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Abstract—We study low rank matrix recovery from undersam-
pled measurements via nuclear norm minimization. We aim to
recover an n1 ⇥ n2 matrix X from m measurements (Frobenius
inner products) hX,Aji, j = 1 . . .m. We consider different
scenarios of independent random measurement matrices Aj and
derive bounds for the minimal number of measurements sufficient
to uniformly recover any rank r matrix X with high probability.
Our results are stable under passing to only approximately low
rank matrices and under noise on the measurements.

In the first scenario the entries of the Aj are independent
mean zero random variables of variance 1 with bounded fourth
moments. Then any X of rank at most r is stably recovered
from m measurements with high probability provided that
m � Crmax{n1, n2}. The second scenario studies the physically
important case of rank one measurements. Here, the matrix X to
recover is Hermitian of size n⇥n and the measurement matrices
Aj are of the form Aj = aja

⇤
j for some random vectors aj . If

the aj are independent standard Gaussian random vectors, then
we obtain uniform stable and robust rank-r recovery with high
probability provided that m � crn. Finally we consider the case
that the aj are independently sampled from an (approximate)
4-design. Then we require m � crn log n for uniform stable and
robust rank-r recovery.

In all cases, the results are shown via establishing a stable and
robust version of the rank null space property. To this end, we
employ Mendelson’s small ball method.

I. LOW RANK MATRIX RECOVERY VIA NUCLEAR NORM
MINIMIZATION

Low rank matrix recovery aims at reconstructing an n
1

⇥n
2

matrix X of small rank from incomplete linear measurements
A(X), where A : Rn1⇥n2 ! Rm is a linear map [19], [12].
We may write A as

A : Rn1⇥n2 ! Rm, Z 7!
m
X

j=1

tr

�

ZA⇤
j

�

ej ,

where A
1

, . . . , Am are suitable n
1

⇥n
2

matrices and e
1

, . . . , em
is the standard basis in Rm. If we allow noise, the entire
measurement vector is of the form

b = A(X) + ", (1)

where " 2 Rm denotes additive noise. Since the naive approach
of rank minimization is NP-hard, several tractable alternatives
have been suggested, the most prominent being nuclear norm

minimization [6], [19]. Assuming k"k
2

 ⌘, this convex
optimization strategy consists in computing the minimizer of

min

Z2Rn1⇥n2
kZk⇤ subject to kA(Z)� bk

2

 ⌘, (2)

where k·k⇤ denotes the nuclear norm, see below. Efficient
algorithms are available for this task.

In certain physical applications, in particular in quantum
experiments, the problem arises to recover an Hermitian matrix
of low rank. Denoting by Hn the space of complex Hermitian
n⇥n matrices, we obtain the following analogue of the above
nuclear norm minimization problem. For X 2 Hn and for
noisy data

b = A(X) + ", k"k
2

 ⌘

with measurement matrices Aj 2 Hn, solve the nuclear norm
minimization problem

min

Z2Hn

kZk⇤ subject to kA(Z)� bk
2

 ⌘. (3)

In certain situations such as the phase retrieval problem [4], it is
natural to additionally restrict to positive semidefinite matrices
X and Aj , but we do not go into detail on this aspect.

In the sequel, we assume that the measurement matrices
A

1

, . . . , Am are independent samples of a random matrix �.
The present paper is a summary of results of [11] (in prepa-

ration), the results on rank one measurements are extensions
of results of [12].

A. Notation

We denote the Schatten-p-norm of a real or complex matrix
by kZkp. Thus

kZkp =

 

X

`

�`(Z)

p

!

1/p

,

where the �`(Z) denote the singular values of Z and tr is
the trace. In particular, the nuclear norm is kZk⇤ = kZk

1

,
the Frobenius norm is kZkF = kZk

2

and the spectral norm
kZk1 = kZk

2!2

= �
max

(Z) is the largest singular value.
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II. MAIN RESULTS

In this section we present our results for the different
scenarios of the form of the random matrix � (recalling that
the Aj are independent copies of �).

A. Measurement matrices with independent entries

Here the random matrix � = (Xij)i,j is assumed to have
the following properties.

• The Xij are independent and have mean zero
• EX2

ij = 1 and EX4

ij  C
4

for all i, j and some constant
C

4

.
Let n = max{n

1

, n
2

}.

Theorem 1. Let A : Rn1⇥n2 ! Rm be obained from m
independent samples A

1

, . . . , Am of � as above. For r 
n
1

, n
2

and 0 < ⇢ < 1, suppose that

m � c
1

⇢�2nr.

Then with probability at least 1� e�c2m, for any X 2 Rn1⇥n2

any solution ˆX of (2) with b = A(X) + ", k"k
2

 ⌘,
approximates X with the error

kX � ˆXk
2

 2(1 + ⇢)2

(1� ⇢)
p
r

n
X

j=r+1

�j(X) +

(3 + ⇢)c
3

(1� ⇢)
· ⌘p

m
.

Here c
1

, c
2

, c
3

are positive constants that only depend on C
4

.

It may be surprising that only fourth moments are required.
In the existing literature, see e.g. [19], [3], much stronger
assumptions such as Gaussian distributions or subgaussian tails
are made. We note, however, that an analogue for recovery
of sparse vectors in RN (compressive sensing) of the above
result has been shown by Lecué and Mendelson, where only
log(N) bounded moments are required, see [14] for details.

B. Rank one measurements

Here we focus on the recovery of Hermitian matrices and
we assume that our measurement matrices are of the form
Aj = aja

⇤
j . We first consider the situation that the aj are

standard Gaussian distributed and then pass to the physically
important case of 4-designs. The notions of a design resp. an
approximative design here are the same as in [12] and the
theorems parallel the results in [12]. More precisely, we extend
the result of [12] by showing that the recovery results are
also stable with respect to the rank. However, also in [12]
Mendelson’s small ball method is the crucial ingredient in the
proofs. Note that if the matrix X we want to recover is also
of the form X = xx⇤ we are (by the Phase Lift argument [4])
in the situation of phase retrieval.

The driving motivation for our results in the design setup
are possible applications to the problem of quantum state
tomography, i.e. estimating the density operator of a quantum
system. Theorem 7 below allows indeed efficient low rank
quantum state tomography for different types of measurements,
see [12, section 3] for more information.

1) Gaussian Measurements: The following result extends
[12, Theorem 2] to stability of reconstruction under passing
from exactly low rank to approximately low rank matrices.

Theorem 2. Consider the measurement process described in (1)
with measurement matrices Aj = aja

⇤
j , where a

1

, . . . , am 2
Cn are independent standard complex Gaussian random
vectors. For r  n and 0 < ⇢ < 1, suppose that

m � C
1

⇢�2nr.

Then with probability at least 1� e

�C2m it holds that, for any
X 2 Hn, any solution ˆX to the convex optimization problem
(3) with noisy measurements b = A(X) + ", where k"k`2  ⌘,
obeys

kX � ˆXk
2

 2(1 + ⇢)2

(1� ⇢)
p
r

n
X

j=r+1

�j(X) +

(3 + ⇢)C
3

(1� ⇢)
· ⌘p

m
.

(4)
Here, C

1

, C
2

and C
3

denote positive universal constants. (In
particular, for ⌘ = 0 and X of rank at most r one has exact
reconstruction.)

Remark 3. This result generalizes a result by Candès and Li
[2] on phase retrieval when r = 1. A non-uniform result in
that spirit was obtained in [4].

Our proof also applies in the real valued analogue and also
in the case of subgaussian vectors aj at least if we assume
that the k-th moments for k  8 are as in the Gaussian case.
However, it should be noted that a slightly stronger result for
the real subgaussian case was obtained in [5] using arguments
based on the rank restricted isometry property.

2) 4-Designs: Let us finally consider the situation that the aj
are sampled (independently) from a 4-design, where we obtain
significant generalizations of results due to Gross, Krahmer
and Kueng [8] on phase retrieval with t-designs. We first recall
the definition of an exact weighted t-design, see [20] and [12].
As in [12] we use the following definition by Scott.

Definition 4 (exact, weighted t-design, Definition 3 in [20]).
Let t 2 N. A finite set {w

1

, . . . , wN} ⇢ Cn of normalized
vectors (kwik2 = 1) with associated weights {p

1

, . . . , pN}
such that pi � 0 and

PN
i=1

pi = 1 is called a weighted complex
projective t-design of dimension n and cardinality N if

N
X

i=1

pi (wiw
⇤
i )

⌦t
=

Z

CPn�1

(ww⇤
)

⌦t
dw. (5)

Here CPn�1 denotes the complex projective space of dimen-
sion n � 1 and the integral is computed with respect to the
unique unitarily invariant probability measure on CPn�1.

The following result extends [12, Theorem 3] to stability of
the recovery, and it strengthens and generalizes the main result
of [8] from the rank-one case (phase retrieval) to arbitrary
rank.

Theorem 5. Let {pi, wi}Ni=1

be a weighted 4-design and con-
sider the measurement process described in (1) with measure-
ment matrices Aj =

p

n(n+ 1)aja
⇤
j , where a

1

, . . . , am 2 Cn



are drawn independently from {pi, wi}Ni=1

. For r  n and
0 < ⇢ < 1, suppose that

m � C
4

⇢�2

log n nr.

Then with probability at least 1� e

�C5m it holds that, for any
X 2 Hn, any solution ˆX to the convex optimization problem
(3) with noisy measurements b = A(X) + ", where k"k`2  ⌘,
obeys

kX � ˆXk
2

 2(1 + ⇢)2

(1� ⇢)
p
r

n
X

j=r+1

�j(X) +

(3 + ⇢)C
6

(1� ⇢)
· ⌘p

m
.

(6)
Here, C

4

, C
5

and C
6

denote absolute positive constants.

We recall the definition of an approximative t-design, see
[1] and [12]. Approximative t-designs have the advantage of
being easier to construct. Certain of these constructions can
be realized (at least in principle) in physical experiments with
low (quantum) complexity [1], [21].

Definition 6 (Approximate t-design[1], [12]). We call a
weighted set {pi, wi}Ni=1

of normalized vectors an approximate
t-design of p-norm accuracy ✓p, if
�

�

�

�

�

N
X

i=1

pi (wiw
⇤
i )

⌦t �
Z

CPn�1

(ww⇤
)

⌦t
dw

�

�

�

�

�

p

 ✓p
�

n+t�1

t

� .

The next result extends [12, Theorem 5].

Theorem 7. Let 1  r  n arbitrary and let {pi, wi}Ni=1

be
an approximate 4-design satisfying

�

�

�

�

�

N
X

i=1

piwiw
⇤
i �

1

n
id

�

�

�

�

�

1
 1

n
, (7)

that admits either operator norm accuracy ✓1  1/(16r2), or
trace-norm accuracy ✓

1

 1/4, respectively. Then, the recovery
guarantee from Theorem 5 still holds (with possibly different
constants ˜C

4

, ˜C
5

and ˜C
6

).

III. PROOFS

To prove our results, we will use Mendelson’s small ball
method [17], [22], [9], [16] to show that A fulfills with high
probability a robust and stable version of the rank null space
property [7], see (8) below. (In particular, we do not work with
the restricted isometry property.) Stability and robustness of
recovery via nuclear norm minimization (2) (resp. (3)) is then
obtained via the following theorem.

Theorem 8. Let r 2 [n], and let ⇢, ⌧ be constants with 0 < ⇢ <
1 and ⌧ > 0. Let A : Rn1⇥n2 ! Rm (resp. A : Hn ! Rm)
satisfy the condition

0

@

r
X

j=1

�j(M)

2

1

A

1/2

 ⇢p
r

n
X

j=r+1

�j(M) + ⌧kA(M)k
2

(8)

for any M 2 Rn1⇥n2 (resp. for any M 2 Hn). Then for any
X 2 Rn1⇥n2 (resp. X 2 Hn) any solution ˆX of (2) (resp. of
(3)) with b = A(X)+ ", k"k

2

 ⌘, approximates X with error

kX � ˆXk
2

 2(1 + ⇢)2

(1� ⇢)
p
r

n
X

j=r+1

�j(X) +

2⌧(3 + ⇢)

1� ⇢
⌘.

Condition (8) is the robust and stable rank null space property.
This theorem is well known, see for example [7, exercise 4.20].
It can easily been shown using the corresponding theorem for
vector recovery from compressed sensing together with results
from [18] which allow to translate the vector case to the matrix
case. (Alternatively, one may proceed directly with tools from
matrix analysis). In order to verify the rank null space property
(8), we introduce the following notation. Let

T⇢,r,1 :=

n

M 2 Rn1⇥n2
:

 

r
X

i=1

�i(M)

2

!

1/2

>
⇢p
r

n
X

i=r+1

�i(M), kMkF = 1

o

.

We define THn
⇢,r,1 analogous to T⇢,r,1 by replacing Rn1⇥n2 by

Hn. It is easy to show (see for example [11]) that (8) is satisfied
for any M 2 Rn1⇥n2 (resp. any M 2 Hn) if

inf

M2T⇢,r,1

kA(M)k
2

� ⌧�1, (9)

resp. in the Hermitian case if

inf

M2THn
⇢,r,1

kA(M)k
2

� ⌧�1. (10)

A. Applying Mendelson’s small ball method

Recall that our measurement matrices A
1

, . . . , Am are
independent samples of a random matrix �. We show that
with high probability condition (9) resp. (10) is fulfilled so
that the recovery statement of Theorem 8 holds. For this we
will use the following theorem which is based on ideas due to
Mendelson, [17], [9], [22].

Theorem 9. (Mendelson [16], [17], Koltchinskii, Mendelson
[9]; Tropp’s version [22]) Fix E ⇢ Rd and let �

1

, . . . ,�m be
independent copies of a random vector � in Rd. For ⇠ > 0 let

Q⇠(E;�) = inf

u2E
P{|h�, ui| � ⇠}

and Wm(E,�) = E sup

u2E
hh, ui, where h =

1p
m

m
X

j=1

"j�j

with ("j) being a Rademacher sequence1. Then, for any ⇠ > 0

and any t � 0, with probability at least 1� e�2t2

inf

u2E

 

m
X

i=1

|h�i, ui|2
!

1/2

� ⇠
p
mQ

2⇠(E;�)�2Wm(E,�)�⇠t.

1Recall that a Rademacher vector ✏ = (✏j)mj=1 is a vector of independent
Rademacher random variables which take the values ±1 with equal probability.



Applying this theorem and estimating Q⇠(E;�) (using e.g.
the Payley-Zygmund inequality) and Wm(E,�) is referred to
as the Mendelson’s small ball method, see [22].

We want to apply this as follows. Identify Rm with Rn1⇥n2

resp. with Hn. Supposing the Ai are independent samples of
a random matrix �, let � = �. Finally, let E = T⇢,r,1 resp.
E = THn

⇢,r,1. Suppose �

1

, . . . ,�m are independent copies of �.
Then Theorem 9 yields an estimate for infM2T⇢,r,1 kA(M)k

2

(resp. of infM2THn
⇢,r,1

kA(M)k
2

) in terms of

Q⇠(E;�) = inf

Y 2E
P{|h�, Y i| � ⇠}

and of

Wm(E,�) = E sup

Y 2E
hH,Y i, where H =

1p
m

m
X

j=1

"j�j .

It remains to estimate Q⇠(E;�) and Wm(E,�) in the particu-
lar cases. In order to estimate Wm(E,�), we use the following
lemma.

Lemma 10. Let E be either T⇢,r,1 or THn
⇢,r,1. Then

Wm(E,�) 
p

1 + (1 + ⇢�1

)

2

p
r · EkHk1.

Proof. Let Dr be the convex hull of all matrices in Rn1⇥n2

resp. Hn of Frobenius norm 1 and rank at most r. Then arguing
similarly as in [10] (see also [11]), we obtain

E ✓
p

1 + (1 + ⇢�1

)

2Dr. (11)

Suppose now that Y has Frobenius norm 1 and rank at most r
and let B be any n

1

⇥ n
2

(resp. complex n⇥ n) matrix. Then

hB, Y i  kY k⇤kBk1  p
rkBk1.

By convexity, the same estimate holds for any Y 2 Dr.
Combining this with (11), the claim follows.

Hence, in order to estimate Wm(E,�) it is enough to bound
EkHk1.

B. Proof of Theorem 1

By the discussion in the last paragraph, we only need to find
suitable bounds for Q

2⇠(E;�) from below and for EkHk1
from above.

Lemma 11. The quantity Q 1p
2
(E;�) (where E = T⇢,r,1) can

be estimated as

Q 1p
2
(E;�) � inf

{Y,kY k2=1}
P(|h�, Y i| � 1p

2

) � 1

4C
5

,

where C
5

= max{3, C
4

}.

Proof. ([11]) Suppose we are given Y with kY k
2

= 1. By the
Payley-Zygmund inequality (see e.g. [7, Lemma 7.16], comp.
also [22]),

P{|h�, Y i|2 � 1

2

(E|h�, Y i|2)} � 1

4

· (E|h�, Y i|2)2
E|h�, Y i|4 . (12)

Now

E|h�, Y i|2 =

X

i,j,k,l

E(XijXkl) · YijYkl

=

X

i,j

EX2

ij · Y 2

ij =

X

i,j

Y 2

ij = 1.

Similarly one checks that

E|h�, Y i|4  C
5

Combining this with E|h�, Y i|2 = 1 and the estimate (12), the
claim follows.

Lemma 12. Let �

1

, . . . ,�m be independent copies of a
random matrix � as above. Let "

1

, . . . , "m be Rademacher
variables independent of everything else and let H =

1p
m

Pm
k=1

"k�k. Then

EkHk1  C
1

p
n.

Here C
1

is a constant that only depends on C
4

.

Proof. ([11]) Let S =

Pm
k=1

�k. Since the entries of the �k

all have mean zero we may desymmetrize the sum H (see [15,
Lemma 6.3]) to obtain

EkHk1  2p
m
EkSk1.

Thus it is enough to show that EkSk1  c
3

p
mn for a suitable

constant c
3

. Since S is a matrix with independent mean zero
entries, a result of Latała (see [13]) tells us that, for some
universal constant C

2

,

EkSk1 

C
2

0

@

max

i

s

X

j

ES2

ij +max

j

s

X

i

ES2

ij + 4

s

X

i,j

ES4

ij

1

A .

Denote the entries of �k by Xk;ij . Then Sij =
P

k Xk;ij . Thus
ES2

ij = E(
P

k Xk;ij)
2

=

P

k EX2

k;ij = m, where we used the

independence of the Xk;ij . Hence
q

P

j ES2

ij 
p
nm for any

i and
q

P

i ES2

ij  p
nm for any j. It remains to estimate

4

q

P

i,j ES4

ij . We calculate ES4

ij = E(
P

k Xk;ij)
4. Again since

the Xk;ij are independent and have mean zero we obtain

ES4

ij =

X

k

EX4

k;ij + 3

X

k1 6=k2

EX2

k1;ijEX
2

k2;ij .

Since EX2

k;ij = 1 for all i, j, k, we obtain ES4

ij  C
5

m2,
where C

5

= max{3, C
4

}. Hence,

4

s

X

i,j

ES4

ij  4
p

C
5

m2n2

=

4
p

C
5

p
mn

and consequently

EkSk1  c
3

p
mn

for a suitable constant c
3

that depends only on C
4

.



Now we can finish the proof of Theorem 1. Let H =

1p
m

Pm
j=1

"j�j and let ⇠ =

1

2

p
2

and E = T⇢,r,1. Then it
follows from Theorem 9 that for any t � 0 with probability at
least 1� e�2t2

inf

Y 2T

 

m
X

i=1

|h�i, Y i|2
!

1/2

�
p
m

2

p
2

Q 1p
2
(T ;�) (13)

� 2Wm(T,�)� 1

2

p
2

t. (14)

By Lemma 11,

Q 1p
2
(T ;�) � 1

4C
5

. (15)

Combining now Lemma 10 and Lemma 12, we obtain

Wm(T,�)  C
1

p

1 + (1 + ⇢�1

)

2

p
r
p
n. (16)

Combining (13), (15) and (16) we see that choosing m �
c0
1

(1 + (1 + ⇢�1

)

2

)nr ⇣ c
1

⇢�2nr and t = c
4

p
m for suitable

constants c
1

, c
4

, we obtain with probability at least 1� e�c2m

inf

Y 2T

 

m
X

i=1

|h�i, Y i|2
!

1/2

� c�1

3

p
m

for suitable constants c
2

, c
3

. Now the claim follows from
Theorem 8.

IV. PROOFS OF THEOREMS 2, 5 AND 7

These Theorems are proved along the lines of the proof of
Theorem 1 if we can bound Q⇠(E, aa⇤) (where E = THn

⇢,r,1)
suitably from below and EkHk1 suitably from above. This
was in all cases already done in [12], so we cite the results.

A. Bounds for Theorem 2

Here Q⇠(E, aa⇤) and EkHk1 can be bounded as follows.

Lemma 13 (see [12]). Assume that the ai are indepndent and
Gaussian. Then

Q 1p
2
(E;�) := inf

u2E
P{|haa⇤, ui| � 1p

2

} � 1

96

.

Similarly to the situation in Theorem 1, we also have
EkHk1  c

p
n if m � c̃n for suitable constants c, c̃, see

also [22, Section 8] and [12].

B. Bounds for Theorem 5 and 7

Recall from [12] that a super-normalized weighted 4-design
is obtained from a weighted 4-design by multiplication with
4
p

n(n+ 1).

Proposition 14. [12, Proposition 12] Assume that a is drawn
uniformly from a super-normalized weighted 4-design. Then

Q⇠ = inf{Z2Hn, kHkF=1}P (|tr (aa⇤Z) | � ⇠) � (1� ⇠2)2

24

for all ⇠ 2 [0, 1].

Proposition 15. [12, Proposition 13] Let H =

1p
m

Pm
k=1

"kaka
⇤
k, where the aj’s are chosen independently

at random from a super-normalized weighted 1-design. Then
it holds that

EkHk1  c
4

p

n log(2n) with c
4

= 3.1049,

provided that m � 2n log n.

The bounds for Theorem 7 are similar, see [12, Section 4.5].
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