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Abstract—This paper provides theoretical guarantees for the
recovery of signals from undersampled measurements based
on `1-analysis regularization. We provide both nonuniform and
stable uniform recovery guarantees for Gaussian random mea-
surement matrices when the rows of the analysis operator form
a frame. The nonuniform result relies on a recovery condition
via tangent cones and the case of uniform recovery is based on
an analysis version of the null space property.

I. INTRODUCTION

Compressed sensing is a recent field of mathematical signal
processing that exploits the sparsity of a signal in order to
reconstruct it from incomplete and possibly corrupted mea-
surements. A signal x ∈ Rd is sparse, if the number of non-
zero entries of x, denoted by ‖x‖0, is relatively small. The
information about x ∈ Rd is provided by m � d linear
measurements

y = Mx+ ε, (1)

where M ∈ Rm×d is a measurement matrix and ε corresponds
to noise. Since this system is underdetermined it is impossible
to recover x from y without additional information.

The most common approach for recovering x is to use
regularization. This leads to an optimization problem of the
form

min
z∈Rd

‖Mz − y‖22 + λR(z).

The second term penalizes large values of R(z) and reflects
our prior knowledge on the signal to be recovered. In case of
noiseless observations ε = 0 we rather use

min
z∈Rd

R(z) subject to Mz = y.

The analysis sparsity prior assumes that x is sparse in some
transform domain, that is, given an analysis operator Ω ∈
Rp×d, the vector Ωx is sparse. Such operators can be generated
by the discrete Fourier transform, the finite difference operator
(related to total variation), wavelet [11], [17], [19] or curvelet
transforms [3]. Then the signal is reconstructed by solving

min
z∈Rd

‖Ωz‖1 subject to Mz = y. (P1)

Problem (P1) often appears in image processing [2], [5].
Theoretical guarantees for the successful recovery of x via
(P1) were studied in [4], [7], [10], [13], [14], [20]. In the

present paper we assume that the analysis operator is given
by a frame. Put formally, let {ωi}pi=1, ωi ∈ Rd, be a frame,
i.e., there exist positive constants A, B > 0 such that for all
x ∈ Rd

A‖x‖22 ≤
p∑
i=1

|〈ωi, x〉|2 ≤ B‖x‖22.

Its elements are collected as rows of the matrix Ω ∈ Rp×d.
The analysis representation of a signal x is given by the
vector Ωx = {〈ωi, x〉}pi=1 ∈ Rp. Cosparsity is then defined
as follows.

Definition 1: Let x ∈ Rd, Ω ∈ Rp×d and s = ‖Ωx‖0. The
cosparsity of x with respect to Ω is defined as

l := p− s. (2)

The index set of the zero entries of Ωx is called the cosupport
of x. If x is l-cosparse, then Ωx is s-sparse with l = p− s.
From Definition 1 it follows, that if Λ is the cosupport of x,
then

〈ωj , x〉 = 0, ∀j ∈ Λ.

Hence, the set of l-cosparse signals can be written as
∪#Λ=lWΛ, where WΛ is the orthogonal complement of the
linear span of {ωj : j ∈ Λ}.

We formulate theoretical guarantees for recovery of
cosparse signals (P1) via tangent cones that are similar to
the conditions stated in [6], [12]. Based on this, we are able
to provide the following bound on the number of Gaussian
measurements required for nonuniform recovery.

Theorem 1: Let x be l-cosparse with l = p− s, that is, Ωx
is s-sparse. Let M ∈ Rm×d be a Gaussian random matrix and
0 < ε < 1. If

m2

m+ 1
≥ 2Bs

A

(√
ln
ep

s
+

√
A ln(ε−1)

Bs

)2

, (3)

then with probability at least 1 − ε, vector x is the unique
minimizer of ‖Ωz‖1 subject to Mz = Mx.
Roughly speaking, a fixed l-cosparse vector is recovered
with high probability from m > 2(B/A)s ln(ep/s) Gaussian
measurements. For Ω = Id, this bound strengthens a result in
[6]. We can also incorporate the case of noisy measurements
(1). But for the ease of presentation, we omit it here.



Usually, the signals to be recovered are only approximately
cosparse. The quantity

σs(Ωx)1 := inf {‖Ωx− z‖1 : z is s-sparse}

describes the `1-best approximation error to Ωx by s-sparse
vectors. The Ω-null space property of M to be defined below
ensures stability of reconstruction. Analyzing it for Gaussian
random matrices leads to the following stable and uniform
recovery result.

Theorem 2: Let M ∈ Rm×d be a Gaussian random matrix,
0 < ρ < 1 and 0 < ε < 1. If

m2
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2Bs
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1 + ρ−1

)2
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ep
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,

(4)
then with probability at least 1− ε for every vector x ∈ Rd a
minimizer x̂ of ‖Ωz‖1 subject to Mz = Mx approximates x
with `2-error

‖x− x̂‖2 ≤
2(1 + ρ)2

√
A(1− ρ)

σs(Ωx)1√
s

.

For the standard case Ω = Id, this theorem improves the main
result in [18] with respect to the constant and adds stability
in `2.

We will give proof sketches here. Detailed arguments will
be contained in [15].

We use the notation ΩΛ to refer to a submatrix of Ω with
the rows indexed by Λ. (Ωx)S stands for the vector in Rp
whose entries indexed by S coincide with the entries of Ωx
and the rest are filled by 0. Let Bp2 denote a unit ball in Rp
with respect to the `2-norm.

II. NONUNIFORM RECOVERY FROM GAUSSIAN
MEASUREMENTS

In the present section we provide bounds on the number
of measurements required for exact recovery of x by (P1),
where M ∈ Rm×d is a Gaussian random matrix. We use the
idea presented in [6], that requires to calculate the Gaussian
widths of tangent cones.

For fixed x ∈ Rd, we define the convex cone

T (x) = cone{z − x : z ∈ Rd, ‖Ωz‖1 ≤ ‖Ωx‖1}.

Theorem 3: Let M ∈ Rm×d. A vector x ∈ Rd is the unique
minimizer of ‖Ωz‖1 subject to Mz = Mx if and only if
kerM ∩ T (x) = {0}.

Proof: First assume that kerM∩T (x) = {0}. Let z ∈ Rd
be a vector that satisfies

‖Ωz‖1 ≤ ‖Ωx‖1 subject to Mz = Mx.

This means that z− x ∈ T (x) and z− x ∈ kerM . According
to our assumption we conclude that z − x = 0, so that x is
the unique minimizer.

On the other hand, if x is the unique minimizer of (P1),
then ‖Ω(x + v)‖1 > ‖Ωx‖1 for all v ∈ kerM \ {0}, which
implies that v /∈ T (x). This means that

(kerM \ {0}) ∩ T (x) = ∅

or equivalently kerM ∩ T (x) = {0}.
To prove Theorem 1 we rely on Theorem 3, which requires

that the null space of the measurement matrix M misses the
set T (x). The next ingredient of the proof is a variation of
Gordon’s escape through the mesh theorem [9], which was
first used in the context of compressed sensing in [18]. To
formulate this theorem whose proof will be present in a journal
paper in preparation, we introduce some notation.

Let g ∈ Rm be a standard Gaussian random vector. Then
for

Em := E ‖g‖2 =
√

2
Γ ((m+ 1)/2)

Γ (m/2)

we have
m√
m+ 1

≤ Em ≤
√
m.

For a set T ⊂ Rd we define its Gaussian width by

`(T ) := E sup
x∈T
〈x, g〉,

where g ∈ Rd is a standard Gaussian random vector.
Theorem 4: Let Ω ∈ Rp×d be a frame with constants A,

B > 0. Let M ∈ Rm×d be a Gaussian random matrix and T
be a subset of the unit sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1}.
Then, for t > 0, it holds

P
(

inf
x∈T
‖Mx‖2 > Em −

1√
A
` (Ω(T ))− t

)
≥ 1−e− t2

2 , (5)

where Ω(T ) corresponds to the set of elements produced by
applying Ω on elements from T .
With T := T (x)∩Sd−1 the number of Gaussian measurements
required to guarantee the exact reconstruction of x with
probability 1− e−t2/2 is determined by

Em ≥
1√
A
`(Ω(T )) + t.

If Ω is a frame, then

Ω(T ) ⊂ Ω(T (x)) ∩ Ω(Sd−1) ⊂ K(Ωx) ∩
(√

BBp2

)
,

where

K(Ωx) = cone {y − Ωx : y ∈ Rp, ‖y‖1 ≤ ‖Ωx‖1} .

The supremum over a larger set can only increase, hence

`(Ω(T )) ≤
√
B` (K(Ωx) ∩Bp2) . (6)

We next give an upper bound for ` (K(Ωx) ∩Bp2) involving
the polar cone N (Ωx) = K(Ωx)◦ defined by

N (Ωx) = {z ∈ Rp : 〈z, y − Ωx〉 ≤ 0 for all y ∈ Rp

such that ‖y‖1 ≤ ‖Ωx‖1} .

Proposition 1: Let g ∈ Rp be a standard Gaussian random
vector. Then

` (K(Ωx) ∩Bp2) ≤ E min
z∈N (Ωx)

‖g − z‖2. (7)

The proof is an application of convex analysis, see [1],
[6]. Now the problem of estimating `(Ω(T )) is reduced to



bounding E min
z∈N(Ω(x))

‖g−z‖2, where Ωx is an s-sparse vector.

By Hölder’s inequality(
E min
z∈N (Ωx)

‖g − z‖2
)2

≤ E min
z∈N (Ωx)

‖g − z‖22 (8)

and with some extra calculation (improving slightly over a
bound in [6]) we can show that

E min
z∈N (Ωx)

‖g − z‖22 ≤ 2s ln
ep

s
.

Together with inequalities (6) and (7) this gives

`(Ω(T ))2 ≤ 2Bs ln
ep

s
.

Proof of Theorem 1: Set t =
√

2 ln(ε−1). The fact that
Em ≥ m/

√
m+ 1 along with condition (3) yields

Em ≥
1√
A
`(Ω(T )) + t.

Theorem 4 implies

P
(

inf
x∈T
‖Mx‖2 > 0

)
≥ 1− e− t2

2 = 1− ε,

which guarantees that kerM ∩ T (x) = {0} with probability
at least 1− ε. As a final step we apply Theorem 3.

III. Ω-NULL SPACE PROPERTY

The proof of Theorem 2 is based on the following concept.
Definition 2: A matrix M ∈ Rm×d is said to satisfy the

`2-stable Ω-null space property of order s with 0 < ρ < 1, if
for any set Λ ⊂ [p] with #Λ ≥ p− s it holds

‖ΩΛcv‖2 <
ρ√
s
‖ΩΛv‖1 for all v ∈ kerM \ {0}. (9)

This is the strengthened version of the recovery condition
stated in [13]. If Ω is the identity map Id : Rd → Rd,
then condition (9) becomes the standard `2-stable null space
property [8].

Theorem 5: Let Ω ∈ Rp×d be a frame and M ∈ Rm×d
satisfy the `2-stable Ω-null space property of order s with
constant 0 < ρ < 1. Then for any x ∈ Rd the solution x̂ of
(P1) with y = Mx approximates the vector x with `2-error

‖x− x̂‖2 ≤
2(1 + ρ)2

√
A(1− ρ)

σs(Ωx)1√
s

. (10)

Inequality (10) means that l-cosparse vectors are exactly
recovered by (P1) and vectors x ∈ Rd, such that Ωx is close
to an s-sparse vector in `1, can be well approximated in `2 by
a solution of (P1). The proof goes along the same lines as in
the standard case. For the sake of brevity we omit it here.

IV. UNIFORM RECOVERY FROM GAUSSIAN
MEASUREMENTS

The `2-stable Ω-null space property of order s of the
measurement matrix M ∈ Rm×d ensures the exact recovery
of any l-cosparse vector by solving (P1). The same strategy as
in the Section II allows us to give the bound on the number
of Gaussian measurements required for the `2-stable Ω-null
space property to hold.

To prove Theorem 2 let us introduce the set

Wρ,s :=
{
w ∈ Rd : ‖ΩΛcw‖2 ≥ ρ/

√
s‖ΩΛw‖1

for some Λ ⊂ [p], #Λ = p− s} .

If
min

{
‖Mw‖2 : w ∈Wρ,s ∩ Sd−1

}
> 0, (11)

then for all w ∈ kerM \{0} and any Λ ⊂ [p] with #Λ = p−s
we have

‖ΩΛcw‖2 <
ρ√
s
‖ΩΛw‖1,

which implies that M satisfies the `2-stable Ω-null space
property of order s. To show (11) we apply Theorem 4,
according to which we have to study the Gaussian width of
the set Ω

(
Wρ,s ∩ Sd−1

)
. Since Ω is a frame, we have

Ω
(
Wρ,s ∩ Sd−1

)
⊂ Ω (Wρ,s)∩

(√
BBp2

)
⊂ Tρ,s∩

(√
BBp2

)
,

with
Tρ,s =

{
w ∈ Rp : ‖wS‖2 ≥ ρ/

√
s‖wSc‖1

for some S ⊂ [p], #S = s} .

Then

Tρ,s ∩
(√

BBp2

)
=

⋃
#S=s

{
w ∈ Rp : ‖w‖2 ≤

√
B,

‖wS‖2 ≥
ρ√
s
‖wSc‖1

}
.

Lemma 1: Let the set D be defined by

D := conv
{
x ∈ Sp−1 : # suppx ≤ s

}
.

Then
Tρ,s ∩

(√
BBp2

)
⊂
(
1 + ρ−1

) (√
BD

)
. (12)

A similar result was stated as Lemma 4.5 in [18], so we omit
the proof.

Lemma 1 implies that

`
(
Tρ,s ∩

(√
BBp2

))
≤
√
B
(
1 + ρ−1

)
`(D).

Lemma 2: The Gaussian width of D satisfies

`(D) ≤
√

2s ln
ep

s
+
√
s.

Proof: Due to the definition of the Gaussian width

`(D) = E sup
x∈D
〈g, x〉 = E sup

‖x‖2=1,
# supp x≤s

〈g, x〉, (13)

where g ∈ Rp is a standard Gaussian random vector. Hölder’s
inequality applied to (13) and an estimate on the maximum



squared `2-norm of a sequence of standard Gaussian random
vectors (see e.g. [16, Lemma 3.2]) give

`(D) ≤ E max
S⊂[p],#S=s

‖gS‖2 ≤
√

E max
S⊂[p],#S=s

‖gS‖22

≤

√
2 ln

(
p

s

)
+
√
s ≤

√
2s ln

ep

s
+
√
s.

The last inequality follows from the fact that(
p

s

)
≤
(ep
s

)s
.

Proof of Theorem 2: The reasoning above shows that

`
(
Ω
(
Wρ,s ∩ Sd−1

))
≤
√
B
(
1 + ρ−1

)
`(D)

≤
√
B
(
1 + ρ−1

)(√
2s ln

ep

s
+
√
s

)
.

Set t =
√

2 ln(ε−1). The fact that Em ≥ m/
√
m+ 1 along

with condition (4) yields

Em ≥
1√
A
l
(
Ω
(
Wρ,s ∩ Sd−1

))
+ t.

Theorem 4 implies

P
(
inf ‖Mw‖2 > 0 : w ∈Wρ,s ∩ Sd−1

)
≥ 1− e− t2

2 = 1− ε,

which guarantees

‖ΩΛcw‖2 <
ρ√
s
‖ΩΛw‖1

for all w ∈ kerM\{0} and any Λ ⊂ [p] with #Λ = p−s. This
means that M satisfies the `2-stable Ω-null space property of
order s. Finally, apply Theorem 5.

V. UNIFORM RECOVERY FROM GAUSSIAN
MEASUREMENTS

In this work we provided conditions that guarantee the
uniqueness of the solution of the optimization problem (P1),
when the analysis operator is given by a frame. The mod-
ification of the Gordon’s escape through the mesh theorem
allowed to derive a bound on the number of Gaussian random
measurements needed to satisfy these conditions.
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[20] S. Vaiter, G. Peyré, Ch. Dossal, J. Fadili. Robust sparse analysis
regularization. IEEE Transactions on information theory, 59(4):2001–
2016, 2013.


