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Numerical examples, computational complexity and possible applications to other
hyperbolic equations or systems, including time dependent problems, will be dis-
cussed.
All references are available at www.math.tamu.edu/∼popov/preprints.html
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Identification of Sparse Operators

Holger Rauhut

(joint work with Götz Pfander and Jared Tanner)

Motivated by the channel estimation problem in communication engineering
(wireless communication and sonar) we consider the problem of identifying a ma-
trix Γ ∈ Cn×m from its action Γh on a single vector h ∈ Cm. Clearly, without
further knowledge Γ is completely determined only by its action on n basis vectors
in Cm, and our task seems impossible. However, physical considerations suggest
that in certain practical situations (see also below) Γ can be well-represented by a
short linear combination of a few basic matrices; in other words it has a sparse rep-
resentation. In this situation one can exploit connections to sparse approximation
and compressed sensing [5, 7] to efficiently reconstruct Γ.

Given a suitable set Ψ of N “elementary” matrices Ψj ∈ Cn×m, j = 1, . . . , N
(a matrix dictionary) we say that Γ ∈ Cn×m has a k-sparse representation if

Γ =
∑

j

xjΨj

for a vector x ∈ CN whose support has at most cardinality k, formally ‖x‖0 :=
|{k, xk $= 0}| ≤ k. The action of such a matrix Γ on a vector h ∈ Cm can be
written as

Γh =
∑

j

xjΨjh = Ψhx

with the matrix Ψh = (Ψ1h| . . . |ΨNh) ∈ Cn×N . Identification of Γ clearly
amounts to reconstructing the sparse vector x from Γh. Unfortunately, the obvious
approach of determining the vector x with shortest support (i.e. minimal ‖x‖0)
that is consistent with the observation, Γh = Ψhx, yields an NP-hard combinato-
rial problem[2] and, thus, is not feasible in practice.

Several tractable alternative recovery algorithms have been proposed so far,
most notably !1-minimization (Basis Pursuit), on which we will concentrate here.
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Instead of solving a combinatorial optimization problem we consider the minimizer
of the problem

(1) min
x

‖x‖1 =
N∑

j=1

|xj | subject to Γh = Ψhx.

This minimization problem can be solved efficiently with convex optimization tech-
niques [4].

Obvious questions concern the choice of h, and the maximal sparsity k that
allows for recovery of x resp. identification of Γ by !1-minimization.

Our first result in this direction [11] deals with dictionaries of random matrices.
Although in practice rather deterministic dictionaries will appear, it neverthe-
less provides some intuition of what can be expected, in particular, the maximal
recoverable sparsity.

Theorem 1. Let h be a non-zero vector in Rm.

(a) Let all entries of the N matrices Ψj ∈ Rn×m, j = 1, . . . , N , be chosen
independently according to a standard normal distribution (Gaussian en-
semble); or

(b) let all entries of the N matrices Ψj ∈ Rn×m, j = 1, . . . , N , be independent
Bernoulli ±1 variables (Bernoulli ensemble).

Then there exists a positive constant c such that

(2) k ≤ c
n

log
(

N
nε

)

implies that with probability at least 1 − ε all matrices Γ having a k-sparse rep-
resentation with respect to Ψ = {Ψj} can be recovered from Γh by Basis Pursuit
(1).

The proof of this theorem is based on estimating the so called restricted isometry
constants [6] of the random matrix Ψh.

We will now concentrate on the matrix dictionary of time–frequency shifts,
which appears naturally in the channel identification problem in wireless commu-
nications [3] or sonar [13]. Due to physical considerations wireless channels may
indeed be modeled by sparse linear combinations of time–frequency shifts M"Tp,
where the translation operators Tp and modulation operator M" on Cn are given
by

(Tph)q = hp+q mod n and (M"h)q = e2πi"q/nhq.

The system of time–frequency shifts G = {M"Tp : !, p = 0, . . . , n−1} forms a basis
of Cn×n and for any non-zero h, the vector dictionary Gh = (M"Tph)",p=0,...,n−1

is a Gabor system [9]. Below, we focus on the so-called Alltop window hA [1, 10]
with entries

(3) hA
q :=

1√
n

e2πiq3/n, q = 0, . . . , n−1,
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and the randomly generated window hR with entries

(4) hR
q :=

1√
n

εq, q = 0, . . . , n−1,

where the εq are independent and uniformly distributed on the torus {z ∈ C, |z| =
1}.

Invoking existing recovery results [8, 14] and results on the coherence of the
Gabor systems GhA [10] and GhR [11], we obtain

Theorem 2. (a) Let n ≥ 5 be prime and hA be the Alltop window defined

in (3). If k <
√

n+1
2 then BP recovers from ΓhA all matrices Γ having a k-

sparse representation with respect to the time–frequency shift dictionary.
(b) Let n be even and choose hR to be the random unimodular window in (4).

Let t > 0 and suppose

k ≤ 1

4

√
n

C log(n) + t
+

1

2

with C = 2 log(4) ≈ 2.77. Then with probability of at least 1 − e−t BP
recovers from ΓhR all matrices Γ ∈ Cn×n having a k-sparse representation.

Although this theorem provides a first recovery result, it is not yet satisfactory
as the maximal sparsity which guarantees recovery is quite small – on the order
of

√
n – compared to (2), where it is of the order n/ log(N/n) which in our case,

N = n2, is n/ log(n). By passing from worst case analysis to a probability model
on the sparse coefficient vector x one can apply recent work by Tropp based on the
coherence [15] in order to achieve an improvement. Indeed, if the support set Λ is
chosen at random as well as the signs of the non-zero coefficients xj , j ∈ Λ, then
for both hA and hR one has recovery with high probability of the true coefficient
vector x provided

k ≤ c
n

log(n)1+u

for some c, u > 0 (governing the probability of recovery). We refer to [11] for a
precise formulation.

In case of the randomly generated vector hR we were able to improve further
on the above recovery results by removing the randomness in the coefficient vector
x [12].

Theorem 3. Let Γ ∈ Cn×n be k-sparse with respect to the time-frequency shift
dictionary G. Choose hR at random. There exists a constant C > 0 such that

(5) k ≤ C
n

log(n/ε)

implies that with probability at least 1− ε Basis Pursuit (1) recovers Γ from ΓhR.

The above theorem is based on a careful analysis of the singular values of a sub-
matrix consisting of k columns of GhR [12]. It would be interesting to investigate
an analog for the deterministic Alltop window hA.
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Numerical experiments for both hA and hR in [11] suggest that recovery is
possible with high probability for most signals provided k ≤ n

2 log(n) .
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Adaptive Coupled Cluster Method and CI Method for the Solution of
the Electronic Schroedinger Equation

Reinhold Schneider

The electronic Schrödinger equation plays a fundamental role in molecular physics.
It describes the stationary non-relativistic quantum mechanical behavior of an N
electron system in the electric field generated by the nuclei. The Coupled Cluster
Method has been developed for the numerical computation of the ground state
energy and wave function. It provides a powerful tool for high accuracy electronic
structure calculations. The present paper aims to provide a convergence analysis
of this method. Under additional assumptions quasi-optimal convergence of the
projected coupled cluster solution to the full CI solution and also to the exact
wave function can be shown in the Sobolev H1 norm. The error of the ground
state energy computation is obtained by an Aubin Nitsche type approach.


