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Abstract

We generalize the theory of Wiener amalgam spaces on locally
compact groups to quasi-Banach spaces. As a main result we provide
convolution relations for such spaces. Also we weaken the technical
assumption that the global component is invariant under right trans-
lations, which is even new for the classical Banach space case. To
illustrate our theory we discuss in detail an example on the ax + b
group.
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1 Introduction

Wiener amalgam spaces consist of functions on a locally compact group
defined by a (quasi-)norm that mixes, or amalgamates, a local criterion
with a global criterion. The most general definition of Wiener amalgams
so far was provided by Feichtinger in the early 1980’s in a series of papers
[4, 5, 6]. We refer to [12] for some historical notes and for an introduction
for Wiener amalgams on the real line.

Wiener amalgams have proven to be a very useful tool for instance in time-
frequency analysis [11] (e.g. the Balian-Low theorem [12]) and sampling
theory. Our interest in those spaces arose from coorbit space theory [7, 8,
9, 14] which provides a group-theoretical approach to function spaces like
Besov and Triebel-Lizorkin spaces as well as modulation spaces.
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It seems that Wiener amalgams with respect to quasi-Banach spaces have
not yet been considered in full generality, except for a few results for Wiener
amalgams on Rd in [10]. So this paper deals with basic properties of Wiener
amalgams W (B, Y ) with a quasi-Banach space Y as global component and
one of the spaces B = L1, L∞ or M (the space of complex Radon measures)
as local component. Moreover, we also remove the technical assumption
imposed by Feichtinger [4] that the global component Y has to be invariant
under right translation. Thus, some of our results are even new for the
classical case of Banach spaces Y .

One of our main achievements is a convolution relation for Wiener amal-
gams. As a special case it turns out that W (L∞, Lp) is a convolution algebra
for 0 < p ≤ 1 if the underlying group is an IN group, e.g. Rd. This result is
interesting since for non-discrete groups there are no convolution relations
available for Lp if p < 1. The problem comes from possible p-integrable
singularities which are not integrable. So the integral defining the convo-
lution F ∗ G does not even exist for all F ∈ Lp even if G is very nice, e.g.
continuous with compact support. Of course, the local component L∞ of
W (L∞, Lp) prohibits such singularities. So our results indicate that when-
ever treating quasi-Banach spaces in connection with convolution then one
is almost forced to use Wiener amalgam spaces.

To illustrate our results we also treat a class of spaces Y on the ax + b
group such that W (L∞, Y ) is right translation invariant (and thus admits
convolution relations) although Y is not.

For a quasi-Banach space (B, ‖·|B‖), we denote the quasi-norm of a bounded
operator T : B → B by |||T |B|||. The symbol A � B indicates throughout
the paper that there are constants C1, C2 > 0 such that C1A ≤ B ≤ C2A
(independently on other expression on which A,B might depend). We usu-
ally use the symbol C for a generic constant whose precise value might be
different in each occurence.

2 Basic properties

Let G be a locally compact group. Integration on G will always be with
respect to the left Haar measure. We denote by LxF (y) = F (x−1y) and
RxF (y) = F (yx), x, y ∈ G, the left and right translation operators. Fur-
thermore, let ∆ be the Haar-module on G. For a Radon measure µ we
denote (Axµ)(k) = µ(Rxk), x ∈ G for a continuous function k with com-
pact support. We may identify a function F ∈ L1 with a measure µF ∈ M
by µF (k) =

∫
F (x)k(x)dx. Then it clearly holds AxF = ∆(x−1)Rx−1F .

Further, we define the involutions F∨(x) = F (x−1), F∇(x) = F (x−1),
F ∗(x) = ∆(x−1)F (x−1).
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A quasi-norm ‖ · ‖ on some linear space Y is defined in the same way as
a norm, with the only difference that the triangle inequality is replaced by
‖f + g‖ ≤ C(‖f‖ + ‖g‖) with some constant C ≥ 1. It is well-known, see
e.g. [1, p. 20] or [13], that there exists an equivalent quasi-norm ‖ · |Y ‖ on
Y and an exponent p with 0 < p ≤ 1 such that ‖· |Y ‖ satisfies the p-triangle
inequality, i.e., ‖f + g|Y ‖p ≤ ‖f |Y ‖p + ‖g|Y ‖p. (C and p are related by
C = 21/p − 1.) We can choose p = 1 if and only if Y is a Banach space. We
always assume in the sequel that such a p-norm on Y is chosen and denote
it by ‖ · |Y ‖. If Y is complete with respect to the topology defined by the
metric d(f, g) = ‖f − g|Y ‖p then it is called a quasi-Banach space.

Let Y be a quasi-Banach space of measurable functions on G, which contains
the characteristic function of any compact subset of G. We assume Y to be
solid, i.e., if F ∈ Y and G is measurable and satisfies |G(x)| ≤ |F (x)| a.e.
then also G ∈ Y and ‖G|Y ‖ ≤ ‖F |Y ‖.
The Lebesgue spaces Lp(G), 0 < p ≤ ∞ provide natural examples of such
spaces Y , and the usual quasi-norm in Lp(G) is a p-norm if 0 < p ≤ 1. If
w is some positive measurable weight function on G then we further define
Lp

w = {F measurable , Fw ∈ Lp} with ‖F |Lp
w‖ := ‖Fw|Lp‖. A continuous

weight w is called submultiplicative if w(xy) ≤ w(x)w(y) for all x, y ∈ G.

Now let B be one of the spaces L∞(G), L1(G) or M(G), the space of complex
Radon measures. Choose some relatively compact neighborhood Q of e ∈ G.
We define the control function by

K(F,Q,B)(x) := ‖(LxχQ)F |B‖, x ∈ G, (2.1)

if F is locally contained in B, in symbols F ∈ Bloc. The Wiener amalgam
space W (B, Y ) is then defined as

W (B, Y ) := W (B, Y,Q) := {F ∈ Bloc, K(F,Q,B) ∈ Y }

with quasi-norm

‖F |W (B, Y,Q)‖ := ‖K(F,Q,B)|Y ‖. (2.2)

B is called the local component and Y the global component. It follows
from the solidity of Y and from the quasi-norm properties of ‖ · |B‖ and
‖ · |Y ‖ that (2.2) is indeed a quasi-norm. Since B is a Banach space it is
easy to see that also (2.2) is a p-norm (with p being the exponent of the
quasi-norm of Y ). We emphasize that in general we do not require here
that Y is right translation invariant in contrast to the classical papers of
Feichtinger [4, 5].

Remark 2.1. The restriction of the local component B to the spaces L1, L∞

and M is done for the sake of simplicity. One can certainly extend our
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considerations to more general spaces B, e.g. Lp-spaces with 0 < p ≤ ∞,
compare [4, 12]. However, convolution relations as in Section 5 will not
hold any more when taking B = Lp for p < 1.

Let us first make some easy observations.

Lemma 2.1. We have the following continuous embeddings.

(a) W (L∞, Y ) ↪→ Y .

(b) W (L∞, Y ) ↪→ W (L1, Y ) ↪→ W (M,Y ).

Proof: (a) Since |F (x)| ≤ supu∈U |F (u−1x)| for a compact neighborhood
U of e ∈ G the assertion follows from the solidity of Y .

The statement (b) follows immediately from L∞(Q) ↪→ L1(Q) ↪→M(Q) for
any compact set Q ⊂ G.

Let us now investigate whether W (B, Y,Q) is independent of Q and whether
it is complete. It will turn out that both properties are connected to the
right translation invariance of W (B, Y ). In order to clarify this we need
certain discrete sets in G and associated sequence spaces.

Definition 2.1. Let X = (xi)i∈I be some discrete set of points in G and V
a relatively compact neighborhood of e in G.

(a) X is called V -dense if G =
⋃

i∈I xiV .

(b) X is called relatively separated if for all compact sets K ⊂ G there
exists a constant CK such that supj∈I #{i ∈ I, xiK∩xjK 6= ∅} ≤ CK .

(c) X is called V -well-spread (or simply well-spread) if it is both relatively
separated and V -dense for some V .

The existence of V -well-spread sets for arbitrarily small V is proven in [6].

Given the function space Y , a well-spread familyX = (xi)i∈I and a relatively
compact neighborhood Q of e ∈ G we define the sequence space

Yd := Yd(X) := Yd(X,Q) := {(λi)i∈I ,
∑
i∈I

|λi|χxiQ ∈ Y }, (2.3)

with natural norm ‖(λi)i∈I |Yd‖ := ‖
∑

i∈I |λi|χxiQ|Y ‖. Hereby, χxiQ denotes
the characteristic function of the set xiQ. If the quasi-norm of Y is a p-norm,
0 < p ≤ 1, then also Yd has a p-norm. If e.g. Y = Lp

m, 0 < p ≤ ∞, with a
moderate weight m, then it is easily seen that Yd = `pm̃ with m(i) = m̃(xi).

Although we will not require the right translation of Y in general, we state
the following easy observation in case it holds.
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Lemma 2.2. If Y is right translation invariant then the definition of
Yd = Yd(X,U) does not depend on U .

Proof: Let V , U be relatively compact sets with non-void interior. Then
there exists a finite number of points yj, j = 1, . . . , n, such that V =
∪n

j=1Uyj. This implies

∑
i∈I

|λi|χxiV ≤
n∑

j=1

∑
i∈I

|λi|χxiUyj
=

n∑
j=1

Ry−1
j

(∑
i∈I

|λi|χxiU

)
.

By solidity and the p-triangle inequality we obtain

‖
∑
i∈I

|λi|χxiV |Y ‖ ≤

(
n∑

j=1

|||Ry−1
j
|Y |||p‖

∑
i∈I

|λi|χxiU |Y ‖p

)1/p

= C‖
∑
i∈I

|λi|χxiU |Y ‖.

Exchanging the roles of V and U shows the reverse inequality.

The following concept will also be very useful.

Definition 2.2. Suppose U is a relatively compact neighborhood of e ∈ G.
A collection of functions Ψ = (ψi)i∈I , ψi ∈ C0(G), is called bounded uniform
partition of unity of size U (for short U-BUPU) if the following conditions
are satisfied:

(1) 0 ≤ ψi(x) ≤ 1 for all i ∈ I, x ∈ G,

(2)
∑

i∈I ψi(x) ≡ 1,

(3) there exists a well-spread family (xi)i∈I such that suppψi ⊂ xiU.

The construction of BUPU’s with respect to arbitrary well-spread sets is
standard.

We call W (B, Y ) right translation invariant if for any relatively compact
neighborhood Q of e the space W (B, Y,Q) is right translation invariant
and the right translations Rx : W (B, Y,Q) → W (B, Y,Q) are bounded
operators. (In case B = M we replace Rx by Ax in this definition.)

Now we are prepared to state basic properties of Wiener amalgams.

Theorem 2.3. The following statements are equivalent:

(i) W (L∞, Y ) = W (L∞, Y,Q) is independent of the choice of the neigh-
borhood Q of e (with equivalent norms for different choices).
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(ii) For all relatively separated sets X the space Yd = Yd(X,Q) is indepen-
dent of the choice of the neighborhood Q of e (with equivalent norms
for different choices).

(iii) W (L∞, Y ) = W (L∞, Y,Q) is right translation invariant (for all choices
of Q).

If one (and hence all) of these conditions are satisfied then also W (B, Y ) =
W (B, Y,Q) is independent of the choice of Q. Moreover, the expression

‖F |W (B, Yd)‖ := ‖(‖Fψi|B‖)i∈I |Yd(X)‖, (2.4)

defines an equivalent quasi-norm on W (B, Y ), where (ψi)i∈I is a BUPU
corresponding to the well-spread set X.

Proof: We first prove that (ii) implies that (2.4) defines an equivalent
quasi-norm on W (B, Y ). Let Q be a relatively compact neighborhood of
e ∈ G. Then there exists an open set U = U−1 with U2 ⊂ Q. Choose a
BUPU (φi)i∈I of size U . If xiU ⊂ zQ then for F ∈ Bloc we have

‖Fφi|B‖ ≤ ‖FχxiU |B‖ ≤ ‖FχzQ|B‖ = K(F,Q,B)(z).

This yields∑
i∈I

‖Fφi|B‖χxiU(z) =
∑

i,xi∈zU−1

‖Fφi|B‖ ≤ CK(F,Q,B)(z) (2.5)

since (xi)i∈I is relatively separated. By solidity we obtain

‖(‖Fφi|B‖)i∈I |Yd(X,U)‖ ≤ C‖F |W (B, Y,Q)‖.

Moreover, we have

K(F,Q,B)(z) = ‖χzQF |B‖ = ‖χzQ

∑
i∈I

Fφi|B‖

≤
∑

i,zQ∩xiU 6=∅

‖Fφi|B‖ ≤
∑
i∈I

‖Fφi|B‖χxiUQ−1(z). (2.6)

By solidity this yields

‖F |W (B, Y,Q)‖ ≤ ‖(‖Fφi|B‖)i∈I |Yd(X,UQ−1)‖.

Thus, the independence of Yd(X,U) of U implies that the norm in (2.4) is
equivalent to the norm in W (B, Y ). Moreover, since Q was arbitrary this
shows also that W (B, Y ) = W (B, Y,Q) is independent of the choice of Q.
Specializing to B = L∞ we have thus also shown (ii) =⇒ (i).
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As next step we prove that (iii) implies (ii). Let U, V be relatively compact
neighborhoods of e. Choose a neighborhood Q = Q−1 of e ∈ G such that
Q2 ⊂ V . Observe that

K(
∑
i∈I

|λi|χxiQ, Q)(y) = sup
z∈yQ

∑
i∈I

|λi|χxiQ(z) ≤
∑
i∈I

|λi|χxiQ2(y)

≤
∑
i∈I

|λi|χxiV (y).

The right translation invariance of W (L∞, Y,Q) together with Lemma 2.2
applied to W (L∞, Y ) and the trivial inequality |F (x)| ≤ supz∈xQ |F (z)| thus
imply

‖
∑
i∈I

|λi|χxiU |Y ‖ ≤ ‖K(
∑
i∈I

|λi|χxiU , Q, L
∞)|Y ‖

≤ ‖K(
∑
i∈I

|λi|χxiQ, Q, L
∞)|Y ‖ ≤ ‖

∑
i∈I

|λi|χxiV |Y ‖. (2.7)

Exchanging the roles of U and V shows the reverse inequality.

Finally, we prove (i) =⇒ (iii). Let F ∈ W (L∞, Y ) and y ∈ G. We can find
a compact neighborhood V (y) of e such that Qy ⊂ V (y). We obtain

K(RyF,Q, L
∞)(x) = ‖(LxχQ)(RyF )‖∞ = ‖(Ry−1LxχQ)F‖∞

= ‖(LxχQy)F‖∞ ≤ ‖(LxχV (y))F‖∞.

By assumption this yields together with the solidity

‖RyF |W (L∞, Y )‖ ≤ C‖K(RyF,Q, L
∞)|Y ‖ ≤ C‖K(F, V (y), L∞)|Y ‖

≤ C ′(y)‖F |W (L∞, Y )‖.

This concludes the proof.

Remark 2.2. (a) The proof of the equivalence of the quasi-norm in (2.4)
still works (with slight changes) when replacing the BUPU (ψi)i∈I by
the characteristic functions χxiU . Thus, if Yd = Yd(X,Q) is indepen-
dent of the choice of Q then also the expression

‖(‖FχxiQ|B‖)i∈I |Yd‖

defines an equivalent quasi-norm on W (B, Y ).

(b) Analyzing the proof that (ii) implies (i) one recognizes that it is ac-
tually enough to require that for all neighborhoods Q of e there exists
some relatively separated Q-dense set X such that Yd(X,U) is inde-
pendent of the choice of U . The theorem then shows that Yd(X,U) is
automatically independent of U for all relatively separated sets X.
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Corollary 2.4. If W (L∞, Y ) is right translation invariant then
(W (L∞, Y ))d = Yd.

Proof: This follows immediately from inequality (2.7).

Let us now investigate the completeness of the spaces W (B, Y ) and Yd.

Lemma 2.5. Yd is complete, and convergence in Yd implies coordinatewise
convergence.

Proof: Let Λn = (λ
(n)
i )i∈I , n ∈ N, be a Cauchy sequence in Yd. This

means that the functions Fn =
∑

i∈I λ
(n)
i χxiU form a Cauchy sequence in

Y . Since Y is complete the limit F = limn∈N Fn exists. It follows from
the solidity that F has the form F =

∑
i∈I λiχxiU with λi = limn→∞ λ

(n)
i .

Clearly, (λi)i∈I ∈ Yd is the limit of Λn.

Theorem 2.6. If W (L∞, Y ) is right translation invariant then W (B, Y ) is
complete.

Proof: Let (ψi)i∈I be some BUPU of size U . By Theorem 2.3 ‖·|W (B, Yd)‖
defined in (2.4) is an equivalent quasi-norm on W (B, Y ). Assume that Fn,
n ∈ N, is a Cauchy sequence of functions in W (B, Y ). This implies that
(‖Fnψi|B‖)i∈I is a Cauchy sequence in Yd and by Lemma 2.5 the sequence
(Fnψi)n∈N is a Cauchy sequence in B for each i ∈ I. Since B is complete
the limit limn→∞ Fnψi = F (i) exists for each i ∈ I. Set F :=

∑
i∈I F

(i).
Clearly, suppF (i) ⊂ xiU . Furthermore,

‖Fψi|B‖ = ‖
∑
j∈I

F (j)ψi|B‖ = ‖
∑

j:xiU∩xiU

F (j)ψi|B‖

≤
∑

j:xjU∩xiU

‖ lim
n→∞

Fnψjψi|B‖ ≤ C‖F (i)|B‖.

By completeness of Yd, the sequence (‖F (i)|B‖)i∈I is contained in Yd, and
hence F ∈ W (B, Y ). Furthermore, we have

F =
∑
i∈I

F (i) =
∑
i∈I

lim
n→∞

Fnψi = lim
n→∞

Fn

∑
i∈I

ψi = lim
n→∞

Fn.

Thus, F is the limit of Fn in W (B, Y ) and hence, W (B, Y ) is complete.

3 Left translation invariance

Also the left translation invariance is an important property. In this section
we assume that W (L∞, Y ) is right translation invariant, so that W (B, Y )
is complete and independent of the choice of the neighborhood Q according
to Theorems 2.6 and 2.3.
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Lemma 3.1. If W (L∞, Y ) is left translation invariant then Yd is continu-
ously embedded into `∞1/r with r(i) := |||Lx−1

i
|W (L∞, Y )|||.

Proof: Let U be some compact neighborhood of e and (λi)i∈I ∈ Yd. With
C := ‖χU |W (L∞, Y )‖ we obtain by Corollary 2.4 and solidity

C|λi| = |λi|‖χU |W (L∞, Y )‖ = |λi|‖Lx−1
i
χxiU |W (L∞, Y )‖

≤ |||Lx−1
i
|W (L∞, Y )|||‖|λi|χxiU |W (L∞, Y )‖

≤ r(i)‖
∑
j∈I

|λj|χxjU |W (L∞, Y )‖ ≤ r(i)‖(λi)i∈I |Yd‖.

This completes the proof.

Lemma 3.2. If W (L∞, Y ) is left translation invariant then W (L∞, Y ) is
continuously embedded into L∞1/r, where r(x) := |||Lx−1|W (L∞, Y )|||.

Proof: By Theorem 2.3 Yd = Yd(X,Q) is independent of the choice of
Q and the quasi-norm ‖ · |W (L∞, Yd)‖ defined in (2.4) is equivalent to the
quasi-norm of W (L∞, Y ). Since Yd is continuously embedded into `∞1/r by

Lemma 3.1 and (L∞1/r)d = `∞1/r we obtain

C1‖F |W (L∞, L∞1/r)‖ ≤ ‖F |W (L∞, `∞r )‖ ≤ ‖F |W (L∞, Yd)‖
≤ C2‖F |W (L∞, Y )‖ (3.1)

for all F ∈ W (L∞, Y ). Further, it is easy to see that W (L∞, L∞1/r) = L∞1/r.

In some cases one has translation invariant spaces Y . Then we have the fol-
lowing estimates of the norm of the left translation operators in W (L∞, Y ).

Lemma 3.3. If Y is left translation invariant then W (B, Y ) is left trans-
lation invariant and |||Ly|W (B, Y )||| ≤ |||Ly|Y |||.

Proof: We have

K(LyF,Q,B)(x) = ‖(LxχQ)(LyF )|B‖ = ‖(Ly−1xχQ)F |B‖
= (LyK(F,Q,B))(x).

This yields

‖LyF |W (B, Y )‖ = ‖LyK(F,Q,B)|Y ‖ ≤ |||Ly|Y |||‖F |W (B, Y )‖,

and the proof is completed.
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4 Conditions ensuring translation invariance

Given a concrete space Y , according to the previous results, there is the
need to check whether W (L∞, Y ) is right translation invariant. Moreover,
we will see later that also the right translation invariance of W (M,Y ) is
important in order to have convolution relations.

Lemma 4.1. If W (L∞, Y ) is right translation invariant then also W (M,Y )
is right translation invariant.

Proof: Let µ ∈ W (M,Y ), y ∈ G and Q be a compact neighborhood of e.
Then there exist a finite number of points yk, k = 1, . . . , n, such that such
that Qy−1 ⊂

⋃n
k=1 ykQ. We obtain for the control function

K(Ayµ,Q,M)(x) = ‖(LxχQ)Ayµ|M‖ = |µ|(RyLxχQ) = |µ|(LxχQy−1)

≤
n∑

k=1

|µ|(LxχykQ) =
n∑

k=1

Ryk
K(µ,Q,M)(x).

By solidity, the p-triangle inequality and independence of W (M,Y,Q) of
the choice of Q we get

‖Ayµ|W (M,Y )‖p ≤ ‖
n∑

k=1

Ryk
K(µ,Q,M)|Y ‖p

≤
n∑

k=1

‖Ryk
K(µ,Q,M)|W (L∞, Y )‖p

≤
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖K(µ,Q,M)|W (L∞, Y )‖p

≤
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖K(µ,Q2,M)|Y ‖p

≤ C
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖µ|W (M,Y )‖p.

This concludes the proof.

Let us give another criterion for the right translation invariance of W (B, Y ).

Corollary 4.2. If Y is right translation invariant then also W (B, Y ) =
W (B, Y,Q) is right translation invariant and independent of Q.

Proof: By Lemma (2.2) Yd = Yd(X,U) is independent of U . Thus,
Theorem 2.3 implies that W (B, Y ) = W (B, Y,Q) is independent of Q
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and W (L∞, Y ) is right translation invariant. Lemma 4.1 implies that also
W (M,Y ) is right translation invariant. Clearly, W (L1, Y ) is a subspace
of W (M,Y ) that is right translation invariant if W (M,Y ) is right trans-
lation invariant. Thus, we proved the assertion for all admissible choices
B = L∞, L1,M .

Recall that G is called an IN group if there exists a compact neighborhood
of e such that xQ = Qx for all x ∈ G.

Lemma 4.3. Let G be an IN group and assume Y to be right translation
invariant. Then it holds |||Ry|W (L∞, Y )||| ≤ |||Ry|Y ||| and |||Ay|W (M,Y )||| ≤
|||Ry|Y |||.

Proof: Choose Q to be a compact invariant neighborhood of e, i.e., yQ =
Qy for all y ∈ G. This yields

K(RyF,Q, L
∞)(x) = ‖(LxχQ)RyF‖∞ = ‖(LxχQy)F‖∞ = ‖(LxχyQ)F‖∞

= ‖(LxyQ)F‖∞ = K(F,Q, L∞)(xy).

and thus,

‖RyF |W (L∞, Y )‖ = ‖RyK(F,Q, L∞)|Y ‖ ≤ |||Ry|Y |||‖F |W (L∞, Y )‖.

The proof for B = M is similar.

We remark that Y does not necessarily need to be translation invariant in
order W (L∞, Y ) to be translation invariant, see Section 6. The following
criterions allow to check left or right translation invariance of W (L∞, Y )
without using translation invariance of Y .

Lemma 4.4. Let U be some compact neighborhood of e ∈ G. Let X =
(xi)i∈I be some well-spread set in G. Denote by x−1X, x ∈ G, the well-
spread set (x−1xi)i∈I . If there is a function k(x) such that

‖(λi)i∈I |Yd(x−1X,U)‖ ≤ k(x)‖(λi)i∈I |Yd(X,U)‖

for all (λi)i∈I ∈ Yd(X) then W (B, Y ) is left-translation invariant with

|||Lx|W (B, Y )||| ≤ Ck(x).

Proof: Let (ψ)i∈I be some BUPU corresponding to X. Since (2.4) defines
an equivalent norm on W (B, Y ) we obtain

‖LxF |W (B, Y )‖ ≤ C‖(‖(LxF )ψi|B‖i∈I |Yd(X,U)‖
≤ C‖(‖F (Lx−1ψi)|B‖)i∈I |Yd(X,U)‖
≤ Ck(x) ‖(‖F (Lx−1ψi)‖)i∈I |Yd(x−1X,U)‖.
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The system (Lx−1ψi)i∈I is a BUPU corresponding to the well-spread set
x−1X. Thus, using once more the equivalence of the norm (2.4) with the
norm in W (B, Y ) we obtain ‖LxF |W (B, Y )‖ ≤ C ′k(x)‖F |W (B, Y )‖.

Remark 4.1. If Yd(X,U) is independent of the choice of the neighborhood U
then we already know from Theorem 2.3 that W (L∞, Y ) is right translation
invariant. If h(x) is a function such that

‖(λi)i∈I |Yd(X,Ux)‖ ≤ h(x)‖(λi)i∈I |Yd(X,U)‖

for all (λi)i∈I ∈ Yd(X) then a similar argument as in the previous proof
shows that

|||Rx|W (L∞, Y )||| ≤ Ch(x).

5 Convolution relations

Let us now prove the main results of this article concerning convolution re-
lations of Wiener amalgams with quasi-Banach spaces as global component
(compare [7, 8] for the classical case of Banach spaces).

Theorem 5.1. Let 0 < p ≤ 1 be such that the quasi-norm of Y satis-
fies the p-triangle inequality and assume that W (L∞, Y ) is right translation
invariant.

(a) Set w(x) := |||Ax|W (M,Y )|||. Then we have

W (M,Y ) ∗W (L∞, Lp
w) ↪→ W (L∞, Y )

with corresponding estimate for the quasi-norms.

(b) Set v(x) := ∆(x−1)|||Rx−1 |W (L∞, Y )|||. Then we have

W (L∞, Y ) ∗W (L∞, Lp
v) ↪→ W (L∞, Y )

with corresponding estimate for the quasi-norms.

Proof: (a) It follows from Theorem 2.3 that any G ∈ W (L∞, Lp
w) has a

decomposition G =
∑

i∈I Lxi
Gi with Gi ∈ L∞, suppGi ⊂ Q = Q−1 for

some compact Q and
∑

i∈I ‖Gi‖p
∞w(xi)

p ≤ C‖G|W (L∞, Lp
w)‖p <∞.
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For µ ∈ W (M,Y ) we estimate the control function of µ ∗ (Lxi
Gi) by

K(µ ∗ (Lxi
Gi), Q, L

∞)(x) = sup
z∈xQ

|µ ∗ (Lxi
Gi)(z)|

= sup
z∈xQ

|
∫

(LyLxi
Gi)(z)dµ(y)| ≤ ‖Gi‖∞ sup

q∈Q

∫
Lyxi

χQ(xq)d|µ|(y)

≤ ‖Gi‖∞
∫
χQ2((yxi)

−1x)d|µ|(y) = ‖Gi‖∞
∫
χQ2(x−1yxi)d|µ|(y)

= ‖Gi‖∞
∫
Rxi

LxχQ2(y)d|µ|(y) = ‖Gi‖∞‖(LxχQ2)(Axi
µ)|M‖

= ‖Gi‖∞K(Axi
µ,Q2,M)(x).

Thus, we have

‖µ ∗ Lxi
Gi|W (L∞, Y )‖ ≤ ‖Gi‖∞‖K(Axi

µ,Q2,M)|Y ‖
≤ C‖Gi‖∞‖Axi

µ|W (M,Y )‖.

Pasting the pieces together yields

‖µ ∗G|W (L∞, Y )‖p = ‖
∑
i∈I

µ ∗ Lxi
Gi|W (L∞, Y )‖p

≤
∑
i∈I

‖µ ∗ Lxi
Gi|W (L∞, Y )‖p ≤ C

∑
i∈I

‖Gi‖p
∞‖Axi

µ|W (M,Y )‖p (5.1)

≤ C
∑
i∈I

‖Gi‖p
∞|||Axi

|W (M,Y )|||p‖µ|W (M,Y )‖p

≤ C‖µ|W (M,Y )‖p‖G|W (L∞, Lp
w)‖p.

(b) Since W (L∞, Y ) ⊂ W (M,Y ) all the computations done in (a) are still
valid. We only have to replace ‖Axi

µ|W (M,Y )‖ by ‖Axi
µ|W (L∞, Y )‖ =

∆(x−1
i )‖Rx−1µ|W (L∞, Y )‖ in (5.1) to deduce (b).

Theorem 5.2. Assume Y is such that W (L∞, Y ) is left and right transla-
tion invariant. Set v(x) := |||Lx−1|W (L∞, Y )|||. Then

W (L∞, Lp
v) ∗W (L∞, Y ∨)∨ ↪→ W (L∞, Y ).

Proof: Let F ∈ W (L∞, Lp
v) and G ∈ W (L∞, Y ). Similarly as in the proof

of Theorem 5.1 we may write F =
∑

i∈I Lxi
Fi with suppFi ⊂ Q = Q−1

(compact) and
∑

i∈I ‖Fi‖p
∞v(xi)

p ≤ C‖F |W (L∞, Lp
v)‖. We obtain

K(Fi ∗G,Q,L∞)(x) = sup
z∈xQ

|Fi ∗G(z)| ≤ sup
z∈xQ

|
∫

xiQ

Fi(y)LyG(z)dy|

≤ ‖Fi‖∞ sup
q∈Q

∫
χQ(y)|(RqG)(y−1x)|dy ≤ C‖Fi‖∞

∫
χQ2(y)|G∨(x−1y)|dy

≤ C‖Fi‖∞
∫
Lx−1χQ2(y)|G∨(y)|dy ≤ C ′‖Fi‖∞K(G∨, Q2, L∞)(x−1).
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This yields

‖Fi ∗G|W (L∞, Y )‖ ≤ C‖Fi‖∞‖K(G∨, Q2, L∞)∨|Y ‖
≤ C‖Fi‖∞‖G|W (L∞, Y ∨)∨‖.

Pasting the pieces together we get

‖F ∗G|W (L∞, Y )‖p = ‖
∑
i∈I

(Lxi
Fi) ∗G|W (L∞, Y )‖p

≤
∑
i∈I

‖Lxi
(Fi ∗G)|W (L∞, Y )‖p

≤ C
∑
i∈I

|||Lxi
|W (L∞, Y )|||p‖ ‖Fi‖p

∞‖G|W (L∞, Y ∨)∨‖p

≤ C ′‖F |W (L∞, Lp
v)‖p ‖G|W (L∞, Y ∨)∨‖p.

This concludes the proof.

From the previous theorem we see that the involution ∨ has some relevance.
In the case of IN groups we have the following result.

Lemma 5.3. If G be an IN group then W (L∞, Y ∨)∨ = W (L∞, Y ) with
equivalent norms.

Proof: Let Q be an invariant compact neighborhood of e. Then also Q−1

is invariant. For the control function we obtain

K(F∨, Q, L∞)(x) = ‖(LxχQ)F∨‖∞ = ‖(LxχQ)∨F‖∞ = ‖(RxχQ−1)F‖∞
= ‖χQ−1x−1F‖∞ = ‖χx−1Q−1F‖∞ = K(F,Q−1, L∞)(x−1).

This shows the claim.

Theorem 5.2 implies a convolution relation for Wiener amalgam spaces with
respect to weighted Lp-spaces.

Corollary 5.4. Let w be a submultiplicative weight and 0 < p ≤ 1. Then
it holds

W (L∞, Lp
w) ∗W (L∞, Lp

w∗)
∨ ↪→ W (L∞, Lp

w).

In particular, if G is an IN-group then W (L∞, Lp
w)∗W (L∞, Lp

w) ↪→ W (L∞, Lp
w)

with corresponding quasi-norm estimate.

Proof: The first assertion is a direct consequence of Theorem 5.2 and the
second assertion follows then from Lemma 5.3.

In particular, if G is an IN group then W (L∞, Lp
w), 0 ≤ p ≤ 1, is a

quasi-Banach algebra under convolution. Since commutative groups are
clearly IN groups this result applies in particular to Wiener amalgams on
G = Rd. Moreover, if G is discrete then we recover the well-known relation
`pw(G) ∗ `pw(G) ↪→ `pw(G), 0 < p ≤ 1.
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6 An example on the ax + b group

In this section we provide an example of a non-translation invariant space
Y such that W (L∞, Y ) is right translation invariant. We consider the n-
dimensional ax+ b group G = Rn o R∗+ where R∗+ denotes the multiplicative
group of positive real numbers. The group law in G reads (x, a) · (y, b) =
(x+ ay, ab). The ax+ b group has left Haar-measure∫

G
f(x)dx =

∫
Rn

∫ ∞

0

f(x, a)
da

an+1
dx

and modular function ∆(x, a, A) = a−n. The ax+ b group plays an impor-
tant role in wavelet analysis and the theory of Besov and Triebel-Lizorkin
spaces.

Let 0 < p, q ≤ ∞. With some positive measurable weight function v on G
we define the mixed norm space Lp,q(v) on G as the collection of measurable
functions whose quasi-norm

‖F |Lp,q(v)‖ :=

(∫ ∞

0

(∫
Rn
|F (x, a)|pv(x, a)dx

)q/p
da

an+1

)1/q

is finite (with obvious modification in the cases p = ∞ or q = ∞). This
quasi-norm is actually an r-norm where r := min{1, p, q}. If v ≡ 1 we write
Lp,q. If p = q then clearly, Lp,p = Lp(G). It is easy to see by an integral
transformation that Lp,q is invariant under left and right translations. We
remark that for reasons to become clear later v is treated as a measure here,
so if v does not vanish on a set of positive measure then L∞,∞(v) = L∞(G).

With a similar argument as in [12, Proposition 2.4], see also [3], one shows
(using the right translation invariance of the unweighted Lp,q space) that
Lp,q(v), 0 < p, q <∞, is right translation invariant if and only if

v((x, a) · (y, b)) ≤ v(x, a)w(y, b) (6.1)

for some submultiplicative function w (possibly depending on p, q). Now
assume that v(x, a) is a function of x only. Then condition (6.1) means that
the quotient

v((x, a)(y, b))

v(x, a)
=

v(x+ ay)

v(x)
(6.2)

is bounded by a submultiplicative function w of y only. However, since the
right hand side depends also on a ∈ (0,∞) this can be satisfied only in
special cases (e.g. if v is bounded from above and below). In particular,
the typical choice vs(x, a) = vs(x) = (1 + |x|)s, s ∈ R, does not satisfy
(6.1) for any submultiplicative weight w on G if s 6= 0 (although it is even
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submultiplicative as function on Rn if s ≥ 0.) In particular, Lp,q(v) is not
right translation invariant for many non-trivial choices of v.

In the following we introduce a class of weight functions v for which
W (L∞, Lp,q(v)) is right translation invariant. This class, however, contains
weights v that do not satisfy 6.1. i.e., Lp,q(v) is not right translation invari-
ant, in general.

Let B(x, r) denote the ball in Rn of radius r centered at x ∈ Rn. A positive
measurable weight function v on Rn is said to satisfy the doubling condition
if there exists a constant C such that∫

B(x,2r)

v(y)dy ≤ C

∫
B(x,r)

v(y)dy (6.3)

for all x ∈ Rn and r ∈ (0,∞). This condition is equivalent to the existence
of constants c, α such that∫

B(x,tr)

v(y)dy ≤ ctα
∫

B(x,r)

v(y)dy for all x ∈ Rn, r ∈ (0,∞), t ≥ 1.

(6.4)
For instance weights in the Muckenhoupt classes Ap, p > 1, satisfy the
doubling condition [2]. A typical example of a weight in A∞ = ∪p>1Ap is
v(s)(x) = |x|s, s > −1. So doubling weights may have zeros or poles. A
further example of a doubling weight is vs(x) = (1+ |x|)s, s ∈ R. We remark
that this weight function is not contained in A∞ if s ≤ −1. For another
construction of a doubling weight which is not contained in A∞ we refer to
[2].

We extend a doubling weight v on Rn to G = RnoR∗+ by setting v(x, t) = v(x)
for (x, t) ∈ G. Let Lp,q(v) be the associated mixed norm space as defined
above. We will use Theorem 2.3 to prove that W (L∞, Lp,q(v)) is right
translation invariant. In particular, let us study the associated sequence
space (Lp,q(v))d.

Lemma 6.1. Let 0 < p <∞, 0 < q ≤ ∞ and v be a weight function on Rn

Let X = (xk,j, aj)(k,j)∈I:=Zn×Z be some well-spread set in G = Rn o R∗+. If
v satisfies the doubling condition (6.3) then (Lp,q(v))d = (Lp,q(v))d(X,U) is
independent of the choice of the neighborhood U of e in G, and an equivalent
norm on (Lp,q(v))d(X) is given by

‖(λi)i∈I |`p,q(ṽ)‖ =

∑
j∈Z

∑
k∈Zn

|λk,j|pṽk,j

q/p

a−n
j


1/q

where ṽk,j =
∫

B(xk,j ,aj)
v(y)dy (with the usual modification for q = ∞).

Moreover, W (L∞, Lp,q(v)) is right translation invariant if and only if v
satisfies the doubling condition.
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Proof: It satisfies to show the assertion for neighborhoods of the form
U(r, β) = B(0, r) × (β−1, β) ⊂ G with r ∈ (0,∞) and β ∈ (1,∞) since
for an arbitrary compact neighborhood U of e = (0, 1) ∈ G we can find
r1, r2, β1, β2 such that U(r1, β1) ⊂ U ⊂ U(r2, β2). Observe that

(x, a)U(r, β) = B(x, ar)× (aβ−1, aβ).

Using the relative separatedness of X we obtain for 0 < q <∞

‖(λi)i∈I |(Lp,q(v))d(X,U(r, β))‖

=

∫ ∞

0

∫
Rn

∑
j∈Z

∑
k∈Zn

|λk,j|pχB(xk,j ,ajr)(y)χ(ajβ−1,ajβ)(a)v(y)dy

q/p

da

an+1


1/q

�

∑
j∈Z

∑
k∈Zn

|λk,j|p
∫

B(xk,j ,ajr)

v(y)dy

q/p ∫ ajβ

ajβ−1

da

an+1


1/q

�

∑
j∈Z

∑
k∈Zn

|λk,j|p
∫

B(xk,j ,ajr)

v(y)dy

q/p

a−n
j


1/q

.

The computation for q = ∞ is similar. Thus, (Lp,q(v))d(X,U(r, β)) is inde-
pendent of r and β if and only if for all r, s ∈ (0,∞) there exist constants
C1(r, s), C2(r, s) > 0 such that

C1(r, s)

∫
B(xk,j ,ajr)

v(y)dy ≤
∫

B(xk,j ,ajs)

v(y)dy ≤ C2(r, s)

∫
B(xk,j ,ajr)

v(y)dy

(6.5)
for all (k, j) ∈ Zn × Z. Let us assume without loss of generality that r ≤ s.
Then the first inequality is clear. Moreover, by the doubling condition, resp.
its equivalent form (6.4) we have∫

B(xk,j ,ajs)

v(y)dy ≤ c(s/r)α

∫
B(xk,j ,ajr)

v(y)dy.

So (6.5) is satisfied with C1(r, s) = 1 and C2(r, s) = c(s/r)α.

Since we may choose relatively separated sets of the form (xj,k, aj) of arbi-
trarily small density – e.g. (ab−jk, b−j)k∈Zn

,j∈Z with small a > 0, b > 1 –
W (L∞, Lp,q(v)) is right translation invariant by Theorem 2.3 and Remark
2.2(b) if v is doubling. Conversely, if W (L∞, Lp,q(v)) is right translation
invariant then (6.5) must hold for any choice of the relatively separated set
X = (xj,k, aj) by Theorem 2.3. In particular, choosing s = 2, r = 1 in (6.5)
we obtain ∫

B(x,2a)

v(y)dy ≤ C2

∫
B(x,a)

v(y)dy
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for all x ∈ Rn, a ∈ (0,∞), which clearly is the doubling condition.

Since L∞,q(v) = L∞,q the analogue of the Theorem for p = ∞ is trivial. It
seems that in general W (L∞, Lp,q(v)) is not left invariant.

In order to state the convolution relation in Theorem 5.1 for our case we
estimate the norm of the right translation operators onW (L∞, Lp,q(v)) using
Remark 4.1. Let U = U(r, β), r > 0, β > 1, be a neighborhood of e = (0, 1)
as in the previous proof. For (x, a), (y, b) ∈ G we obtain

(x, a) · U(r, β) · (y, b) =
(
B(x, ar)× a(β−1, β)

)
· (y, b)

= {(z + sy, sb) : z ∈ B(x, ar), s ∈ ab(β−1, β)}

⊂
⋃

s∈a(β−1,β)

B(x+ sy, ar)× ab(β−1, β) ⊂ B(x, a(β|y|+ r))× ab(β−1, β).

Let X = (xk,j, aj) be a relatively separated set in G. Proceeding as in the
previous proof we deduce

‖(λi)i∈I |(Lp,q(v))d(X,U(r, β) · (y, b))‖

≤ C

∑
j∈Z

∑
k∈Zn

|λk,j|p
∫

B(xk,j ,ajr(β
r
|y|+1))

v(y)dy

q/p ∫ ajbβ

ajbβ−1

da

an+1


1/q

≤ C

∑
j∈Z

∑
k∈Zn

|λk,j|p(
β

r
|y|+ 1)α

∫
B(xk,j ,ajr)

v(y)dy

q/p

b−na−n
j


1/q

≤ C(1 + |y|)α/pb−n/q‖(λi)i∈I |(Lp,q(v))d(X,U(r, β))‖,

where α is the exponent from (6.4). By Remark 4.1 we conclude that

|||R(y,b)|W (L∞, Lp,q(v))||| ≤ C(1 + |y|)α/pb−n/q,

and since (y, b)−1 = (−b−1y, b−1) we have

∆((y, b)−1)|||R(y,b)−1 |W (L∞, Lp,q(v))||| ≤ Cbn(1+1/q)(1 + b−1|y|)α/p.

Set w(y, b) := bn(1+1/q)(1 + b−1|y|)α/p and r := min{1, p, q}. Then Theorem
5.1 tells us that

W (L∞, Lp,q(v)) ∗W (L∞, Lr
w) ↪→ W (L∞, Lp,q(v)).

Up to the authors knowledge this is a new convolution relation on the ax+b-
group even for p, q ≥ 1.
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165, 1981.

[6] H.G. Feichtinger, A characterization of minimal homogeneous Banach
spaces, Proc. Am. Math. Soc., 81, 55–61, 1981.
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