem 3.9. Let Θ and Λ be two positive real numbers. We consider the family of hypotheses
given by

HΘ,Λ = {Hu,ω,b : ‖ω‖2 = 1, |b| ≤ Θ, ‖u‖ ≤ Λ}.
Let δ > 0, R > 0 and m ∈ N∗. We assume that the input signals lie almost surely in the L2-ball of
radius R

BR =

{
x ∈ C ([0, T ],Rr) :

(∫ T

0
‖xs‖22 ds

)1/2

≤ R

}
,

1We assume that the random quantity inside the expectation is indeed measurable. This happens to be the case
for most of machine learning applications including the one discussed in this paper.
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and that the covariance matrix A is positive definite. We denote by λmin(A) its smallest eigenvalue.
Let D be a distribution over BR × {−1, 1} and (X,V ) = {(xi, vi)}mi=1 ∼ Dm be a random sample.
Then, with probability at least 1− δ

supH∈HΘ,Λ

∣∣∣R(H)− R̂(X,V )(H)
∣∣∣

≤ 4√
2πmλmin(A)

(
Θ + ΛR

(∫ t
0

∥∥eW0(t−s)∥∥2
ds
)1/2

)
+

2+5
√

log(2/δ)/2√
m

.

Proof. By applying Theorem 3.8 for the set of functions

(x, v) 7−→ l(H(x), v), H ∈ HΘ,Λ,

together with the formula obtained in Proposition 3.4 (using the assumption on A being positive
definite), we get that the following holds with probability at least 1− δ,

sup
H∈H

∣∣∣R(H)− R̂(X,V )(H)
∣∣∣ ≤ 4

m
Eε sup

u,ω,b

m∑
i=1

εiΦ

(
−vi ·

〈νxi,u, ω〉+ b√
ω>Aω

)
+

2 + 5
√

log(2/δ)/2√
m

,

with the supremum taken over the set

{(u, ω, b) : ‖ω‖2 = 1, |b| ≤ Θ, ‖u‖ ≤ Λ}.

As Φ is Lipschitz with constant 1√
2π

, by Talagrand’s inequality [LT91, MRT12]

Eε sup
u,ω,b

m∑
i=1

εiΦ

(
−vi ·

〈νxi,u,ω〉+b√
ω>Aω

)
≤ 1√

2π
Eε sup

ω,b,u

m∑
i=1

(
−εivi ·

〈νxi,u,ω〉+b√
ω>Aω

)
= 1√

2π
Eε sup

ω,b,u

m∑
i=1

(
εi ·
〈νxi,u,ω〉+b√

ω>Aω

)
,

where we used that (εi) ∼ (εivi) in the last line. On the one hand

Eε sup
u,ω,b

m∑
i=1

εib√
ω>Aω

≤ Θ√
λmin(A)

Eε

∣∣∣∣∣
m∑
i=1

εi

∣∣∣∣∣ ≤ Θ√
λmin(A)

√√√√Eε

(
m∑
i=1

εi

)2

=
Θ
√
m√

λmin(A)
.

and on the other hand

Eε sup
u,ω,b

〈
∑m

1 εiνxi,u, ω〉√
ω>Aω

≤ 1√
λmin(A)

Eε sup
‖u‖≤Λ

∥∥∥∥∥
m∑
i=1

εiνxi,u

∥∥∥∥∥
2

.

Recall that
m∑
i=1

εiνxi,u =

∫ T

0
eW0(T−s)

m∑
i=1

εiu(xi(s))ds.

We now use the following inequality for matrix valued maps f : [0, T ]→ Rn×n and g : [0, T ]→ Rn∥∥∥∥∫ T

0
f(s)g(s)ds

∥∥∥∥
2

≤
(∫ T

0
‖f(s)‖2 ds

)1/2(∫ T

0
‖g(s)‖22 ds

)1/2

,

together with the linearity of u and ‖u‖ ≤ Λ, ensuring ‖
∑m

1 εiu(xi(s))‖ ≤ Λ ‖
∑m

1 εixi(s)‖, to
obtain

Eε sup
‖u‖≤Λ

‖
∑m

1 εiνxi,u‖2 ≤
(∫ T

0

∥∥eW0(T−s)∥∥2
ds
)1/2

Eε sup
‖u‖≤Λ

(∫ T
0 ‖
∑m

1 εiu(xi(s))‖22 ds
)1/2

≤ Λ
(∫ T

0

∥∥eW0(T−s)∥∥2
ds
)1/2

Eε
(∫ T

0 ‖
∑m

1 εixi(s)‖22 ds
)1/2

.
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Using Jensen’s and Fubini’s inequalities, we obtain the bound

Eε

∫ T

0

∥∥∥∥∥
m∑
i=1

εixi(s)

∥∥∥∥∥
2

2

ds

1/2

≤

∫ T

0
Eε

∥∥∥∥∥
m∑
i=1

εixi(s)

∥∥∥∥∥
2

2

ds

1/2

=

(
m∑
i=1

∫ T

0
‖xi(s)‖22 ds

)1/2

.

Using that the input paths live in the set BR, we conclude that:

Eε sup
u,ω,b

m∑
i=1

εiΦ

(
−vi ·

µxi,ω + b√
ω>Aω

)
≤
√

m

2πλmin(A)

(
Θ + ΛR

(∫ T

0

∥∥∥eW0(T−s)
∥∥∥2

ds

)1/2
)
,

which gives the desired inequality. �

Remark 3.10. The use of the Rademacher complexity allows us to obtain a generalisation error
bound that decays like 1√

m
, which is the common rate of decay encountered in the classical supervised

learning framework (with i.i.d entries). This comes, however, at the cost of the technical assumption
of the inputs being uniformly bounded in the L2-norm (which is arguably a realistic assumption.)
Similarly to the error bounds for the SVM algorithm, it could be possible to relax this assumption
at the cost of a much slower rate of decay by using the notion of VC-dimension. For example,
given m labelled points (X,V ) = {(xi, vi)}mi=1 in Rn, one gets with probability at least 1− δ for all
hyperplane classifiers (c.f. [MRT12])

(4) R(H) ≤ R̂(X,V )(H) +

√√√√2(n+ 1) log
(
em
n+1

)
m

+

√
log (1/δ)

2m
.

In the discrete case, such bounds on the VC dimension of RNNs (in function of the number of
weights in the network and the length of the sequence -which would correspond here to the number
of steps one uses to discretise an input path) have been obtained for example by Koiran and Sontag
in [KS98].

The previous theorem allows us to quantitatively control the estimation error:

Corollary 3.11. Let Θ, Λ and R be positive real numbers. We assume that the input signals lie
almost surely in the L2-ball of radius R and that the covariance matrix A is definite. Then the
class HΘ,Λ is agnostically PAC learnable through its empirical risk minimiser hypothesis HERM

(defined in (2)), i.e., there exists a function m̃ : (0, 1)2 → N such that for all ε, δ ∈ (0, 1), for every
distribution D over X × {−1, 1} and every sample (X,V ) ∼ Dm of size m ≥ m̃(ε, δ), we have with
probability at least 1− δ

R(HERM) ≤ inf
H∈HΘ,Λ

R(H) + ε.

More explicitly, one may take m̃(ε, δ) to be an integer m (ideally the smallest one) such that

m ≥ 4

ε2

4

(
Θ + ΛR

(∫ T
0

∥∥eW0(T−s)∥∥2
ds
)1/2

)
√

2πλmin(A)
+ 2 + 5

√
log(2/δ)


2

.

Proof. Let ε, δ ∈ (0, 1). Let m̃(ε, δ) be the smallest integer m such that

4√
2πmλmin(A)

(
Θ + ΛR

(∫ T

0

∥∥∥eW0(T−s)
∥∥∥2

ds

)1/2
)

+
2 + 5

√
log(2/δ)√
m

≤ ε

2
.
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Let D be a distribution over X × {−1, 1} and (X,V ) = {(xi, vi)}mi=1 ∼ Dm be a random sample of
size m ≥ m̃(ε, δ). Note that if

sup
H∈HΘ,Λ

∣∣∣R(H)− R̂(X,V )(H)
∣∣∣ ≤ ε

2
,

then for any hypothesis H ∈ HΘ,Λ

R(HERM)−R(H) = R(HERM)− R̂(X,V )(H
ERM) + R̂(X,V )(H

ERM)− R̂(X,V )(H)

+R̂(X,V )(H)−R(H)
≤ ε.

Hence R(HERM) ≤ infH∈HΘ,Λ
R(H) + ε and

P
(
R(HERM) ≤ inf

H∈HΘ,Λ

R(H) + ε

)
≥ P

(
sup

H∈HΘ,Λ

∣∣∣R(H)− R̂(X,V )(H)
∣∣∣ ≤ ε

2

)
.

Finally, note that by Theorem 3.9 and the definition of m̃(ε, δ) we have

P

(
sup

H∈HΘ,Λ

∣∣∣R(H)− R̂(X,V )(H)
∣∣∣ ≤ ε

2

)
≥ 1− δ.

This completes the proof. �

Remark 3.12. Corollary 3.11 shows an additional major advantage of the bound obtained in
Theorem 3.9: it (quantitatively) guarantees that the empirical risk minimiser is the best-in-class
hypothesis with high probability. The bounds discussed for example in Remark 3.10 aim to directly
lower the risk by choosing parameters for the hypothesis that minimises the upper-bound of the
risk (the right-hand side term in (4)). The efficiency of such technique is thus very dependent on
said bound being tight. If we choose this strategy, tighter bounds can usually be obtained using a
PAC-Bayes approach. Assuming for example that A = In, for u ∈ Rn×r and any constant C > 0,
the following holds (see [GLLM09]) with probability at least 1 − δ, for all ω ∈ Rn and b ∈ R
simultaneously

R(Hu,ω,b) ≤
1

1− e−C

(
1− exp

(
−

(
CR̂(X,V )(Hu,ω,b) +

1
2

(
‖ω‖2 + b2

)
+ log

(
1
δ

)
m

)))
.

The PAC-Bayes approach will then aim to minimise the regularised empirical risk

CR̂(X,V )(Hu,ω,b) +
‖ω‖2 + b2

2m

instead of the empirical risk R̂(X,V )(Hu,ω,b) suggested by a PAC approach.

4. A study of the empirical risk

In this section, we aim to provide a better understanding of the empirical risk (in view of our
future work on the non-linear case). We recall that in the pure robust stochastic case (i.e., where the
covariance matrix A is positive definite) and given a sample (X,V ) = {(xi, vi)}mi=1, the empirical
risk of a hypothesis Hu,ω,b is given by the formula

R̂(X,V )(Hu,ω,b) =
1

m

m∑
i=1

Φ

(
−vi ·

〈νxi,u, ω〉+ b√
ω>Aω

)
.

In the subsequent subsections, we will compare and draw parallels between the empirical risk
minimisation (ERM) and the support vector machine (SVM) approaches and show that stochastic
(linear) RNNs keep a “partial signature” of the input path as a summary of the information about
the path.
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4.1. An interpretation via margins. By making the change of variable α = A1/2ω, one can
rewrite

〈νx,u, ω〉+ b√
ω>Aω

=

〈
A−1/2νx,u, α

〉
+ b

‖α‖2
.

Note that the absolute value of the quantity above is the distance of the “transformed mean”
A−1/2νx,u from the hyperplane H(α, b). Given such a hyperplane, let I0 be the set of indices
of input paths whose transformed means are correctly classified and m0 := |I0| be its cardinal.
Define the corresponding margin ρ0 as the distance between the hyperplane H(α, b) and the closest

correctly classified transformed average A−1/2νxi,u,

ρ0 := min
i∈I0

d(A−1/2νxi,u, H(α, b)).

Then, for all i ∈ I0, one has

Φ

(
−vi ·

〈
A−1/2νxi,u, α

〉
+ b

‖α‖2

)
≤ Φ(−ρ0).

Similarly, let I1 be the complement of I0 and ρ1 the distance of the furthest misclassified average
A−1/2νxi,u from the hyperplane H(α, b)

ρ1 := max
i∈I1

d(A−1/2νxi,u, H(α, b)).

Then, for all i ∈ I1, one has

Φ

(
−vi ·

〈
A−1/2νxi,u, α

〉
+ b

‖α‖2

)
≤ Φ(ρ1).

Using these inequalities, one can bound the empirical risk as follows

R̂(X,V )(H) ≤ m0Φ(−ρ0) + (m−m0)Φ(ρ1)

m
.

Intuitively, decreasing the upper bound above requires a balance between, on the one hand, correctly
classifying the averages A−1/2νxi,u with a large margin ρ0 and, on the other hand, misclassifying as
few averages as possible with the smallest worst “misclassification margin” ρ1. This is reminiscent
of the soft SVM algorithm (see for example [CV95, MRT12]), which is the approach adopted in
[NKD+20] to classify the data according to the statistics of their classes. Let us recall that the soft
SVM algorithm consists of solving the following (constrained convex) optimisation problem (the
parameter λ ≥ 0 is to be freely chosen depending on the desired properties of the final classifier)

(5) min
α,b,ξ

1

2
‖α‖22 + λ ‖ξ‖1 subject to vi

(〈
α,A−1/2νxi,u

〉
+ b
)
≥ 1− ξi ; ξi ≥ 0; ∀1 ≤ i ≤ m.

Classically, this is equivalent to the dual (quadratic) problem

max
θ

∑
1≤i≤m

θi −
1

2

∥∥∥∥∥∥
∑

1≤i≤m
θiviA

−1/2νxi,u

∥∥∥∥∥∥
2

2

subject to 〈θ, v〉 = 0 ; ∀i : 0 ≤ θi ≤ λ.

Given its minimizer θ∗, the solution of the primal SVM problem (5) can be computed as the direc-

tion α =
∑

i≤m θ
∗
i viA

−1/2νxi,u and, given i ∈ [[1,m]] such that 0 < θ∗i < λ, b = vi −
〈
α,A−1/2νxi,u

〉
.

First, note that this optimisation problem is not convex anymore if we include the optimisation
over the pre-processing map u. Second, while the solutions (for a fixed u) of the ERM and soft
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SVM may be similar in some generic situations, there are some significant difference in behaviour
and interpretation in the results of the two algorithms2:

• The solution to the ERM algorithm is sensitive to the number of inputs in each class (thus, in
some way, “learning” the data generating distribution) while that of the SVM only depends
on the support vectors (Figure 4.1).

Figure 4.1. ERM (obtained via a gradient descent algorithm) and SVM may pro-
duce similar results in generic situations (left). However, ERM is more sensitive to
the relative number of inputs in each class (right). Dotted lines on the right plot
recall the position of the classifiers from the left plot.

• Another key difference between these two algorithms lies in their respective objectives: the
ERM attempts to find a hyperplane where most of the data is (correctly classified and) far
away from said hyperplane while the soft SVM attempts the same but only with respect to
the support vectors. The results of these procedures can lead sometimes to very different
outputs (Figure 4.2).

Figure 4.2. ERM and SVM seek two different geometric objectives that may result
in very different outputs.

2In the following arguments, we show these differences for classification tasks for points in the plane. In our
setting, this is equivalent to taking the dimensions r = n = 2, the pre-processing map u = Id and the input paths as
constant paths.
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• The two algorithms have different sensitivities to outliers and mislabelled training data
(which we will discuss in the next subsection.)
• Given the preprocessing map u, if one denotes the hyperplane parameters returned by the

SVM algorithm by (ωu, bu), then the smoothness of the map u 7→ (ωu, bu) (and therefore that

of u 7→ R̂(X,V )(Hu,ωu,bu)) is much less trivial to prove or even define, thus rendering the use
of classical gradient descent algorithms to optimise over u unjustified (indeed, attempting
to do so in several numerical experiments, the algorithm failed to converge.)

Remark 4.1. In [NKD+20], the SVM algorithm is successfully used to separate classes that can
be separated by their statistics (for example, the realisations of two Gaussian processes.) A “good”
pre-processing map u (based on a mathematical formula) is chosen beforehand; thus avoiding the
use of gradient descent to optimise over this parameter.

4.2. Robustness and further analysis of the ERM. Making again the change of variable
α = A1/2ω, we saw from the above that, informally, an ERM algorithm has the task to find
parameters (u, ω, b) such that all the transformed averages A−1/2νxi,u are correctly classified, i.e.,

∀i ∈ [[1,m]] : vi

(〈
A−1/2νxi,u, α

〉
+ b
)
≥ 0,

and as distant from the hyperplane H(α, b) as possible (thus prompting Φ
(
−v · 〈νx,u,ω〉+b√

ω>Aω

)
to be as

small as possible) while working under the constraint that the overall sum of the losses associated to
each training input (i.e., the empirical risk) has to be as small as possible. The combination of the
latter with the loss function involving the Gaussian CDF is the reason why this ERM algorithm
differs from a simple classification of the transformed averages A−1/2νxi,u. For example, if we
assume that the two clouds

C+ = {A−1/2νxi,u : vi = 1} and C− = {A−1/2νxi,u : vi = −1}

are concentrated and well separated and then introduce an additional training input x∗ with label
v∗ = 1 but such that A−1/2νx∗,u is much closer to C− than to C+, it is then very possible for the
ERM to choose to misclassify x∗ rather than to correctly classify it (doing the latter might mean an
increase in the empirical risk as the cloud C− moves much closer to the new hyperplane H(α, b).)
In practice, the label v∗ given to the path x∗ could be a wrong one (i.e., mislabelled training data).
However, this does not necessarily alter the result of this ERM algorithm in a drastic way (which
would be the case for the hard SVM algorithm or a soft SVM algorithm with a bad choice of the
regularising parameter λ). Figure 4.33 shows the dependence of the ERM and the SVM algorithms
on mislabelled data.

Figure 4.3. The resulting hyperplanes obtained by ERM and SVM by introducing
mislabelled training data (the dotted lines represent the hyperplanes obtained in
the first experiment).

3Here again, we illustrate our point with the classification task of planar points.



PATH CLASSIFICATION BY STOCHASTIC LINEAR RECURRENT NEURAL NETWORKS 14

We analyse now the bounds ‖u‖ ≤ Λ and |b| ≤ Θ in Theorem 3.9. While these were necessary to
obtain the bounds in said theorem, they are also necessary for the ERM to converge in general. Let
us first start with the bound ‖u‖ ≤ Λ. As far as the separation of the means νxi,u of the processed
inputs is concerned, u

‖u‖ is responsible for geometrically separating these means as well as possible,

while ‖u‖ is an amplifying factor that could be exploited for adjusting to noise and randomness in
the evaluation maps once a perfect separation is achieved. For example, if (u, ω, b) are parameters
of the algorithm such that all the averages νxi,u are correctly classified in the sense that

min
1≤i≤m

vi (〈νxi,u, ω〉+ b) ≥ 0 and max
1≤i≤m

vi (〈νxi,u, ω〉+ b) > 0,

then

lim
α→+∞

R̂(X,V )(Hαu,ω,αb) = 0.

In other words, once a training algorithm finds a pre-processing map u that enables a correct
hyperplane separation of (the weighted means νx,u of) the data, it will tend to linearly scale the
norm of u to infinity with two consequences: first, further distancing the means νxi,u (or more

precisely A−1/2νxi,u as seen earlier) from the classifying hyperplane and second, distancing these
averages among themselves so that, with high probability, the random vectors y(T, xi) ’s take their
values in similar non-intersecting elliptic domains (getting larger with α) centred at the νxi,u’s (since
the Gaussian random vectors y(T, xi)’s have the same covariance matrix A.) Hence, if there are
no bounds on the norm of u and if perfect classification is possible, the (non-converging) algorithm
will try to transition from a robust classification to an accurate one (more details below.) The
bound |b| ≤ Θ prevents in some particular scenarios the choice of hyperplanes whose distance from
the origin tends to infinity. If we take for example the case where all the data belong to the same
class (less extreme examples can also be explicited), say “+1”, and if (u, ω, b0) are parameters of
the algorithm such that all the averages νxi,u are correctly classified, then

lim
b→+∞

R̂(X,V )(Hu,ω,b0+b) = 0.

Note also that the bound on the norm of u (and b) are interchangeable with a rescaling of the
covariance matrix A as the classifier with parameters (αu, ω, αb) and covariance matrix A gener-
ates the same risk as the classifier with parameters (u, ω, b) and covariance matrix A/α2. For this
reason, we choose the bound Λ = 1 in the numerical experiments and control the covariance matrix
through a noise scale to be chosen carefully (see Section 5).

Finally, we discuss the condition of definiteness of the covariance matrix A and its role in the
robustness of the classification algorithm. When A is positive definite, we have seen that the goal
of the ERM is solving the minimisation problem

(6) min
‖u‖≤Λ,|b|≤Θ,ω

1

m

m∑
i=1

Φ

(
−vi ·

〈νxi,u, ω〉+ b√
ω>Aω

)
.

On the one hand, if the empirical risk is interpreted as a measure of the precision of the classification
task on the training set, then we see that in this regime (A positive definite), a full precision (null
risk) is not achievable (due to the randomness of the evaluation map). The same applies to the
classification of the data on a validation set as the label is a random variable whose value will
depend on the current simulation (of the Brownian motion and the solution to the S.D.E). On
the other hand, and as we have previously seen, note that even for a fixed pre-processing map u,
it is clear that the choice of the optimal parameters depends explicitly on all the training data,
providing in this way a robustness against mislabelled data in the training set. For these reasons
and the ones detailed above, we call this the robust or the stochastic regime.
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If we now take A = 0, the objective of an ERM becomes the solution of the minimisation problem

min
‖u‖≤Λ,|b|≤Θ,ω

1

m

m∑
i=1

1sign(〈νxi,u,ω〉+b) 6=vi .

The task at hand is a mere classification of the averages νxi,u of the processed data. If there exists
a pre-processing map u such that these averages are separable, then an ERM algorithm will achieve
a full precision on the training data set (and in general, a unique solution does not exist unless we
introduce an additional constraint like maximising the margin of the classifying hyperplane as in
SVM). However, this classification will generally depend only on some support vectors νxi,u (i.e.
the closest averages to the classifying hyperplane) while ignoring the information provided by the
rest of the training data, hence potentially becoming sensitive and vulnerable to mislabelling and
the data-generating distribution. We call such regime the accurate regime.
In the general case (A not positive definite but not necessarily null), the ERM may choose either
the robust or the accurate regime depending on how well the data can be separated. If the averages
νxi,u are separable, the accurate regime is preferred as it leads to a null empirical risk, otherwise
the ERM may choose a robust solution. We refer for example to [FFF18, RXY+20, TSE+19] for
more information on the general topic of the trade-off between accuracy and robustness.

4.3. Information retained by stochastic RNNs. In this subsection, we highlight that the
ERM is equivalent to a minimisation of a functional of the signatures of the augmented input paths
(t,
∫
xtdt)t≤T . We recall that the signature S(z) = (Zn)n∈N of a path z defined over an interval

[0, T ] with values in a Banach space E is the sequence of its iterated integrals, i.e., for all s ≤ t,
Z0(s, t) = 1,
Z1(s, t) =

∫
s≤u≤t dz(u) = z(t)− z(s) ∈ E,

Zn+1(s, t) =
∫
s≤u≤t Z

n(s, u)⊗ dz(u) ∈ E⊗(n+1) for all n ∈ N.

The role of the signature in RNNs should not come as a surprise for two main reasons:

• The signature of a path is the only information needed from a path to solve a differential
equation. This is the cornerstone of the theory of rough paths (c.f. [Lyo98, LCL07].)
• Every path is uniquely characterised (up to what is called a tree-like equivalence) by its

signature [HL10]. This fact is the basis for a lot of research in the machine learning of
data streams. These streams are mapped via their (truncated) signatures to vectors in the
tensor algebra, thus allowing one to use many of the classical machine learning techniques
(like feed-forward neural networks) for data streams (e.g. [Gra13, KO19, LLN13]).

For more information, we refer the reader to the original work of K.T. Chen [Che57], the modern
formulation in [LCL07] and the introduction to signature methods in machine learning in [CK16].

We now reformulate the ERM problem in a way that fully separates the tunable parameters of
the network from the information provided by the paths in the training dataset.

Theorem 4.2. Define H as the Hilbert space

H :=

(a, (bk)k≥0) ∈ R⊕
⊕
k≥0

Rr :
∑
k≥0

k!‖bk‖22 <∞

 ,

with inner product given by

〈(a, (bk)k≥0) , (c, (dk)k≥0)〉H = ac+
∑
k≥0

k!b>k dk for all (a, (bk)k≥0) , (c, (dk)k≥0) ∈ H.
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Then the ERM is equivalent to the following optimisation problem

min
(β,(θk)k≥0)∈CA

m∑
i=1

Φ

(
−vi

〈(
β, (θk)k≥0

)
,

(
1,

(∫ T

0

(T − s)k

k!
x(s)ds

)
k≥0

)〉
H

)
,

where CA is defined as

CA := CA,Λ,Θ

:=

{
(β, (θk)k≥0) ∈ H : β ∈ R, θk = u>

(W>0 )k

k!
α, u ∈ Rn×r, ‖u‖ ≤ Λ, |β| ≤ Θ√

λmin(A)
, α ∈ Rn, α>Aα = 1

}
.

Proof. We write the problem at hand

min
‖u‖≤Λ,|b|≤Θ,ω

m∑
i=1

Φ

(
−vi ·

〈ω, νxi,u〉+ b√
ω>Aω

)
s.t. ω 6= 0,

in the simpler equivalent form

min
‖u‖≤Λ,|β|≤ Θ√

λmin(A)
,ω

m∑
i=1

Φ (−vi(〈α, νxi,u〉+ β)) s.t. α>Aα = 1.

Note now that we can expand the mean νx,u into a series

νx,u =

∫ T

0
eW0(T−s)u(x(s))ds =

∞∑
k=0

k!
W k

0

k!
u

(∫ T

0

(T − s)k

k!
x(s)ds

)
,

so that one can separate, in the inner product 〈α, νx,u〉+β, the tunable parameters from a functional
of the input signals

〈α, νx,u〉+ β =
∞∑
k=0

k!α>
Wk

0
k! u

(∫ T
0

(T−s)k
k! x(s)ds

)
+ β

=

〈(
β,
(
u>

(W>0 )k

k! α
)
k≥0

)
,

(
1,
(∫ T

0
(T−s)k
k! x(s)ds

)
k≥0

)〉
H
.

This concludes the proof. �

Remark 4.3. Note that∫ T

0

(T − s)k

k!
x(s)ds =

∫
0<s<u1<···<uk<T

dX(s)du1 . . . duk,

where X· :=
∫ ·

0 x(s)ds denotes a primitive of x. Hence the sequence
(∫ T

0
(T−s)k
k! x(s)ds

)
k≥0

can be

obtained from the signature of the path (t,Xt)t≤T .

Theorem 4.2 highlights the information retained by a stochastic RNN (with architecture and loss
function chosen as described in this paper.) More explicitly, we have the following theorem.

Theorem 4.4. Both during training (solving the ERM problem) and classification (generating
labels for unseen data), the continuous-time stochastic RNN (with linear activation function) is

uniquely determined by the partial signature Ŝ of the input path defined by

(7) Ŝ(x) :=

(∫ T

0

(T − s)k

k!
x(s)ds

)
k≥0

.
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Proof. We have already shown in Theorem 4.2 that the ERM problem can be written as a min-
imisation problem of a functional of the partial signatures of the training paths (and that no
other information about said paths is required). If we denote by (u, ω, b) some possible param-
eters of an ERM classifier HERM and given an input path x, then the RNN generates the label
v = sign(〈yu(T, x), ω〉 + b) with yu(T, x) ∼ N (νx,u, A). Following the proof of Theorem 4.2, νx,u
can also be expressed as a functional of Ŝ(x) only

νx,u =

∞∑
k=0

W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)
.

This completes the proof of the claims. �

We believe that a similar result as Theorem 4.4 holds for generic RNNs, i.e., that continuous-time
RNNs (even with non-linear activation functions) can be viewed as kernel machines involving the
(full) signatures of the input paths. We refer for example to [Lim21] (and the references therein)
for first results in this direction.

Even though the RNN uses only the partial signature (7) of the time-lifted input paths (instead
of the full signature), it turns out that it is still a faithful representation of continuous paths.

Theorem 4.5. The partial signature map Ŝ defined over the space of continuous paths defined over
an interval [0, T ] and with values in a finite-dimensional space is injective.

Proof. Without loss of generality, we will consider the case of real-valued paths. By a simple change
of variable and a reparametrisation of the path, it is equivalent to show that the map

S̃(x) : x 7−→
(∫ T

0
skx(s)ds

)
k≥0

is injective. As S̃ is linear it is also equivalent to show that S̃(x) = 0 if and only if x = 0. Let

then x be a continuous real-valued path such that S̃(x) = 0. Then for every polynomial function

P , one has
∫ T

0 P (s)x(s)ds = 0. Let ε > 0 be arbitrary and let P be a polynomial function such
that ‖x− P‖∞,[0,T ] ≤ ε. Then one has∣∣∣∣∫ T

0
x2(s)ds

∣∣∣∣ =

∣∣∣∣∫ T

0
x(s)(x(s)− P (s))ds

∣∣∣∣ ≤ ε‖x‖∞,[0,T ]T.

Therefore
∫ T

0 x2(s)ds = 0, from which we conclude that indeed x = 0. �

Remark 4.6. Despite the partial signature transform being injective, it is still possible for the
linear RNN not to be able to distinguish two paths x and x̃ if the inner product of their partial
signatures with the matrices

(
W k

0 u
)
k≥0

are the same, i.e.,

νx,u =
∞∑
k=0

W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)
=
∞∑
k=0

W k
0 u

(∫ T

0

(T − s)k

k!
x̃(s)ds

)
= νx̃,u.

Replacing the sequence
(
W k

0 u
)
k≥0

by another whose entries can be independent is the cornerstone

and the reason behind the power of signature techniques. However, these techniques are confronted
with computational issues and therefore the signature has to be restricted to low orders. RNNs are
able however to surmount this obstacle by increasing the dimension n and thus allowing for more
degrees of freedom (while signatures are computed implicitly as shown above through the recursive
architecture.)
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Using the factorial decay of the elements of the partial signature sequence (which is trivial and
explicit in our case), we can then obtain a good approximation for the ERM by truncating the
signature. To show such result, we first prove the following technical lemma.

Lemma 4.7. Let N ∈ N∗, u ∈ Rn×r, ω ∈ Rn and x ∈ L1 ([0, T ], (Rr, ‖ · ‖2)). Then∣∣∣∣∣〈ω, νx,u〉 −
N∑
k=0

ω>W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)∣∣∣∣∣ ≤ ‖ω‖2 ‖u‖ e‖W0‖T (‖W0‖T )N+1

(N + 1)!

∫ T

0
‖x(s)‖2 ds.

Proof. Expanding the difference that we want to bound we get

〈ω, νx,u〉 −
N∑
k=0

ω>W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)
=

∞∑
k=N+1

ω>W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)
.

For every k ∈ N, one trivially has∣∣∣∣ω>W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)∣∣∣∣ ≤ ‖ω‖2 ‖W0‖k ‖u‖
T k

k!

∫ T

0
‖x(s)‖2 ds,

while for every a ≥ 0 ∣∣∣∣∣
∞∑

k=N+1

ak

k!

∣∣∣∣∣ ≤ ea aN+1

(N + 1)!
.

The combination of the three arguments above gives then the desired result. �

We can now show how one may exploit the signature-based expansion of the empirical risk in
order to obtain an approximate solution to the ERM.

Theorem 4.8. Let Θ, Λ and R be positive real numbers and N ∈ N∗. We consider the set of
parameters

PΘ,Λ = {(u, ω, b) : ‖ω‖2 = 1, |b| ≤ Θ, ‖u‖ ≤ Λ}.

Assume that all input paths take their values in the L1-ball of radius R

BR =

{
x ∈ C ([0, T ],Rr) :

∫ T

0
‖x(s)‖2 ds ≤ R

}
.

Given a sample (X,V ) = {(xi, vi)}mi=1, let (u0, ω0, b0) be a solution to the ERM problem

min
(u,ω,b)∈PΘ,Λ

1

m

m∑
i=1

Φ

(
−vi ·

〈νxi,u, ω〉+ b√
ω>Aω

)
,

and (ū, ω̄, b̄) be a solution to the “truncated” ERM problem

min
(u,ω,b)∈PΘ,Λ

1

m

m∑
i=1

Φ

−vi ·
N∑
k=0

ω>W k
0 u
(∫ T

0
(T−s)k
k! x(s)ds

)
+ b

√
ω>Aω

 .

Then

0 ≤ R̂(X,V )(Hū,ω̄,b̄)− R̂(X,V )(Hu0,ω0,b0) ≤ ΛRe‖W0‖T

√
2

λmin(A)π

(‖W0‖T )N+1

(N + 1)!
.
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Proof. For lighter expressions, we will introduce the following notation

R̂N(X,V )(Hu,ω,b) =
1

m

m∑
i=1

Φ

−vi ·
N∑
k=0

ω>W k
0 u
(∫ T

0
(T−s)k
k! x(s)ds

)
+ b

√
ω>Aω

 .

The inequality R̂(X,V )(Hu0,ω0,b0) ≤ R̂(X,V )(ū, ω̄, b̄) is a direct consequence of the definition of
(u0, ω0, b0). We decompose the difference of these two terms in the following way

R̂(X,V )(Hū,ω̄,b̄)− R̂(X,V )(Hu0,ω0,b0) = R̂(X,V )(Hū,ω̄,b̄)− R̂N(X,V )(Hū,ω̄,b̄)

+ R̂N(X,V )(Hū,ω̄,b̄)− R̂N(X,V )(Hu0,ω0,b0)

+ R̂N(X,V )(Hu0,ω0,b0)− R̂(X,V )(Hu0,ω0,b0).

By the definition of (ū, ω̄, b̄), the second difference is non-positive,

R̂N(X,V )(Hū,ω̄,b̄)− R̂N(X,V )(Hu0,ω0,b0) ≤ 0.

Let (u, ω, b) ∈ PΘ,Λ. As Φ is 1√
2π

-Lipschitz, we have

∣∣∣R̂(X,V )(Hu,ω,b)− R̂N(X,V )(Hu,ω,b)
∣∣∣ ≤ 1√

2πm

m∑
i=1

∣∣∣∣∣∣∣∣∣
〈νxi,u, ω〉 −

N∑
k=0

ω>W k
0 u
(∫ T

0
(T−s)k
k! x(s)ds

)
√
ω>Aω

∣∣∣∣∣∣∣∣∣ .
For each i ∈ [[1,m]], the following holds by Lemma 4.7 and the assumptions on the parameters ω
and u and the path xi∣∣∣∣∣〈νxi,u, ω〉 −

N∑
k=0

ω>W k
0 u

(∫ T

0

(T − s)k

k!
x(s)ds

)∣∣∣∣∣ ≤ ΛRe‖W0‖T (‖W0‖T )N+1

(N + 1)!
.

The result is then directly obtained by applying the above bounds to the vectors (ū, ω̄, b̄) and
(u0, ω0, b0). �

Theorem 4.8 demonstrates then the possible power of the application of the signature-based
decomposition of the empirical risk. In our setting, this technique avoids for example the expensive
computation of νx,u (as integrals of time-dependent matrix exponentials) for each path in the

training set and replaces it with the computation and storage of the powers (W k
0 )k≤N . However,

in this still simple setting, we will not base our optimisation techniques on this method and will
reserve its application for the non-linear case where exact formulae are not available.

5. Numerical results

In this subsection, we present the results of some numerical experiments run on real and syn-
thetic data. The focus will be on the effect of noise on the accuracy and the robustness of the RNN
and on the verification of the theoretical bound obtained in Theorem 3.9.

The application to real-world data will be demonstrated on the Japanese Vowels dataset4. This
dataset contains speech recordings of nine male subjects pronouncing a combination of Japanese
vowels. The recordings are in the form of 12-dimensional (r = 12) discrete time series with varying
lengths. To create a binary classification problem of continuous time paths, we restrict ourselves

4 https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels
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to the recordings of the first two subjects and we reparametrise the time-series to the unit interval.
For the synthetic data, we consider 5-dimensional trigonometric polynomials (r = 5)

x(t) =
N∑
k=0

ak cos(kt) +
N∑
k=1

bk sin(kt)

defined over the interval [0, 2π]. Here, we take N = 6 and the parameters ak and bk are chosen
(uniformly randomly) in the intervals Ir and Jr respectively, where, for one class I = [−0.2, 1] and
J = [−1, 0.2] and for the other I = [−1, 0.2] and J = [−0.2, 1]. We generate 70 samples for each
class for our dataset.

We take the dimension of the network to be n = 50 (and the dimension d of the Brownian motion
is taken to be equal to n.) This is quite large for our simple synthetic dataset and appropriate for
the Japanese Vowels dataset but still small compared to typical reservoirs where n can be larger
than 500 to make the reservoir self-averaging. The entries of the connectivity matrix W are drawn
from independent Gaussian distributions N (0, 0.9√

n
) (the choice of the value 0.9 is to insure the

numerical stability of the system). To generate the noise matrix Σ, we first draw positive values
λ1, . . . , λn uniformly over (0, 1), then uniformly a random orthogonal matrix U to output the matrix

(8) Σ = δ · U>diag(λ1, . . . , λn)U.

The parameter δ is a noise scale that has to be chosen carefully. A large value for δ makes the noise
dominant and the RNN unable to reach an acceptable accuracy, while a too small value makes the
system less robust.

The ERM problem will be solved numerically using a gradient descent (GD) algorithm. Recall
that, given a training sample (X,V ) = {(xi, vi)}mi=1, we aim to minimise the quantity

1

m

m∑
i=1

Φ

(
−vi ·

〈νxi,u, ω〉+ b√
ω>Aω

)
,

as a function of the parameters u, ω and b. As discussed in Subsection 4.2, we impose the bound
‖u‖ ≤ 1. To achieve a superior classification performance, we do not impose an a priori bound on
b. Let us first say a few words about some simplifications in the implementation of the gradient
descent (GD) algorithm in this simple linear case. If we consider the loss function associated with
a single observation (x, v) as a function of u, ω and b

L(u, ω, b) = Φ

(
−v 〈νx,u, ω〉+ b√

ω>Aω

)
,

then we may explicitly compute the gradient of L (for i ∈ [[1, n]] and j ∈ [[1, r]])

∂L
∂ui,j

(u, ω, b) = − v√
2π
√
ω>Aω

exp

(
−1

2

(
〈νx,u,ω〉+b√

ω>Aω

)2
)〈

ω, νx,ei,j
〉
,

∂L
∂ωi

(u, ω, b) = − v√
2π
√
ω>Aω

exp

(
−1

2

(
〈νx,u,ω〉+b√

ω>Aω

)2
)(

(νx,u)i − (Aω)i(〈ω,νx,u〉+b)
ω>Aω

)
,

∂L
∂b (u, ω, b) = − v√

2π
√
ω>Aω

exp

(
−1

2

(
〈νx,u,ω〉+b√

ω>Aω

)2
)
,

where ei,j stands for the canonical n×r basis matrix (δikδjl)k≤n,l≤r and zi stands for the ith coordi-

nate of the vector z. Apart from its simple expression, one can see that the averages (νx,ei,j )i≤n,j≤r
need to be computed for each example x in the training set in order to run the algorithm. One
can then exploit these to compute the mean νx,u at each iteration of the algorithm as a linear
combination of the means (νx,ei,j )i≤n,j≤r instead of a full new computation which can be heavy due
to the presence of matrix exponentials. In our implementation, we used Scipy’s minimize function
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with nonlinear constraints 5 which is a gradient descent algorithm with suitably adjusted step-sizes
(based on the Sequential Least Squares Programming algorithm detailed in [K+88]). Due to the
non-convexity of the problem, the algorithm is run a few times (typically 5 times) with random
initialisations of the parameters in order to avoid bad local minima. The solution with the smallest
loss function is then chosen.

The experiments consist of three parts:

(1) first we check the accuracy achieved on a fixed-size testing set (30% of the total available
data) while increasing the size of the training set. Recall that the computed accuracies are
random realisations depending on the results of the simulations (of the solution to the SDE
(1)).

(2) We verify the validity of the theoretical bound obtained in Theorem 3.9 as a function
of the size of the training set. More precisely, having computed some values for the pa-
rameters u, ω and b and thus the corresponding hypothesis H, we compare the difference∣∣∣R(H)− R̂(X,V )(H)

∣∣∣ with the theoretical bound (which is valid with high probability)

4√
2πmλmin(A)

(
Θ +R

(∫ t

0

∥∥∥eW0(t−s)
∥∥∥2

ds

)1/2
)

+
2 + 5

√
log(2/δ)/2√
m

.

In the above, the true risk R(H) is computed as an empirical risk over the testing set. The
value R is computed as the maximum of the L2-norm of the paths in the whole dataset
while Θ is computed as the largest value obtained for |b| in the accuracy experiment detailed
above. We take the value δ = 0.01 so that the bound holds with probability 0.99.

(3) We verify the robustness of the learning in the following way. We train the network with a
corrupt dataset where a portion of the labels of the training inputs has been changed, then
compute the resulting accuracy based on the test set. This robustness test is quite simple
and does not show the full potential of the architecture but we suspect that such robustness
also holds when the input paths are themselves being perturbed. For other measures of
robustness, we refer the reader to the previously cited references and the additional refer-
ences [BNL12, BNS+06, DDSV04] that look into the robustness of training with corrupted
datasets.

We start first by the experiments on the Japanese vowels dataset with three choices of noise
scales δ ∈ {1, 1.5, 2.5} in (8). The resulting plots are shown in Figure 5.1. In the accuracy plots:

• the solid lines show the accuracy based on classifying the averages νx,u of the paths in the
test dataset with the obtained hyperplane hω,b. In other words, the generated label for a

path x is v = sign(〈νx,u, ω〉 + b). As νx,u is the hidden state of a noiseless RNN6, we refer
to this scenario as noiseless accuracy or NRNN.
• The dotted lines show the accuracy of 5 simulated labels produced by the stochastic RNN.

Here, the generated label for a path x is v = sign(〈yu(T, x), ω〉 + b) where yu(T, x) is
simulated as yu(T, x) ∼ N (νx,u, A). We refer to this scenario as simulated stochastic
accuracy.

Note that because of the discontinuity of the hyperplane classifying function, the former is not
expected to be an average of the latter. For readability, we report some numerical values for 10
simulations in Table 1:

• the first column refers to the value of the noise scale δ in (8),

5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
6Note however that a noiseless RNN will train differently and consequently produce different parameters u, ω and

b in general.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Figure 5.1. Verification of the theoretical PAC-bound (Theorem 3.9) and accuracy
of the network for the Japanese vowels dataset. Each row of figures represents
the results for different noise scales (as defined in Equation (8)); 1, 1.5 and 2.5
respectively. The middle column shows the evolution of the accuracy of the network
when increasing the size of the training dataset. The right column shows how an
increasing portion (described as mislabelling frequency) of corrupt labels in the
training dataset affects the accuracy on the test set. Solid lines show the accuracy
of classification by a noiseless RNN (trained as a stochastic RNN). Dotted lines show
the results of simulations of the realised labels by the stochastic RNN.

• the group of columns “Accuracy” reports the results of the experiment after training with
the entire training set while the group of columns “Robustness test accuracies” reports the
accuracy of the network after training with the entire training set with 10% of mislabelled
data,
• the column NRNN gives the accuracy of classification of the averages νx,u with the hyper-

plane hω,b (these labels are given by as v = sign(〈νx,u, ω〉+ b)),
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Accuracy Robustness test accuracies
Noise scale NRNN min max avg. NRNN min max avg. Ratio

1 100% 97.37% 100% 99.21% 100% 94.74% 100% 99.21% 100%
1.5 97.37% 86.84% 100% 95.00% 97.37% 92.11% 100% 95.79% 100.83%
2.5 97.37% 65.79% 86.84% 75.26% 97.37% 76.32% 94.74% 83.95% 111.54%

Table 1. Numerical values when working the Japanese vowels dataset. The first
column shows the noise scale (see Equation (8)), the next four columns give re-
spectively the accuracy of classification by a noiseless RNN (trained as a stochastic
RNN), then the lowest, the largest and the average accuracy given by the (stochas-
tic) RNN over 10 simulations. The following four columns show the same numbers
after training the RNN with 10% of mislabelled data. The last column shows the
ratio of the average accuracy in the robustness test (after training with some cor-
rupted labels) over the normal average accuracy (after training with the correct la-
bels).

Accuracy Robustness test accuracies
Noise scale NRNN min max avg. NRNN min max avg. Ratio

2 100% 100% 100% 100% 100% 100% 100% 100% 100.00%
4 100% 88.33% 98.33% 94.83% 100% 90.00% 100.00% 92.83% 97.89%
6 100% 73.33% 90.00% 79.83% 100% 71.67% 81.67% 76.67% 96.03%
Table 2. Numerical values when working the synthetic dataset. The first column
shows the noise scale (see Equation (8)), the next four columns give respectively the
accuracy of classification by a noiseless RNN (trained as a stochastic RNN), then
the lowest, the largest and the average accuracy given by the (stochastic) RNN over
10 simulations. The following four columns show the same numbers after training
the RNN with 10% of mislabelled data. The last column shows the ratio of the
average accuracy in the robustness test (after training with some corrupted labels)
over the normal average accuracy (after training with the correct labels).

• the columns “min”, “max” and “avg.” give, respectively, the smallest, the largest and
the average observed accuracy over the 10 simulations (the labels are simulated as v ∼
sign(〈N (νx,u, A) , ω〉+ b).)

As usually observed when working with PAC-bounds based on the Rademacher complexity, the
theoretical bound obtained in Theorem 3.9 can be very loose. We note however in Figure 5.1 that
the difference gets smaller with larger noise scales. In Table 1, we note an almost perfect noiseless
accuracy even in the presence of noise. A striking fact, however, is that, on average and in the
presence of noise, there is no remarkable loss in the performance of the RNN when training with
some mislabelled data.

Training with synthetic data showed a higher tolerance to the noise scales. In Figure 5.2, we show
the result of the same experiments as before with the noise scales δ ∈ {2, 4, 6}. Numerical values are
reported on Table 2 (with 15% for mislabelled data in the robustness test). We observe again the
validity of the theoretical PAC-bound obtained in Theorem 3.9 (with the difference getting smaller
with higher noise scales) and notice the same persistence in the quality of the labels generated by
the RNN when training with mislabelled data.
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Figure 5.2. Verification of the theoretical PAC-bound (Theorem 3.9) and accuracy
of the network for the synthetic dataset. Each row of figures represents the results
for different noise scales (as defined in Equation (8)); 2, 4 and 6 respectively. The
middle column shows the evolution of the accuracy of the network when increasing
the size of the training dataset. The right column shows how an increasing portion
(described as mislabeling frequency) of corrupt labels in the training dataset affects
the accuracy on the test set. Solid lines show the accuracy of classification by
a noiseless RNN (trained as a stochastic RNN). Dotted lines show the results of
simulations of the realised labels by the stochastic RNN.
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[BBL02] Peter L Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection and error estimation. Machine
Learning, 48(1):85–113, 2002.

[BHKS20] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction
and neural networks for parametric PDEs. SMAI Journal of Computational Mathematics, 7:121–157,
2020.

[BNL12] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines,
2012.



PATH CLASSIFICATION BY STOCHASTIC LINEAR RECURRENT NEURAL NETWORKS 25

[BNS+06] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can machine
learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and commu-
nications security, pages 16–25, 2006.

[Che57] Kuo-Tsai Chen. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula.
Ann. of Math. (2), 65:163–178, 1957.

[CK16] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv
preprint arXiv:1603.03788, 2016.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
[DCR+18] Brian DePasquale, Christopher J Cueva, Kanaka Rajan, G Sean Escola, and LF Abbott. full-FORCE: A

target-based method for training recurrent networks. PloS one, 13(2):e0191527, 2018.
[DDSV04] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adversarial classification. In Pro-

ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 99–108, 2004.

[Doy92] Kenji Doya. Bifurcations in the learning of recurrent neural networks 3. learning (RTRL), 3:17, 1992.
[FFF18] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness to adversarial

perturbations. Machine Learning, 107(3):481–508, 2018.
[FN93] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time

recurrent neural networks. Neural networks, 6(6):801–806, 1993.
[GGO20a] Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Approximation bounds for random neural

networks and reservoir systems. arXiv preprint arXiv:2002.05933, 2020.
[GGO20b] Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Risk bounds for reservoir computing. J.

Mach. Learn. Res., 21:Paper No. 240, 61, 2020.
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Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Jülich, Germany
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