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Abstract—We study a multiple-input multiple-output (MIMO)
model for radar and provide recovery guarantees for a compres-
sive sensing approach. Several transmit antennas send random
pulses over some time-period and the echo is recorded by several
receive antennas. The radar scene is resolved on an azimuth-
range-Doppler grid. Sparsity is a natural assumption in this con-
text and we study recovery of the radar scene via `1-minimization.
On the one hand we provide an estimate for the well-known
restricted isometry property (RIP) ensuring stable and robust
recovery. Compared to standard estimates available for Gaussian
random measurements we require more measurements in order
to resolve a scene of certain sparsity. Nevertheless, we show that
our RIP estimate is optimal up to possibly logarithmic factors.
By turning to a nonuniform analysis for a fixed radar scene,
we reveal that the fine-structure of the support set (not only
its size) influences the recovery performance. By introducing a
parameter measuring the well-behavedness of the support we
derive a bound for the number of measurements sufficient for
recovery that resembles the minimal one for Gaussian random
measurements if this parameter is close to optimal, i.e., if the
support set is not pathological. Our analysis complements earlier
work due to Friedlander and Strohmer where the support set was
assumed to be random.

I. INTRODUCTION

MIMO (multiple-input multiple-output) radar uses multiple
antennas to simultaneously transmit several different waveforms
and multiple antennas which record the reflected signals.
Modeling the radar scene on a grid in azimuth-range-Doppler
space may lead to a high-dimensional vector of reflectivities
that needs to be recovered from the measured data and often
one ends up with an underdetermined linear system that has to
be solved for that purpose. In many cases, it is natural to assume
that only a few targets are present leading to sparsity of the
reflection coefficients. This motivates to consider compressive
sensing techniques [1] such as `1-minimization in order to
accurately recover the target scene.

The aim of our paper is to provide a theoretical analysis of
sparse recovery via `1-minimization in MIMO radar. We use the
same measurement model as Friedlander and Strohmer in [2],
where a first analysis has been conducted assuming randomly
distributed support sets. On the one hand, we provide an
estimate for the restricted isometry property of the measurement
matrix. Compared to standard estimates available for Gaussian
random matrices for instance, we require more measurements
for a given sparsity. Nevertheless, we show that our bound
is optimal. On the other hand, we also provide a nonuniform

recovery result where we introduce a parameter depending
on the fine structure of the support set. For support sets with
minimal parameter (i.e., support sets which are “well-balanced”,
see below), the required number of measurements resembles
the expected one from standard compressive sensing up to
additional logarithmic factors. To the best of our knowledge,
it has not been observed earlier for realistic measurement
matrices in compressive sensing that the recovery performance
may depend on the fine structure of the support set.

Notation. Below, ‖x‖p = (
∑
j |xj |p)1/p denotes the usual

`p-norm of a vector x, for 1 ≤ p <∞. Moreover, supp(x) =
{` : x` 6= 0} denotes the support of x.

II. MIMO MEASUREMENT MODEL

Let us describe the MIMO radar measurement model from
[2], see also [3]–[5] for a similar model (with random antenna
locations, however). We have NT transmit antennas and NR
receive antennas that are co-located on a line with equidistant
spacings, i.e., the transmit antennas occupy the locations
(0, jdTλ) ∈ R2, j = 0, . . . , NR−1, while the receive antennas
are located in (0, kdRλ), k = 0, . . . , NT − 1, where dR
and dT denote the corresponding spacings and λ denotes
the wavelength of the carrier frequency of the radar system.
The transmit antennas send signals sj(t), j = 1, . . . , NT ,
that are modeled as independent periodic, continuous-time
white Gaussian noise with period-duration T and bandwidth
B. Sampling at the Nyquist-rate results in finite-length vectors
sj(`) = sj(`∆t), t = 1, . . . , Nt with ∆t = 1

2B and
Nt = T/∆t. Then the sj are independent standard complex
Gaussian random vectors in CNt .

Suppose that a target is present at distance r, azimuth angle
θ (i.e., at position (r cos(θ), r sin(θ)) ∈ R2) and radial speed
ν having unit reflectivity. We assume that the target is far away
from the radar device, i.e., r � max{λdTNT , λdRNR}. Then
it (approximately) produces the following return at receiver k,

yk(t) =

NT∑
j=1

sj(t− 2r/c)

× e2πicλ−1[t−c−1(2ν·t+2r+sin(θ)jdTλ+sin(θ)kdRλ)],
(1)

see also eq. (2) in [4]. Here, c is the speed of light. In the
following we assume that the targets are located on a grid



in azimuth-range-Doppler space, i.e., ( 2r
c , sin(θ), λ−1ν) ∈ G

with

G = {(τ0 + ∆ττ, β0 + ∆ββ, f0 + ∆ff) : (τ, β, f) ∈ G},
G := [Nτ ]× [Nβ ]× [Nf ],

where [N ] := {1, 2, . . . , N}. Let us further introduce the
translation and modulation operators on CNt , for z ∈ CNt , as

(Tτx)` = x`−τ , (Mfx)` = e2πif`/Ntx`,

where subtraction is understood modulo Nt. Note that we may
assume Nτ ≤ Nt and Nf ≤ Nτ because otherwise we face
ambiguities as Tτ+Nt = Tτ and Mf+Nτ = Mf . For simplicity,
we will actually set

Nτ = Nf = Nt

in the remainder of the paper, but note that our results will
also hold for smaller values of Nf and Nτ .

For β ∈ [Nβ ], the so-called array manifolds are given as

aT (β) =


1

e2πidT∆ββ

...
e2πidT∆ββ(NT−1)

 ∈ CNT

and

aR(β) =


1

e2πidR∆ββ

...
e2πidR∆ββ(NR−1)

 ∈ CNR .

Moreover, for (τ, f) ∈ [Nt] × [Nt] we consider the matrix
Sτ,f ∈ CNt×NT matrix with columns MfTτsk ∈ CNt , k =
1, . . . , NT .

After demodulation (multiplication by e−2πicλ−1t) of the
signals yj in (1) and sampling at the Nyquist rate ∆t = 1

2B ,
the measured data at receiver j corresponding to a target at
grid position (τ, β, f) – related to the physical location

(
c
2 (τ0 +

∆ττ), arcsin(β0 + ∆ββ), λ(f0 + ∆ff)
)

– take the form yk =
(aR(β))kaT (β)TSTτ,f ∈ CNt . The signal collecting all time-
sampled data for all receive antennas corresponding to the grid
position (τ, β, f) ∈ [Nt]× [Nβ ]× [Nt] is then given as

Z(τ, β, f) = aR(β)aT (β)TSTτ,f ∈ CNR×Nt .

Now, let x ∈ CNt×Nβ×Nt be a vector representing the
reflectivities at the grid points. If no target is present then
the corresponding entry of x is zero, so that when only few
targets are present the vector x is sparse. The measurements
(indexed by the receive antennas and time) of the full target
scene are then given by

y =

Nt∑
τ=1

Nβ∑
β=1

Nt∑
f=1

xτ,β,fZ(τ, β, f) ∈ CNR×Nt .

In practice, noise is present so that the measurements can be
written in matrix-vector notation as

vec(y) = Ax + n ∈ CNR·Nt (2)

where the columns of the measurement matrix A ∈
CNR·Nt×N2

t ·Nβ are the vectors vec(Z(τ, β, f)) ∈ CNR·Nt ,
(τ, β, f) ∈ [Nt] × [Nβ ] × [Nt], and n ∈ CNR·Nt represents
a noise vector. Note that the number m = NR · Nt of
measurements is significantly smaller than the dimension
N = N2

t · Nβ of the vector x representing the target scene.
Reconstructing x ∈ CN from the measurements y ∈ Cm
becomes then the task of solving a highly underdetermined
system of linear equations. Taking into account that sparsity
of x is a natural assumption in many radar applications, we
follow a compressed sensing approach in order to reconstruct
x. Note that since the transmit signals sj , j = 1, . . . , NT , are
Gaussian random vectors, the resulting matrix A is a highly
structured random matrix. While a first analysis of this matrix
has been conducted in [2] for random support sets, we aim at
deepening the understanding of its properties in the context of
compressed sensing.

As in [2], we will assume below that the parameters take
the values

∆τ = ∆t =
1

2B
, ∆f =

1

T

∆β =
2

NRNT
, Nβ = NRNT ,

and dT = 1
2 , dR = NT /2 or dT = NR/2, dR = 1/2. In

particular, the choice of ∆β (together with the results below)
means that the angular resolution is the same as the one of an
array with NRNT antennas. This is a huge gain compared to
the resolution of 2

NR+NT
which one would usually obtain for

a radar device with NT +NR antennas.

III. COMPRESSED SENSING

In general, compressed sensing aims at reconstructing vectors
x ∈ Cm from underdetermined linear measurements y =
Ax with A ∈ Cm×N , where m � N , see e.g. [1] for an
introduction. Assuming that x is sparse, i.e., ‖x‖0 = #{` :
x` 6= 0} ≤ s (or x is at least approximately sparse), we
can reconstruct x via several tractable algorithms including
`1-minimization. The latter consists in solving the convex
optimization problem

min
z
‖z‖1 subject to Az = y.

Several approaches for analyzing `1-minimization have been
developed. The restricted isometry property of the measurement
matrix A is a well-known tool for this task. For a sparsity
s ≤ N , the restricted isometry constant δs of A is defined as
the smallest constant such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 ∀x s.t. ‖x‖0 ≤ s.

If δ2s < 1/
√

2 then `1-minimization reconstructs every s-sparse
x from y = Ax, see [1], [6]. Moreover, reconstruction is stable
under sparsity defect and perturbation of the measurements
by noise when employing the noise-constraint `1-minimization
problem

min
z
‖z‖1 subject to ‖Az− y‖2 ≤ %.



In fact, if y = Ax + n with ‖n‖2 ≤ % and δ2s < 1/
√

2 then
the minimizer x] of the above optimization problem satisfies

‖x− x]‖2 ≤ C1%+
C2√
s

inf
‖z‖0≤s

‖x− z‖1.

We will also consider the LASSO problem below which consists
in solving the regularized problem

min
z

1

2
‖Az− y‖22 + λ‖z‖1, (3)

where λ > 0 is a suitable regularization parameter. We
will present a nonuniform recovery result for LASSO which
holds for a fixed sparse vector with high probability. For the
corresponding analysis, we will rely on conditions ensuring
the success of support recovery via the LASSO derived in [7].

While it is very hard (and by-now open) to analyze the
restricted isometry property for deterministic measurement
matrices in the optimal parameter regime, it is known that
Gaussian random matrices satisfy δs ≤ δ with high probability
provided that

m ≥ Cδ−2s ln(eN/s). (4)

Similar guarantees (both for the RIP as well as for nonuniform
recovery) with some additional logarithmic factors have been
derived also for practically more relevant structured random
matrices such as random partial Fourier matrices [8]–[10],
partial random circulant matrices [10]–[12], time-frequency
structured random matrices [12], [13] and a structured matrix
arising from another radar measurement setup [14].

IV. RANDOM SUPPORTS

Friedlander and Strohmer [2] analyzed sparse recovery (and
support recovery) for the MIMO measurement matrix in (2)
in connection with LASSO when the support set of the sparse
vector follows a uniform distribution among all support sets
in [Nt] × [Nβ ] × [Nt]. Additionally, they assume that the
signs of the nonzero entries follow a Steinhaus distribution
(each entry is uniformly distributed on the complex unit
torus), but the magnitudes are arbitrary. Under a few (not
so important) assumptions on the parameters Nt and Nβ ,
they consider the solution x] of the LASSO problem (3) with
λ = 2σ

√
2 log(N2

t Nβ) computed from y = Ax + n where n
is a complex Gaussian random vector whose with i.i.d. mean-
zero and variance σ2. If the absolute entries of x are above
a certain threshold determined by σ, then they show that the
supports of x] and x coincide provided that

NR ·Nt ≥ Cs log(N2
t Nβ). (5)

(Note that Theorem 5 in [2] contains a typo in this estimate.)
Below we will study sparse recovery without assuming ran-
domness of the support.

V. RIP ESTIMATE

Our first main result establishes the RIP for the radar
measurement matrix in (2).

Theorem 1. Let the transmit signals sj ∈ CNt , j = 1, . . . , N ,
be independent standard complex Gaussian random vectors.
For δ, ε ∈ (0, 1), assume that

Nt ≥ Cδ−2smax
{

log2(N) log2(s), log(1/ε)
}

(6)

where N = N2
t Nβ . Then the scaled MIMO radar measurement

matrix 1√
NTNRNt

A ∈ CNRNt×N satisfies δs ≤ δ with
probability at least 1− ε.

Clearly, the above theorem implies stable s-sparse recovery
via `1-minimization with high probability provided that

Nt & s log2(N) log2(s). (7)

The proof writes the restricted isometry constant δs as the
supremum of a chaos process and then uses tools developed
in [12] which ultimately require to bound certain covering
numbers.

Compared to the standard estimate (4), our new bound
(7) requires more measurements even when ignoring the
logarithmic factors since here the number of measurements
is m = NRNt, so that the factor NR is missing on the left
hand side of (7). Nevertheless, our bound (7) is optimal (up
to possibly logarithmic factors) due to the special structure of
the measurement matrix. This can be seen by considering a
certain (scaled) submatrix B ∈ CNt×N2

t of A for which one
can argue that the corresponding restricted isometry constant
satisfies δs(B) ≤ δs(A), see [15] for details. A general lower
bound for restricted isometry constants [1, Corollary 10.8]
shows then that necessarily

Nt ≥ Cδs log(eN2
t /s)

if δs(A) ≤ δ and hence δs(B) ≤ δ. This means that (7) is
optimal up to logarithmic factors.

VI. NONUNIFORM RECOVERY

We now pass to a nonuniform analysis of the recovery
performance of the MIMO measurement matrix A introduced
in (2). This means that we fix a sparse vector x, and show that
recovery is successful with high probability on the draw of A.
It turns out that the fine structure of the support set of x plays
a significant role.

In order to describe this phenomenon we introduce an
equivalence relation on the set of angle parameters β ∈ [Nβ ],
where we recall that Nβ = NRNT . We say that β, β′ ∈ [Nβ ]
are equivalent, β ∼ β′, if

β − β′ ∈ NRZ.

For a given support set S ⊂ [Nt]× [Nβ ]× [Nt] we define

S[β] = {(τ ′, β′, f ′) ∈ S : β′ ∼ β}.

Definition 1. A support set S is called η-balanced if for all
equivalence classes [β] of angle parameters it holds

|S[β]| ≤ η
|S|
NR

.

Since there are NR angle classes, the parameter η ranges
between 1 and NR. Support sets which are η-balanced with a



small (constant) parameter η are favourable for sparse recovery
as shown by the next result.

Theorem 2. Let x be an s-sparse target scene with η-balanced
support. Let the MIMO measurement matrix A ∈ CNRNt×N ,
N = N2

t Nβ , be generated by the transmit signals sj ,
j = 1, . . . , NT , chosen to be independent complex standard
Gaussian random vectors. Further, assume that the signs of the
nonzero entries of x form a Steinhaus sequence (i.e., the entries
are independent and uniformly distributed on the complex
torus). Take measurements

y = Ax + n,

where the entries of the noise vector n are independent normal
distributed with mean-zero and variance σ2. Let x] be the solu-
tion of the LASSO problem (3) with λ = 2σ√

NTNRNt

√
2 log(N).

If
NRNt ≥ Cηs log3(ηN/ε) (8)

and
min

Θ∈supp(x)
|xΘ| >

8σ√
NTNRNt

√
2 log(N),

then, with probability at least 1− ε,

supp(x]) = supp(x).

For η-balanced supports with η ≤ c, we hence recover the
usual scaling of the number of measurements in terms of
the sparsity (up to additional logarithmic factors) common in
compressed sensing. In the worst case that η = NR, we obtain
essentially the same scaling as for the RIP estimate in (6). The
theorem also explains the discrepancy between Friedlander
and Strohmer’s earlier result (5) for random supports and the
estimate (6) for the RIP. In fact, a randomly chosen support
set will be η-balanced for small η with high probability.

The proof of the above theorem uses results in [7] on support
recovery via LASSO. A crucial ingredient consists in proving
that the measurement matrix with columns restricted to S[β]

is well-conditioned under a suitable condition on Nt. To this
end, one relies on tools such as symmetrization, decoupling
and a version of the noncommutative Khintchine inequality
for chaos, see [10, Theorem 6.22]. We again refer to [15] for
details.

Preliminary numerical experiments confirm the dependence
of the fine structure of the support sets on the recovery
performance as indicated by (8). Detailed experiments will
be described in [15].

Rather than support recovery we note that one may also
derive reconstruction error estimates in the spirit of the main
result in [14].

VII. CONCLUSION

We have studied sparse recovery for a MIMO measurement
setup. We provided both an estimate for the restricted isometry
property and a nonuniform recovery result. The latter reveals a
dependence of the recovery performance on the fine structure
of the support set and explains the discrepancy between the RIP
estimate and a previous estimate for random support sets due

to Friedlander and Strohmer [2]. To the best of our knowledge
such a dependence on fine properties of the support has not
been observed earlier in the compressed sensing literature.

Our approach assumes that the targets are located on the grid
points of the discretization. This may not be completely realistic
in practice. It remains as an open question to study the effect
of off-grid targets on the reconstruction error and to possibly
develop methods which may overcome the shortcomings of
working with a discrete location grid.
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