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Abstract—We consider the computation of parametric solution
families of high-dimensional stochastic and parametric PDEs.
We review recent theoretical results on sparsity of polynomial
chaos expansions of parametric solutions, and on compressed
sensing based collocation methods for their efficient numerical
computation.

With high probability, these randomized approximations real-
ize best N -term approximation rates afforded by solution sparsity
and are free from the curse of dimensionality, both in terms of
accuracy and number of samples evaluations (i.e. PDE solves).

Through various examples we illustrate the performance of
Compressed Sensing Petrov-Galerkin (CSPG) approximations of
parametric PDEs, for the computation of (functionals of) solu-
tions of intregral and differential operators on high-dimensional
parameter spaces. The CSPG approximations allow to reduce the
number of PDE solves, as compared to Monte-Carlo methods,
while being likewise nonintrusive, and being “embarassingly
parallel”, unlike dimension-adaptive collocation or Galerkin
methods.

I. INTRODUCTION

A. Problem statement

We consider the problem of computing an (accurate) ap-
proximation of a parametric family u defined on a bounded,
“physical” domain D ⊂ Rd and depending on possibly
countably many parameters y = (yj)j≥1 ∈ U = [−1, 1]N

implicitly through the parametric operator equation

A(y)u(y) = f. (1)

Equation (1) is assumed to be well-posed in a reflexive,
separable Banach space V , uniformly for all parameter se-
quences y ∈ U . From a Bochner space perspective, if the
parameters y are distributed according to a certain distribution
µ on U , we are looking for strongly µ-measurable maps
u ∈ L(U, V ;µ). For simplicity of exposition, we assume here
as in [1], [2] that A(y) in (1) can be expressed as a linear
combination of bounded linear operators (Aj)j≥0 : V →W ′,
where W is a suitable second (separable and reflexive) Banach
space, such that A(y) = A0 +

∑
j≥1 yjAj in L(V,W ′). We

hasten to add that the principal conclusions of the present
work apply to larger classes of countably-parametric operator
equations (1) with sparse solution families. Given a parametric
family f(y) ∈ W ′, we wish to approximate numerically the
corresponding parametric solution family {u(y) : y ∈ U}. To
simplify the exposition, we restrict ourselves in this note to

nonparametric data f ; all results which follow apply verbatim
in the general case. We consider the case which appears often
in practice, of approximation of functionals of the parametric
solution: given G ∈ L(V,R), approximate numerically the map
F : U → R, F (y) := G(u(y)).

B. Tools and ideas

The present CSPG approach is motivated by recent sparsity
results for the parametric solution maps in [3], [4] where spar-
sity results for coefficient sequences of generalized polynomial
chaos (GPC) expansions of u(y) were established. The term
GPC expansion refers to u(y) =

∑
j∈F xjϕj(y) for some

basis (ϕj)j∈F of L2
µ(U), indexed on the countable family F .

Due to the boundedness and linearity of G, we can similarly
write F (y) =

∑
j∈F gjϕj . Knowing the compressibility of the

coefficient sequence (gj)j≥0 (i.e., there exists 0 < p < 1, such
that ‖g‖p <∞), the computational challenge is to recover only
the most important ones using only as few as possible solves
of (1), while ensuring a given accuracy. The sparsity of the
GPC coefficient sequence together with Stechkin inequality
ensures that σs(g)q ≤ s1/q−1/p‖g‖p,0 < p < q, where σs(g)q
denotes the best s-term approximation of g in the q norm.
In other words, the coefficient sequence g can be compressed
with high accuracy and hence (see Theorem 1 in Section II-B)
the function F can be well approximated. To overcome the
curse of dimensionality incurred by CS based methods (see [2,
Eq.(1.16)]), we propose an extension based on `p,ω spaces [5].

The rest of the paper is organized as follows. Section II
reviews the mandatory background on weighted compressed
sensing, Petrov-Galerkin approximations, and their combined
use for high-dimensional PDEs. Section III then introduces
various model problems to numerically validate the theoretical
results. We provide numerical experiments which show that
the CSPG method can be easily implemented for various
linear functionals G, even with a large number of parameters.
For the parametric model diffusion problems, we compare
the convergence of the expectation with that of Monte-Carlo
methods.



II. REVIEW ON COMPRESSED SENSING
PETROV-GALERKIN APPROXIMATIONS

A. Generalized Polynomial Chaos (GPC) expansions and ten-
sorized Chebyshev polynomials

GPC expansion of the parametric solution family {u(y) :
y ∈ U} of Eq. (1) are orthogonal expansions of u(y) in
terms of tensorized Chebyshev polynomials (Tν)ν∈F , here F
denotes the countable set of multiindices with finite support
(F := {ν ∈ NN

0 : | supp(ν)| <∞}):

u(y) =
∑
ν∈F

dνTν(y). (2)

Note that here the coefficients dν are functions in V and that
the expansion is in terms of the parameter sequences y ∈ U
and not in the spatial coordinates. The tensorized Chebyshev
polynomials are defined as Tν(y) =

∏∞
j=1 Tνj (yj), y ∈ U ,

with Tj(t) =
√

2 cos (j arccos(t)) and T0(t) ≡ 1.
Defining σ the probability measure on [−1; 1] as dσ(t) :=
dt

π
√

1−t2 , Chebyshev polynomials form an orthonormal system

in the sense that
∫ 1

−1
Tk(t)Tl(t)dσ(t) = δk,l for k, l ∈ N0.

Similarly, with the product measure dη(y) :=
⊗

j≥1 dσ(yj),
the tensorized Chebyshev polynomials are orthonormal in the
sense that

∫
y∈U

Tµ(y)Tν(y)dη(y) = δµ,ν , for µ, ν ∈ F .

An important result proven in [6] ensures the `p summabil-
ity, for some 0 < p ≤ 1, of the Chebyshev polynomial chaos
expansion (2) of the solution of the model affine-parametric
diffusion equation

−∇ · (a∇u) = f , (3)

where a admits the affine-parametric expansion

a(y;x) = a0(x) +
∑
j≥1

yjaj(x) . (4)

Specifically,
∥∥(‖dν‖V )ν∈F

∥∥p
p

=
∑
ν∈F ‖dν‖

p
V < ∞under

the condition that the sequence of inifinity norms of the aj is
itself `p summable:

∥∥∥(‖aj‖∞)j≥1

∥∥∥
p
<∞.

These results were extended to the weighted `p spaces
(see Section II-B) for the more general parametric operator
problem, Eq.(1) with linear parameters, in [2]: (‖dν‖V )ν∈F ∈
`ω,p(F) under certain assumptions, and with Eq. (6) defining
the weighted `p spaces.

B. Weighted compressed sensing

The last decade has seen the emergence of compressed sens-
ing [7] as a method to solve underdetermined linear systems
Ax = y under sparsity constraints ‖x‖0 := | supp(x)| ≤ s.
Some work has focused on finding conditions on A such that
the problem

x# = argmin ‖x‖1, s.t. ‖Ax− y‖2 ≤ η (5)

yields an exact and unique solution. One known condition is
that the matrix A should fulfill a Restricted Isometry Property
(RIP) of order s and constant δ for reasonable values of s and
δ. A is said to have RIP(s, δ) if, for any s- sparse vector x,

|‖Ax‖22 − ‖x‖22| ≤ δ‖x‖22. In other words, for small δ, the
matrix A behaves almost like an isometry on sparse vectors.

In parallel, the community also focused on finding matrices
obeying the RIPs. While the problem of finding deterministic
matrices with interesting RIPs is still open, it has been proven
that random matrices are good candidates [8].

More recently, results from compressed sensing have been
generalized to handle weighted sparsity [5]. In a similar man-
ner, given a weight sequence (ωj)j∈Λ, ωj ≥ 1, one can derive
weighted sparsity of a vector x as ‖x‖ω,0 :=

∑
j∈supp(x) ω

2
j .

Similarly, weighted `p norms are defined, for 0 < p ≤ 2 as

‖x‖ω,p =
(∑

j∈Λ ω
2−p
j |xj |p

)1/p

and the associated spaces
are defined as

`p,ω(Λ) := {x ∈ RΛ : ‖x‖p,ω <∞} . (6)

Weigthed `p can be further extended to functions f =∑
j≥1 xjϕj expanded in certain basis elements (ϕj)j≥1 as

|||f |||ω,p := ‖x‖ω,p. This in particular is interesting for function
interpolation from very few samples:

Theorem 1 (Complete statement in [5]). For (ϕj)j∈Λ a
countable orthonormal system and a sequence of weights
ωj ≥ ‖ϕj‖∞, there exists a finite subset Λ0 with N = |Λ0|
such that drawing m ≥ c0s log3(s) log(N) samples at random
ensures that, with high probability,

‖f − f#‖∞ ≤
∣∣∣∣∣∣f − f#

∣∣∣∣∣∣
ω,1
≤ c1σs(f)ω,1, (7)

‖f − f#‖2 ≤ d1σs(f)ω,1/
√
s (8)

where f :=
∑
j∈Λ xjϕj is the function to recover, and

f#(y) :=
∑
j∈Λ0

x#
j ϕj(y) is the solution obtained via

weighted `1 minimization.

In particular, the previous theorem offers error bounds in
both L2 and L∞ norms.

C. Petrov-Galerkin Approximations

Petrov-Galerkin (PG) approximations of a function u ∈ V
defined on D are based on one-parameter families of nested
and finite-dimensional subspaces {V h}h and {Wh}h which
are dense in V and W , respectively (with the discretization
parameter h denoting e.g. meshwidth of triangulations in Finite
Element methods, or the reciprocal of the spectral order in
spectral methods). Given y ∈ U , the PG projection of u(y)
onto V h, uh(y) := Gh(u(y)), is defined as the unique solution
of the finite-dimensional, parametric variational problem: Find
uh ∈ V h such that

(A(y)uh(y))(wh) = f(wh), ∀wh ∈Wh . (9)

Note that for A(y) boundedly invertible and under some
(uniform w.r. to y ∈ U and w.r. to h) inf-sup conditions
(see, e.g. [1, Prop. 4]) the PG projections Gh in (9) are well-
defined and quasioptimal uniformly w.r. to y ∈ U : there exists
a constant C > 0 such that for all y ∈ U csand h > 0
sufficiently small it holds

‖u(y)− uh(y)‖V ≤ C infvh∈V h ‖u(y)− vh‖V . (10)



D. Review of the CSPG algorithm

We review the CSPG algorithm of [2]. It relies on the
evaluation of m solutions b(l) := G(u(y(l))) of Eq. (1) given
m randomly chosen parameter instances y(l) = (y

(l)
j )j≥1,

1 ≤ l ≤ m. These real-valued solutions b(l) are then
used in a weighted `1 minimization program in order to
determine the most significant coefficients in expansion (2),
see Algorithm 11.

Data: Weights (vj)j≥1, an accuracy ε and sparsity s
parameters, a multiindex set J s0 with
N = |J s0 | <∞, a compressibility parameter
0 < p < 1, and a number of samples m.

Result:
(
g#
ν

)
ν∈J s0

, a CS-based approximation of the
coefficients (gν)ν∈J s0

.
for l = 1, · · · ,m do

Draw y(l) at random;
Numerically estimate b(l);

end

(Φ)l,ν ← Tν(y(l)), ν ∈ J s0 , 1 ≤ l ≤ m

ων ← 2‖ν‖0/2
∏

j:νj 6=0

v
νj
j , ν ∈ J s0 (11)

Compute g# as the solution of

min ‖g‖ω,p, s.t. ‖Φg − b‖2 ≤ 2
√
mε (12)

Algorithm 1: Pseudo-code for the CSPG Algorithm

Before we justify the use of this algorithm, it is worth
mentioning the roles of the different parameters: ε is an accu-
racy parameter that will have an impact on the discretization
parameter h and on the number of samples required. The
importance and impact of the choice of the weight sequence
(vj)j≥1 is still not clear and is left for future research. The
index set J s0 ⊂ F (see definition below) acts as an estimation
of the optimal set containing the best s-(weighted) sparse
approximation of F .

Theorem 2 ([2]). Let u(y) be the solution to Eq. (1) such that
A0 is boundedly invertible and

∑
j≥1 β0,j ≤ κ ∈ (0, 1) where

β0,j := ‖A−1
0 Aj‖L(V,V ), and the scales of smoothness spaces

have a parametric regularity property (see [2, Assumption
2.3]). If the sequence (vj)j≥1 is such that

∑
j β0,jv

(2−p)/p
j ≤

κv,p ∈ (0, 1) and (β0,j)j ∈ `v,p then g ∈ `ω,p with ω as in
Eq. (11). Define an accuracy ε > 0 and sparsity s such that
√

5 41−1/ps1/2−1/p‖g‖ω,p ≤ ε ≤ C2s
1/2−1/p‖g‖ω,p, (13)

with C2 >
√

541−1/p independent of s and define J s0 := {ν ∈
F : 2‖ν‖0

∏
j:νj 6=0 v

2νj
j ≤ s/2} with N := |J s0 |. Pick m �

Cs log3(s) log(N) (C a universal constant) samples i.i.d at
random w.r.t. to the Chebyshev distribution and define F̃ (y) :=

1Due to space constraints some details are omitted. We refer to [2] for
details.

∑
ν∈J s0

g#
ν (y) with g# solution of Eq. (12). Then, there exists

a (universal) constant C ′ such that, with probability at least
1− 2N− log3(s), it holds:

‖F − F̃‖2 ≤ C ′‖g‖ω,ps1/2−1/p ≤ C ′′g
(

log3(m) log(N)

m

)1/p−1/2

,

(14)

‖F − F̃‖∞ ≤ C ′‖g‖ω,ps1−1/p ≤ C ′′g
(

log3(m) log(N)

m

)1/p−1

,

(15)

where C ′′g depends on C ′ and ‖g‖ω,p.

III. NUMERICAL EXAMPLES

For the empirical validation of the theories introduced
in the previous sections, we consider various use cases in
1-dimensional physical domains. We are mostly interested
in the high-dimensionality of the parameter space U . The
physical domain of the operator equation (1) renders the PG
discretization more complicated but does not affect the CS
access to the parameter space U .

In the numerical examples we consider model affine-
parametric diffusion equations (3), (4). As stated in the in-
troduction, we consider y = (yj)j≥1 ∈ U and x ∈ D = [0, 1].
For the practical numerical results, we use trigonometric
polynomials as basis functions aj in (4), for a constant α:

a2j−1(x) =
cos(jπx)

jα
, a2j(x) =

sin(jπx)

jα
. (16)

We used the nominal field a0 = 0.1 + 2ζ(α, 1) where
ζ(α, 1) :=

∑
n≥1

1
nα .The remaining parameters are set as:

• f ≡ 10,
• For j ≥ 1, ṽj = γjτ , where γ = 1.015 and τ =

log(b
√
s/2γc)/ log(d), then v2j−1 = v2j = ṽj , j ≥ 1,2

• α = 2, ε = 0.5 · 10−9,
• m = 2s log(s) log(N)3 with J s0 denoting the initial set

of important coefficients of the GPC, and N := |J s0 |. s
varies from 30 to 500, see Table I for examples.4

Note that no values are assigned for the compressibility
parameter p. While it is of prime importance in the theoretical
analysis and for the understanding of the algorithm, it has no
effect on the implementation. For information purposes, we
have also given the bounds on the error in Table I for a com-
pressibility parameter p = 1/2 (i.e. err1/p−1/2 and err1/p−1,
resp. for the L2 and L∞ norms, where err = log3(m) log(N)

m ).
Be aware that these estimations do not include the constant
C ′′g in front in Eqs. (14) and (15). Another remark regarding
the implementation is that the number of variables has been
trunctaed to d = 20 parameters (i.e. k stops at 10 in the
expansion of the diffusion coefficient).

2doubling the vj ensures that the sin and cos functions with the same
frequencies are given the same weights.

3This number of samples is different than the one suggested in the theorem.
This is motivated by results on nonuniform recovery from random matrices
in compressed sensing - see [7, Ch.9.2].

4The size of the initial set depends on the sparsity and on the weights. The
numbers given here are only valid for the setting described above.



(a) Expectation in the L2 norm of the MC esti-
mation (blue) and CSPG (green) methods.

(b) Estimation of the convergence of the L2 error
norm for CSPG.

(c) Estimation of the convergence of the L∞ error
norm for CSPG.

Fig. 1. Numerical results of the average of the solution of the operator equation (1) (see text for details).

Fig. 2. Convergence pointwise for various sparsity levels.

TABLE I
DEPENDENCY OF THE NUMBER OF SAMPLES ON THE SPARSITY AND

BOUNDS OF THE L2 AND L∞ ERROR BOUNDS FOR p = 1/2.

s 30 100 200 300 400 500
N 1554 5712 10006 12690 15601 17043
m 441 1731 3685 5670 7725 9744

L2 1.9396 1.4393 1.1765 1.0373 0.9469 0.8802
L∞ 3.7619 2.0717 1.3843 1.0759 0.8967 0.7747

While we would ideally like to compare the approximations
F̃ with the true functions F in the L2 and L∞ norms, this is
unrealistic. We provide a lower bound on the L∞ norm based
on independent draws of test samples z(l), 1 ≤ l ≤ mtest :=
10000. The error in the L2 norm can be accurately estimated
(through Bernstein inequality) by sums of differences.

On the other hand, a comparison with usual Monte Carlo
methods can be done only when comparing the first coefficient
g0 of the expansion (2), the expectation of the function, and the
Monte-Carlo estimate. Indeed, for F (y) :=

∑
ν∈F gνTν(y),

for Tν the tensorized Chebyshev polynomials, it holds E[F ] =
g0. Monte-Carlo estimation is done as the empirical mean

Em[F ] := 1
m

∑m
l=1 F (y(l)). It is known (see [9, Lemma 4.1])

that for a number of samples m drawn at random it holds

‖Em[F ]− E[F ]‖L2(U,η) ≤ m−1/2‖F‖L2(U,η) (17)

A. Average

For this first use case, we consider the functional I : V → R
defined as I(u(y)) :=

∫
x∈Du(y;x)dx, and D = [0, 1].

Fig. 1(a) illustrates the convergence of both the Monte-Carlo
and the CSPG method. The x-axis corresponds to the sparsity
parameter s, or, seen differently, to the number of samples
used (see Table I for the correspondance).

The CSPG method shows a much better convergence of the
expectation. The other interesting point to note and that has
not been studied so far, is the stability of the first coefficient.
While the number of samples required to ensure small L2 and
L∞ errors is important (as illustrated in Figs. 1(b) and 1(c)
respectively) it seems that the reliable estimation of the first
coefficient is not drastically affected by strong undersampling.

Figs. 1(b) and 1(c) respectively illustrate the estimation of
the empirical L2 and the L∞ errors. These values have to be
compared with the last two rows of Table I.



(a) Expectation of the exponential functional (b) L2 error estimation (c) L∞ error estimation

Fig. 3. Numerical results of the exponential weighted integral.

We can also look at the pointwise convergence of the
approximation in U with respect to the sparsity (or number
of samples). Fig. 2 shows the values of t 7→ F̃ (tek), where
ek = (δkj)j , for −1 ≤ t ≤ 1. The upper left corner shows the
computed solution of t 7→ F̃ (te1) for various sparsity levels.
The remaining three quadrants correspond to the (pointwise)
error for k = 1, 2, 3. The CSPG approximated solutions
converge, as s increases, to the true solution.

B. Exponential convolution kernel

In this subsection, we study the accuracy of the CSPG
method when we consider an exponential weighted integral
centered at a point x0 = 0.5: F (y) := u(y) ∗Kx0

where the
convolution kernel is given, for a constant N , by

Kx0
(x) :=

1

N
e−
|x−x0|
σ . (18)

Again we can notice the faster convergence rate of the
CSPG method. Moreover, the bounds derived in Theorem 2 are
very crude and easily achieved numerically. Fig. 3 illustrates
the convergence of the CSPG algorithm. In the left graph, the
expectation is shown with respect to the (weighted) sparsity.
The blue curve illustrates the convergence of the MC method,
while the rather flat constant line implies that the CSPG
method computes the first coefficient of the GPC expansion
g0 well very soon. The two following log-log plots show the
decrease of the L2 and L∞ errors. As the sparsity increases,
the results are more accurate and, seem to be more stable.

IV. CONCLUSION

This paper shows the practical and numerical use of
a compressed-sensing based Petrov-Galerkin approximation
method for computing the functionals of solutions of high-
dimensional parametric elliptic equations. We have empirically
verified the theoretical results and compared them, when
possible, to MC methods, where the convergence appears to
be slower than the proposed approach. Although only model,
affine-parametric problems were considered here, we empha-
size that the presently proposed CSPG approach is nonintru-
sive, and exploits sparsity of the GPC expansion; therefore, its
range of application extends to non-affine parametric operator
equations, such as PDEs in uncertain domains. The presently

proposed CS based GPC recovery does not, a-priori, impose
specific structure on the sets of active coefficients as required
in some adaptive collocation methods, see for instance [1],
[10]. It is also important to put our results in perspective with
those of [11] where probabilistic error bounds were derived.

The promising results presented here require further analysis
as to the quantitative effect of the different parameters, in par-
ticular regarding the weights in Eq. (11) (and associated vj’s),
are not well understood. Moreover, it will be of interest to
later derive methods based on these techniques to recover the
full, parametric solution of (1), rather than only a functional.
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