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ABSTRACT

We show that sparse spherical harmonic expansions can
be recovered from a small number of randomly chosen
samples on the sphere using `1-minimization. To this
end, we establish the restricted isometry property of an
associated preconditioned random measurement matrix.

1. INTRODUCTION

Compressed sensing has triggered significant research
activity in recent years. It predicts that sparse signals
can be recovered from what was previously believed to
be highly incomplete information. In this work, we show
that functions on the sphere S2 = {x ∈ R3, ‖x‖2 = 1}
that have a sparse or compressible representation in the
spherical harmonic basis can be recovered from a num-
ber of samples that scales (essentially) linearly with the
sparsity level. This can be viewed as an extension of
existing results [7, 8] for sparse recovery of trigonomet-
ric polynomials on the circle. Since the (L2-normalized)
spherical harmonic basis functions are not uniformly
bounded, standard compressed sensing theory does not
apply directly to sparse recovery on the sphere. Instead,
we appeal to recent results in [6] concerning sparse re-
covery in orthonormal polynomial systems. Since or-
thonormal polynomials blow up sufficiently quickly and
uniformly at the endpoints of their domain, one precondi-
tions in order to transform the problem into that of sparse
recovery in a uniformly bounded system. The decompo-
sition of spherical harmonic basis functions into tensor
products of trigonometric polynomials and Jacobi poly-
nomials allows to prove the main result: any degree-D
polynomial on the sphere (that is, with N = D2 co-
efficients) consisting of at most s spherical harmonic
basis elements can be efficiently recovered from m ∼
sN1/4 log4 (N) independent sampling points drawn uni-
formly with respect to a certain measure (see below). We
establish this result by verifying the restricted isometry
property (RIP) of an associated random matrix.

2. BACKGROUND AND NOTATION

The spherical harmonics Y k` ,−` ≤ k ≤ `, k ≥ 0 form
an orthonormal basis for the Hilbert space of square-
integrable functions on the sphere. They are orthogo-
nal with respect to the spherical surface measure Ω. In
spherical coordinates (θ, φ) ∈ B := [0, 2π) × [0, π],
(x = cos(θ) sin(φ), y = sin(θ) sin(φ), z = cos(φ)) ∈
S2, this orthogonality relation becomes∫ 2π

0

∫ π

0

Y k` (θ, φ)Y k′
`′ (θ, φ) sin(φ)dφdθ = δ``′δkk′ .

(1)
Here, z denotes the complex conjugate and δmn is the
Kronecker delta. The spherical harmonics may be ex-
pressed as

Y k` (θ, φ) = eikθ(sinφ)|k|p|k|`−|k|(cosφ), (θ, φ) ∈ B, (2)

where the Jacobi polynomials (pαn)∞n=0 with parameter
α > −1 are the orthonormal polynomial basis on the
interval [−1, 1] with respect to the measure dv(x) =
(1 − x2)αdx [9]. In particular, the Lebesgue measure
α = 0 generates the Legendre polynomials, while the
Chebyshev measure, α = −1/2, generates the Cheby-
shev polynomials.

Spherical harmonic expansions on the sphere are anal-
ogous to Fourier series expansions on the circle. Func-
tions on the sphere of the form

g(θ, φ) =
D−1∑
`=0

∑̀
k=−`

c`,kY
k
` (θ, φ) (3)

are called harmonic polynomials of degree D − 1. Note
that N = D2 spherical harmonic basis elements gen-
erate harmonic polynomials of degree D − 1. We will
call a harmonic polynomial s-sparse if its coefficient vec-
tor c = (c`,k) ∈ CN has cardinality at most s; i.e.
‖c‖0 := |{(`, k) : c`,k 6= 0}| ≤ s. More generally,
the degree to which a harmonic polynomial can be well-
approximated by its s most significant coefficients can
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be quantified using the concept of best s-term approxi-
mation error which is defined, for a vector z ∈ CN by

σs(z)1 = inf
y:‖y‖0≤s

‖y − z‖1.

We say that a harmonic polynomial (3) is compressible if
σs(c)1 decays quickly as s increases.

3. MAIN RESULTS

We aim to recover sparse harmonic polynomials on
the sphere from only a few function samples. Note
that samples yj = g(θj , φj), j = 1, . . . ,m, of
a D − 1-degree harmonic polynomial g(θ, φ) =∑D−1
`=0

∑`
k=−` c`,kY

k
` (θ, φ) may be expressed concisely

in terms of the coefficient vector c = (c`,k) ∈ CN ac-
cording to

y = Φc, (4)

where Φ is the m × N matrix defined component-wise
by

Φj,(k,`) = Y k` (θj , φj). (5)

We are interested in solving the system of linear equa-
tions (4) in the underdetermined setting m < N , and
in particular, to single out the original sparse coefficient
vector c from among the infinitely many solutions. The
compressed sensing literature has suggested various re-
construction algorithms for sparse recovery; for simplic-
ity we focus only on `1-minimization [1] in this paper.

The L∞-norm of the spherical harmonics
Y k` (θ, φ) increases with the degree ` according to
sup−`≤k≤` ‖Y k` ‖∞ = sup ‖Y 0

` ‖∞ = `, and this
extremum is obtained at the spherical caps φ = 0, π.
This means that the linear system (4) is in general
ill-conditioned. It is known (see Proposition 6) that
|(sinφ)1/2Y k` (θ, φ)| ∼ `1/4; consequently, we precon-
dition the system (4) for numerical stability, multiplying
both sides by the m×m diagonal matrix A with entries
Aj,j = (sinφj)1/2,

Ay = AΦc. (6)

Our main result is that any s-sparse harmonic polyno-
mial on the sphere of maximal degree D can be recov-
ered efficiently from a number of samples m that scales
linearly with the sparsity level and sublinearly with the
degree. This reconstruction is moreover robust with re-
spect to noisy samples and passing from sparse to com-
pressible vectors.

Theorem 1. Letm, s, andN be given integers satisfying

m ≥ Cs log3(s)N1/4 log(N). (7)

Suppose that m coordinates on the sphere
(θ1, φ1), . . . , (θm, φm) are drawn independently
from the uniform measure on B = [0, 2π)× [0, π].

Let Φ be the m × N spherical harmonic ma-
trix (5) and let AΦ be its preconditioned version (6).
With probability exceeding 1 − N−γ log3(s) the fol-
lowing holds for all harmonic polynomials g(θ, φ) =∑D−1
`=0

∑`
k=−` c`,kY

k
` (θ, φ). Suppose that noisy sam-

ple values yj = g(θj , φj) + ηj are observed, and that
‖η‖∞ ≤ ε. Let

ĉ = arg min ‖z‖1 subject to ‖AΦz −Ay‖2 ≤
√
mε.
(8)

Then

‖c− ĉ‖2 ≤
C1σs(c)1√

s
+ C2ε.

The constants C,C1, C2, and γ are universal.

We expect that the bound (7) is not optimal, but so far
we have not been able to remove the polynomial factor
N1/4.

4. NUMERICAL EXPERIMENTS

In Figure 1, we plot a phase diagram illustrating the suc-
cess of `1-minimization (equation (8), ε = 0) in re-
covering s-sparse harmonic polynomials from m sam-
ple values. More precisely, we fix the degree to be
D = N1/2 = 16 and vary the sparsity level s and num-
ber of measurements m. We form an s-sparse coefficient
vector c = (c`,k) by choosing a random support set from
N ∩ [1, N ] of cardinality s and assigning independent
and identically distributed Gaussian weights as the co-
efficients to this support. We draw m independent sam-
ples (θj , φj) from the uniform measure on B which we
use to recover the s-sparse vector using `1-minimization.
For each pair (s,m), we record the frequency of suc-
cess of `1-minimization out of 20 trials. The results, il-
lustrated in Figure 1, show a sharp transition between
uniform recovery (in black) and no recovery whatsoever
(white). This transition curve is similar to the phase tran-
sition curves obtained for other compressive sensing ma-
trices, e.g. the random partial discrete Fourier matrix or
the Gaussian ensemble [2].

5. SPARSE RECOVERY VIA RESTRICTED
ISOMETRY CONSTANTS

We prove Theorem 1 by showing that the preconditioned
spherical harmonic matrix Φ̃ = AΦ in (6) satisfies the
restricted isometry property (RIP) [7, 1].
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Definition 2 (Restricted isometry constants). Let Ψ ∈
Cm×N . For s ≤ N , the restricted isometry constant δs
associated to Ψ is the smallest number such that

(1− δs)‖c‖22 ≤ ‖Ψc‖22 ≤ (1 + δs)‖c‖22 (9)

for all s-sparse vectors c ∈ CN .

Informally, we say that the matrix Ψ “has the re-
stricted isometry property” if δs is small for s reason-
ably large compared to m. For matrices satisfying the
restricted isometry property, the following `1-recovery
results can be shown [1, 3].

Theorem 3 (Sparse recovery for RIP-matrices). Let Ψ ∈
Cm×N . Assume that the restricted isometry constant of
Ψ ∈ Cm×N satisfies

δ2s < 3/(4 +
√

6) ≈ 0.4652. (10)

Let x ∈ CN and assume noisy measurements y = Ψx+η
are given with ‖η‖2 ≤ ε. Let x# be the minimizer of

arg min
z∈CN

‖z‖1 subject to ‖Φz − y‖2 ≤ ε. (11)

Then

‖x− x#‖2 ≤ C1
σs(x)1√

s
+ C2ε, (12)

for some constants C1, C2 > 0 that depend only on δ2s.
In particular, if x is s-sparse then reconstruction is exact,
x# = x.

A general setup for matrices having the restricted
isometry property are those associated to bounded or-
thonormal systems [7, 8, 1].

Theorem 4 (RIP for bounded orthonormal systems).
Consider an orthonormal system of functions ψj , j ∈
[1, N ] ∩ N on a measurable space M endowed with a
probability measure ν, that is

∫
M ψjψkdν = δj,k. Con-

sider the matrix Ψ ∈ Cm×N with entries

Ψ`,k = ψk(x`), ` ∈ [1,m] ∩ N, k ∈ [1, N ] ∩ N,

formed by i.i.d. samples x` drawn from the measure
ν. Suppose this system has the uniform bound K =
supj∈[N ] ‖ψj‖∞ = supj∈[N ] supx∈D |ψj(x)|. If

m ≥ Cδ−2K2s log3(s) log(N), (13)

then with probability at least 1 − N−γ log3(s), the re-
stricted isometry constant δs of 1√

m
Ψ satisfies δs ≤ δ.

The constants C > 0 and γ > 0 are universal.

An important special case is the matrix associated to
samples of the trigonometric system (exp(2πijx))N−1

j=0

chosen from the uniform measure on [0, 1], which has the
optimal uniform bound K = 1. Another example is the
sampling matrix associated to the Chebyshev polynomial
system. In this case, K =

√
2.

6. SPARSE RECOVERY IN SPHERICAL
HARMONIC SYSTEMS

Recall from (2) that the spherical harmonics can be ex-
pressed as tensor products of complex exponentials in θ
and orthogonal polynomials in cos(φ). Since the latter
are not uniformly bounded, spherical harmonics do not
fall directly into the scope of bounded orthonormal sys-
tems. To get around this obstacle, we proceed in a similar
fashion to [6], and use estimates on the uniform rate of
growth of orthogonal polynomials in order to precondi-
tion the spherical harmonic system.

First we will need the following growth estimates.

Proposition 5. Consider the weight function v(x) =
(1−x2)α on [−1, 1], and let (pαn)n be the associated or-
thonormal polynomial system. Then, for all x ∈ [−1, 1],
the following holds.

1. If α = 0, the associated polynomials (p0
n) are the

Legendre polynomials and satisfy

(1− x2)1/4|p0
n(x)| ≤ 2/

√
π. (14)

2. For any α ≥ 0,

(1− x2)1/4+α/2|pαn(x)| ≤ Cα (15)
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3. If α ≥ 3, then

(1− x2)1/4+α/2|pαn(x)| ≤ Cα1/6
(

1 +
α

n

)1/12

,

(16)
where C > 0 is a universal constant.

The bound (14) for Legendre polynomials is classical
and known to be tight, and the more general bound (15) is
also classical; see [9] for more details. The more refined
bound (16) was derived only recently in [5]. Although
the result is stated in [5] for the parameter range α ≥
1, n ≥ 6, one can verify that the key estimate (Lemma 8
in [4]) is valid also for the parameter range α ≥ 3, n ≥ 0.

Using these bounds in conjunction with the tensor
product representation (2), we arrive at the following rate
of growth for the spherical harmonics.

Proposition 6. For all ` ∈ Z+ and −` ≤ k ≤ `,

(sinφ)1/2|Y k` (θ, φ)| ≤ C(`+ 1)1/4 ∀x ∈ [−1, 1].

We can now state the proof of Theorem 1.

Proof of Theorem 1.

Consider, for 0 ≤ ` ≤ D − 1, −` ≤ k ≤ `, the
functions

Qk` (θ, φ) = (sinφ)1/2Y k` (θ, φ). (17)

By Proposition 6,

sup
0≤`≤

√
N−1,−`≤k≤`

‖Qk` ‖∞ ≤ CN1/8

for a universal constant C. Because the spherical har-
monics Y k` are orthonormal with respect to the uniform
measure sin(φ)dφdθ, the Qk` ’s are orthonormal with re-
spect to the product measure dθdφ:∫ 2π

0

∫ π

0

Qk` (θ, φ)Qk
′

`′ (θ, φ)dθdφ (18)

=
∫ 2π

0

∫ π

0

Y k` (θ, φ)Y k
′

`′ (θ, φ) sin(φ)dθdφ = δ``′δkk′ .

Applying Theorem 4 to the system {Qk` } , whose
sampling matrix Qk` (θj , φj) = yj is equivalent
to the preconditioned spherical harmonic matrix
(sinφj)1/2Y k` (θj , φj) = yj (6), Theorem 1 follows
from the recovery results for restricted isometry systems
in Theorem 3.
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