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Abstract

Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the

success of new acquisition and processing techniques such as Compressed Sensing (CS). Fusion frames are very rich

new signal representation methods that use collections of subspaces instead of vectors to represent signals. This work

combines these exciting fields to introduce a new sparsity model for fusion frames. Signals that are sparse under

the new model can be compressively sampled and uniquely reconstructed in ways similar to sparse signals using

standard CS. The combination provides a promising new set of mathematical tools and signal models useful in a

variety of applications. With the new model, a sparse signal has energy in very few of the subspaces of the fusion

frame, although it does not need to be sparse within each of the subspaces it occupies. This sparsity model is captured

using a mixed `1/`2 norm for fusion frames.

A signal sparse in a fusion frame can be sampled using very few random projections and exactly reconstructed

using a convex optimization that minimizes this mixed `1/`2 norm. The provided sampling conditions generalize

coherence and RIP conditions used in standard CS theory. It is demonstrated that they are sufficient to guarantee

sparse recovery of any signal sparse in our model. Moreover, an average case analysis is provided using a probability

model on the sparse signal that shows that under very mild conditions the probability of recovery failure decays

exponentially with increasing dimension of the subspaces.

Index Terms

Compressed sensing, `1 minimization, `1,2-minimization, sparse recovery, mutual coherence, fusion frames,

random matrices.

I. INTRODUCTION

Compressed Sensing (CS) has recently emerged as a very powerful field in signal processing, enabling the

acquisition of signals at rates much lower than previously thought possible [1], [2]. To achieve such performance,

CS exploits the structure inherent in many naturally occurring and man-made signals. Specifically, CS uses classical

signal representations and imposes a sparsity model on the signal of interest. The sparsity model, combined with
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randomized linear acquisition, guarantees that non-linear reconstruction can be used to efficiently and accurately

recover the signal.

Fusion frames are recently emerged mathematical structures that can better capture the richness of the natural and

man-made signals compared to classically used representations [3]. In particular, fusion frames generalize frame

theory by using subspaces in the place of vectors as signal building blocks. Thus signals can be represented as linear

combinations of components that lie in particular, and often overlapping, signal subspaces. Such a representation

provides significant flexibility in representing signals of interest compared to classical frame representations.

In this paper we extend the concepts and methods of Compressed Sensing to fusion frames. In doing so we

demonstrate that it is possible to recover signals from underdetermined measurements if the signals lie only in

very few subspaces of the fusion frame. Our generalized model does not require that the signals are sparse within

each subspace. The rich structure of the fusion frame framework allows us to characterize more complicated signal

models than the standard sparse or compressible signals used in compressed sensing techniques.

We provide results using two worst-case analysis frameworks and an average-case one. Our worst-case anal-

ysis generalizes the notion of coherence to fusion frames and incorporates the restricted isometry property as a

reconstruction condition. The two approaches provide complimentary intuition on the differences between standard

sparsity models and sparsity in fusion frame models. Our understanding of the problem is further enhanced by the

average case analysis. As we move from standard sparsity to fusion frame or other vector-based sparsity models,

worst case analysis becomes increasingly pessimistic. The average case analysis provides a framework to discern

which assumptions of the worst case model become irrelevant and which are critical. This paper complements and

extends our work in [4].

In the remainder of this section we provide the motivation behind our work and describe some possible appli-

cations. Section II provides some background on Compressed Sensing and on fusion frames to serve as a quick

reference for the fundamental concepts and our basic notation. In Section III we formulate the problem and establish

the additional notation necessary in our development. We further explore the connections with existing research in

the field, as well as possible extensions. In Section IV we prove recovery guarantees using the coherence properties

of the sampling matrix. In Section V we prove similar guarantees using the restricted isometry properties (RIP) of

the sampling matrix. Section VI presents an average case analysis of our methods which is more appropriate for

typical usage scenarios. We conclude with a discussion of our results.

A. Motivation

As technology progresses, signals and computational sensing equipment becomes increasingly multidimensional.

Sensors are being replaced by sensor arrays and samples are being replaced by multidimensional measurements. Yet,

modern signal acquisition theory has not fully embraced the new computational sensing paradigm. Multidimensional

measurements are often treated as collections of one-dimensional ones due to the mathematical simplicity of such

treatment. This approach ignores the potential information and structure embedded in multidimensional signal and

measurement models.
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Our ultimate motivation is to provide a better understanding of more general mathematical objects, such as

vector-valued data points [5]. Generalizing the notion of sparsity is part of such understanding. Towards that goal,

we demonstrate that the generalization we present in this paper encompasses joint sparsity models [6], [7] as a

special case. Furthermore, it is itself a special case of block-sparsity models [8], with significant additional structure

that enhances existing results.

B. Applications

Although the development in this paper provides a general theoretical perspective, the principles and the methods

we develop are widely applicable. In particular, the special case of joint (or simultaneous) sparsity has already

been widely used in radar [9], sensor arrays [10], and MRI pulse design [11]. In these applications a mixed `1/`2

norm was used heuristically as a sparsity proxy. Part of our goals in this paper is to provide a solid theoretical

understanding of such methods.

In addition, the richness of fusion frames allows the application of this work to other cases, such as target

recognition and music segmentation. The goal in such applications is to identify, measure and track targets that are

not well described by a single vector but by a whole subspace. In music segmentation, for example, each note is not

characterized by a single frequency, but by the subspace spanned by the fundamental frequency of the instrument

and its harmonics [12]. Furthermore, depending on the type of instrument in use, certain harmonics might or might

not be present in the subspace. Similarly, in vehicle tracking and identification, the subspace of a vehicle’s acoustic

signature depends on the type of vehicle, its engine and its tires [13]. Note that in both applications, there might

be some overlap in the subspaces which distinct instruments or vehicles occupy.

Fusion frames are quite suitable for such representations. The subspaces defined by each note and each instrument

or each tracked vehicle generate a fusion frame for the whole space. Thus the fusion frame serves as a dictionary

of targets to be acquired, tracked, and identified. The fusion frame structure further enables the use of sensor arrays

to perform joint source identification and localization using far fewer measurements than a classical sampling

framework.

We also envision fusion frames to play a key role in video acquisition, reconstruction and compression applications

such as [14]. Nearby pixels in a video exhibit similar sparsity structure locally, but not globally. A block- or joint-

sparsity model such as [6]–[8] is very constraining in such cases. On the other hand, subspace-based models for

different parts of an image significantly improve the modeling ability compared to the standard compressed sensing

model.

C. Notation

Throughout this paper ‖x‖p = (
∑
i x

p
i )

1/p
, p > 0 denotes the standard `p norm. The operator norm of a matrix

A from `p into `p is written as ‖A‖p→p = max‖x‖p≤1 ‖Ax‖p.
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II. BACKGROUND

A. Compressed Sensing

Compressed Sensing (CS) is a recently emerged field in signal processing that enables signal acquisition using

very few measurements compared to the signal dimension, as long as the signal is sparse in some basis. It predicts

that a signal x ∈ RN with only k non-zero coefficients can be recovered from only n = O(k log(N/k)) suitably

chosen linear non-adaptive measurements, compactly represented using

y = Ax, y ∈ Rn,A ∈ Rn×N .

A necessary condition for exact signal recovery of all k-sparse x is that

Az 6= 0 for all z 6= 0, ‖z‖0 ≤ 2k,

where the `0 ‘norm,’ ‖x‖0, counts the number of non-zero coefficients in x. In this case, recovery is possible using

the following combinatorial optimization,

x̂ = argmin x∈RN ‖x‖0 subject to y = Ax.

Unfortunately this is an NP-hard problem [15] in general, hence is infeasible.

Exact signal recovery using computationally tractable methods can be guaranteed if the coherence of the measure-

ment matrix A is sufficiently small [5], [16]. The coherence of a matrix A with unit norm columns ai, ‖ai‖2 = 1,

is defined as

µ = max
i6=j
|〈ai,aj〉| .

Exact signal recovery is also guaranteed if A obeys a restricted isometry property (RIP) of order 2k, i.e., if there

exists a constant δ2k such that for all 2k-sparse signals x

(1− δ2k)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2k)‖x‖22.

We note the relation δ2k ≤ (k − 1)µ, which easily follows from Gershgorin’s theorem. If the coherence of A is

small or if A has a small RIP constant, then the following convex optimization program exactly recovers the signal

from the measurement vector y [1],

x̂ = argmin x∈RN ‖x‖1 subject to y = Ax.

A surprising result is that random matrices with sufficient number of rows can achieve small coherence and small

RIP constants with overwhelmingly high probability.

A large body of literature extends these results to measurements of signals in the presence of noise, to signals that

are not exactly sparse but compressible [1], to several types of measurement matrices [17]–[21] and to measurement

models beyond simple sparsity [22].
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B. Fusion Frames

Fusion frames are generalizations of frames that provide a richer description of signal spaces. A fusion frame

for RM is a collection of subspaces Wj ⊆ RM and associated weights vj , compactly denoted using (Wj , vj)Nj=1,

that satisfies

A‖x‖22 ≤
N∑
j=1

v2
j ‖Pjx‖22 ≤ B‖x‖

2
2

for some universal fusion frame bounds 0 < A ≤ B < ∞ and for all x ∈ RM , where Pj denotes the orthogonal

projection onto the subspaceWj . We use mj to denote the dimension of the jth subspaceWj , j = 1, . . . , N . A frame

is a special case of a fusion frame in which all the subspacesWj are one-dimensional (i.e., mj = 1, j = 1, . . . , N ),

and the weights vj are the norms of the frame vectors.

The generalization to fusion frames allows us to capture interactions between frame vectors to form specific

subspaces that are not possible in classical frame theory. Similar to classical frame theory, we call the fusion frame

tight if the frame bounds are equal, A = B. If the fusion frame has vj = 1, j = 1, . . . , N , we call it a unit-norm

fusion frame. In this paper, we will in fact restrict to the situation of unit-norm fusion frames, since the anticipated

applications are only concerned with membership in the subspaces and do not necessitate a particular weighting.

Dependent on a fusion frame (Wj , vj)Nj=1 we define the Hilbert space H as

H = {(xj)Nj=1 : xj ∈ Wj for all j = 1, . . . , N} ⊆ RM×N .

Finally, let Uj ∈ RM×mj be a known but otherwise arbitrary matrix, the columns of which form an orthonormal

basis for Wj , j = 1, . . . , N , that is UT
j Uj = Imj

, where Imj
is the mj ×mj identity matrix, and UjUT

j = Pj .

The fusion frame mixed `q,p norm is defined as

∥∥(xj)Nj=1

∥∥
q,p
≡

 N∑
j=1

(vj‖xj‖q)p
1/p

, (1)

where (vj)Nj=1 are the fusion frame weights. When the parameter q of the norm is omitted, it is implied to be

q = 2:

∥∥(xj)Nj=1

∥∥
p
≡

 N∑
j=1

(vj‖xj‖2)p
1/p

.

Furthermore, for a sequence c = (cj)Nj=1, cj ∈ Rmj , we similarly define the mixed norm

‖c‖2,1 =
N∑
j=1

‖cj‖2.

The `0–‘norm’ (which is actually not even a quasi-norm) is defined as

‖x‖0 = #{j : xj 6= 0}.

We call a vector x ∈ H k-sparse, if ‖x‖0 ≤ k.
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III. SPARSE RECOVERY OF FUSION FRAME VECTORS

We now consider the following scenario. Let x0 = (x0
j )
N
j=1 ∈ H, and assume that we only observe n linear

combinations of those vectors, i.e., there exist some scalars aij satisfying that ‖(aij)ni=1‖2 = 1 for all j = 1, . . . , N

such that we observe

y = (yi)ni=1 =

 N∑
j=1

aijx0
j

n

i=1

∈ K, (2)

where K denotes the Hilbert space

K = {(yi)ni=1 : yi ∈ RM for all i = 1, . . . , n}.

We first notice that (2) can be rewritten as

y = AIx0, where AI = (aijIM )1≤i≤n, 1≤j≤N ,

i.e., AI is the matrix consisting of the blocks aijIM .

We now wish to recover x0 from those measurements. If we impose conditions on the sparsity of x0, it is

suggestive to consider the following minimization problem,

x̂ = argmin x∈H‖x‖0 subject to
N∑
j=1

aijxj = yi for all i = 1, . . . , n.

Using the matrix AI, we can rewrite this optimization problem as

(P0) x̂ = argmin x∈H‖x‖0 subject to AIx = y.

However, this problem is NP-hard [15] and, as proposed in numerous publications initiated by [23], we prefer to

employ `1 minimization techniques. This leads to the investigation of the following minimization problem,

x̂ = argmin x∈H‖x‖1 subject to AIx = y.

Since we minimize over all x = (xj)Nj=1 ∈ H and certainly Pjxj = xj by definition, we can rewrite this

minimization problem as

(P̃1) x̂ = argmin x∈H‖x‖1 subject to APx = y,

where

AP = (aijPj)1≤i≤n, 1≤j≤N . (3)

Problem (P̃1) bears difficulties to implement since minimization runs over H. Still, it is easy to see that (P̃1) is

equivalent to the optimization problem

(P1) (ĉj)j = argmin cj∈Rmj ‖(Ujcj)Nj=1‖1 subject to AI(Ujcj)j = y, (4)

where then x̂ = (Uj ĉj)Nj=1. This particular form ensures that the minimizer lies in the collection of subspaces

(Wj)Nj=1 while minimization is performed over cj ∈ Rmj ,j = 1, . . . , N , hence feasible.
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Finally, by rearranging (4), the optimization problems, invoking the `0-‘norm’ and `1-norm, can be rewritten

using matrix-only notation as

(P0) ĉ = argmin c‖c‖0 subject to Y = AU(c)

and

(P1) ĉ = argmin c‖c‖2,1 subject to Y = AU(c),

in which

U(c) =


cT1 UT

1

...

cTNUT
N

 ∈ RN×M , Y =


y1

...

yn

 ∈ Rn×M ,A = (aij) ∈ Rn×N , cj ∈ Rmj , and yi ∈ RM .

Hereby, we additionally used that ‖Ujcj‖2 = ‖cj‖2 by orthonormality of the columns of Uj . We follow this

notation for the remainder of the paper.

A. Extensions

Several extensions of this formulation and the work in this paper are possible, but beyond our scope. For example,

the analysis we provide is on the exactly sparse, noiseless case. As with classical compressed sensing, it is possible

to accommodate sampling in the presence of noise. It is also natural to consider the extension of this work to

sampling signals that are not k-sparse in a fusion frame representation but can be very well approximated by such

a representation. (However, see Section V-C.)

The richness of fusion frames also allows us to consider richer sampling matrices. Specifically, it is possible to

consider sampling matrices with matrix entries, each operating on a different subspace of the fusion frame. Such

extensions open the use of `1 methods to general vector-valued mathematical objects, to the general problem of

sampling such objects [5], and to general model-based CS problems [22].

B. Relation with Previous Work

A special case of the problem above appears when all subspaces (Wj)Nj=1 are equal and also equal to the ambient

space Wj = RM for all j. Thus, Pj = IM and the observation setup of Eq. (2) is identical to the matrix product

Y = AX, where X =


x1

...

xN

 ∈ RN×M .

This special case is the same as the well studied joint-sparsity setup of [6], [7], [24]–[26] in which a collection of

M sparse vectors in RN is observed through the same measurement matrix A, and the recovery assumes that all

the vectors have the same sparsity structure. The use of mixed `1/`2 optimization has been proposed and widely

used in this case.
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Block Sparsity
K out of N 

blocks of length M

Fusion Frames Sparsity
K out of N 

subspaces of RM

Joint Sparsity
M vectors in RN

K out of N jointly sparse
components

Standard Sparsity
1 vector in RN

K nonzero 
components

Standard Sparsity
1 vector in RNM

KM nonzero 
components

Structured A

All Wj same

All Wj=R

Fig. 1. Hierarchy of Sparsity Models

Our formulation is a special case of the bock sparsity problem [8], where we impose a particular structure on

the measurement matrix A. This relationship is already known for the joint sparsity model, which is also a special

case of block sparsity. In other words, the fusion frames formulation we examine here specializes block sparsity

problems and generalizes joint sparsity ones. As we discussed in the introduction, fusion frames provide significant

structure to enhance the existing block-sparsity results, especially in the form of the fusion coherence, which we

discuss in the next section.

We would also like to note that the hierarchy of such sparsity problems depends on their dimension. For example,

a joint sparsity problem with M = 1 becomes the standard sparsity model. In that sense, joint sparsity models

generalize standard sparsity models. The hierarchy of sparsity models is illustrated in the venn diagram of Fig. 1.

IV. SPARSE RECOVERY USING COHERENCE BOUNDS

In this section we derive conditions on c0 and A so that c0 is the unique solution of (P0) as well as of (P1).

Our approach generalizes the notion of coherence, a commonly used measure of morphological difference between

the vectors of a measuring matrix. An excellent survey of the role of coherence in sparse representations can be

found in [5].

A. Fusion Coherence

First, we require some analog of mutual coherence. In particular, we need to consider an adaptation of this

notion to our more complicated situation involving the angles between the subspaces generated by the bases Uj ,

j = 1, . . . , N . In other words, here we face the problem of recovery of vector-valued (instead of scalar-valued)

components. This leads to the following definition.
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Definition 4.1: The fusion coherence of a matrix A ∈ Rn×N with normalized ‘columns’ (aj = a·,j)Nj=1 and a

fusion frame (Wj)Nj=1 for RM is given by

µf = µf (A, (Wj)Nj=1) = max
j 6=k

[|〈aj ,ak〉| · ‖PjPk‖2] ,

where Pj denotes the orthogonal projection onto Wj , j = 1, . . . , N .

Since the Pj’s are projection matrices, we can also rewrite the definition of fusion coherence as

µf = max
j 6=k

[
|〈aj ,ak〉| · |λmax(PjPk)|1/2

]
with λmax denoting the largest eigenvalue, simply due to the fact that the eigenvalues of PkPjPk and PjPk

coincide. Let us also remark that |λmax(PjPk)|1/2 equals the largest absolute value of the cosines of the principle

angles between Wj and Wk.

B. Fusion Coherence and Sparse Recovery

We first formulate the main result of this section using the new notions previously developed.

Theorem 4.2: Let A ∈ Rn×N with normalized columns (aj)Nj=1, let (Wj)Nj=1 be a fusion frame in RM , and let

Y ∈ Rn×M . If there exists a solution c0 of the system AU(c) = Y satisfying

‖c0‖0 <
1
2

(1 + µ−1
f ), (5)

then this solution is the unique solution of (P0) as well as of (P1).

Before we continue with the proof, let us for a moment consider the following special cases of this theorem.

a) Case M = 1: In this case the projection matrices equal 1, and hence the problem reduces to the classical

recovery problem Ax = y with x ∈ RN and y ∈ Rn. Thus our result reduces to the result obtained in [27], and

the fusion coherence coincides with the commonly used mutual coherence, i.e., µf = maxj 6=k |〈aj ,ak〉|.

b) Case Wj = RM for all j: In this case the problem becomes the standard joint sparsity recovery. We

recover a matrix X0 ∈ RN×M with few non-zero rows from knowledge of AX0 ∈ Rn×M , without any constraints

on the structure of each row of X0 (the general case has the constraint that X0 is required to be of the form U(c0)).

Again fusion coherence coincides with the commonly used mutual coherence, i.e., µf = maxj 6=k |〈aj ,ak〉|.

c) Case Wj ⊥ Wk for all j, k: In this case the fusion coherence becomes 0. And this is also the correct

answer, since in this case there exists precisely one solution of the system AU(c) = Y for a given Y. Hence the

condition (5) becomes meaningless.

d) General Case: In the general case we can consider two scenarios: either we are given the subspaces (Wj)j

or we are given the measuring matrix A. In the first situation we face the task of choosing the measuring matrix

such that µf is as small as possible. Intuitively, we would choose the vectors (aj)j so that a pair (aj ,ak) has a

large angle if the associated two subspaces (Wj ,Wk) have a small angle, hence balancing the two factors and try

to reduce the maximum. In the second situation, we can use a similar strategy now designing the subspaces (Wj)j

accordingly.
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C. Proof of Theorem 4.2

Before proceeding with the proof of Theorem 4.2, we introduce the fusion null space property as a useful tool,

which generalizes the notion of null space property from the standard compressed sensing setup [28]. This notion

will also be useful later to prove recovery bounds using the fusion restricted isometry constants.

Definition 4.3: Denote N = {h = (hj)Nj=1 : hj ∈ Rmj ,AU(h) = 0}. The pair (A, (Wj)Nj=1), with a matrix

A ∈ Rn×N and a fusion frame (Wj)Nj=1 is said to satisfy the fusion null space property if

‖hS‖2,1 <
1
2
‖h‖2,1 for all h ∈ N \ {0},

for all support sets S ⊂ {1, . . . , N} of cardinality at most k. Here hS denotes the vector which coincides with h

on the index set S and is zero outside S.

Lemma 4.4: Let A ∈ Rn×N and (Wj)Nj=1 be a fusion frame. Then all c = (cj)Nj=1, cj ∈ Rmj , with ‖c‖0 ≤ k

are the unique solution to (P1) with Y = AU(c) if and only if (A, (Wj)Nj=1) satisfies the fusion null space

property of order k.

Proof: Assume first that the fusion null space property holds. Let c0 be a vector with ‖c0‖0 ≤ k, and let c1

be an arbitrary solution of the system AU(c) = Y, and set

h = c0 − c1.

We obtain

‖c0‖2,1 − ‖c1‖2,1 = ‖c0
Sc‖2,1 + ‖c0

S‖2,1 − ‖c1
S‖2,1 ≥ ‖hSc‖2,1 − ‖hS‖2,1.

This term is greater than zero for any h 6= 0 provided that

‖hSc‖2,1 > ‖hS‖2,1 (6)

or, in other words,
1
2‖h‖2,1 > ‖hS‖2,1, (7)

which is ensured by the fusion null space property.

Conversely, assume that all vectors c with ‖c‖0 ≤ k are recovered using (P1). Then, for any h ∈ N \ {0} and

any S ⊂ {1, . . . , N} with |S| ≤ k, the k-sparse vector hS is the unique minimizer of ‖c‖2,1 subject to Ac = AhS .

Further, observe that A(−hSc) = A(hS) and −hSc 6= hS , since h ∈ N \ {0}. Therefore, ‖hS‖2,1 < ‖hSc‖2,1,

which is equivalent to the fusion null space property because h was arbitrary.

For the proof of Theorem 4.2 we first derive a reformulation of the equation AU(c) = Y. For this, let Pj denote

the orthogonal projection ontoWj for each j = 1, . . . , N , set AP as in (3) and define the map ϕk : Rk×M → RkM ,

k ≥ 1 by

ϕk(Z) = ϕk


z1

...

zk

 = (z1 . . . zk)T , i.e., the concatenation of the rows.
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Then it is easy to see that

AU(c) = Y ⇔ APϕN (U(c)) = ϕn(Y). (8)

We now split the proof of Theorem 4.2 into two lemmas, and wish to remark that many parts are closely inspired

by the techniques employed in [27], [29].

We first show that c0 satisfying (5) is the unique solution of (P1).

Lemma 4.5: If there exists a solution U(c0) ∈ RN×M of the system AU(c) = Y with c0 satisfying (5), then

c0 is the unique solution of (P1).

Proof: We aim at showing that the condition on the fusion coherence implies the fusion null space property.

To this end, let h ∈ N \ {0}, i.e., AU(h) = 0. By using the reformulation (8), it follows that

APϕN (U(h)) = 0.

This implies that

A∗PAPϕN (U(h)) = 0.

Defining aj by aj = (aij)i for each j, the previous equality can be computed to be

(〈aj ,ak〉PjPk)jkϕN (U(h)) = 0.

Recall that we have required the vectors aj to be normalized. Hence, for each j,

Ujhj = −
∑
k 6=j

〈aj ,ak〉PjPkUkhk.

Since ‖Ujhj‖2 = ‖hj‖2 for any j, this gives

‖hj‖2 ≤
∑
k 6=j

|〈aj ,ak〉| · ‖PjPk‖2‖hk‖2 ≤ µf (‖h‖2,1 − ‖hj‖2),

which implies

‖hj‖2 ≤ (1 + µ−1
f )−1‖h‖2,1.

Thus, we have

‖hS‖2,1 ≤ #(S) · (1 + µ−1
f )−1‖h‖2,1 = ‖c0‖0 · (1 + µ−1

f )−1‖h‖2,1.

Concluding, (5) and the fusion null space property show that h satisfies (7) unless h = 0, which implies that c0 is

the unique minimizer of (P1) as claimed.

Using Lemma 4.5 it is easy to show the following lemma.

Lemma 4.6: If there exists a solution U(c0) ∈ RN×M of the system AU(c) = Y with c0 satisfying (5), then

c0 is the unique solution of (P0).

Proof: Assume c0 satisfies (5) and AU(c0) = Y. Then, by Lemma 4.5, it is the unique solution of (P1).

Assume there is a c̃ satisfying AU(c̃) = Y such that ‖c̃‖0 ≤ ‖c0‖0. Then c̃ also satisfies (5) and again by Lemma

4.5 c̃ is also the unique solution to (P1). But this means that c̃ = c0 and c0 is the unique solution to (P0).

We observe that Theorem 4.2 now follows immediately from Lemmas 4.5 and 4.6.
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V. SPARSE RECOVERY USING THE RESTRICTED ISOMETRY PROPERTY

In this section we consider an alternative condition for sparse recovery using the restricted isometry property

(RIP) of the sampling matrix.

A. The Fusion Restricted Isometry Property (FRIP)

The RIP property on the sampling matrix, first introduced in [1], complements the mutual coherence conditions.

We introduce the following generalization for the fusion frame setup.

Definition 5.1: Let A ∈ Rn×N and (Wj)Nj=1 be a fusion frame for RM . Recall the matrix AP defined in (3).

The fusion restricted isometry constant δk is the smallest constant such that

(1− δk)‖z‖22 ≤ ‖APz‖22 ≤ (1 + δk)‖z‖22

for all z = (z1, z2, . . . , zN ) ∈ RMN , zj ∈ RM , of sparsity ‖z‖0 ≤ k.

Informally, we say that (A, (Wj)Nj=1) satisfies the fusion restricted isometry property (FRIP) if δk is small for

reasonably large k. Note that we obtain the classical definition of the RIP of A if M = 1 and all the subspaces

Wj have dimension 1.

Theorem 5.2: Let (A, (Wj)Nj=1) with fusion frame restricted isometry constant δ2k < 1/3. Then (P1) recovers

all k-sparse c from Y = AU(c).

Proof: The proof proceeds analogously to the one of Theorem 2.6 in [21], that is, we establish the fusion null

space property. The claim will then follow from Lemma 4.4.

Let us first note that

|〈APu,APv〉| ≤ δk‖u‖2‖v‖2

for all u = (u1, . . . ,uN ),v = (v1, . . . ,vN ) ∈ RMN , uj ,vj ∈ RM , with supp u = {j : uj 6= 0} ∩ supp v = ∅

and ‖u‖0 + ‖v‖0 ≤ k. This statement follows completely analogously to the proof of Proposition 2.5(c) in [30],

see also [28], [31].

Now let h ∈ N = {h : AU(h) = 0} be given. Using the reformulation (8), it follows that

APϕN (U(h)) = 0.

In order to show the fusion null space property it is enough to consider an index set S0 of size k of largest

components ‖hj‖2, i.e., ‖hj‖2 ≥ ‖hi‖2 for all j ∈ S0, i ∈ Sc0 = {1, . . . , N} \ S0. We partition Sc0 into index sets

S1, S2, . . . of size k (except possibly the last one), such that S1 is an index set of largest components in Sc0, S2 is

an index set of largest components in (S0 ∪ S0)c, etc. Let hSi be the vector that coincides with h on Si and is set

to zero outside. In view of h ∈ N we have AU(hS0) = AU(−hS1 − hS2 − · · · ). Now set z = ϕN (U(h)) and

zSi
= ϕN (U(hSi

)). It follows that AP(zS0) = AP(−
∑
i≥1 zSi

). By definition of the FRIP we obtain

‖hS0‖22 = ‖zS0‖22 ≤
1

1− δk
‖APzS0‖22 =

1
1− δk

〈
APzS0 ,AP

(
−
∑
i≥1

zSi

)〉
≤ 1

1− δk

∑
i≥1

|〈APzS0 ,AP(−zSi)〉| ≤
δ2k

1− δk
‖zS0‖2 ·

∑
i≥1

‖zSi‖2.
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Using that δk ≤ δ2k and dividing by ‖zS0‖2 yields

‖zS0‖2 ≤
δ2k

1− δ2k

∑
i≥1

‖zSi
‖2.

By construction of the sets Si we have ‖zj‖2 ≤ 1
k

∑
`∈Si−1

‖z`‖2 for all j ∈ Si, hence,

‖zSi
‖2 =

( ∑
j∈Si

‖zj‖22
)1/2 ≤ 1√

k
‖zSi−1‖2,1.

The Cauchy-Schwarz inequality yields

‖hS0‖2,1 ≤
√
k‖hS0‖2 ≤

δ2k
1− δ2k

∑
i≥1

‖zSi−1‖2,1 ≤
δ2k

1− δ2k
(‖zS0‖2,1 + ‖zSc

0
‖2,1) <

1
2
‖h‖2,1,

where we used the assumption δ2k < 1/3. Hence, the fusion null space property follows.

B. The classical RIP implies FRIP

Our next proposition relates the classical RIP with our newly introduced FRIP. Let us note, however, that it does

not take into account any properties of the fusion frame, so it is sub-optimal—especially if the subspaces of the

fusion frame are orthogonal or almost orthogonal.

Proposition 5.3: Let A ∈ Rn×N with classical restricted isometry constant δ̃k, that is,

(1− δ̃k)‖y‖22 ≤ ‖Ay‖22 ≤ (1 + δ̃k)‖y‖22

for all k-sparse y ∈ RN . Let (Wj)Nj=1 be an arbitrary fusion frame for RM . Then the fusion restricted isometry

constant δk of (A, (W)Nj=1) satisfies δk ≤ δ̃k.

Proof: Let c satisfy ‖c‖0 ≤ k, and denote the columns of the matrix U(c) by u1, . . . ,uM . The condition

‖c‖0 ≤ k implies that each ui is k-sparse. Since A satisfies the RIP of order k with constant δk, we obtain

‖AU(c)‖22,2 =
M∑
i=1

‖Aui‖22 ≤ (1 + δk)
M∑
i=1

‖ui‖22 = (1 + δk)‖U(c)‖22,2 = (1 + δk)‖c‖22,2

as well as

‖AU(c)‖22,2 =
M∑
i=1

‖Aui‖22 ≥ (1− δk)
M∑
i=1

‖ui‖22 = (1− δk)‖U(c)‖22,2 = (1− δk)‖c‖22,2.

This proves the proposition because AU(c) = APU(c).

C. Additional Remarks

Of course, it is possible to extend this proof in a similar manner to [1], [31]–[33] such that we can accommodate

measurement noise and signals that are well approximated by sparse fusion frame representation. We state the

analog of the main theorem of [31] without proof.

Theorem 5.4: Assume that the fusion restricted isometry constant δ2k of (A, (Wj)Nj=1) satisfies

δ2k < ∆ :=
√

2− 1 ≈ 0.4142.
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For x ∈ H, let noisy measurements Y = Ax + η be given with ‖η‖2 ≤ ε. Let c# be the solution of the convex

optimization problem

min ‖c‖2,1 subject to ‖AU(c)−Y‖2 ≤ η,

and set x# = U(c#). Then

‖x− x#‖H ≤ C1η + C2
‖xk − x‖H√

k

where xk is obtained from x be setting to zero all components except the k largest in norm. The constants C1, C2 > 0

only depend on δ2k (or rather on ∆− δ2k).

VI. AVERAGE CASE ANALYSIS

In this section we study the effect of the dimension of subspaces of the considered fusion frame on recoverability

of a vector x ∈ H. Intuitively, it seems that the higher the dimension, the ‘easier’ the recovery via the `1 minimization

problem [26] should be. However, it turns out that this intuition only holds true if we consider an average case

analysis, averaging over the vectors to be recovered. Adding dimensions can be interpreted as adding more channels

to a joint sparsity problem, which is known to not improve recoverability in the worst case [26].

A. General Recovery Condition

We start our analysis by deriving a recovery condition which the reader might want to compare with [34], [35].

Given a matrix X ∈ RN×M , we let sgn(X) ∈ RN×M denote the matrix which is generated from X by normalizing

each entry Xji by the norm of the corresponding row Xj,·. More precisely,

sgn(X)ji =


Xji

‖Xj,·‖2 : ‖Xj,·‖2 6= 0,

0 : ‖Xj,·‖2 = 0.

Column vectors are defined similarly by X·,i.

Under a certain condition on A, which is dependent on the support of the solution, we derive the result below

on unique recovery. To phrase it, let (Wj)Nj=1 be a fusion frame with associated orthogonal bases (Uj)Nj=1 and

orthogonal projections (Pj)Nj=1, and recall the definition of the notion U(c) in Section III. Then, for some support

set S = {j1, . . . , j|S|} ⊆ {1, . . . , N} of U(c), we let

AS = (A·,j1 · · ·A·,j|S|) ∈ Rn×|S|

and

U(c)S =


cTj1U

T
j1

...

cTj|S|U
T
j|S|

 ∈ R|S|×M .

Before stating the theorem, we wish to remark that its proof uses similar ideas as the analog proof in [26]. We

however state all details for the convenience of the reader.
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Theorem 6.1: Retaining the notions from the beginning of this section, we let cj ∈ Rmj , j = 1 . . . , N with

S = supp(c) = {j : cj 6= 0}. If AS is non-singular and there exists a matrix H ∈ Rn×M such that

AT
SH = sgn(U(c)S) (9)

and

‖HTA·,j‖2 < 1 for all j 6∈ S, (10)

then U(c) is the unique solution of (P1).

Proof: Let cj ∈ Rmj , j = 1 . . . , N be a solution of Y = AU(c), set S = supp(U(c)), and suppose AS is

non-singular and the hypotheses (9) and (10) are satisfied for some matrix H ∈ Rn×M . Let c′j ∈ Rmj , j = 1 . . . , N

with c′j0 6= cj0 for some j0 be a different set of coefficient vectors which satisfies Y = AU(c′). To prove our

result we aim to establish that

‖c‖2,1 < ‖c′‖2,1. (11)

We first observe that

‖c‖2,1 = ‖U(c)‖2,1 = ‖U(c)S‖2,1 = tr
[
sgn(U(c)S)(U(c)S)T

]
.

Set S′ = supp(U(c′)), apply (9), and exploit properties of the trace,

‖c‖2,1 = tr
[
AT
SH(U(c)S)T

]
= tr

[
(AU(c))TH

]
= tr

[
(AU(c′))TH

]
= tr

[
(AU(c′S))TH

]
+tr

[
(AU(c′Sc))TH

]
.

(12)

Now use the Cauchy-Schwarz inequality to obtain

‖c‖2,1 ≤
∑
j∈S
‖(U(c′)S)j,·‖2‖(HTAS)·,j‖2 +

∑
j∈Sc

‖(U(c′)Sc)j,·‖2‖(HTASc)·,j‖2

≤ max
j∈S
‖(HTAS)·,j‖2‖c′S‖2,1 + max

j∈Sc
‖(HTASc)·,j‖2‖c′Sc‖2,1 < ‖c′S‖2,1 + ‖c′Sc‖2,1 = ‖c‖2,1.

The strict inequality follows from ‖cSc‖1 > 0, which is true because otherwise c would be supported on S. The

equality AU(c) = AU(c′) would then be in contradiction to the injectivity of AS (recall that c 6= c′). This

concludes the proof.

The matrix H exploited in Theorem 6.1 might be chosen as

H = (A†S)T sgn(U(c)S)

to satisfy (9). This particular choice will in fact be instrumental for the average case result we are aiming for. For

now, we obtain the following result as a corollary from Theorem 6.1.

Corollary 6.2: Retaining the notions from the beginning of this section, we let cj ∈ Rmj , j = 1 . . . , N with

S = supp(U(c)). If AS is non-singular and

‖sgn(U(c)S)TA†SA·,j‖2 < 1 for all j 6∈ S, (13)

then U(c) is the unique solution of (P1).
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B. Probability Model

To derive a result in the average case, we require a probability model on the k-sparse U(c), more precisely, on

the associated vectors cj ∈ Rmj , j = 1 . . . , N . From now on, we assume that the dimensions of all subspaces are

the same, i.e., that

m = mj for all j = 1 . . . , N.

Inspired by the probability model in [26], we will assume that on the k-element support set S = supp(U(c)) =

{j1, . . . , jk} the entries of each vector cj are independent and follow a normal distribution,

U(c)S =


XT

1 UT
j1

...

XT
kUT

jk

 ∈ Rk×M , (14)

where X = (XT
1 . . .X

T
k )T ∈ RNm is a Gaussian random vector, i.e., all entries are independent standard normal

random variables.

For later use, we will introduce the matrices Ũj ∈ RM×Nm defined by

Ũj = (0M×m| · · · |0M×m|Uj |0M×m| · · · |0M×m),

where Uj is the jth block. For some b = (b1, . . . , bk)T ∈ Rk, we can then write U(c)TSb as

k∑
`=1

b`Ũj`X ∈ RM . (15)

C. Average Case Recovery for Fusion Frames

Our main result shows that the failure probability for recovering U(c) decays exponentially fast with growing

dimension m of the subspaces. Interestingly, the quantity θ involved in the estimate is again dependent on the

‘angles’ between subspaces and is of the flavor of the fusion coherence from Section IV.

Theorem 6.3: Let S ⊆ {1, . . . , N} be a set of cardinality k and suppose that A ∈ Rn×N satisfies

‖A†SA·,j‖2 ≤ α < 1 for all j 6∈ S. (16)

Let (Wj)Nj=1 be a fusion frame with associated orthogonal bases (Uj)Nj=1 and orthogonal projections (Pj)Nj=1, and

let Y ∈ Rn×M . Further, let cj ∈ Rmj , j = 1 . . . , N with S = supp(U(c)) such that the coefficients on S are

given by (14), and let θ be defined by

θ = 1 + max
i

∑
j 6=i

λmax (PiPj)1/2.

Choose δ ∈ (0, 1− α2). Then with probability at least

1− (N − k) exp
(
− (
√

1− δ − α)2

2α2θ
m

)
− k exp

(
−δ

2

4
m

)
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the minimization problem (P1) recovers U(c) from Y = AU(c). In particular, the failure probability can be

estimated by

N exp
(
−
(

max
δ∈(0,1−α2)

min
{

(
√

1− δ − α)2

2α2θ
,
δ2

4

})
m

)
.

Let us note that [26] provides several mild conditions that imply (16).

The proof of the above result is developed in several steps. A key ingredient is a concentration of measure result:

If f is a Lipschitz function on RK with Lipschitz constant L, i.e., |f(x)− f(y)| ≤ L‖x− y‖2 for all x, y ∈ RK ,

and X is a K-dimensional vector of independent standard normal random variables then [36, eq. (2.35)]

P(|f(X)− Ef(X)| ≥ u) ≤ 2e−u
2/(2L2) for all u > 0. (17)

Our first lemma investigates the properties of a function related to (15) that are needed to apply the above

inequality.

Lemma 6.4: Let b = (b1, . . . , bk)T ∈ Rk and S = {j1, . . . , jk} ⊆ {1, . . . , N}. Define the function f by

f(X) = ‖
k∑
`=1

b`Ũj`X‖2, X ∈ RNm.

Then the following holds.

(i) f is Lipschitz with constant ‖
∑k
`=1 b`Ũj`‖2→2.

(ii) For a standard Gaussian vector X ∈ RNm we have E[f(X)] ≤
√
m‖b‖2.

Proof: The claim in (i) follows immediately from

|f(X)− f(Y)| =
∣∣∣‖ k∑
`=1

b`Ũj`X‖2 − ‖
k∑
`=1

b`Ũj`Y‖2
∣∣∣

≤ ‖

(
k∑
`=1

b`Ũj`

)
(X−Y)‖2 ≤ ‖

k∑
`=1

b`Ũj`‖2→2‖X−Y‖2.

It remains to prove (ii). Obviously,

(Ef(X))2 ≤ E[f(X)2] = E

[
M∑
i=1

∣∣∣ k∑
`=1

b`(Ũj`X)i
∣∣∣2] =

M∑
i=1

k∑
`,`′=1

b`b`′E[(Ũj`X)i(Ũj`′X)i].

Invoking the conditions on X,

E[f(X)]2 ≤
M∑
i=1

k∑
`=1

b2`E[(Ũj`X)i]2 =
k∑
`=1

b2`‖Ũj`‖2F = m‖b‖22.

Next we estimate the Lipschitz constant of the function f in the previous lemma.

Lemma 6.5: Let b = (b1, . . . , bk)T ∈ Rk and S = {j1, . . . , jk} ⊆ {1, . . . , N}. Then

‖
k∑
`=1

b`Ũj`‖2→2 ≤ ‖b‖∞
√

1 + max
i∈S

∑
j∈S,j 6=i

λmax (PiPj)1/2.

Proof: First observe that

‖
k∑
`=1

b`Ũj`‖2→2 = ‖(
k∑
`=1

b`Ũj`)T (
k∑
`=1

b`Ũj`)‖1/22→2 = ‖
k∑

`,`′=1

b`b`′ŨT
j`
Ũj`′‖

1/2
2→2.
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Since

‖
k∑

`,`′=1

b`b`′ŨT
j`
Ũj`′‖2→2 ≤ ‖b‖2∞‖(UT

i Uj)i,j∈S‖2→2,

it follows that

‖
k∑
`=1

b`Ũj`‖2→2 ≤ ‖b‖∞‖(UT
i Uj)i,j∈S‖1/22→2. (18)

Next,

‖(UT
i Uj)i,j∈S‖2→2 ≤ max

i∈S

∑
j∈S
‖UT

i Uj‖2→2 = 1 + max
i∈S

∑
j∈S,j 6=i

‖UT
i Uj‖2→2. (19)

By definition of the orthogonal projections Pi,

‖UT
i Uj‖2→2 = ‖(UT

i Uj)TUT
i Uj‖1/22→2 = ‖UT

i UjUT
j Ui‖1/22→2 = ‖PiPj‖1/22→2 = λmax (PiPj)1/2.

Combining with (19),

‖(UT
i Uj)i,j∈S‖2→2 ≤ 1 + max

i∈S

∑
j∈S,j 6=i

λmax (PiPj)1/2. (20)

The lemma now follows from (18), (19), and (20).

Now we have collected all ingredients to prove our main result.

D. Proof of Theorem 6.3

Denote b(j) = (b(j)1 , . . . , b
(j)
k )T = A†SA·,j ∈ Rk for all j 6∈ S and choose δ ∈ (0, 1−α2). By Corollary 6.2, the

probability that the minimization problem (P1) fails to recover U(c) from Y = AU(c) can be estimated as

P
(

max
j /∈S
‖sgn(U(c)S)Tb(j)‖2 > 1

)
= P

(
max
j 6∈S
‖

k∑
`=1

b
(j)
` ‖Uj`X`‖−1

2 Ũj`X‖2 > 1

)

≤ P

(
max
j 6∈S
‖

k∑
`=1

b
(j)
` Ũj`X‖2 >

√
(1− δ)m

)
+ P

(
max

`=1,...,k
‖Uj`X`‖2 <

√
(1− δ)m

)

≤
∑
j /∈S

P

(
‖

k∑
`=1

b
(j)
` Ũj`X‖2 >

√
(1− δ)m

)
+

k∑
`=1

P
(
‖X`‖22 ≤ (1− δ)m

)
.

Since X` is a standard Gaussian vector in Rm [37, Corollary 3] gives

P
(
‖X`‖22 ≤ (1− δ)m

)
≤ exp(−δ2m/4).

Furthermore, the concentration inequality (17) combined with Lemmas 6.4 and Lemma 6.5 yields

P

(
‖

k∑
`=1

b
(j)
` Ũj`X‖2 >

√
(1− δ)m

)

= P

(
‖

k∑
`=1

b
(j)
` Ũj`X‖2 > ‖b(j)‖2

√
m+ (

√
1− δ − ‖b(j)‖2)

√
m

)

≤ exp
(
− (
√

1− δ − ‖b(j)‖2)2m
2‖b(j)‖2∞θ

)
≤ exp

(
− (
√

1− δ − ‖b(j)‖2)2m
2‖b(j)‖22θ

)
≤ exp

(
− (
√

1− δ − α)2m
2α2θ

)
.

Combining the above estimates yields the statement of the Theorem.
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VII. CONCLUSIONS AND DISCUSSION

The main contribution in this paper is the generalization of standard Compressed Sensing results for sparse

signals to signals that have a sparse fusion frame representation. As we demonstrated, the results generalize to

fusion frames in a very nice and easy to apply way, using the mixed `0/`1 norm.

A key result in our work shows that the structure in fusion frames provides additional information that can be

exploited in the measurement process. Specifically, our definition of fusion coherence demonstrates the importance

of prior knowledge about the signal structure. Indeed, if we know that the signal lies in subspaces with very little

overlap (i.e., where ‖PjPk‖2 is small in Definition 4.1) we can relax the requirement on the coherence of the

corresponding vectors in the sampling matrix (i.e., |〈aj ,ak〉| in the same definition) and maintain a low fusion

coherence. This behavior emerges from the inherent structure of fusion frames.

The emergence of this behavior is evident both in the guarantees provided by the fusion coherence, and in our

average case analysis. Unfortunately, our analysis of this property currently has not been incorporated in a tight

approach to satisfying the Fusion RIP property, as described in Section V. While an extension of such analysis for

the RIP guarantees is desirable, it is still an open problem.

Our average case analysis also demonstrates that as the sparsity structure of the problem becomes more intricate,

the worst case analysis can become too pessimistic for many practical cases. The average case analysis provides

reassurance that typical behavior is as expected; significantly better compared to the worst case. Our results

corroborate and extend similar findings for the special case of joint sparsity in [26].
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