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Abstract—In this paper we present a new way to obtain a

bound on the number of measurements sampled from certain

distributions that guarantee uniform stable and robust recovery

of low-rank matrices. The recovery guarantees are characterized

by a stable and robust version of the null space property and ver-

ifying this condition can be reduced to the problem of obtaining

a lower bound for a quantity of the form inf
x2T

kAxk2. Gordon’s

escape through a mesh theorem provides such a bound with

explicit constants for Gaussian measurements. Mendelson’s small

ball method allows to cover the significantly more general case of

measurements generated by independent identically distributed

random variables with finite fourth moment.

I. INTRODUCTION

In the present paper we study the problem of uniform stable
and robust recovery of low-rank matrices from undersampled
measurements. Given noisy data

b = A(X) + w, kwk2  ⌘,

where A : Rn1⇥n2 ! Rm, m ⌧ n1n2, is a linear map and
w 2 Rm corresponds to noise, we recover X 2 Rn1⇥n2 by
solving the nuclear norm minimization problem

min

Z2Rn1⇥n2
kZk⇤ subject to kA(Z)� bk2  ⌘. (1)

It was observed in [1], that the rank-restricted isometry prop-
erty (rank-RIP) is sufficient for (1) to provide the minimum-
rank solution from noiseless observations with ⌘ = 0. The
stability and robustness properties of the nuclear norm min-
imization were addressed in [2], [3] and the obtained error
bounds rely on the rank-RIP of the measurement map, which
was shown to hold with high probability for certain random
measurement ensembles in [1], [3].

Our recovery guarantees are based on a certain property of
the null space of the measurement map. It was first mentioned
in [4] that the condition called the null space property is
necessary and sufficient for exact reconstruction of a matrix of
the lowest rank via (1) when ⌘ = 0. A slightly stronger version
of the null space property also implies stability, when the
nuclear norm error of recovering a matrix via the nuclear norm
minimization is controlled by the error of its best possible
low-rank approximation. We enhance the previous results by
strengthening the null space property in order to provide

Frobenius norm error estimates and incorporate noise on the
measurements.

Since it is difficult to verify the provided theoretical guaran-
tees for deterministic measurements, we pass to random maps
and obtain corresponding bounds on the number of Gaussian
measurements and measurements with finite fourth moment.
In particular, it was unknown before and perhaps surprisingly
that only finite fourth moments are required. So, for example,
in the recent paper [5] the authors prove the exact recovery of
sparse vectors in Rn with the optimal number of measurements
under the assumption of finite log n-th moments.

II. BASIC DEFINITIONS AND NOTATION

Let X 2 Rn1⇥n2 and n := min{n1, n2}. A factorization of
X of the form

X = U⌃V ⇤,

where U 2 Rn1⇥n, V 2 Rn2⇥n, U⇤U = V ⇤V = Id and ⌃ 2
Rn⇥n is diagonal with non-negative non-increasing entries, is
called the singular value decomposition of X . The diagonal
entries of ⌃ are the singular values of X and they are collected
in the vector �(X). The Schatten p-norm of X 2 Rn1⇥n2 is
defined by
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The inner product of X1 2 Rn1⇥n2 and X2 2 Rn1⇥n2 is
defined by hX1, X2i = trX⇤

2X1.

III. MAIN RESULTS

A random linear map can be described in terms of random
matrices. When A : Rn1⇥n2 ! Rm is linear, there exists
A 2 Rm⇥n1n2 , such that A(X) = A vec(X), where vec(X)978-1-4673-7353-1/15/$31.00 c�2015 IEEE



is obtained by concatenating all the columns of X into a single
vector in Rn1n2 .

Theorem 1: Let A : Rn1⇥n2 ! Rm be a linear map whose
matrix has independent standard Gaussian entries, 0 < ⇢ < 1,
 > 1 and 0 < " < 1. If
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then with probability at least 1 � " for every X 2 Rn1⇥n2

a solution ˆX of (1) with b = A(X) + w, kwk2  ⌘,
approximates X with the error

kX � ˆXk2 
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Roughly speaking, any matrix of rank r is recovered with high
probability from

m > 5r(
p

n1 +

p
n2)

2

Gaussian measurements. Since any n1 ⇥ n2 matrix of rank
r is determined by r(n1 + n2 � r) parameters, the provided
bound is within a constant of the optimal result. In [1] the
authors exploit the rank-RIP to show that any matrix of rank
r can be recovered from O(r(n1 + n2) log(n1n2)) Gaussian
measurements. A more refined analysis of the rank-RIP in [3]
allowed to get rid of the extra log-factor. Estimates of optimal
order based on the null space approach are presented in [6],
[7]. However, the advantage of our result is that it provides
an explicit constant.

Theorem 1 can be extended to a more general setting.
However, the constant in the estimate for the number of
measurements is not explicit.

Theorem 2: Let A : Rn1⇥n2 ! Rm be a linear map whose
matrix has independent identically distributed entries A

ij

with

E A
ij

= 0, E A2
ij

= 1 and E A4
ij

 C4.

Let 0 < ⇢ < 1,  > 1, 0 < " < 1 and suppose that
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where c > 0 depends only on C4. Then with probability at
least 1 � ", for any X 2 Rn1⇥n2 a solution ˆX of (1) with
b = A(X) + w, kwk2  ⌘, approximates X with the error

kX � ˆXk2 
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We prove Theorem 1 and 2 by establishing the Frobenius
robust rank null space property (to be defined in Section IV)
for given measurements. In the Gaussian setting we rely on
Gordon’s escape through a mesh theorem [8], [9]. For the
case of more general measurements of Theorem 2 we refer to
Mendelson’s small ball method [10], [11], [12], [13].

IV. FROBENIUS STABLE NULL SPACE PROPERTY

The Frobenius stability and robustness of the recovery of
low-rank matrices via nuclear norm minimization is based on
the following property of the measurement map.

Definition 3: We say that A : Rn1⇥n2 ! Rm satisfies the
Frobenius robust rank null space property of order r with
constants 0 < ⇢ < 1 and ⌧ > 0 if for all M 2 Rn1⇥n2 ,
the singular values of M satisfy
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Theorem 4: Let A : Rn1⇥n2 ! Rm satisfy the Frobenius
robust rank null space property of order r with constants 0 <
⇢ < 1 and ⌧ > 0. Then for any X 2 Rn1⇥n2 the solution ˆX
of (1) with b = A(X) + w, kwk2  ⌘, approximates X with
the error
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One of the ways to prove Theorem 4 is to rely on results
in [14], which show that if some condition is sufficient for
stable and robust recovery of any sparse vector with at most
r non-zero entries, then the modification of this condition is
sufficient for the stable and robust recovery of any matrix up
to rank r.

In order to check whether the measurement map A :

Rn1⇥n2 ! Rm satisfies the Frobenius robust rank null space
property, we introduce the set

T
⇢,r

:=

�
M 2 Rn1⇥n2
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then for any M 2 Rn1⇥n2 such that kA(M)k2  kMk2
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For the remaining M 2 Rn1⇥n2 with kA(M)k2 > kMk2
⌧

we
have
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Altogether with (5) this leads to
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It is natural to expect that the recovery error gets smaller as
the number of measurements increases. This can be taken into



account by establishing the null space property for ⌧ =

p
m

.
Then the error bound reads as follows
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An important property of the set T
⇢,r

is that it is embedded
in a set with a simple structure.

Lemma 5: Let D be the set defined by

D := conv

�
M 2 Rn1⇥n2

: kMk2 = 1, rankM  r
 

, (6)

where conv stands for the convex hull.
1) Then D is the unit ball with respect to the norm
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where L and I
j

are defined in the same way as in item 1)
of Lemma 5 and x⇤ is obtained by arranging the entries of x
in the decreasing order of magnitude. Then g is a symmetric
gauge function and kMk

D
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According to Theorem 7.4.7.2 in [15] k ·k
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To bound the last term in the inequality above, we first note
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Applying the last estimate to (8) we derive that
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which proves (7).

Employing the matrix representation of the measurement
map A, the problem of estimating the probability of the event
(4) is reduced to the problem of giving a lower bound for the
quantities of the form inf

x2T

kAxk2. This is not an easy task for
deterministic matrices, but the situation significantly changes
for matrices chosen at random.

V. GAUSSIAN MEASUREMENTS

To estimate the probability of the event (4) for Gaussian
measurements we employ Gordon’s escape through a mesh
theorem. First we recall some definitions. Let g 2 Rm be a
standard Gaussian random vector, that is, a vector of normal
distributed random variables. Then for
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see [8], [9]. For a set T ⇢ Rn we define its Gaussian width
by
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Theorem 6 (Gordon’s escape through a mesh): Let A 2
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In order to give a bound on the number of Gaussian mea-
surements, Theorem 6 suggests to estimate from above the
Gaussian width of the set T
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The last inequality used a well-known estimate of the expecta-
tion of the largest singular value of a standard Gaussian matrix,
see [9, Chapter 9.3].
Lemma 5 and Lemma 7 allow to conclude that
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which means that with probability at least 1�" map A satisfies
the Frobenius robust rank null space property with constants
⇢ and 
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VI. MEASUREMENTS WITH FINITE FOURTH MOMENT

To extend Theorem 1 to a larger class of random maps
where we only require finite fourth moments, we apply
Mendelson’s small ball method.
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As before we identify n1⇥n2 real-valued matrix with a vector
in Rn1n2 . Suppose that the rows of the matrix A of a linear
map A : Rn1⇥n2 ! Rm are given by vectors �
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, i = 1, . . . ,m.
In accordance with Theorem 8 in order to bound

inf

u2T⇢,r

kAuk2 = inf

u2T⇢,r

 
mX

i=1

|h�
i

, ui|2
!1/2

we need to estimate Q2⇠

(T
⇢,r

;�) and W
m

(T
⇢,r

;�). For a
detailed proof of Theorem 2 we refer to [16]. We only mention
that a lower bound for Q2⇠

(T
⇢,r

;�) relies on the fact that the
elements of T

⇢,r

have unit Frobenius norm and an upper bound
for W

m

(T
⇢,r

;�) exploits the inclusion (7).



ACKNOWLEDGMENT

The authors acknowledge support by the European Research
Council through the grant StG 258926.

REFERENCES

[1] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM Rev., vol. 52, no. 3, pp. 471–501, 2010.

[2] K. Mohan and M. Fazel, “New restricted isometry results for noisy low-
rank recovery,” in Proc. International Symposium Information Theory,
2010.

[3] E. J. Candès and Y. Plan, “Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements,” IEEE

Trans. Inform. Theory, vol. 57, no. 4, pp. 2342–2359, 2011.
[4] B. Recht, W. Xu, and B. Hassibi, “Necessary and sufficient conditions

for success of the nuclear norm heuristic for rank minimization,” in Proc.

47th IEEE Conference on Decision and Control, 2008, pp. 3065–3070.
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