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Abstract—We study recovery of low-rank third order tensors
from underdetermined linear measurements. This natural exten-
sion of low-rank matrix recovery via nuclear norm minimization
is challenging since the tensor nuclear norm is in general
intractable to compute. To overcome this obstacle we introduce
hierarchical closed convex relaxations of the tensor unit nuclear
norm ball based on so-called theta bodies – a recent concept
from computational algebraic geometry. Our tensor recovery
procedure consists in minimization of the resulting new norms
subject to the linear constraints. Numerical results on recovery
of third order low-rank tensors show the effectiveness of this new
approach.

I. INTRODUCTION AND MOTIVATION

The recently introduced theory of compressive sensing
enables the recovery of sparse vectors from undersampled
measurements via efficient algorithms such as `

1

-norm min-
imization. This concept extends to low-rank matrix recovery
where the aim is to reconstruct a matrix X 2 Rn1⇥n2 of
rank at most r  min {n

1

, n
2

} from linear measurements
y = �(X) where � : Rn1⇥n2 ! Rm with m ⌧ n

1

n
2

.
However, the natural approach of finding the solution of the
optimization problem

min
Z2Rn1⇥n2

rank (Z) s.t. � (Z) = y, (1)

is NP-hard. Nevertheless, it has been shown that under suitable
conditions on � the solution of the convex optimization
problem

min
Z2Rn1⇥n2

kZk⇤ s.t. � (Z) = y, (2)

reconstructs X exactly. Here, k·k⇤ denotes the nuclear norm of
a matrix, i.e., kZk⇤ =

P

min{n1,n2}
i=1

�
i

, where {�
i

}min{n1,n2}
i=1

is the set of singular values of a matrix Z. The required number
of Gaussian measurements scales like m � Crmax{n

1

, n
2

},
see [23], [2].

Here, we consider a further extension of compressive sens-
ing to the recovery of low-rank tensors X 2 Rn1⇥n2⇥···⇥nd

from a small number of linear measurements y = � (X),
where � : Rn1⇥n2⇥···⇥nd ! Rm with m ⌧ n

1

n
2

· · ·n
d

.
Again, we are led to consider the rank-minimization problem

min
Z2Rn1⇥n2⇥···⇥nd

rank (Z) s.t. y = � (Z) . (3)

Different notions of the tensor rank corresponding to different
decompositions are available [12]. The CP-rank of an arbitrary
tensor X 2 Rn1⇥n2⇥···⇥nd is the smallest number of rank one
tensors that sum up to X, where a rank one tensor is of the
form A = u

1 ⌦ u

2 ⌦ · · · ⌦ u

d or element-wise A
i1i2...id =

u1

i1
u2

i2
· · ·ud

id
. Expectedly, the problem (3) is NP hard [14].

Although it is possible to define an analog of the nuclear norm
k·k⇤ for tensors and consider the minimization problem

min
Z2Rn1⇥n2⇥···⇥nd

kZk⇤ s.t. y = � (Z) ,

the computation of k·k⇤, and thereby this problem, is NP hard
[14] as well for tensors of order d � 3.

To overcome this difficulty, previous approaches to low-rank
tensor recovery and tensor completion via convex optimization
[6] and [16] focus on the Tucker decomposition and the
corresponding norm defined as sum of nuclear norms of the
unfoldings (see below for the notion of unfolding). However,
it has been shown in [18] that in this scenario the necessary
number of measurements for recovery of rank r-tensors via
Gaussian measurement ensembles scales exponentially in the
dimension, i.e., m � Crnd�1, where r = (r, r, . . . , r) 2 Rd.
Other approaches, not necessarily based on convex optimiza-
tion, include iterative hard thresholding algorithms [20], [21],
recovery by Riemannian optimization [13], and by the ALS
method [10]. However, all these approaches consider the
Tucker, the tensor train [19] or in general the hierarchical
Tucker decomposition [8]. A recent paper [24] considers
tensor completion via tensor nuclear norm minimization and
gives theoretical analysis with a significant improvement on
the necessary number of measurements for recovery of rank
r tensors. However, solving this optimization problem, as
already mentioned before, is NP-hard.

As an alternative approach, we build new tensor norms, ✓
k

-
norms, which rely on so-called theta bodies [17], [7]. We treat
each entry of a tensor as a polynomial variable. The idea is to
define a polynomial ideal J which vanishes on the set ⌫R (J)
of all rank-one norm-one third order tensors. This is achieved
by taking all minors of order two of every unfolding (to satisfy
the rank-one condition) and a polynomial

P

i,j,k

x2

ijk

� 1 (to
satisfy the unit norm condition) as its basis. In this scenario,978-1-4673-7353-1/15/$31.00 c�2015 IEEE



the convex hull of the set ⌫R (J) will be the unit tensor nuclear
norm ball. The unit ✓

k

-norm balls form a set of hierarchical
relaxations of the set conv (⌫R (J)), that is, of the tensor
unit nuclear norm ball. We focus on third order tensors and
the largest unit norm ball in this set, the unit ✓

1

-norm ball.
We provide semidefinite programs (SDPs) for computing the
✓
1

-norm of a given third order tensor and for recovery of
low-rank third order tensors via ✓

1

-norm minimization. The
performance of the latter SDP is illustrated with numerical
results.

II. NOTATION

We denote vectors with small bold letters, matrices and ten-
sors with capital bold letters and sets with capital calligraphic
letters. The cardinality of a set S will be denoted by |S| and
with [m] we denote the set {1, 2, . . . ,m}. With conv(S) we
denote the convex hull of the set S .

III. TENSORS

We are interested in recovery of low-rank third order tensor
X 2 Rn1⇥n2⇥n3 from underdetermined linear measurements.

We define the Frobenius norm of a tensor X 2 Rn1⇥n2⇥n3

as

kXk
F

=

v

u

u

t

n1
X

i1=1

n2
X

i2=1

n3
X

i3=1

X2

i1i2i3
.

A third order tensor X 2 Rn1⇥n2⇥n3 is a rank one tensor
if there exist vectors u1 2 Rn1 ,u2 2 Rn2 ,u3 2 Rn3 such that
X = u

1 ⌦ u

2 ⌦ u

3 or element-wise

X
i1i2i3 = u1

i1
u2

i2
u3

i3
.

The CP-rank (or canonical rank and in the following just rank)
of a tensor X 2 Rn1⇥n2⇥n3 is the smallest number of rank
one tensors that sum up to X. Then the analog of the matrix
nuclear norm for tensors is

kXk⇤ = min

(

r

X

k=1

|c
k

| : X =

r

X

k=1

c
k

u

1,k ⌦ u

2,k ⌦ u

3,k,

r 2 N,
�

�

u

i,k

�

�

`2
= 1, for all i 2 [3] , k 2 [r]

o

.

However, in the tensor case, computing the canonical rank of
a tensor, as well as computing the nuclear norm of a tensor is
in general NP-hard, see [9], [15].

The `-th unfolding X

{`} 2 Rn`⇥
Q

k2[3]\{`} nk of a tensor
X 2 Rn1⇥n2⇥n3 is a matrix defined element-wise as

X

{`}
i`(i1...i`�1i`+1...i3)

= X

i1i2i3 .

We often use MATLAB notation. Specifically, for a third
order tensor X 2 Rn1⇥n2⇥n3 , we denote the second order
subtensor in Rn1⇥n2 obtained by fixing the last index i

3

to
k by X(:, :, k). Vectorization of a tensor X 2 Rn1⇥n2⇥n3

converts a tensor into a column vector vec(X) 2 Rn1n2n3 .
The ordering of the elements in vec(X) is not important as
long as it is consistent.

IV. THETA BODIES

Since the tensor nuclear norm is in general NP-hard to
compute [14], we propose an alternative approach. We intro-
duce new tensor norms via closed convex relaxations (theta
bodies) of the tensor unit nuclear norm. The computation of
these norms requires the following definitions and tools from
algebraic geometry.

For a non-zero polynomial f =
P

↵ a↵x
↵ in R [x] =

R [x
1

, x
2

, . . . , x
n

] and a monomial order ⌫, we define
a) the multidegree of f by multideg (f) =

max
�

↵ 2 Zn

�0

: a↵ 6= 0
�

,
b) the leading coefficient of f by LC (f) = a

multideg(f)

2
R,

c) the leading monomial of f by LM(f) = x

multideg(f),
d) the leading term of f by LT (f) = LC (f) LM (f) .

In this paper we use the graded reverse lexicographic
ordering (grevlex) ordering, see [4].

Let J be a polynomial ideal in R [x] = R [x
1

, x
2

, . . . , x
n

].
The real algebraic variety of the ideal ⌫R (J) is the set of all
points x 2 Rn where the ideal vanishes, i.e.,

⌫R (J) = {x 2 Rn : f(x) = 0 for all f 2 J}.

By Hilbert’s basis theorem we can assume that the polynomial
ideal J is generated by the finite set F = {f

1

, f
2

, . . . , f
k

} of
polynomials in R [x]. We write

J = hf
1

, f
2

, . . . , f
k

i =
D

{f
i

}
i2[k]

E

or simply J = hFi .

Then its real algebraic variety is the set

⌫R (J) = {x 2 Rn : f
i

(x) = 0, for all i 2 [k]}.

Groebner bases are crucial for computations with polyno-
mial ideals.

Definition 1 (Groebner basis): Fix a monomial order. A
basis G = {g

1

, g
2

, . . . , g
s

} of a polynomial ideal J ⇢ R [x] is
a Groebner basis (or standard basis) if for all f 2 R [x] there
exist unique r 2 R [x] and g 2 J such that

f = g + r

and no monomial of r is divisible by any of the leading mono-
mials in G, i.e., by any of the LM(g

1

) ,LM(g
2

) , . . . ,LM(g
s

).
A Groebner basis is not unique, but the reduced version
(defined below) is.

Definition 2: Fix a monomial order. The reduced Groebner
basis for a polynomial ideal J 2 R [x] is a Groebner basis
G = {g

1

, g
2

, . . . , g
s

} for J such that
1) LC(g

i

) = 1, for all i 2 [s].
2) LM(g

i

) does not divide LM(g
j

), for all i 6= j.
Throughout the paper, R [x]

k

denotes the set of polynomials
of degree at most k. The following definition is central for the
definition of theta bodies [17], [7], which will be used below
for defining our new tensor norms.

Definition 3 ( [7]): Let J be an ideal in R [x]. A polynomial
f 2 R [x] is k-sos mod J if there exists a finite set of



polynomials h
1

, h
2

, . . . , h
t

2 R [x]
k

such that f ⌘
P

t

j=1

h2

j

mod J , i.e, if f �
P

t

j=1

h2

j

2 J .
We recall that a degree one polynomial is also known as

linear polynomial.
Definition 4 (Theta body, [7]): Let J ✓ R [x] be an ideal.

For a positive integer k, the k-th theta body of an ideal J is

TH
k

(J) := {x 2 Rn : f (x) � 0

for every linear f that is k-sos mod J} .

By definition,

TH
1

(J) ◆ TH
2

(J) ◆ · · · ◆ conv (⌫R (J)) . (4)

The theta bodies are closed convex sets, while conv (⌫R (J))
may not be closed. We say that an ideal J ✓ R [x] is TH

k

-
exact if TH

k

(J) equals to the closure of conv (⌫R (J)), i.e., to
conv (⌫R (J)). Guarantees on convergence can be found in [7].
However, to our knowledge, none of the existing guarantees
apply in our case.

Checking whether a given polynomial is k-sos mod J using
this definition requires knowledge of all linear polynomials
that are k-sos mod J . To overcome this difficulty, we need an
alternative description of TH

k

(J).
As in [1] and [7], we assume that there are no linear

polynomials in the ideal J and we consider only the monomial
bases B of R [x] /J . The degree of an equivalence class
f + J , denoted by deg (f + J), is the smallest degree of an
element in the class. Each element in the basis B = {f

i

+ J}
of R [x] /J is represented by the polynomial f

i

such that
deg (f

i

+ J) = deg (f
i

). We assume that B = {f
i

+ J} is
ordered so that f

i+1

⌫
grevlex

f
i

. We define the set

B
k

:= {f + J 2 B : deg(f + J)  k}.

Definition 5 (✓-basis, [7]): Let J ✓ R [x] be an ideal. A
basis B = {f

0

+ J, f
1

+ J, . . .} of R [x] /J is called a ✓-basis
1) if B

1

= {1 + J, x
1

+ J, . . . , x
n

+ J};
2) if deg (f

i

+ J) , deg (f
j

+ J)  k then f
i

f
j

+ J is in
the R-span of B

2k

.
For computing a ✓-basis of R [x] /J , we first need to

compute the reduced Groebner basis G = {g
1

, . . . g
s

} of the
ideal J with respect to an ordering which first compares the
total degree (for example, the grevlex ordering). Then, a set
B = {f

0

+ J, f
1

+ J, . . .} will be a ✓-basis of R [x] /J if it
contains all f

i

+ J such that
1) f

i

is a monomial
2) f

i

is not divisible by any of the monomials in the set
{LT(g

i

) : i 2 [s]}.
For a ✓-basis B = {f

i

+ J} of R [x] /J we define [x]Bk

to be the column vector formed by all elements of B
k

in
order. Then [x]Bk

[x]
T

Bk
is a square matrix indexed by B

k

and its (i, j)-entry is equal to f
i

f
j

+ J . By hypothesis, the
entries of [x]Bk

[x]
T

Bk
lie in the R-span of B

2k

. Let {�`

i,j

}
be the unique set of real numbers such that f

i

f
j

+ J =
P

`:f`+J2B2k
�`

i,j

(f
`

+ J).
Definition 6 (k-th combinatorial moment matrix, [7]): Let

J,B and {�`

i,j

} be as above. Let y be a real vector indexed

by B
2k

with y
0

= 1, where y
0

is the first entry of y, indexed
by the basis element 1 + J . The k-th combinatorial moment
matrix MBk (y) of J is the real matrix indexed by B

k

whose
(i, j)-entry is [MBk (y)]

i,j

=
P

`:f`+J2B2k
�`

i,j

y
`

.
Finally, the following theorem gives us an alternative de-

scription of the theta bodies.
Theorem 1 ( [7]): The k-th theta body of J , TH

k

(J), is
the closure of

QBk (J) = ⇡Rn

�

y 2 RB2k : MBk (y) ⌫ 0, y
0

= 1
 

,

where ⇡Rn denotes the projection on the variables y
1

, . . . , y
n

.

V. THE TENSOR ✓
k

-NORM

Let us now provide the announced hierarchical closed
convex relaxations of the tensor unit nuclear norm ball. These
lead to tensor norms that have not been considered before - at
least up to our knowledge.

Remark 1: A similar, but somewhat easier, approach to
the one explained in detail for third order tensors below can
be used to define closed convex relaxations of the matrix
nuclear unit norm ball. In this scenario, all these relaxations
coincide with the original matrix unit nuclear norm ball [22].
In the tensor case we cannot expect to obtain equality of all
relaxations to the tensor norm, because computing the latter
would then not be NP-hard in general. Still, the equality
in the matrix case suggests that these relaxations are useful
approximations to the nuclear norm in the tensor case.

First, recall that the set of all minors of order two of a
matrix A is

{det(AI,J ) : I ⇢ [m] ,J ⇢ [n] , |I| = |J | = 2} ,

where AI,J 2 R2⇥2 denotes the submatrix of A obtained by
deleting all rows i 2 [m] \I and all columns j 2 [n] \J .

For notational purposes, we define the following polynomi-
als in R [x] = R [x

111

, x
112

, . . . , x
n1n2n3 ]

f ijk

ˆ

i

ˆ

j

ˆ

k

1

(x) = �x
ijk

x
ˆ

i

ˆ

j

ˆ

k

+ x
i

ˆ

j

ˆ

k

x
ˆ

ijk

, ijkîĵk̂ 2 S
1

f ijk

ˆ

i

ˆ

j

ˆ

k

2

(x) = �x
ijk

x
ˆ

i

ˆ

j

ˆ

k

+ x
i

ˆ

jk

x
ˆ

ij

ˆ

k

, ijkîĵk̂ 2 S
2

f ijk

ˆ

i

ˆ

j

ˆ

k

3

(x) = �x
ijk

x
ˆ

i

ˆ

j

ˆ

k

+ x
ij

ˆ

k

x
ˆ

i

ˆ

jk

, ijkîĵk̂ 2 S
3

g(x) =

n1
X

i=1

n2
X

j=1

n3
X

k=1

x2

ijk

� 1

with the corresponding sets of subscripts

S
1

=
n

ijkîĵk̂ : i < î, j < ĵ, k  k̂
o

,

S
2

=
n

ijkîĵk̂ : i  î, j < ĵ, k < k̂
o

,

S
3

=
n

ijkîĵk̂ : i < î, j  ĵ, k < k̂
o

,

where i, î 2 [n
1

], j, ĵ 2 [n
2

] and k, k̂ 2 [n
3

]. These polyno-
mials correspond to the order two minors of the unfoldings of
a tensor.

Lemma 1 ( [22]): A tensor X 2 Rn1⇥n2⇥n3 is a rank one,
Frobenius norm one tensor if and only if

g(X) = 0 and f ijk

ˆ

i

ˆ

j

ˆ

k

`

(X) = 0, for all ijkîĵk̂ 2 S
`

, ` 2 [3] .



A third order tensor X 2 Rn1⇥n2⇥n3 is a rank-one ten-
sor if and only if all three unfoldings X

{1} 2 Rn1⇥n2n3 ,
X

{2} 2 Rn2⇥n1n3 , and X

{3} 2 Rn3⇥n1n2 are rank-one
matrices. Notice that f ijk

ˆ

i

ˆ

j

ˆ

k

`

(X) = 0 for all ijkîĵk̂ 2 S
`

is equivalent to the statement that the `-th unfolding X

{`} is
a rank one matrix, i.e., that all its minors of order two vanish.

Our aim is to find a relaxation of the tensor unit nuclear
norm ball. In order to apply the concept of theta bodies, we
need to come up with a polynomial ideal J

3

⇢ R [x] =
R [x

111

, x
112,

. . . , x
n1n2n3 ] such that its algebraic variety is

of the form

⌫R (J
3

) =
n

x : g (x) = 0 and f ijk

ˆ

i

ˆ

j

ˆ

k

`

(x) = 0,

for all ijkîĵk̂ 2 S
`

, ` 2 [3]
o

.

To this end, we define the polynomial ideal J
3

= hG
3rd

i,
where

G
3rd

=
n

f ijk

ˆ

i

ˆ

j

ˆ

k

`

: ijkîĵk̂ 2 S
`

, ` 2 [3]
o

[ {g} . (5)

Theorem 2 ( [22]): The basis G
3rd

defined in (5) forms the
reduced Groebner basis of the ideal J

3

= hG
3rd

i with respect
to the grevlex order.

Based on the moment matrix MB1(y), the ✓
1

-norm of a
tensor X can be computed via the semidefinite program

min
t,y

t s.t. M(t,y,X) ⌫ 0,

where

M(t,y,Z) = tM
0

+

n1
X

i=1

n2
X

j=1

n3
X

k=1

Z
ijk

M

ijk

+

9

X

i=2

|Mi|
X

j=1

y
`

M

i

j

,

(6)
with ` =

P

i

k=3

�

�

M

(k�1)

�

� + j and with matrices M

0

,
M

ijk

,Mi

j

2 R(n1n2n3+1)⇥(n1n2n3+1) as defined in Table II.
We then propose to recover a low-rank tensor X from

underdetermined linear measurements b = � (X) via ✓
k

-
minimization, i.e.,

arg min
Z

kZk
✓k

s.t. �(Z) = b,

which is equivalent to

arg min
t,y,Z

s.t. M(t, y,Z) ⌫ 0 and �(Z) = b.

Remark 2: As already mentioned before, the above Groeb-
ner basis G

3rd

can be obtained by taking all minors of order
two of all three unfoldings of the tensor X 2 Rn1⇥n2⇥n3 (not
considering the same minor twice). One might think that the
✓
1

-norm obtained in this way corresponds to a (weighted) sum
of the nuclear norms of the unfoldings, which has already been
treated in the papers [6], [11]. That is, there exist ↵,�, � 2 R
such that

↵ · kX{1}k⇤ + � · kX{2}k⇤ + � · kX{3}k⇤ = kXk
✓1 .

The example of a cubic tensor X 2 R2⇥2⇥2 presented in Table
I shows that this is not the case. From the first and the second
tensor in Table I we obtain � = 0. Similarly, the first and

X 2 R2⇥2⇥2 kX{1}k⇤ kX{2}k⇤ kX{3}k⇤ kXk✓1

1


1 0
0 0

����
0 0
0 1

�
2 2 2 2

2


1 0
0 1

����
0 0
0 0

�
2 2

p
2 2

3


1 0
0 0

����
0 0
1 0

�
2

p
2 2 2

4


1 0
0 0

����
0 1
0 0

� p
2 2 2 2

5


1 0
0 1

����
0 1
0 0

� p
2 + 1

p
2 + 1

p
2 + 1 3

TABLE I
TENSORS X 2 R2⇥2⇥2 ARE REPRESENTED IN THE SECOND COLUMN AS
X = [X (:, :, 1) |X (:, :, 2)]. THE THIRD, FOURTH AND FIFTH COLUMN

REPRESENT THE NUCLEAR NORMS OF THE FIRST, SECOND AND THE THIRD
UNFOLDING OF A TENSOR X, RESPECTIVELY. THE LAST COLUMN
CONTAINS THE ✓

1

-NORM WHICH WAS COMPUTED NUMERICALLY.

the third tensor, and the first and fourth tensor give � = 0
and ↵ = 0, respectively. Thus, the ✓

1

-norm is not a weighted
sum of the nuclear norms of the unfoldings. In addition, the
last tensor shows that the ✓

1

-norm is not the maximum of the
norms of the unfoldings.

Remark 3 (complexity): The positive semidefinite matrix M

used either for low-rank tensor recovery or computing the ✓
1

-
norm of a third order tensor X 2 Rn⇥n⇥n is of dimension (1+
n3)⇥ (1+n3). If a := n3 denotes the total number of entries
of a tensor X, then y is a vector of at most a(a+1)

2

⇠ O(a2)
variables. Therefore, the semidefinite program for computing
the ✓

1

-norm as well as the semidefinite program for low-rank
tensor recovery has polynomial complexity.

We remark that this approach for defining relaxations of
nuclear norm can also be extended to general dth order tensors,
see [22].

VI. NUMERICAL EXPERIMENTS

In this section we provide recovery results for third order
tensors obtained by minimizing the ✓

1

-norm.
We directly build the matrix M defined in (6) where

matrices M

0

,M
ijk

,Mi

j

are listed in Table II. Due to sym-
metry, only the non-zero entries of the upper triangle part
of these matrices are specified. The elements of the ✓-basis
are given via their representative in the second column. The
function f : Z3 ! R is defined as f (i, j, k) = (i �
1)n

2

n
3

+ (j � 1)n
3

+ k + 1. The last column lists the set
T
p1,p2,p3 = {(i, j, k, (p

i

)
i2Q) : 1  i < p

1

 n
1

, 1  j <
p
2

 n
2

, 1  k < p
3

 n
3

} where Q := {i : p
i

6= n
i

} and
n̂
i

= n
i

+ 1, for all i 2 [3].
We present the recovery results for third order tensors X 2

Rn1⇥n2⇥n3 in Table III. We consider cubic and non cubic
tensors of ranks one and two.

For fixed dimensions n
1

⇥n
2

⇥n
3

, number of measurements
m and fixed rank, we performed 200 simulations.

We say that our algorithm succeeds to recover the orig-
inal tensor X 2 Rn1⇥n2⇥n3 if the element-wise differ-
ence between the original tensor X

0

and the tensor X

⇤ =
argminZ:�(Z)=�(X)

kZk
✓1 is at most 10�6. With m

max

we



M ✓-basis Mpq · (p, q) Range of i, î, j, ĵ, k, k̂
M

0

1 1 · (1, 1) , 1 · (2, 2)
Mijk xijk 1 · (1, f(i, j, k)) Tn̂1,n̂2,n̂3

M2

f2
x

2

ijk �1 · (2, 2)
1 · (f(i, j, k), f(i, j, k)) Tn̂1,n̂2,n̂3\{(1, 1, 1)}

M3

f3
xiˆjkxijˆk 1 · (f(i, j, k), f(i, ĵ, k̂)) Tn̂1,ˆj,ˆk

1 · (f(i, j, k̂), f(i, ĵ, k)) Tn̂1,ˆj,ˆk

M4

f4
xijkx

ˆiˆjˆk 1 · (f(i, j, k), f (̂i, ĵ, k̂)) T
ˆi,ˆj,ˆk

1 · (f(i, ĵ, k), f (̂i, j, k̂)) T
ˆi,ˆj,ˆk

1 · (f(i, ĵ, k̂), f (̂i, j, k)) T
ˆi,ˆj,ˆk

1 · (f(i, j, k̂), f (̂i, ĵ, k)) T
ˆi,ˆj,ˆk

M5

f5
xijkx

ˆijˆk 1 · (f(i, j, k), f (̂i, j, k̂)) T
ˆi,n̂2,ˆk

1 · (f(i, j, k̂), f (̂i, j, k)) T
ˆi,n̂2,ˆk

M6

f6
xijkxˆiˆjk 1 · (f(i, j, k), f (̂i, ĵ, k)) T

ˆi,ˆj,n̂3

1 · (f(i, ĵ, k), f (̂i, j, k)) T
ˆi,ˆj,n̂3

M7

f7
x

ˆijkxijk 1 · (f(i, j, k), f (̂i, j, k)) T
ˆi,n̂2,n̂3

M8

f8
xiˆjkxijk 1 · (f(i, j, k), f(i, ĵ, k)) Tn̂1,ˆj,n̂3

M9

f9
xijˆkxijk 1 · (f(i, j, k), f(i, j, k̂)) Tn̂1,n̂2,ˆk

TABLE II
MATRICES USED IN THE DEFINITION OF M IN (6)

denote the maximal number of measurements for which we
do not recovery any of the 200 generated tensors and m

min

denotes the minimal number of measurements for which we
recovered all 200 tensors (the success of recovery is 200/200).

We use linear mappings � : Rn1⇥n2⇥n3 ! Rm defined
with tensors �

k

2 Rn1⇥n2⇥n3 via [� (X)] (k) = hX,�
k

i,
for k 2 [m]. We choose the �

k

as stochastically independent
tensors with i.i.d. Gaussian N

�

0, 1

m

�

entries. We generate
tensors X 2 Rn1⇥n2⇥n3 of rank r = 1 via their decompo-
sition. If X = u⌦v⌦w is its CP-decomposition, each entry
of the vectors u, v and w is taken independently from the
normal distribution N (0, 1). Rank two tensors are obtained
by summing two rank one tensors.

The last column in Table III represents the number of
independent measurements which are always enough for the
recovery of a tensor of an arbitrary rank.

n

1

⇥ n

2

⇥ n

3

rank m

max

m

min

n

1

n

2

n

3

2⇥ 2⇥ 3 1 4 12 12
3⇥ 3⇥ 3 1 6 19 27
3⇥ 4⇥ 5 1 11 30 60
4⇥ 4⇥ 4 1 11 32 64
4⇥ 5⇥ 6 1 18 42 120
5⇥ 5⇥ 5 1 18 43 125

3⇥ 4⇥ 5 2 27 56 60
4⇥ 4⇥ 4 2 26 56 64
4⇥ 5⇥ 6 2 41 85 120

TABLE III
NUMERICAL RESULTS FOR LOW-RANK TENSOR RECOVERY IN

Rn1⇥n2⇥n3

We used MATLAB (R2008b) for these numerical exper-
iments, including SeDuMi 1.3 for solving the semidefinite
programs.
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