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Compressive sensing predicts that sparse vectors can be recovered efficiently
from highly undersampled measurements. While it is well-understood by now
that Gaussian random matrices provide optimal measurement matrices in this
context, such “highly” random matrices suffer from certain drawbacks: appli-
cations require more structure arising from physical or other constraints, and
recovery algorithms such as greedy methods or algorithms for `1-minimization
demand fast matrix vector multiplies in order to make them feasible for large
scale problems. In order to meet such desiderata, we study two types of struc-
tured random measurement matrices: partial random circulant matrices, and
random sampling matrices associated to bounded orthonormal systems (e.g. ran-
dom Fourier type matrices). The latter maybe used to study reconstruction
problems in high spatial dimensions.

Compressive Sensing. A vector x ∈ CN is called s-sparse if ‖x‖0 :=

#{`, x` 6= 0} ≤ s. The `p-norm is defined as usual, ‖x‖p := (
∑N

`=1 |x`|p)1/p,
0 < p < ∞. The best s-term approximation error of an arbitrary vector in `p is
defined as

σs(x)p = inf
‖z‖0≤s

‖x− z‖p.

Informally, x is called compressible if σs(x)p decays quickly in s. An estimate
originally due to Stechkin states that σs(x)p ≤ s1/p−1/q‖x‖q for q < p so that
BN
q = {x ∈ CN , ‖x‖q ≤ 1} is a good model for compressible vectors if q ∈ (0, 1]

is chosen small.
The task of compressive sensing is to recover a sparse or compressible vector

x ∈ CN from undersampled measurements

y = Ax ∈ Cm,

where A ∈ Cm×N is a suitable measurement matrix and m � N . The first
approach for recovering x that probably comes to mind consists in solving the
`0-minimization problem

min
z∈CN

‖z‖0 subject to Az = y.

Unfortunately, this combinatorial optimization problem is NP hard in general.
For this reason, several tractable alternatives have been introduced, most notably
`1-minimization, which consists in solving the convex optimization problem

min
z∈CN

‖z‖1 subject to Az = y.

A very useful concept for analyzing `1-minimization are the restricted isometry
constants. For s < N they are defined as the smallest constant δs such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 for all x ∈ CN , ‖x‖0 ≤ s.

If δ2s < 0.46 then `1-minimization reconstructs all s-sparse vectors x exactly from
y = Ax, and compressible vectors approximately, see [1, 4] for precise statements.
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It is an open problem to construct deterministic (explicit) measurement matri-
ces that have small restricted isometry constants for small m (or large s, respec-
tively). So far, all good constructions use randomness. A matrix with indepen-
dent standard normal distributed entries is called a Gaussian random matrix. It
is by now well-known [2] that a rescaled Gaussian matrix 1√

m
A ∈ Rm×N satisfies

δs ≤ δ with probability at least 1− ε provided

m ≥ Cδ−2(s log(N/s) + log(ε−1)),

where C > 0 is a universal constant. In particular, exact recovery of s-sparse
vectors via `1-minimization is possible if m � s log(N/s). This estimate for the
minimal number m of measurements is optimal as follows from lower bounds of
Gelfand widths of BN

q [5].
Partial random circulant matrices. While Gaussian random matrices are

optimal for compressive sensing, they are not structured at all, which poses severe
limitations for practical applications as mentioned above. Therefore, we consider
instead the following structured random matrix. For a vector b ∈ CN we define
its associated circulant matrix Φ = Φ(b) ∈ CN×N with entries

Φk,j = bj−k mod N , k, j = 1, . . . , N.

For an abritrary subset Θ ⊂ {1, . . . , N} we define the restriction operator RΘ :
CN → CΘ as (RΘx)` = x`, ` ∈ Θ. Then the partial circulant matrix ΦΘ =
ΦΘ(b) = RΘΦ(b) consists of the rows of Φ = Φ(b) indexed by the set Θ. An
application of ΦΘ to a vector x corresponds to convolution with b followed by
subsampling on Θ. Since a circulant matrix can be diagonalized by the Fourier
matrix, the FFT can be used for fast matrix vector multiplies. For the pur-
pose of compressive sensing, the vector b is chosen at random, more precisely, as
Rademacher sequence, that is, all entries are independent, and take the value +1
or −1 with equal probability. This turns the matrix ΦΘ = ΦΘ(b) into a partial
random circulant matrix. In [6] the following nonuniform recovery result for ΦΘ

has been shown.
Theorem. Let Θ ⊂ {1, . . . , N} be an arbitrary (deterministic) set of cardinal-

ity m. Let x ∈ CN be s-sparse such that the signs of its non-zero entries form a
Rademacher or Steinhaus sequence. Choose b ∈ {−1,+1}N to be a Rademacher
sequence. Let y = ΦΘ(b)x ∈ Cm. If

m ≥ 57s ln2(17N2/ε)

then x can be recovered from y via `1-minimization with probability at least 1−ε.
Unfortunately, this result does not imply the existence of a single matrix ΦΘ(b)

that guarantees recovery of all s-sparse vectors simultaneously. Such type of
statement is implied by the next theorem on the restricted isometry constants
shown in [7].

Theorem. Let Θ ⊂ {1, . . . , N} be an arbitrary (deterministic) set of cardinal-
ity m. Choose b ∈ RN to be a Rademacher sequence. Assume that

(1) m ≥ Cδ−1s3/2 log3/2(N),

and, for ε ∈ (0, 1), m ≥ Cδ−2s log2(s) log2(N) log(ε−1). Then with probability at
least 1− ε the restricted isometry constants of 1√

m
ΦΘ(b) satisfy δs ≤ δ.

The exponent 3/2 in (1) does not seem to be optimal. Unfortunately, the proof
technique in [7] is likely not powerful enough in order to obtain the expected
exponent 1.
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Random Sampling in Bounded Orthonormal Systems. Let Ω ⊂ Rd be
endowed with a probability measure ν, and φ1, . . . , φN be a system of orthonormal
functions, i.e.,

∫
Ω
φj(t)φk(t)dν(t) = δj,k. We further assume that the function

system is bounded in the sense that

sup
j=1,...,N

‖φj‖∞ ≤ K

for some constant K ≥ 1. A function of the form

f(t) =
N∑
j=1

xjφj(t)

is called s-sparse if ‖x‖0 ≤ s. Our goal is to reconstruct sparse (or compress-
ible) functions from sample values f(t1), . . . , f(tm) with t1, . . . , tm ∈ Ω. Intro-
ducing the sampling matrix A ∈ Cm×N with entries Ak,j = φj(tk) yields y =
(f(t1), . . . , f(tm))T = Ax. Therefore, we are interested in the restricted isometry
constants of the sampling matrix. We choose the points t1, . . . , tm independent
and distributed according to ν. This makes A a structured random matrix. The
most important example consists in choosing φj(t) = e2πit·j, j ∈ Zd, t ∈ [0, 1]d,
Ω = [0, 1]d and ν to be the Lebesgue measure. The resulting sampling matrix is
then a non-equispaced Fourier matrix for which fast (approximate) matrix vector
multiplies are available. In [6] the following estimate for the restricted isometry
constants has been derived, generalizing and improving slightly on [2, 9].

Theorem. Let A ∈ Cm×N be the random sampling matrix associated to a
bounded orthonormal system with constant K ≥ 1. If

m

ln(m)
≥ CK2δ−2s ln2(s) ln(N).

then with probability at least 1−N−γ ln2(s) ln(m) the restricted isometry constant of
1√
m
A satisfies δs ≤ δ. The constants C, γ > 0 are universal.

This result can be used to extend reconstruction from sample values via com-
pressive sensing to infinite dimensional function spaces, and in particular, to
suitable spaces of functions of many variables. We refer to [3, 8] for details.
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