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Abstract—Sparse representations have emerged as a powerful
tool in signal and information processing, culminated by the
success of new acquisition and processing techniques such as
Compressed Sensing (CS). Fusion frames are very rich new
signal representation methods that use collections of subspaces
instead of vectors to represent signals. These exciting fields have
been recently combined to introduce a new sparsity model for
fusion frames. Signals that are sparse under the new model can
be compressively sampled and uniquely reconstructed in ways
similar to sparse signals using standard CS. The combination
provides a promising new set of mathematical tools and signal
models useful in a variety of applications. With the new model,
a sparse signal has energy in very few of the subspaces of the
fusion frame, although it does not need to be sparse within each
of the subspaces it occupies.

In this paper we demonstrate that although a worst-case
analysis of recovery under the new model can often be quite
pessimistic, an average case analysis is not and provides sig-
nificantly more insight. Using a probability model on the sparse
signal we show that under very mild conditions the probability of
recovery failure decays exponentially with increasing dimension
of the subspaces.

Index Terms—Compressed sensing. `1 Minimization. `1,2 Mini-
mization. Sparse Recovery. Fusion Frames. Random Matrices.

I. INTRODUCTION

Compressed Sensing (CS) has recently emerged as a very
powerful field in signal processing, enabling the acquisition
of signals at rates much lower than previously thought pos-
sible [1], [2]. To achieve such performance, CS exploits the
structure inherent in many naturally occurring and man-made
signals. Specifically, CS uses classical signal representations
and imposes a sparsity model on the signal of interest. The
sparsity model, combined with randomized linear acquisition,
guarantees that non-linear reconstruction can be used to effi-
ciently and accurately recover the signal.

Fusion frames are recently emerged mathematical structures
that can better capture the richness of the natural and man-
made signals compared to classically used representations [3].
In particular, fusion frames generalize frame theory by using
subspaces in the place of vectors as signal building blocks.
Thus signals can be represented as linear combinations of
components that lie in particular, and often overlapping, signal
subspaces. Such a representation provides significant flexibil-

ity in representing signals of interest compared to classical
frame representations.

In this paper we extend the concepts and methods of Com-
pressed Sensing to fusion frames (for an extended version with
complete proofs we refer to [4]). In doing so we demonstrate
that it is possible to recover signals from underdetermined
measurements if the signals lie only in very few subspaces of
the fusion frame. Our generalized model does not require that
the signals are sparse within each subspace. The rich structure
of the fusion frame framework allows us to characterize
more complicated signal models than the standard sparse or
compressible signals used in compressed sensing techniques.

We provide results using an average-case approach. Two
worst case analyses are contained in the aforementioned pa-
per [4]. The average case analysis discussed in the present
paper provides a framework to discern which assumptions of
the worst case model become irrelevant and which are critical.
It is based on the fundamental work [5], which develops an
average case analysis for multichannel signals exhibiting joint
sparsity patterns.

In the remainder of this section we provide the motivation
behind our work and describe some possible applications.
Section II provides some background on Compressed Sensing
and on fusion frames to serve as a quick reference for the
fundamental concepts and our basic notation. In Section III
we formulate the problem and establish the additional notation
necessary in our development. We further explore the connec-
tions with existing research in the field, as well as possible
extensions. Section IV then presents an average case analysis
of our methods which is more appropriate for typical usage
scenarios. We conclude with a discussion of our results.

A. Motivation

As technology progresses, signals and computational sens-
ing equipment becomes increasingly multidimensional. Sen-
sors are being replaced by sensor arrays and samples are being
replaced by multidimensional measurements. Yet, modern
signal acquisition theory has not fully embraced the new com-
putational sensing paradigm. Multidimensional measurements
are often treated as collections of one-dimensional ones due to
the mathematical simplicity of such treatment. This approach



ignores the potential information and structure embedded in
multidimensional signal and measurement models.

Our ultimate motivation is to provide a better understanding
of more general mathematical objects, such as vector-valued
data points [6]. Generalizing the notion of sparsity is part of
such understanding. Towards that goal, we demonstrate that
the generalization we present in this paper encompasses joint
sparsity models [7], [8] as a special case. Furthermore, it is
itself a special case of block-sparsity models [7]–[9], with
significant additional structure that enhances existing results.

B. Applications

Although the development in this paper provides a general
theoretical perspective, the principles and the methods we
develop are widely applicable. In particular, the special case of
joint (or simultaneous) sparsity has already been widely used
in radar [10], sensor arrays [11], and MRI pulse design [12]. In
these applications a mixed `1/`2 norm was used heuristically
as a sparsity proxy. Part of our goals in this paper is to provide
a solid theoretical understanding of such methods.

In addition, the richness of fusion frames allows the ap-
plication of this work to other cases, such as target recogni-
tion and music segmentation. The goal in such applications
is to identify, measure and track targets that are not well
described by a single vector but by a whole subspace. In music
segmentation, for example, each note is not characterized
by a single frequency, but by the subspace spanned by the
fundamental frequency of the instrument and its harmon-
ics [13]. Furthermore, depending on the type of instrument
in use, certain harmonics might or might not be present in
the subspace. Similarly, in vehicle tracking and identification,
the subspace of a vehicle’s acoustic signature depends on the
type of vehicle, its engine and its tires [14]. Note that in both
applications, there might be some overlap in the subspaces
which distinct instruments or vehicles occupy.

Fusion frames are quite suitable for such representations.
The subspaces defined by each note and each instrument or
each tracked vehicle generate a fusion frame for the whole
space. Thus the fusion frame serves as a dictionary of targets to
be acquired, tracked, and identified. The fusion frame structure
further enables the use of sensor arrays to perform joint source
identification and localization using far fewer measurements
than a classical sampling framework.

Fusion frames and vector-based signal models also play a
key role in video acquisition, reconstruction and compression
applications such as [15], [16]. Nearby pixels in a video exhibit
similar sparsity structure locally, but not globally. A block- or
joint- sparsity model such as [7]–[9] can be very constraining
in such cases. On the other hand, subspace-based models for
different parts of an image significantly improve the modeling
ability compared to the standard compressed sensing model.

C. Notation

Throughout this paper ‖x‖p = (
∑

i xp
i )

1/p
, p > 0 denotes

the standard `p norm. The operator norm of a matrix A from
`p into `p is written as ‖A‖p→p = max‖x‖p≤1 ‖Ax‖p.

II. BACKGROUND

A. Compressed Sensing

Compressed Sensing (CS) is a recently emerged field in
signal processing that enables signal acquisition using very
few measurements compared to the signal dimension, as long
as the signal is sparse in some basis. It predicts that a signal
x ∈ RN with only k non-zero coefficients can be recovered
from only n = O(k log(N/k)) suitably chosen linear non-
adaptive measurements, compactly represented using

y = Ax, y ∈ Rn,A ∈ Rn×N .

A necessary condition for exact signal recovery of all k-sparse
x is that

Az 6= 0 for all z 6= 0, ‖z‖0 ≤ 2k,

where the `0 ‘norm,’ ‖x‖0, counts the number of non-zero
coefficients in x. In this case, recovery is possible using the
following combinatorial optimization,

x̂ = argmin x∈RN ‖x‖0 subject to y = Ax.

Unfortunately this is an NP-hard problem [17] in general,
hence is infeasible.

Exact signal recovery using computationally tractable meth-
ods even in the presence of noise can be guaranteed if, e.g.,
the coherence of the measurement matrix A is sufficiently
small [6], [18] or it satisfies a restricted isometry property
(RIP) [1]. A large body of literature extends these results to
measurements of signals in the presence of noise, to signals
that are not exactly sparse but compressible [1], to several
types of measurement matrices [19]–[23] and to measurement
models beyond simple sparsity [24].

B. Fusion Frames

Fusion frames are generalizations of frames that provide a
richer description of signal spaces. A fusion frame for RM is
a collection of subspaces Wj ⊆ RM and associated weights
vj , compactly denoted using (Wj , vj)N

j=1, that satisfies

A‖x‖22 ≤
N∑

j=1

v2
j ‖Pjx‖22 ≤ B‖x‖22

for some universal fusion frame bounds 0 < A ≤ B < ∞ and
for all x ∈ RM , where Pj denotes the orthogonal projection
onto the subspace Wj . We use mj to denote the dimension
of the jth subspace Wj , j = 1, . . . , N . A frame is a special
case of a fusion frame in which all the subspaces Wj are one-
dimensional (i.e., mj = 1, j = 1, . . . , N ), and the weights vj

are the norms of the frame vectors.
The generalization to fusion frames allows us to capture

interactions between frame vectors to form specific subspaces
that are not possible in classical frame theory. Similar to
classical frame theory, we call the fusion frame tight if the
frame bounds are equal, A = B. If the fusion frame has
vj = 1, j = 1, . . . , N , we call it a unit-norm fusion frame. In
this paper, we will in fact restrict to the situation of unit-
norm fusion frames, since the anticipated applications are



only concerned with membership in the subspaces and do not
necessitate a particular weighting.

Dependent on a fusion frame (Wj , vj)N
j=1 we define the

Hilbert space H as

H = {(xj)N
j=1 : xj ∈ Wj for all j = 1, . . . , N} ⊆ RM×N .

Finally, let Uj ∈ RM×mj be a known but otherwise arbitrary
matrix, the columns of which form an orthonormal basis for
Wj , j = 1, . . . , N , that is UT

j Uj = Imj , where Imj is the
mj ×mj identity matrix, and UjUT

j = Pj .
The fusion frame mixed `q,p norm is defined as

∥∥(xj)N
j=1

∥∥
q,p
≡

 N∑
j=1

(vj‖xj‖q)
p

1/p

, (1)

where (vj)N
j=1 are the fusion frame weights. When the param-

eter q of the norm is omitted, it is implied to be q = 2:

∥∥(xj)N
j=1

∥∥
p
≡

 N∑
j=1

(vj‖xj‖2)p

1/p

.

Furthermore, for a sequence c = (cj)N
j=1, cj ∈ Rmj , we

similarly define the mixed norm

‖c‖2,1 =
N∑

j=1

‖cj‖2.

The `0–‘norm’ (which is actually not even a quasi-norm) is
defined as

‖x‖0 = #{j : xj 6= 0}.

We call a vector x ∈ H k-sparse, if ‖x‖0 ≤ k.

III. SPARSE RECOVERY OF FUSION FRAME VECTORS

We now consider the following scenario. Let x0 =
(x0

j )
N
j=1 ∈ H, and assume that we only observe n linear

combinations of those vectors, i.e., there exist some scalars
aij satisfying that ‖(aij)n

i=1‖2 = 1 for all j = 1, . . . , N such
that we observe

y = (yi)n
i=1 =

 N∑
j=1

aijx0
j

n

i=1

∈ K, (2)

where K denotes the Hilbert space

K = {(yi)n
i=1 : yi ∈ RM for all i = 1, . . . , n}.

We first notice that (2) can be rewritten as

y = AIx0, where AI = (aijIM )1≤i≤n, 1≤j≤N ,

i.e., AI is the matrix consisting of the blocks aijIM .
We now wish to recover x0 from those measurements. If

we impose conditions on the sparsity of x0, it is suggestive to
consider the following minimization problem,

x̂ = argmin x∈H‖x‖0 subject to
N∑

j=1

aijxj = yi∀i = 1, . . . , n.

Using the matrix AI, we can rewrite this optimization problem
as

(P0) x̂ = argmin x∈H‖x‖0 subject to AIx = y.

However, this problem is NP-hard [17] and, as proposed in
numerous publications initiated by [25], we prefer to employ
`1 minimization techniques. This leads to the investigation of
the following minimization problem,

x̂ = argmin x∈H‖x‖1 subject to AIx = y.

Since we minimize over all x = (xj)N
j=1 ∈ H and certainly

Pjxj = xj by definition, we can rewrite this minimization
problem as

(P̃1) x̂ = argmin x∈H‖x‖1 subject to APx = y,

where
AP = (aijPj)1≤i≤n, 1≤j≤N . (3)

Problem (P̃1) bears difficulties to implement since mini-
mization runs over H. Still, it is easy to see that (P̃1) is
equivalent to the optimization problem

(P1) (ĉj)j = argmin cj∈Rmj ‖(Ujcj)N
j=1‖1

subject to AI(Ujcj)j = y, (4)

where then x̂ = (Uj ĉj)N
j=1. This particular form ensures that

the minimizer lies in the collection of subspaces (Wj)N
j=1

while minimization is performed over cj ∈ Rmj ,j =
1, . . . , N , hence feasible.

Finally, by rearranging (4), the optimization problems, in-
voking the `0-‘norm’ and `1-norm, can be rewritten using
matrix-only notation as

(P0) ĉ = argmin c‖c‖0 subject to Y = AU(c)

and

(P1) ĉ = argmin c‖c‖2,1 subject to Y = AU(c),

in which

U(c) =

 cT
1 UT

1
...

cT
NUT

N

 ∈ RN×M , Y =

 y1
...

yn

 ∈ Rn×M ,

where A = (aij) ∈ Rn×N , cj ∈ Rmj , and yi ∈ RM .
Hereby, we additionally used that ‖Ujcj‖2 = ‖cj‖2 by
orthonormality of the columns of Uj . We follow this notation
for the remainder of the paper.

A. Relation with Previous Work

A special case of the problem above appears when all
subspaces (Wj)N

j=1 are equal and also equal to the ambient
space Wj = RM for all j. Thus, Pj = IM and the observation
setup of Eq. (2) is identical to the matrix product

Y = AX, where X =

 x1
...

xN

 ∈ RN×M .



This special case is the same as the well studied joint-
sparsity setup of [5], [7], [8], [26], [27] in which a collection
of M sparse vectors in RN is observed through the same
measurement matrix A, and the recovery assumes that all the
vectors have the same sparsity structure. The use of mixed
`1/`2 optimization has been proposed and widely used in this
case.

Our formulation is a special case of the block sparsity
problem [9], [28], [29], where we impose a particular structure
on the measurement matrix A. This relationship is already
known for the joint sparsity model, which is also a special case
of block sparsity. In other words, the fusion frames formulation
we examine here specializes block sparsity problems and
generalizes joint sparsity ones.

IV. AVERAGE CASE ANALYSIS

In this section we study the effect of the dimension of
subspaces of the considered fusion frame on recoverability
of a vector x ∈ H. Intuitively, it seems that the higher the
dimension, the ‘easier’ the recovery via the `1 minimization
problem should be. However, it turns out that this intuition
only holds true if we consider an average case analysis,
averaging over the vectors to be recovered. Adding dimensions
can be interpreted as adding more channels to a joint sparsity
problem, which is known to not improve recoverability in the
worst case [5].

A. General Recovery Condition

We start our analysis by deriving a recovery condition which
the reader might want to compare with [30], [31]. Given
a matrix X ∈ RN×M , we let sgn(X) ∈ RN×M denote
the matrix which is generated from X by normalizing each
entry Xji by the norm of the corresponding row Xj,·. More
precisely,

sgn(X)ji =

{
Xji

‖Xj,·‖2 : ‖Xj,·‖2 6= 0,

0 : ‖Xj,·‖2 = 0.

Column vectors are defined similarly by X·,i.
Under a certain condition on A, which is dependent on the

support of the solution, we derive the result below on unique
recovery. To phrase it, let (Wj)N

j=1 be a fusion frame with
associated orthogonal bases (Uj)N

j=1 and orthogonal projec-
tions (Pj)N

j=1, and recall the definition of the notion U(c) in
Section III. Then, for some support set S = {j1, . . . , j|S|} ⊆
{1, . . . , N} of U(c), we let

AS = (A·,j1 · · ·A·,j|S|) ∈ Rn×|S|

and

U(c)S =

 cT
j1

UT
j1...

cT
j|S|

UT
j|S|

 ∈ R|S|×M .

Before stating the theorem, we wish to remark that its proof
uses similar ideas as the analog proof in [5].

Theorem 4.1 ([4]): Retaining the notions from the begin-
ning of this section, we let cj ∈ Rmj , j = 1 . . . , N with

S = supp(c) = {j : cj 6= 0}. If AS is non-singular and there
exists a matrix H ∈ Rn×M such that

AT
SH = sgn(U(c)S) (5)

and

‖HT A·,j‖2 < 1 for all j 6∈ S, (6)

then U(c) is the unique solution of (P1).
The matrix H exploited in Theorem 4.1 might be chosen

as

H = (A†
S)T sgn(U(c)S)

to satisfy (5). This particular choice will in fact be instrumental
for the average case result we are aiming for. For now, we
obtain the following result as a corollary from Theorem 4.1.

Corollary 4.2: Retaining the notions from the beginning
of this section, we let cj ∈ Rmj , j = 1 . . . , N with
S = supp(U(c)). If AS is non-singular and

‖sgn(U(c)S)T A†
SA·,j‖2 < 1 for all j 6∈ S, (7)

then U(c) is the unique solution of (P1).

B. Probability Model

To derive a result in the average case, we require a prob-
ability model on the k-sparse U(c), more precisely, on the
associated vectors cj ∈ Rmj , j = 1 . . . , N . From now on, we
assume that the dimensions of all subspaces are the same, i.e.,
that

m = mj for all j = 1 . . . , N.

Inspired by the probability model in [5], we will assume that
on the k-element support set S = supp(U(c)) = {j1, . . . , jk}
the entries of each vector cj are independent and follow a
normal distribution,

U(c)S =

 XT
1 UT

j1...
XT

k UT
jk

 ∈ Rk×M , (8)

where X = (XT
1 . . .XT

k )T ∈ RNm is a Gaussian random
vector, i.e., all entries are independent standard normal random
variables.

For later use, we will introduce the matrices Ũj ∈ RM×Nm

defined by

Ũj = (0M×m| · · · |0M×m|Uj |0M×m| · · · |0M×m),

where Uj is the jth block. For some b = (b1, . . . , bk)T ∈ Rk,
we can then write U(c)T

Sb as

k∑
`=1

b`Ũj`
X ∈ RM . (9)



C. Average Case Recovery for Fusion Frames
Our main result shows that the failure probability for recov-

ering U(c) decays exponentially fast with growing dimension
m of the subspaces. Interestingly, the quantity θ involved in
the estimate is dependent on the ‘angles’ between subspaces.

Theorem 4.3: Let S ⊆ {1, . . . , N} be a set of cardinality k
and suppose that A ∈ Rn×N satisfies

‖A†
SA·,j‖2 ≤ α < 1 for all j 6∈ S. (10)

Let (Wj)N
j=1 be a fusion frame with associated orthogonal

bases (Uj)N
j=1 and orthogonal projections (Pj)N

j=1, and let
Y ∈ Rn×M . Further, let cj ∈ Rmj , j = 1 . . . , N with S =
supp(U(c)) such that the coefficients on S are given by (8),
and let θ be defined by

θ = 1 + max
i

∑
j 6=i

λmax (PiPj)1/2.

Choose δ ∈ (0, 1− α2). Then with probability at least

1− (N − k) exp
(
− (
√

1− δ − α)2

2α2θ
m

)
− k exp

(
−δ2

4
m

)
the minimization problem (P1) recovers U(c) from Y =
AU(c). In particular, the failure probability can be estimated
by

N exp
(
−
(

max
δ∈(0,1−α2)

min
{

(
√

1− δ − α)2

2α2θ
,
δ2

4

})
m

)
.

Let us note that [5] provides several mild conditions that
imply (10).

The proof of the above result is developed in several steps.
A key ingredient is a concentration of measure result: If f is
a Lipschitz function on RK with Lipschitz constant L, i.e.,
|f(x) − f(y)| ≤ L‖x − y‖2 for all x, y ∈ RK , and X is a
K-dimensional vector of independent standard normal random
variables then [32, eq. (2.35)]

P(|f(X)− Ef(X)| ≥ u) ≤ 2e−u2/(2L2) for all u > 0.
(11)

Our first lemma investigates the properties of a function
related to (9) that are needed to apply the above inequality.

Lemma 4.4 ([4]): Let b = (b1, . . . , bk)T ∈ Rk and S =
{j1, . . . , jk} ⊆ {1, . . . , N}. Define the function f by

f(X) = ‖
k∑

`=1

b`Ũj`
X‖2, X ∈ RNm.

Then the following holds.
(i) f is Lipschitz with constant ‖

∑k
`=1 b`Ũj`

‖2→2.
(ii) For a standard Gaussian vector X ∈ RNm we have

E[f(X)] ≤
√

m‖b‖2.
Next we estimate the Lipschitz constant of the function f

in the previous lemma.
Lemma 4.5 ([4]): Let b = (b1, . . . , bk)T ∈ Rk and S =

{j1, . . . , jk} ⊆ {1, . . . , N}. Then

‖
k∑

`=1

b`Ũj`
‖2→2 ≤ ‖b‖∞

√
1 + max

i∈S

∑
j∈S,j 6=i

λmax (PiPj)1/2.

Now we have collected all ingredients to prove our main
result.

D. Proof of Theorem 4.3

Denote b(j) = (b(j)
1 , . . . , b

(j)
k )T = A†

SA·,j ∈ Rk for all
j 6∈ S and choose δ ∈ (0, 1 − α2). By Corollary 4.2, the
probability that the minimization problem (P1) fails to recover
U(c) from Y = AU(c) can be estimated as

P
(

max
j /∈S

‖sgn(U(c)S)T b(j)‖2 > 1
)

= P

(
max
j 6∈S

‖
k∑

`=1

b
(j)
` ‖Uj`

X`‖−1
2 Ũj`

X‖2 > 1

)

≤ P

(
max
j 6∈S

‖
k∑

`=1

b
(j)
` Ũj`

X‖2 >
√

(1− δ)m

)

+P
(

max
`=1,...,k

‖Uj`
X`‖2 <

√
(1− δ)m

)
≤

∑
j /∈S

P

(
‖

k∑
`=1

b
(j)
` Ũj`

X‖2 >
√

(1− δ)m

)

+
k∑

`=1

P
(
‖X`‖22 ≤ (1− δ)m

)
.

Since X` is a standard Gaussian vector in Rm [33, Corollary
3] gives

P
(
‖X`‖22 ≤ (1− δ)m

)
≤ exp(−δ2m/4).

Furthermore, the concentration inequality (11) combined with
Lemmas 4.4 and Lemma 4.5 yields

P

(
‖

k∑
`=1

b
(j)
` Ũj`

X‖2 >
√

(1− δ)m

)

= P

(
‖

k∑
`=1

b
(j)
` Ũj`

X‖2 > ‖b(j)‖2
√

m

+(
√

1− δ − ‖b(j)‖2)
√

m

)

≤ exp
(
− (
√

1− δ − ‖b(j)‖2)2m
2‖b(j)‖2∞θ

)
≤ exp

(
− (
√

1− δ − ‖b(j)‖2)2m
2‖b(j)‖22θ

)
≤ exp

(
− (
√

1− δ − α)2m
2α2θ

)
.

Combining the above estimates yields the statement of the
Theorem.

V. CONCLUSIONS AND DISCUSSION

The main contribution in this paper is the generalization
of standard Compressed Sensing results for sparse signals to
signals that have a sparse fusion frame representation. The key
result in our work shows that the inherent structure of fusion
frames provides additional information that can be exploited



to derive stronger recovery results. Indeed if the signal lies
in subspaces with very little overlap (i.e., where ‖PjPk‖2 is
small), the probability of recovery increases.

Our average case analysis also demonstrates that as the
sparsity structure of the problem becomes more intricate, the
worst case analysis can become too pessimistic for many prac-
tical cases. The average case analysis provides reassurance that
typical behavior is as expected; significantly better compared
to the worst case. Our results corroborate and extend similar
findings for the special case of joint sparsity in [5].
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