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Abstract. We study extensions of compressive sensing and low rank matrix recovery to the

recovery of tensors of low rank from incomplete linear information. While the reconstruction of

low rank matrices via nuclear norm minimization is rather well-understand by now, almost no
theory is available so far for the extension to higher order tensors due to various theoretical and

computational difficulties arising for tensor decompositions. In fact, nuclear norm minimization

for matrix recovery is a tractable convex relaxation approach, but the extension of the nuclear
norm to tensors is NP-hard to compute. In this article, we introduce convex relaxations of the

tensor nuclear norm which are computable in polynomial time via semidefinite programming.

Our approach is based on theta bodies, a concept from computational algebraic geometry
which is similar to the one of the better known Lasserre relaxations. We introduce polynomial

ideals which are generated by the second order minors corresponding to different matricizations

of the tensor (where the tensor entries are treated as variables) such that the nuclear norm
ball is the convex hull of the algebraic variety of the ideal. The theta body of order k for such

an ideal generates a new norm which we call the θk-norm. We show that in the matrix case,
these norms reduce to the standard nuclear norm. For tensors of order three or higher however,
we indeed obtain new norms. By providing the Gröbner basis for the ideals, we explicitly

give semidefinite programs for the computation of the θk-norm and for the minimization of
the θk-norm under an affine constraint. Finally, numerical experiments for order three tensor
recovery via θ1-norm minimization suggest that our approach successfully reconstructs tensors

of low rank from incomplete linear (random) measurements.
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1. Introduction and Motivation

Compressive sensing predicts that sparse vectors can be recovered from underdetermined
linear measurements via efficient methods such as `1-minimization [9, 15, 18]. This finding has
various applications in signal and image processing and beyond. It has recently been observed
that the principles of this theory can be transferred to the problem of recovering a low rank
matrix from underdetermined linear measurements. One prominent choice of recovery method
consists in minimizing the nuclear norm subject to the given linear constraint [17, 47]. This
convex optimization problem can be solved efficiently and recovery results for certain random
measurement maps have been provided, which quantify the minimal number of measurements
required for successful recovery [47, 6, 5, 27, 26, 36].

There is significant interest in going one step further and to extend the theory to the recovery of
low rank tensors (higher-dimensional arrays) from incomplete linear measurements. Applications
include image and video inpainting [38], reflectance data recovery [38] (e.g. for use in photo-
realistic raytracers), machine learning [48] and seismic data processing [34]. Several approaches
have already been introduced [38, 20, 31, 44, 45], but unfortunately, so far, for none of them
a completely satisfactory theory is available. Either the method is not tractable [51], or no
(complete) rigorous recovery results quantifying the minimal number of measurements are available
[20, 38, 44, 45, 32, 14, 35], or the available bounds are highly nonoptimal [31, 16, 39]. For instance,
a version of the nuclear norm for higher order tensors can be introduced, but unfortunately, its
computation (and therefore, also its minimization) is NP-hard [19] – nevertheless, some recovery
results for tensor completion via nuclear norm minimization are available in [51]. Moreover,

Date: May 19, 2015.

1



2 HOLGER RAUHUT AND ŽELJKA STOJANAC

versions of iterative hard thresholding for various tensor formats have been introduced [44, 45].
This approach leads to a computationally tractable algorithm, which empirically works well.
However, only a partial analysis based on the restricted isometry property has been provided,
which so far only shows convergence under a condition on the iterates that cannot be checked a
priori. Nevertheless, the restricted isometry property (RIP) has been analyzed for certain random
measurement maps [44, 45, 46]. These near optimal bounds on the number of measurements
ensuring the RIP, however, provide only a hint on how many measurements are required because
the link between the RIP and recovery is so far only partial [45, 46].

This article introduces a new approach for tensor recovery based on convex relaxation. The
idea is to further relax the nuclear norm in order to arrive at a norm which can be computed
(and minimized under a linear constraint) in polynomial time. The hope is that the new norm is
only a slight relaxation and possesses very similar properties as the nuclear norm. Our approach
is based on so-called theta bodies, a concept from computational algebraic geometry [40, 22, 2]
which is similar to the better known Lasserre relaxations [37]. We arrive at a whole family of
convex bodies (indexed by a polynomial degree), which form convex relaxations of the nuclear
norm ball. The resulting norms are called theta norms. The corresponding unit norm balls are
nested and contain the nuclear norm ball. They can be computed by semidefinite optimization,
and also the minimization of the θk norm subject to a linear constraints is a semidefinite program
(SDP) whose solution can be computed in polynomial time – the complexity growing with k.

The basic idea for the construction of these new norms is to define polynomial ideals, where
each variable corresponds to an entry of the tensor, such that its algebraic variety consists of the
rank one tensors of Frobenius norm one. The convex hull of this set is the tensor nuclear norm
ball. The ideals that we propose are generated by the minors of order two of all matricizations of
the tensor (or at least of a subset of the possible matricizations) together with the polynomial
corresponding to the squared Frobenius norm minus one. Here, a matricization denotes a matrix
which is generated from the tensor by combining several indices to a row index, and the remaining
indices to a column index. In fact, all such minors being zero simultaneously means that the
tensor has rank one. The k-theta body of the ideal corresponds then to a relaxation of the convex
hull of its algebraic variety, i.e., to a further relaxation of the tensor nuclear norm. The index
k ∈ N corresponds to a polynomial degree involved in the construction of the theta bodies (some
polynomial is required to be k-sos modulo the ideal, see below), and k = 1 leads to the largest
theta body in a family of convex relaxations.

We will show that for the matrix case (tensors of order 2), our approach does not lead to new
norms. All resulting theta norms are rather equal to the matrix nuclear norm. This fact suggests
that the theta norms in the higher order tensor case are all natural generalizations of the matrix
nuclear norm.

We derive the corresponding semidefinite programs explicitly and present numerical experiments
which show that θ1-norm minimization successfully recovers tensors of low row rank from few
random linear measurements. Unfortunately, a rigorous theoretical analysis of the recovery
performance of THk-minimization is not yet available but will be the subject of future studies.

1.1. Low rank matrix recovery. Before passing to tensor recovery, we recall some basics on
matrix recovery. Let X ∈ Rn1×n2 of rank at most r � min{n1, n2}, and suppose we are given
linear measurements

y = A(X),

where A : Rn1×n2 → Rm is a linear map with m � n1n2. Reconstructing X from y amounts
to solving an underdetermined linear system. Unfortunately, the rank minimization problem of
computing the minimizer of

min
Z∈Rn1×n2

rank(Z) subject to A(Z) = y

is NP-hard in general. As a tractable alternative, the convex optimization problem

min
Z∈Rn1×n2

‖Z‖∗ subject to A(Z) = y (1)
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has been suggested [17, 47], where the nuclear norm ‖ · ‖∗ =
∑
j σj(Z) is the sum of the singular

values of Z. This problem can be solved efficiently by various methods [3]. For instance, it can be
reformulated as a semidefinite program [17], but splitting methods may be more efficient [43, 49].

While it is hard to analyze low rank matrix recovery for deterministic measurement maps,
optimal bounds are available for several random matrix constructions. If A is a Gaussian
measurement map, i.e.,

A(X)j =
∑
k,`

Ajk`Xk`, j ∈ [m] := {1, 2, . . . ,m},

where the Ajkl, j ∈ [m], k ∈ [n1], ` ∈ [n2], are independent mean-zero, variance one Gaussian
random variables, then a matrix X of rank at most r can be reconstructed exactly from y = A(X)
via nuclear norm minimization (1) with probability at least 1− e−cm provided that

m ≥ Crn, n = max{n1, n2}, (2)

where the constants c, C > 0 are universal [5, 10]. Moreover, the reconstruction is stable under
passing to only approximately low rank matrices and under adding noise on the measurements.
Another interesting measurement map corresponds to the matrix completion problem [6, 8, 26, 11],
where the measurements are randomly chosen entries of the matrix X. Measurements taken
as Frobenius inner products with rank-one matrices are studied in [36], and arise in the phase
retrieval problem as special case [7]. Also here, m ≥ Crn (or m ≥ Crn log(n) for certain
structured measurements) is sufficient for exact recovery.

1.2. Tensor recovery. An order d-tensor (or mode-d-tensor) is an element X ∈ Rn1×n2×···×nd

indexed by [n1]× [n2]× · · · × [nd]. Of course, the case d = 2 corresponds to matrices. For d ≥ 3,
several notions and computational tasks become much more involved than for the matrix case.
Already the notion of rank requires some clarification, and in fact, several different definitions
are available, see for instance [33, 25]. We will mainly work with the so-called canonical rank
or CP-rank in the following. A dth order tensor X ∈ Rn1×n2×···×nd is of rank one if there exist
vectors u1 ∈ Rn1 ,u2 ∈ Rn2 , . . . ,ud ∈ Rnd such that X = u1 ⊗ u2 ⊗ · · · ⊗ ud or elementwise

Xi1i2...id = u1
i1u

2
i2 · · ·u

d
id
.

The CP-rank (or canonical rank and in the following just rank) of a tensor X ∈ Rn1×n2×···×nd ,
similarly as in the matrix case, is the smallest number of rank one tensors that sum up to X.

Given a linear measurement map A : Rn1×···×nd → Rm (which can represented as a (d+ 1)th
order tensor), our aim is to recover a tensor X ∈ Rn1×···×nd from y = A(X) when m �
n1 · n2 · · ·nd. The matrix case d = 2 suggests to consider minimization of the tensor nuclear
norm for this task,

min
Z
‖Z‖∗ subject to A(Z) = y,

where the nuclear norm is defined as

‖X‖∗ = min

{
r∑

k=1

|ck| : X =

r∑
k=1

cku
1,k ⊗ u2,k ⊗ · · · ⊗ ud,k, r ∈ N,

∥∥ui,k∥∥
`2

= 1, i ∈ [d] , k ∈ [r]

}
.

Unfortunately, in the tensor case, computing the canonical rank of a tensor, as well as computing
the nuclear norm of a tensor is NP-hard in general, see [30, 29, 19]. Let us nevertheless mention
that some theoretical results for tensor recovery via nuclear norm minimization are contained in
[51].

The aim of this article is to introduce relaxations of the tensor nuclear norm, based on so-called
theta bodies, which is both computationally tractable and whose minimization allows for exact
recovery of low rank tensors from incomplete linear measurements.

Let us remark that one may reorganize (flatten) a low rank tensor X ∈ Rn×n×n into a low

rank matrix X̃ ∈ Rn×n2

and simply apply concepts from matrix recovery. However, the bound
(2) on the required number of measurements then reads

m ≥ Crn2. (3)
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Moreover, it has been suggested in [20, 50, 38] to minimize the sum of nuclear norms of the
unfoldings (different reorganizations of the tensor as a matrix) subject to the linear constraint
matching the measurements. Although this seems to be a reasonable approach at first sight, it
has been shown in [42], that this approach cannot work with less measurements than stated by
the estimate in (3).

Bounds for a version of the restricted isometry property for certain tensor formats in [46]
suggest that

m ≥ Cr2n

measurements should be sufficient when working directly with the tensor structure – precisely,
this bound uses the so-called tensor train format [41]. (Possibly, the term r2 may even be lowered
to r when using the “right” tensor format.) However, connecting the restricted isometry property
in a completely satisfactory way with the success of an efficient tensor recovery algorithm is still
open. (Partial results are contained in [46].) In any case, this suggests that one should exploit
the tensor structure of the problem rather than reducing to a matrix recovery problem in order
to recover a low rank tensor using the minimal number of measurements. Of course, similar
considerations apply to tensors of order higher than three, where the difference between the
reduction to the matrix case and working directly with the tensor structure will become even
stronger.

1.3. Some notation. We write vectors with small bold letters, matrices and tensors with capital
bold letters and sets with capital calligraphic letters. The cardinality of a set S is denoted by |S|.

For a matrix A ∈ Rm×n and subsets I ⊂ [m], J ⊂ [n] the submatrix of A with columns
indexed by I and rows indexed by J is denoted by AI,J . A set of all minors of A order k is of
the form

{det(AI,J ) : I ⊂ [m] ,J ⊂ [n] , |I| = |J | = k} .
The Frobenius norm of a matrix X ∈ Rm×n is given as

‖X‖F =

√√√√ m∑
i=1

n∑
j=1

X2
ij =

√√√√min{m,n}∑
i=1

σ2
i ,

where the σi list the singular values of X. The nuclear norm is given by ‖X‖∗ =
∑min{m,n}
i=1 σi. It

is well-known that its unit ball is the convex hull of all rank one matrices of Frobenius norm one.
The vectorization of a tensor X ∈ Rn1×n2×···×nd is denoted by vec(X) ∈ Rn1n2···nd . The

ordering of the elements in vec(X) is not important as long as it remains consistent. Fibers are a
higher order analogue of matrix rows and columns. For k ∈ [d], the mode-k fiber of a dth order
tensor is obtained by fixing every index except for the k-th one. The Frobenius norm of a d-th
order tensor X ∈ Rn1×n2×···×nd is defined as

‖X‖F =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

X2
i1i2···id .

Matricization (also called flattening) is the operation that transforms a tensor into a matrix.
More precisely, for a dth order tensor X ∈ Rn1×n2×···×nd and an ordered subset S ⊆ [d], an

S-matricization XS ∈ R
∏

i∈S ni×
∏

k∈Sc nk is defined as

XS(ik)k∈S ,(i`)`∈Sc
= Xi1,i2,...,id ,

i.e., the indexes in the set S define the rows of a matrix and the indexes in the set Sc = [d] \S
define the columns. For a singelton set S = {i}, for i ∈ [d], we call the S-matricization the
i-th unfolding. Notice that every S-matricization of a rank one tensor is a rank one matrix.
Conversely, if every S-matricization of a tensor is a rank one matrix, then the tensor is of rank
one. This is even true, if all unfoldings of a tensor are of rank one.

We often use MATLAB notation. Specifically, for a dth order tensor X ∈ Rn1×n2×···×nd , we
write X(:, :, . . . , :, k) for the (d − 1)-order subtensor in Rn1×n2×···×nd−1 obtained by fixing the

last index id to k. For simplicity, the subscripts i1i2 · · · id and î1î2 · · · îd will often be denoted
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by I and Î, respectively. In particular, instead of writing Xi1i2...idXî1 î2...̂id
, we often just write

XIXÎ . Below, we will use the grevlex ordering of monomials indexed by subscripts I, which in

particular requires to define an ordering for such subscripts. We make the agreement that I > Î
if i1 > î1 or if i1 = î1, i2 = î2, . . . i`−1 = î`−1 and i` > î` for some ` ∈ [d].

1.4. Structure of the paper. In Section 2 we will review the basic definition and properties
of theta bodies. Section 3 considers the matrix case. We introduce a suitable polynomial ideal
whose algebraic variety is the set of rank one Frobenius norm one matrices. We discuss the
corresponding θk-norms and show that they all coincide with the matrix nuclear norm. The case
of 2× 2-matrices is described in detail. In Section 4 we pass to the tensor case and discuss first
the case of order three tensors. We introduce a suitable polynomial ideal, provide its reduced
Gröbner basis and define the corresponding θk-norms. Then we pass to order four tensors, where
it turns out that one may define different ideals (corresponding to different sets of matricizations)
whose algebraic variety is the set of rank one Frobenius norm one tensors. These different ideals
lead to different θk-norms, and we discuss two possibilities in detail. The general d-th order case is
discussed at the end of Section 4. Here, we concentrate only on one possibility for the polynomial
ideal which corresponds to the set of all possible matricizations of the tensor. We show that a
certain set of order two minors forms the Gröbner basis for this ideal, which is key for defining
the θk-norms. Section 5 briefly discusses the polynomial runtime of the algorithms for computing
and minimizing the θk-norms showing that our approach is tractable. Numerical experiments
for low rank recovery of third order tensors are presented in Section 6, which show that our
approach successfully recovers low rank tensor from incomplete Gaussian random measurements.
Appendix 7 discusses some background from algebraic geometry (monomial orderings and Gröbner
bases) that is required throughout the main body of the article.

2. Theta bodies

As outlined above, we will introduce new tensor norms as relaxations of the nuclear norm in
order to come up with a new convex optimization approach for low rank tensor recovery. Our
approach builds on the concept of theta bodies, a recent concept from computational algebraic
geometry, which is similar to Lasserre relaxations [37]. In order to introduce it, we first discuss
the necessary basics from algebraic geometry. For more information, we refer to [12, 13] and to
the appendix.

For a non-zero polynomial f =
∑

α aαxα in R [x] = R [x1, x2, . . . , xn] and a monomial order >,
we denote

a) the multidegree of f by multideg (f) = max
(
α ∈ Zn≥0 : aα 6= 0

)
,

b) the leading coefficient of f by LC (f) = amultideg(f) ∈ R,

c) the leading monomial of f by LM (f) = xmultideg(f),
d) the leading term of f by LT (f) = LC (f) LM (f) .

Let J ⊂ R [x] be a polynomial ideal. Its real algebraic variety is the set of all points in x ∈ Rn
where all polynomials in the ideal vanish, i.e.,

νR (J) = {x ∈ Rn : f(x) = 0, for all f ∈ J}.

By Hilbert’s basis theorem [13] every polynomial ideal in R [x] has a finite generating set. Thus,
we may assume that J is generated by a set F = {f1, f2, . . . , fk} of polynomials in R [x] and
write

J = 〈f1, f2, . . . , fk〉 =
〈
{fi}i∈[k]

〉
or simply J = 〈F〉 .

Its real algebraic variety is the set

νR (J) = {x ∈ Rn : fi(x) = 0 for all i ∈ [k]}.

Throughout the paper, R [x]k denotes the set of polynomials of degree at most k. A degree one
polynomial is also called linear polynomial. A very useful certificate for positivity of polynomials
is contained in the following definition [22].
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Definition 1. Let J be an ideal in R [x]. A polynomial f ∈ R [x] is k-sos mod J if there

exists a finite set of polynomials h1, h2, . . . , ht ∈ R [x]k such that f ≡
∑t
j=1 h

2
j mod J , i.e, if

f −
∑t
j=1 h

2
j ∈ J .

A special case of theta bodies was first introduced by Lovász in [40] and in full generality they
appeared in [22]. Later, they have been analyzed in [21, 23]. The definitions and theorems in the
remainder of the section are taken from [22].

Definition 2 (Theta body). Let J ⊆ R [x] be an ideal. For a positive integer k, the k-th theta
body of J is defined as

THk (J) := {x ∈ Rn : f (x) ≥ 0 for every linear f that is k-sos mod J} .

We say that an ideal J ⊆ R [x] is THk-exact if THk (J) equals conv (νR (J)), the closure of the
convex hull of νR (J).

Theta bodies are closed convex sets, while conv (νR (J)) may not necessarily be closed and by
definition,

TH1 (J) ⊇ TH2 (J) ⊇ · · · ⊇ conv (νR (J)) . (4)

The theta-body sequence of J can converge (finitely or asymptotically), if at all, only to

conv (νR (J)). More on guarantees on convergence can be found in [22, 23]. However, to
our knowledge, none of the existing guarantees apply to the cases discussed below.

Given any polynomial, it is possible to check whether it is k-sos mod J using a Gröbner basis
and semidefinite programming. However, using this definition in practice requires knowledge of
all linear polynomials (possibly infinitely many) that are k-sos mod J . To overcome this difficulty,
we need an alternative description of THk (J) discussed next.

As in [2], we assume that there are no linear polynomials in the ideal J . Otherwise, some
variable xi would be congruent to a linear combination of other variables modulo J and we
could work in a smaller polynomial ring R

[
xi
]

= R [x1, x2, . . . , xi−1, xi+1, . . . , xn]. Therefore,
R [x]1 /J

∼= R [x]1 and {1 + J, x1 + J, . . . , xn + J} can be completed to a basis B of R [x] /J .
Recall that the degree of an equivalence class f+J , denoted by deg (f + J), is the smallest degree
of an element in the class. We assume that each element in the basis B = {fi + J} of R [x] /J
is represented by the polynomial whose degree equals the degree of its equivalence class, i.e.,
deg (fi + J) = deg (fi). In addition, we assume that B = {fi + J} is ordered so that fi+1 > fi,
where > is a fixed monomial ordering. Further, we define the set Bk

Bk := {f + J ∈ B : deg(f + J) ≤ k}.

Definition 3 (Theta basis). Let J ⊆ R [x] be an ideal. A basis B = {f0 + J, f1 + J, . . .} of
R [x] /J is a θ-basis if it has the following properties

1) B1 = {1 + J, x1 + J, . . . , xn + J},
2) if deg (fi + J) ,deg (fj + J) ≤ k then fifj + J is in the R-span of B2k.

As in [2, 22] we consider only monomial bases B of R [x] /J , i.e., bases B such that fi is a
monomial, for all fi + J ∈ B.

For determining a θ-basis, we first need to compute the reduced Gröbner basis G of the ideal
J , see Definitions 7 and 8. The set B will satisfy the second property in the definition of the
theta basis if the reduced Gröbner basis is with respect to an ordering which first compares the
total degree. Therefore, throughout the paper we use the graded reverse monomial ordering
(Definition 6) or simply grevlex ordering, although also the graded lexicographic ordering would
be appropriate.

A technique to compute a θ-basis B of R [x] /J consists in taking B to be the set of equivalence
classes of the standard monomials of the corresponding initial ideal

Jinitial =
〈
{LT(f)}f∈J

〉
=
〈
{LT(gi)}i∈[s]

〉
,

where G = 〈g1, g2, . . . , gs〉 is the reduced Gröbner basis of the ideal J . In other words, a set
B = {f0 + J, f1 + J, . . .} will be a θ-basis of R [x] /J if it contains all fi + J such that
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1) fi is a monomial
2) fi is not divisible by any of the monomials in the set {LT(gi) : i ∈ [s]}.

As the next important tool we need the so-called combinatorial moment matrix of J . To this
end, we fix a θ-basis B = {fi + J} of R [x] /J and define [x]Bk

to be the column vector formed by

all elements of Bk in order. Then [x]Bk
[x]

T
Bk

is a square matrix indexed by Bk and its (i, j)-entry

is equal to fifj + J . By hypothesis, the entries of [x]Bk
[x]

T
Bk

lie in the R-span of B2k. Let {λli,j}
be the unique set of real numbers such that fifj + J =

∑
fl+J∈B2k

λli,j (fl + J).
The theta bodies THk can be characterized via the combinatorial moment matrix as stated in

the next result from [22], which will be the basis for computing and minimization the new tensor
norm introduced below via semidefinite programming.

Definition 4. Let J,B and {λli,j} be as above. Let y be a real vector indexed by B2k with y0 = 1,
where y0 is the first entry of y, indexed by the basis element 1 + J . The k-th combinatorial
moment matrix MBk

(y) of J is the real matrix indexed by Bk whose (i, j)-entry is [MBk
(y)]i,j =∑

fl+J∈B2k
λli,jyl.

Theorem 1. The k-th theta body of J , THk (J), is the closure of

QBk
(J) = πRn

{
y ∈ RB2k : MBk

(y) � 0, y0 = 1
}
,

where πRn denotes the projection onto the variables y1 = yx1+J , . . . , yn = yxn+J .

Table 1 shows a step-by-step procedure for computing THk(J).

Algorithm for computing THk(J)

Input: An ideal J ∈ R [x] = R [x1, x2, . . . , xn].
Compute the reduced Gröbner basis for the ideal J
Compute a θ-basis B = B1 ∪ B2 ∪ . . . = {f0 + J, f1 + J, . . .} of R [x] /J (see Definition 3)
Compute the combinatorial moment matrix MBk

(y):
(1) [x]Bk

= {all elements of Bk in order}
(2) (XBk

)i,j =
(

[x]Bk
[x]

T
Bk

)
i,j

= fifj + J =
∑
fl+J∈B2k

λli,j (fl + J)

(3) [MBk
(y)]i,j =

∑
fl+J∈B2k

λli,jyl
Output: THk (J) is the closure of

QBk
(J) = πRn

{
y ∈ RB2k : MBk

(y) � 0, y0 = 1
}
.

Table 1. Algorithm for computing THk(J)

3. The matrix case

As a start, we consider the matrix nuclear unit norm ball and provide hierarchical relaxations
via theta bodies. The k-th relaxation defines a matrix unit θk-norm ball with the property

‖X‖θk ≤ ‖X‖θk+1
for all X ∈ Rm×n and all k ∈ N.

However, we will show that all these θk-norms coincide with the matrix nuclear norm.
The first step in computing hierarchical relaxations of the unit nuclear norm ball consists in

finding a polynomial ideal J such that its algebraic variety (the set of points for which the ideal
vanishes) coincides with the set of all rank one, Frobenius norm one matrices

νR(J) =
{
X ∈ Rm×n : ‖X‖F = 1, rank (X) = 1

}
. (5)

Recall that the convex hull of this set is the nuclear norm ball. The following lemma states the
elementary fact that a non-zero matrix is a rank one matrix if and only if all its minors of order
two are zero.



8 HOLGER RAUHUT AND ŽELJKA STOJANAC

For notational purposes, we define the following polynomials in R [x] = R [x11, x12, . . . , xmn]

g(x) =

m∑
i=1

n∑
j=1

x2
ij − 1 and fijkl(x) = xilxkj − xijxkl for 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n. (6)

Lemma 1. Let X ∈ Rm×n\ {0}. Then X is a rank one, Frobenius norm one matrix if and only
if

X ∈ R := {X : g(X) = 0 and fijkl(X) = 0 for all i < k, j < l}. (7)

Proof. If X ∈ Rm×n is a rank one matrix with ‖X‖F = 1, then by definition there exist two
vectors u ∈ Rm and v ∈ Rn such that Xij = uivj for all i ∈ [m], j ∈ [n] and ‖u‖2 = ‖v‖2 = 1.
Thus

XijXkl −XilXkj = uivjukvl − uivlukvj = 0 and

m∑
i=1

n∑
j=1

X2
ij =

m∑
i=1

u2
i

n∑
j=1

v2
j = 1.

For the converse, let X·i represent the i-th column of a matrix X ∈ R. Then, for all j, l ∈ [n]
with j < l, it holds

Xml ·X·j −Xmj ·X·l = Xml ·


X1j

X2j

...
Xmj

−Xmj ·


X1l

X2l

...
Xml

 =


X1jXml −X1lXmj

X2jXml −X2lXmj

...
XmjXml −XmjXml

 = 0,

since XijXml = XilXmj for all i ∈ [m− 1] by definition of R. Thus, the columns of the
matrix X span a space of dimension one, i.e., the matrix X is a rank one matrix. From∑m
i=1

∑n
j=1X

2
ij − 1 = 0 it follows that the matrix X is normalized, i.e., ‖X‖F = 1. �

It follows from Lemma 1 that the set of rank one, Frobenius norm one matrices coincides with
the algebraic variety νR (JMmn

) for the ideal JMmn
generated by the polynomials g and fijkl, i.e.,

JMmn
= 〈GMmn

〉 with GMmn
= {g(x)} ∪ {fijkl(x) : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n}. (8)

Recall that the convex hull of the set R in (7) forms the unit nuclear norm ball and by definition
of the theta bodies,

conv (νR (JMmn
)) ⊆ · · · ⊆ THk+1 (JMmn

) ⊆ THk (JMmn
) ⊆ · · · ⊆ TH1 (JMmn

) .

Therefore, the theta bodies form closed, convex hierarchical relaxations of the matrix nuclear
norm ball. In addition, the theta body THk (JMmn) is symmetric, THk (JMmn) = −THk (JMmn).
Therefore, it defines a unit ball of a norm that we call the θk-norm.

The next result shows that the generating set of the ideal JMmn
introduced above is a Gröbner

basis.

Lemma 2. The set GMmn
forms the reduced Gröbner basis of the ideal JMmn

with respect to the
grevlex order.

Proof. The set GMmn is clearly a basis for the ideal JMmn . By Proposition 1 in the appendix, we
only need to check whether the S-polynomial, see Definition 10, satisfies S (p, q)→GMmn

0 for all
p, q ∈ GMmn whenever the leading monomials LM (p) and LM (q) are not relatively prime. Here,
S (p, q)→GMmn

0 means that S (p, q) reduces to 0 modulo GMmn , see Definition 9.

Notice that LM (g) = x2
11 and LM (fijkl) = xilxkj are relatively prime, for all 1 ≤ i < k ≤ m

and 1 ≤ j < l ≤ n. Therefore, we only need to show that S(fijkl, fîĵk̂l̂)→GMmn
0 whenever the

leading monomials LM(fijkl) and LM(fîĵk̂l̂) are not relatively prime. First we consider

fijkl(x) = xilxkj − xijxkl and fiĵk̂l(x) = xilxk̂ĵ − xiĵxk̂l
for 1 ≤ i < k < k̂ ≤ m, 1 ≤ j < ĵ < l ≤ n. The S-polynomial is then of the form

S(fijkl, fiĵk̂l) = xk̂ĵfijkl(x)− xkjfiĵk̂l(x) = −xijxklxk̂ĵ + xiĵxk̂lxkj

= xk̂lfijkĵ(x)− xijfkĵk̂l(x) ∈ JMmn
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so that S(fijkl, fiĵk̂l)→GMmn
0. The remaining cases are treated with similar arguments.

In order to show that GMmn
is a reduced Gröbner basis (see Definition 8), we first notice

that LC(f) = 1 for all f ∈ GMmn
. In addition, the leading monomial of f ∈ GMmn

is always of
degree two and there are no two different polynomials fi, fj ∈ GMmn

such that LM(fi) = LM(fj).
Therefore, GMmn

is the reduced Gröbner basis of the ideal JMmn
with respect to the grevlex

order. �

The Gröbner basis GMmn
of JMmn

= 〈GMmn
〉 yields the θ-basis of R[x]/JMmn

. For the sake of
simplicity, we only provide its elements up to degree two,

B1 = {1 + JMmn
, x11 + JMmn

, x12 + JMmn
, . . . , xmn + JMmn

}
B2 = B1 ∪ {xijxkl + JMmn

: (i, j, k, l) ∈ SB2
} ,

where SB2 = {(i, j, k, l) : 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n} \ (1, 1, 1, 1). Given the θ-basis, the theta
body THk(JMmn

) is well-defined. We formally introduce an associated norm next.

Definition 5. The matrix θk-norm, denoted by ‖·‖θk , is the norm induced by the k-theta body

THk (JMmn
), i.e.,

‖X‖θk = inf {r : X ∈ rTHk (JMmn
)} .

The θk-norm can be computed with the help of Theorem 1, i.e., as

‖X‖θk = min t subject to X ∈ tQBk
(JMmn).

Given the moment matrix MBk
[y] associated with J , this minimization program is equivalent to

the semidefinite program

min
t∈R,y∈RBk

t subject to MBk
[y] < 0, y0 = t,yB1 = X. (9)

The last constraint might require some explanation. The vector yB1
denotes the restriction of y to

the indices in B1, where the latter can be identified with the set [m]×[n] indexing the matrix entries.
Therefore, yB1

= X means componentwise yx11+J = X11, yx12+J = X12, . . . , yxmn+J = Xmn. For
the purpose of illustration, we focus on the θ1-norm in R2×2 in Section 3.1 below, and provide a
step-by-step procedure for building the corresponding semidefinite program in (9).

Notice that the number of elements in B1 is mn+1, and in B2\B1 is m·(m+1)
2 ·n·(n+1)

2 −1 ∼ (mn)2

2 ,
i.e., the number of elements of the θ-basis restricted to the degree 2 scales polynomially in the
total number of matrix entries mn. Therefore, the computational complexity of the SDP in (9)
is polynomial in mn.

We will show next that the theta body TH1(J) and hence, all THk(J) for k ∈ N, coincide with
the nuclear norm ball. To this end, the following lemma provides expressions for the boundary of
the matrix nuclear unit norm ball.

Lemma 3. Let Oc (Or) denote the set of all matrices M ∈ Rn×m with orthonormal columns
(rows), i.e., Oc =

{
M ∈ Rn×m : MTM = Im

}
and Or =

{
M ∈ Rn×m : MMT = In

}
. Then{

X ∈ Rm×n : ‖X‖∗ ≤ 1
}

=
{
X ∈ Rm×n : tr (MX) ≤ 1, for all M ∈ Oc ∪ Or

}
. (10)

Remark 1. Notice that Oc = ∅ for m > n and Or = ∅ for m < n.

Proof. If suffices to treat the case m ≤ n because ‖X‖∗ =
∥∥XT

∥∥
∗ for all matrices X, and M ∈ Or

if and only if MT ∈ Oc. Let X ∈ Rm×n such that ‖X‖∗ ≤ 1 and let X = UΣVT be its singular
value decomposition. For M ∈ Oc, the spectral norm satisfies ‖M‖ ≤ 1 and therefore, using that
the nuclear norm is the dual of the spectral norm, see e.g. [1, p. 96],

tr (MX) ≤ ‖M‖ · ‖X‖∗ ≤ ‖X‖∗ ≤ 1.

For the converse, let X ∈ Rm×n be such that tr (MX) ≤ 1, for all M ∈ Oc. Let X = UΣV
T

denote its reduced singular value decomposition, i.e., U,Σ ∈ Rm×m and V ∈ Rn×m with

UTU = UUT = V
T
V = Im. Since M := VUT ∈ Oc, it follows that

1 ≥ tr(MX) = tr(VUTUΣV
T

) = tr(Σ) = ‖X‖∗ .
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This completes the proof. �

Next, using Lemma 3, we show that the theta body TH1(J) equals the nuclear norm ball.
This result is related to Theorem 4.4 in [23].

Theorem 2. The polynomial ideal JMmn defined in (8) is TH1-exact, i.e.,

TH1 (JMmn
) = conv (x : g(x) = 0, fijkl(x) = 0 for all i < k, j < l) .

In other words, {
X ∈ Rm×n : X ∈ TH1 (JMmn

)
}

=
{
X ∈ Rm×n : ‖X‖∗ ≤ 1

}
.

Proof. By definition of TH1(J), it is enough to show that the boundary of the unit nuclear
norm can be written as 1-sos mod JMmn , which by Lemma 3 means that the polynomial

1−
∑m
i=1

∑n
j=1 xijMji is 1-sos mod JMmn for all M ∈ Oc ∪ Or. We start by fixing M =

(
Im
0

)
in case m ≤ n and M =

(
In 0

)
in case m > n, where Ik ∈ Rk×k is the identity matrix. For

this choice of M, we need to show that 1−
∑`
i=1 xii is 1-sos mod JMmn

, where ` = min {m,n}.
Note that

1−
∑̀
i=1

xii =
1

2

(1−
∑̀
i=1

xii

)2

+

1−
m∑
i=1

n∑
j=1

x2
ij

+
∑
i<j≤`

(xij − xji)2

−2
∑
i<j≤`

(xiixjj − xijxji) +

m∑
i=1

n∑
j=m+1

x2
ij +

m∑
i=n+1

n∑
j=1

x2
ij

 ,
since(

1−
∑̀
i=1

xii

)2

=1− 2
∑̀
i=1

xii +
∑̀
i=1

∑̀
j=1

xiixjj = 1− 2
∑̀
i=1

xii + 2
∑
i<j≤`

xiixjj +
∑̀
i=1

x2
ii,

1−
m∑
i=1

n∑
j=1

x2
ij +

m∑
i=1

n∑
j=m+1

x2
ij +

m∑
i=n+1

n∑
j=1

x2
ij = 1−

∑̀
i=1

∑̀
j=1

x2
ij = 1−

∑
i<j≤`

(
x2
ij + x2

ji

)
−
∑̀
i=1

x2
ii,

and∑
i<j≤`

(xij − xji)2 − 2
∑
i<j≤`

(xiixjj − xijxji) =
∑
i<j≤`

(
x2
ij + x2

ji − 2xijxji − 2xiixjj + 2xijxji
)

=
∑
i<j≤`

(
x2
ij + x2

ji

)
− 2

∑
i<j≤`

xiixjj .

Therefore, 1 −
∑`
i=1 xii is 1-sos mod JMmn

, since the polynomials 1 −
∑`
i=1 xii, xij − xji, xij ,

and xji are linear and the polynomials 1−
∑m
i=1

∑n
j=1 x

2
ij and 2 (xiixjj − xijxji) are contained

in the ideal, for all i < j ≤ `.
Next, we define transformed variables

x′ij =

{∑m
k=1Mikxkj if m ≤ n,∑n
k=1 xikMkj if m > n.

Since x′ij is a linear combination of {xkj}mk=1∪{xik}nk=1, for every i ∈ [m] and j ∈ [n], linearity of

the polynomials 1−
∑`
i=1 x

′
ii, x

′
ij −x′ji, x′ij , and x′ji is preserved, for all i < j. It remains to show

that the ideal is invariant under this transformation. For the polynomial 1 −
∑m
i=1

∑n
j=1 x

′
ij

2

this is clear since M ∈ Rn×m has unitary columns in case when m ≤ n and unitary rows in case
m ≥ n. In the case of m ≤ n the polynomial x′iix

′
jj − x′ijx′ji is contained in the ideal J since

x′iix
′
jj − x′ijx′ji =

m∑
k=1

m∑
l=1

MikMjl (xkixlj − xkjxli)
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and the polynomials xkixlj−xkjxli are contained in J for all i < j ≤ m. Similarly, in case m ≥ n
the polynomial x′iix

′
jj − x′ijx′ji is in the ideal since

x′iix
′
jj − x′ijx′ji =

n∑
k=1

n∑
l=1

MkiMlj (xikxjl − xilxjk)

and polynomials xikxjl − xilxjk are in the ideal, for all i < j ≤ n. �

The following corollary is a direct consequence of Theorem 2 and the nestedness property (4)
of theta bodies.

Corollary 1. The matrix θ1-norm coincides with the matrix nuclear norm, i.e.,

‖X‖∗ = ‖X‖θ1 , for all X ∈ Rm×n.

Moreover,

TH1 (JMmn) = TH2 (JMmn) = · · · = conv (νR (JMmn)) .

Remark 2. The ideal (8) is not the only choice that satisfies (5). For example, in [10] the
following polynomial ideal was suggested

J =

〈
{xij − uivj}i∈[m],j∈[n] ,

m∑
i=1

u2
i − 1,

n∑
j=1

v2
j − 1

〉
(11)

in R [x,u,v] = R [x11, . . . , xmn, u1, . . . , um, v1, . . . , un]. Some tedious computations reveal the
reduced Gröbner basis G of the ideal J with respect to the grevlex (and grlex) ordering,

G =
{
gij1 = xij − uivj : i ∈ [m] , j ∈ [n]

}⋃g2 =

m∑
i=1

u2
i − 1, g3 =

n∑
j=1

v2
j − 1


⋃{

gi,j,k4 = xijuk − xkjui : 1 ≤ i < k ≤ m, j ∈ [n]
}⋃{

gj5 =

m∑
i=1

xijui − vj : j ∈ [n]

}
⋃{

gi,j,k6 = xijvk − xikvj : i ∈ [m] , 1 ≤ j < k ≤ n
}⋃gi7 =

n∑
j=1

xijvj − ui : i ∈ [m]


⋃{

gi,j8 =

n∑
k=1

xikxjk − uiuj : 1 ≤ i < j ≤ m

}⋃{
gi,j9 =

m∑
k=1

xkixkj − vivj : 1 ≤ i < j ≤ n

}
⋃gi10 =

n∑
j=1

x2
ij − u2

i : 2 ≤ i ≤ m

⋃
{
gj11 =

m∑
i=1

x2
ij − v2

j : 2 ≤ j ≤ n

}
⋃{

gi,j,k,l12 = xijxkl − xilxkj : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n
}

⋃g13 = x2
11 −

m∑
i=2

n∑
j=2

x2
ij +

m∑
i=2

u2
i +

n∑
j=2

v2
j − 1

 . (12)

Obviously, this Gröbner basis is much more complicated than the one of the ideal JMmn
introduced

above. Therefore, computations (both theoretical and numerical) with this alternative ideal seem
to be more demanding. In any case, the variables {ui}mi=1 and {vj}nj=1 are only auxiliary ones,

so one would like to eliminate these from the above Gröbner basis. By doing so, one obtains the
Gröbner basis GMmn

defined in (8). Notice that
∑m
i=1

∑n
j=1 x

2
ij − 1 = g13 +

∑m
i=2 g

i
10 +

∑n
j=2 g

j
11

together with {gi,j,k,l12 } form the basis GMmn .
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1 x11 x12 x21 x22 x11x12 x11x21 x11x22 x2
12 x12x22 x2

21 x21x22 x2
22

y0 x11 x12 x21 x22 y1 y2 y3 y4 y5 y6 y7 y8

Table 2. Linearization of the elements of B2 for matrix 2 × 2 case. The
polynomial f in the first row refers to the element f + J ∈ B2.

3.1. The θ1-norm in R2×2. For the sake of illustration, we consider the specific example of 2×2
matrices and provide the corresponding semidefinite program for the computation of the θ1-norm
explicitly. Let us denote the corresponding polynomial ideal in R [x] = R [x11, x12, x21, x22] simply
by

J = JM22
=
〈
x12x21 − x11x22, x

2
11 + x2

12 + x2
21 + x2

22 − 1
〉

(13)

The associated algebraic variety is of the form

νR (J) =
{
x : x12x21 = x11x22, x

2
11 + x2

12 + x2
21 + x2

22 = 1
}

and corresponds to the set of rank one matrices with ‖X‖F = 1. Its convex hull consists of
matrices X ∈ R2×2 with ‖X‖∗ ≤ 1. According to Lemma 2, the Gröbner basis G of J with
respect to the grevlex order is

G =
{
g1 = x12x21 − x11x22, g2 = x2

11 + x2
12 + x2

21 + x2
22 − 1

}
with the corresponding θ-basis B of R [x] /J restricted to the degree two given as

B1 = {1 + J, x11 + J, x12 + J, x21 + J, x22 + J}
B2 = B1 ∪

{
x11x12 + J, x11x21 + J, x11x22 + J, x2

12 + J, x12x22 + J, x2
21 + J, x21x22 + J, x2

22 + J
}
.

The set B2 consists of all monomials of degree at most two which are not divisible by a leading
term of any of the polynomials inside the Gröbner basis G. For example, x11x12 +J is an element
of the theta basis B, but x2

11 + J is not since x2
11 is divisible by LT(g2).

Linearizing the elements of B2 results in Table 2, where the monomials f in the first row

stand for an element f + J ∈ B2. Therefore, [x]B1
= (1, x11, x12, x21, x22)

T
and the following

combinatorial moment matrix MB1
(x,y), see Definition 4, is given as

MB1 (x,y) =


y0 x11 x12 x21 x22

x11 −y4 − y6 − y8 + y0 y1 y2 y3

x12 y1 y4 y3 y5

x21 y2 y3 y6 y7

x22 y3 y5 y7 y8

 .
For instance, the entry (2, 2) of [x]B1

[x]
T
B1

is of the form x2
11 + J = −x2

12 − x2
21 − x2

22 + 1 + J ,

where we exploit the second property in Definition 3 and the fact that g2 ∈ J . Replacing x2
12 + J

by y4, etc. as in Table 2, yields the stated expression for MB1
(x,y)2,2.

By Theorem 1, the first theta body TH1 (J) is the closure of

QB1 (J) = πx
{

(x,y) ∈ RB2 : MB1 (x,y) � 0, y0 = 1
}
,

where πx represents the projection onto the variables x, i.e., the projection onto x11, x12, x21,
x22. Furthermore, θ1-norm of a matrix X ∈ R2×2 induced by the TH1 (J) and denoted as ‖·‖θ1
can be computed as

‖X‖θ1 = inf t s.t. X ∈ tQB1 (J) (14)

which is equivalent to

inf
t∈R,y∈R8

t s.t. M =


t X11 X12 X21 X22

X11 −y4 − y6 − y8 + t y1 y2 y3

X12 y1 y4 y3 y5

X21 y2 y3 y6 y7

X22 y3 y5 y7 y8

 � 0. (15)
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Notice that trace(M) = 2t. By Theorem 2, the above program is equivalent to the standard
semidefinite program for computing the nuclear norm of a given matrix X ∈ Rm×n

min
W,Z

1

2
(trace (W) + trace (Z)) s.t.


W11 W12 X11 X12

W12 W22 X21 X22

X11 X21 Z11 Z12

X22 X22 Z12 Z22

 � 0.

Notice that the matrix M in (15) can be written as the following sum

M = t ·M0 +

2∑
i=1

2∑
j=1

XijMij +

8∑
k=1

ykMk,

where

M0 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , M1 =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , M2 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 , M3 =


0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 ,

M4 =


0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , M5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 , M6 =


0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 , M7 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 ,

M8 =


0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , M11 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,M12 =


0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , M21 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 ,

M22 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 .

4. The tensor θk-norm

Let us now turn to the tensor case and study the hierarchical closed convex relaxations of the
tensor unit nuclear norm ball defined via theta bodies. Since in the matrix case all θk-norms are
equal to the matrix nuclear norm, their generalization to the tensor case may all be viewed as
natural generalizations of the nuclear norm. We focus mostly on the θ1-norm whose unit norm
ball is the largest in a hierarchical sequence of relaxations. Unlike in the matrix case, the θ1-norm
defines a new tensor norm, that up to the best of our knowledge has not yet been studied before.

The polynomial ideal will be generated by the minors of order two of the unfoldings – and
matricizations in the case d ≥ 4 – of the tensors, where each variable corresponds to one entry
in the tensor. As we will see, a tensor is of rank one if and only if all order two minors of the
unfoldings (matricizations) vanish. While the order three case requires to consider all three
unfoldings, there are several possibilities for the order d case when d ≥ 4. In fact, a d-th order
tensor is of rank one if all minors of all unfoldings vanish so that it may be enough to consider
only the unfoldings. However, one may as well consider the ideal generated by all minors of all
matricizations or one may consider a subset of matricizations including all unfoldings. Indeed,
any tensor format – and thereby any notion of tensor rank – corresponds to a set of matricizations
and in this way, one may associate a θk-norm to a certain tensor format. We refer to e.g. [28, 45]
for some background on various tensor formats. We will mainly concentrate on the case that
all matricizations are taken into account for defining the ideal. Only for the case d = 4, we will
briefly discuss the case, that the ideal is generated only by the minors corresponding to the four
unfoldings.

Below, we consider first the special case of third order tensors and continue then with fourth
order tensors. In Subsection 4.3 we will treat the general dth order case.
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4.1. Third order tensors. As described above, we will consider the minors of order two of all
unfoldings of a third order tensor. Our notation requires the following sets of subscripts

S0 =
{
ijkîĵk̂ : 1 ≤ i < î ≤ n1, 1 ≤ j < ĵ ≤ n2, 1 ≤ k < k̂ ≤ n3

}
, (16)

S1 =
{
ijkîĵk̂ : 1 ≤ i < î ≤ n1, 1 ≤ j < ĵ ≤ n2, 1 ≤ k ≤ k̂ ≤ n3

}
, (17)

S2 =
{
ijkîĵk̂ : 1 ≤ i ≤ î ≤ n1, 1 ≤ j < ĵ ≤ n2, 1 ≤ k < k̂ ≤ n3

}
, (18)

S3 =
{
ijkîĵk̂ : 1 ≤ i < î ≤ n1, 1 ≤ j ≤ ĵ ≤ n2, 1 ≤ k < k̂ ≤ n3

}
. (19)

The following polynomials in R [x] = R [x111, x112, . . . , xn1n2n3 ] correspond to all order two
minors,

f ijkîĵk̂1 (x) = −xijkxîĵk̂ + xiĵk̂xîjk, ijkîĵk̂ ∈ S1, (20)

f ijkîĵk̂2 (x) = −xijkxîĵk̂ + xiĵkxîjk̂, ijkîĵk̂ ∈ S2, (21)

f ijkîĵk̂3 (x) = −xijkxîĵk̂ + xijk̂xîĵk, ijkîĵk̂ ∈ S3, (22)

g3(x) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

x2
ijk − 1. (23)

Lemma 4. A tensor X ∈ Rn1×n2×n3 is a rank one, Frobenius norm one tensor if and only if

g3(X) = 0 and f ijkîĵk̂` (X) = 0 for all ijkîĵk̂ ∈ S`, ` ∈ [3] . (24)

Proof. Sufficiency of (24) follows directly from the definition of the rank one Frobenius norm one
tensors. For necessity, the first step is to show that mode-1 fibers (columns) span one dimensional

space in Rn1 . To this end, we note that, for j ≤ ĵ and k ≤ k̂, the fibers X·jk and X·ĵk̂ satisfy

−Xn1 ĵk̂


X1jk

X2jk

...
Xn1jk

+Xn1jk


X1ĵk̂

X2ĵk̂
...

Xn1 ĵk̂

 (20),(22)
=


−X1ĵk̂Xn1jk +X1ĵk̂Xn1jk

−X2ĵk̂Xn1jk +X2ĵk̂Xn1jk

...
−Xn1 ĵk̂

Xn1jk +Xn1 ĵk
Xn1jk̂

 = 0,

where we used (20) for j < ĵ and k ≤ k̂ and (22) for j = ĵ and k < k̂. From (23) and (24) it
follows that the tensor X is normalized.

Using similar arguments, one argues that mode-2 fibers (rows) and mode-3 fibers span one
dimensional spaces in Rn2 and Rn3 , respectively. This completes the proof. �

A third order tensor X ∈ Rn1×n2×n3 is a rank-one tensor if and only if all three unfoldings
X{1} ∈ Rn1×n2n3 , X{2} ∈ Rn2×n1n3 , and X{3} ∈ Rn3×n1n2 are rank-one matrices. Notice

that f ijkîĵk̂` (X) = 0 for all ijkîĵk̂ ∈ S` is equivalent to the statement that the `-th unfolding

X{`} is a rank one matrix, i.e., that all its minors of order two vanish, for all ` ∈ [3]. In
order to define relaxations of the tensor nuclear norm ball we introduce the polynomial ideal
J3 ⊂ R [x] = R [x111, x112, . . . , xn1n2n3

] as the one generated by

G3 =
{
f ijkîĵk̂` (x) : ijkîĵk̂ ∈ S`, ` ∈ [3]

}
∪ {g3 (x)} , (25)

i.e., J3 = 〈G3〉. Its algebraic variety equals the set of rank one order three tensors with unit
Frobenius norm and its convex hull coincides with the tensor nuclear norm ball. The next result
provides the Gröbner basis of J3.

Theorem 3. The basis G3 defined in (25) forms the reduced Gröbner basis of the ideal J3 = 〈G3〉
with respect to the grevlex order.
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X ∈ R2×2×2 ‖X{1}‖∗ ‖X{2}‖∗ ‖X{3}‖∗ ‖X‖θ1

1

[
1 0
0 0

∣∣∣∣ 0 0
0 1

]
2 2 2 2

2

[
1 0
0 1

∣∣∣∣ 0 0
0 0

]
2 2

√
2 2

3

[
1 0
0 0

∣∣∣∣ 0 0
1 0

]
2

√
2 2 2

4

[
1 0
0 0

∣∣∣∣ 0 1
0 0

] √
2 2 2 2

5

[
1 0
0 1

∣∣∣∣ 0 1
0 0

] √
2 + 1

√
2 + 1

√
2 + 1 3

Table 3. Matrix nuclear norms of unfoldings and θ1-norm of tensors X ∈
R2×2×2, which are represented in the second column as X = [X (:, :, 1) |X (:, :, 2)].
The third, fourth and fifth column represent the nuclear norms of the first, second
and the third unfolding of a tensor X, respectively. The last column contains
the numerically computed θ1-norm.

Proof. Similarly as in the proof of Theorem 2 we need to show that S (p, q)→G3 0 for all relatively
prime polynomials p, q ∈ G3. The leading monomials with respect to the grevlex ordering are
given by LM(g3) = x2

111 and

LM(f ijkîĵk̂1 ) = xiĵk̂xîjk, ijkîĵk̂ ∈ S1,

LM(f ijkîĵk̂2 ) = xiĵkxîjk̂, ijkîĵk̂ ∈ S2,

LM(f ijkîĵk̂3 ) = xijk̂xîĵk, ijkîĵk̂ ∈ S3.

The polynomial g3 is relatively prime with every other polynomial in the basis G3. First we

consider two distinct polynomials f, g ∈ {f ijkîĵk̂3 : ijkîĵk̂ ∈ S3}. So let f = f ijkîĵk̂3 and g = f ijkîjk̂3

for ijkîĵk̂ ∈ S0, i.e.,

f = −xijkxîĵk̂ + xijk̂xîĵk, g = −xijkxîjk̂ + xijk̂xîjk.

Then

S (f, g) = xijk

(
−xîĵk̂xîjk + xîjk̂xîĵk

)
= xijkf

îjkîĵk̂
2 →G3 0.

Next we show that S (f, g) ∈ J3, for f ∈ {f ijkîĵk̂2 : ijkîĵk̂ ∈ S2} and g ∈ {f ijkîĵk̂1 : ijkîĵk̂ ∈ S1}.
Let f = f ijkiĵk̂2 = −xijkxiĵk̂+xiĵkxijk̂ and g = f ijkîĵk1 = −xijkxîĵk+xiĵkxîjk for some ijkîĵk̂ ∈ S0.

Then

S (f, g) = xijk

(
−xiĵk̂xîjk + xijk̂xîĵk

)
= xijk

(
−f ijkîĵk̂1 + f ijkîĵk̂3

)
→G3 0.

For the remaining cases one proceeds similarly. In order to show that G3 is the reduced Gröbner
basis, one uses the same arguments as in the proof of Lemma 2. �

Remark 3. The above Gröbner basis G3 is obtained by taking all minors of order two of all
three unfoldings of the tensor X ∈ Rn1×n2×n3 (not considering the same minor twice). One might
think that the θ1-norm obtained in this way corresponds to a (weighted) sum of the nuclear
norms of the unfoldings, which has been used in [20, 31] for tensor recovery. The examples of
cubic tensors X ∈ R2×2×2 presented in Table 3 show that this is not the case. Assuming that
θ1-norm is a linear combination of the nuclear norm of the unfoldings, there exist α, β, γ ∈ R
such that α‖X{1}‖∗ + β‖X{2}‖∗ + γ‖X{3}‖∗ = ‖X‖θ1 . From the first and the second tensor in
Table 3 we obtain γ = 0. Similarly, the first and the third tensor, and the first and fourth tensor
give β = 0 and α = 0, respectively. Thus, the θ1-norm does not coincide with a weighted sum of
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the nuclear norms of the unfoldings. In addition, the last tensor shows that the θ1-norm does not
equal maximum of the norms of the unfoldings.

4.2. Fourth order tensors. For the case of fourth order tensors, we have several possibilities
of defining polynomial ideals generated by order two minors whose algebraic variety is the set of
rank one tensors of Frobenius norm one. Indeed, we can choose the minors corresponding to any
set of matricizations such that the tensor is of rank one if and only if all order two minors of the
matricization vanish. Each set of matricizations possibly defines a different family of θk-norms.
Note that different notions of tensor rank and tensor format are associated to different sets of
matricizations. We will first discuss the set of all unfoldings and the related θ1-norm and then
the set of all matricizations and the corresponding θk-norm. Other tensor formats [28] – e.g. the
tensor train decomposition [41] – and their associated θk-norms are left to future investigations.

The unfolding theta norm. We start by introducing some notation. We denote by I the
subscript i1i2i3i4 and similarly write Î = î1î2î3î4. For S ⊂ [d] we introduce

DS := {(I, Î) : ik < îk, for all k ∈ S, i` ≤ î`, for all ` /∈ S}

ES := {(I, Î) : ik < îk, for all k ∈ S, i` = î`, for all ` /∈ S}.

As already noted, a tensor is a rank one tensor if and only if all its unfoldings are rank one
matrices. Therefore, the following set of polynomials (corresponding to the order two minors of
all unfoldings)

f
{1}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1 î2 î3 î4xî1i2i3i4 , (I, Î) ∈ S4
1 := D{1}\E{1}

f
{2}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1 î2i3i4xî1i2 î3 î4 , (I, Î) ∈ S4
2 = D{2}\{E{1} ∪ E{2}}

f
{3}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1i2 î3i4xî1 î2i3 î4 , (I, Î) ∈ S4
3 = D{3}\{E{1} ∪ E{2} ∪ E{3}}

f
{4}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1i2i3 î4xî1 î2 î3i4 , (I, Î) ∈ S4
4 = D{4}\{E{1} ∪ E{2} ∪ E{3} ∪ E{4}}

g4 (x) =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

n4∑
i4=1

x2
i1i2i3i4 − 1, (26)

generates a polynomial ideal Ju,4 in R [x] = R [x1111, x1112, . . . , xn1n2n3n4 ] such that its algebraic
variety νR (Ju,4) coincides with the set of rank one Frobenius norm one fourth order tensors.
Unfortunately, the set of generators

Hu,4 =
{
f
{1}
(I,Î)

: (I, Î) ∈ S4
1

}
∪
{
f
{2}
(I,Î)

: (I, Î) ∈ S4
2

}
∪
{
f
{3}
(I,Î)

: (I, Î) ∈ S4
3

}
∪
{
f
{4}
(I,Î)

: (I, Î) ∈ S4
4

}
∪{g4}

does not form a Gröbner basis of the ideal Ju,4 with respect to the grevlex ordering. To see this,
let f1, f2, f3 ∈ Hu,4 be defined as

f1 = −x2111x2222 + x2211x2122,

f2 = −x1122x2222 + x2122x1222,

f3 = −x1111x2222 + x2111x1222.

Notice that S(f1, f2) = −x1222x2111x2222 +x1122x2222x2211 and after the division by f3, we obtain
S(f1, f2) = −x2222f3 + r, where

r = −x1111x
2
2222 + x1122x2211x2222.

However, no monomial of r is divisible by any of the leading monomials in Hu,4. In other words,
we found two polynomials f1, f2 ∈ Hu,4 such that S(f1, f2) 6→Hu,4 0, i.e., the set Hu,4 does not
form a Gröbner basis with respect to the grevlex ordering.

Applying Buchberger’s algorithm we can extend the generating set Hu,4 to the reduced Gröbner
basis Gu,4 of the ideal Ju,4 (for details about this procedure see [13, 12]). Notice that

deg(f) ≥ 3, for all f ∈ Gu,4\Hu,4
since there are no two polynomials in Hu,4 that have the same leading term.



TENSOR THETA NORMS AND LOW RANK RECOVERY 17

However, in order to compute the first theta body TH1(Ju,4), we do not need to compute the
full reduced Gröbner basis Gu,4 because this requires only the θ-basis reduced to degree two. The
first theta body TH1(Ju,4) defines a new norm which we call the unfolding-θ1-norm denoted as
‖·‖u,θ1 . Again, this norm cannot be written as the convex combination of the nuclear norms of

the unfoldings (see Table 4).
The full theta norm. Next, we consider all matricizations in order to define another theta

norm for fourth order tensors, which we call the full θk-norm. Again, we use the fact a tensor
is rank one if and only if all its matricizations (not just the unfoldings) are rank one matrices.
This leads to the following polynomials (completing the set Hu,4), each one corresponding to a
specific matricization,

X{1} : f
{1}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1 î2 î3 î4xî1i2i3i4 , (I, Î) ∈ S4
1

X{2} : f
{2}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xîx1i2 î3 î4
xi1 î2i3i4 , (I, Î) ∈ S4

2

X{3} : f
{3}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xî1 î2i3 î4xi1i2 î3i4 , (I, Î) ∈ S4
3

X{4} : f
{4}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xî1 î2 î3i4xi1i2i3 î4 , (I, Î) ∈ S4
4

X{1,2} : f
{1,2}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1i2 î3 î4xî1 î2i3i4 , (I, Î) ∈ S0

X{1,3} : f
{1,3}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1 î2i3 î4xî1i2 î3i4 , (I, Î) ∈ S0

X{1,4} : f
{1,4}
(I,Î)

(x) = −xi1i2i3i4xî1 î2 î3 î4 + xi1 î2 î3i4xî1i2i3 î4 , (I, Î) ∈ S0

g4 (x) =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

n4∑
i4=1

x2
i1i2i3i4 − 1 (27)

where S0 =
{
i < î, j < ĵ, k < k̂, l < l̂

}
and the sets S4

1 , S4
2 , S4

3 , and S4
4 are defined as in (26).

We then define J4 as the polynomial ideal in R [x] = R [x1111, x1112, . . . , xn1n2n3n4
] generated by

these polynomials, i.e.,

J4 = 〈G4〉 =
〈
{f{1}

(I,Î)
}(I,Î)∈S4

1
∪ {f{2}

(I,Î)
}(I,Î)∈S4

2
∪ {f{3}

(I,Î)
}(I,Î)∈S4

3
∪ {f{4}

(I,Î)
}(I,Î)∈S4

4

∪{f{1,2}
(I,Î)

}(I,Î)∈S0 ∪ {f
{1,3}
(I,Î)

}(I,Î)∈S0 ∪ {f
{1,4}
(I,Î)

}(I,Î)∈S0 ∪ g4

〉
,

Note that the above set of polynomials does not include all second order minors for all matriciza-
tions. For instance, the polynomial

h(x) = −x1234x2343 + x1243x2334

which corresponds to a minor of the matricization X{1,2} does not belong to the basis G4. However,
h (x) is in the ideal J4 since h = f − g with

f (x) = −x1233x2344 + x1243x2334 ∈ G4

and g (x) = −x1233x2344 + x1234x2343 ∈ G4.

In fact, all possible minors of all possible matricizations belong to the ideal J4 (and can be
expressed similarly as above as a difference of two polynomials from the basis G4), but to define
the reduced Gröbner basis, it is enough to consider the generating set G4.

Theorem 4. The set G4 forms the reduced Gröbner basis of the ideal J4.

Proof. The statement is a special case of Theorem 5 below concerning general d-th order
tensors. �
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X ∈ R2×2×2×2 ‖X{1}‖∗ ‖X{2}‖∗ ‖X{3}‖∗ ‖X{4}‖∗ ‖X‖θ1 ‖X‖u,θ1

1
X(:, :, :, 1) =

[
1 0
0 0

∣∣∣∣ 0 2
0 0

]
X(:, :, :, 2) =

[
0 0
1 0

∣∣∣∣ 1 0
0 0

] 1 +
√

6 2 +
√

3
√

2 +
√

5
√

2 +
√

5 5 4.2361

2
X(:, :, :, 1) =

[
1 0
0 0

∣∣∣∣ 0 2
0 0

]
X(:, :, :, 2) =

[
0 1
1 0

∣∣∣∣ 0 0
0 0

] 1 +
√

6
√

2 +
√

5 2 +
√

3
√

2 +
√

5 5 4.2361

3
X(:, :, :, 1) =

[
1 0
0 0

∣∣∣∣ 0 1
0 0

]
X(:, :, :, 2) =

[
0 1
2 0

∣∣∣∣ 0 0
0 0

] 2 +
√

3
√

2 +
√

5 1 +
√

6
√

2 +
√

5 5 4.2361

4
X(:, :, :, 1) =

[
1 0
0 0

∣∣∣∣ 0 1
1 0

]
X(:, :, :, 2) =

[
0 1
2 0

∣∣∣∣ 0 0
0 0

] √
3 +
√

5
√

2 +
√

6
√

2 +
√

6
√

3 +
√

5 6 4.6503

5
X(:, :, :, 1) =

[
1 0
0 0

∣∣∣∣ 0 2
1 0

]
X(:, :, :, 2) =

[
0 1
1 0

∣∣∣∣ 0 0
0 0

] √
2 +
√

6
√

3 +
√

5
√

3 +
√

5
√

2 +
√

6 6 4.6503

6
X(:, :, :, 1) =

[
2 0
0 0

∣∣∣∣ 0 1
0 0

]
X(:, :, :, 2) =

[
0 1
1 0

∣∣∣∣ 0 0
0 0

] 1 +
√

6
√

2 +
√

5 1 +
√

6
√

2 +
√

5 5 4.4142

Table 4. Nuclear norms of unfoldings of fourth order tensors together with
their θ1-norm and unfolding-θ1-norm which were computed numerically.

4.3. The theta norm for general dth order tensors. Let us now consider dth order tensors
in Rn1×n2×···×nd for general d ≥ 4. Our approach relies again on the fact that a tensor X ∈
Rn1×n2×···×nd is of rank one if and only if all its matricizations are rank one matrices, or
equivalently, if all minors of order two of each matricization vanish.

The description of the polynomial ideal generated by the second order minors of all matriciza-
tions of a tensor X ∈ Rn1×n2×···×nd unfortunately requires some technical notation. Again, we
do not need all such minors in the generating set that we introduce next. In fact, this generating
set will turn out to be the reduced Gröbner basis of the ideal.

Similarly as before, the entry (i1, i2, . . . , id) of a tensor X ∈ Rn1×n2×···×nd corresponds to the
variable xi1i2···id . We aim at introducing a set of polynomials of the form

fS,M
d,(I,Î)

:= −xIxÎS + xIS,MxÎS,M (28)

which will generate the desired polynomial ideal. These polynomials correspond to a minor of
a matricization XM – thus, {I(k), ÎS(k)} = {IS,M(k), ÎS,M(k)}, for every k ∈ [d], where I(k)
denotes the k-th entry of I. For instance, if I = 1 3 5 7 9, then I(3) = 5. The set S denotes the

indices where I and ÎS differ. Since for a minor of order two of a matricization XM the sets I
and ÎS need to differ in at least two indices, S is contained in

S[d] := {S ⊂ [d] : 2 ≤ |S| ≤ d}.

For two multiindices I, Î and S ∈ S[d], we define a monomial XÎS
with subscripts

ÎS(k) =

{
ik, if k /∈ S,
îk, if k ∈ S.

Given the set S of differing indices, we require all subsets M⊆ S of possible indices which are
“switched” between and I and IS,M for forming the minors in (28). The setM corresponds to an
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associated matricization XM. The set of possible subsets M is given as

PS =


{
M⊂ S : |M| ≤ b |S|2 c

}
\{∅}, if |S| is odd,{

M⊂ S : |M| ≤ b |S|−1
2 c

}
∪
{
M⊂ S : |M| = |S|

2 , 1 ∈M
}
\{∅}, if |S| is even.

Notice that PS ∪ PSc ∪ {∅} ∪ S with PSc := {M : S\M ∈ PS} forms the power set of S. The
constraint on the size ofM in the definition of PS is motivated by the fact that the role of I and

IS,M can be switched and only lead to the negative of the polynomial fS,M
d,(I,Î)

below.

Next, we define the monomials XIS,MXÎS,M
, M∈ PS , with the corresponding subscripts

IS,M(k) =

{
îk, if k ∈M
ik, if k ∈ S\M

and ÎS,M(k) =

{
ik, if k ∈M
îk, if k ∈ S\M

.

Finally, for fixed S ∈ S[d] we introduce the polynomials

fS,M
d,(I,Î)

(x) := −xIxÎS + xIS,MxÎS,M for M∈ PS and (I, Î) ∈ T Sd ,

where
T Sd = {(I, Î) : ik < îk, for all k ∈ S and i` = î`, for all ` /∈ S}. (29)

For notational purposes, we define

{fSd } = {fS,M
d,(I,Î)

:M∈ PS , (I, Î) ∈ T Sd } for S ∈ S[d].

Since we are interested in Frobenius norm one tensors, we also introduce the polynomial

gd (x) =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

x2
i1i2...id

− 1.

Our polynomial ideal is then the one generated by the polynomials in

Gd =
⋃
S∈S[d]

{fSd } ∪ {gd} ⊂ R [x] = R [x11...1, x11...2, . . . , xn1n2...nd
] , i.e., Jd = 〈Gd〉.

As in the special case of the fourth order case, not all second order minors corresponding to all
matricizations are contained in the generating set Gd due to the condition ik < îk for all k ∈ S in
the definition of T Sd . Nevertheless all second order minors are contained in the ideal Jd as will
also be revealed by the proof of Theorem 5 below. For instance, h(x) = −x1234x2343 + x1243x2334

– corresponding to a minor of the matricization XM for M = {1, 2} – does not belong to G4, but
it does belong to the ideal J4. Moreover, it is straightforward to verify that all polynomials in Gd
differ from each other.

The algebraic variety of Jd consists of all rank one Frobenius norm one order d tensors as
desired, and its convex hull yields the tensor nuclear norm ball.

Theorem 5. The set Gd forms the reduced Gröbner basis of the ideal Jd with respect to the
grevlex order.

Proof of Theorem 5. Again, we will use Buchberger’s criterion stated in Theorem 6. First notice

that the polynomials gd and fS,M
d,(I,Î)

are always relatively prime, since LM(gd) = x2
11···1 and

LM(fS,M
d,(I,Î)

) = xIS,MxÎS,M for S ∈ S[d], M ∈ PS and (I, Î) ∈ T Sd . Therefore, we need to show

that S(f1, f2)→Gd 0, for all f1, f2 ∈ Gd\{gd} with f1 6= f2. To this end, we analyze the division
algorithm on 〈Gd〉.

Let f1, f2 ∈ Gd with f1 6= f2. Then it holds LM(f1) 6= LM(f2). If these leading terms are not
relatively prime, the S-polynomial is of the form

S(f1, f2) = xI1xI2xI3 − xĪ1xĪ2xĪ3
with {I1(k), I2(k), I3(k)} =

{
Ī1(k), Ī2(k), Ī3(k)

}
for all k ∈ [d].

The step-by-step procedure of the division algorithm for our scenario is presented in Table 5.
We will show that the algorithm eventually stops and that step 2) is feasible, i.e., that there always
exist k and ` such that (30) holds – provided that Si 6= 0. (In fact, in some sense the purpose of
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the algorithm is to achieve the condition ik ≤ îk for all k that appears in the definition (29) of
the set of allowed indices in a finite number of steps.) This will show then that S(f1, f2)→Gd 0.

Division algorithm on 〈Gd〉

Input: polynomials f1, f2 ∈ Gd
S0 = S(f1, f2) = xI1xI2xI3 − xĪ1xĪ2xĪ3 , i = 0

while Si 6= 0 do
1) Let LM(Si) = xÎ1,ixÎ2,ixÎ3,i and NLM(Si) =

∣∣Si − LT(Si)
∣∣

2) Find indices I1,i, I2,i ∈ {Î1,i, Î2,i, Î3,i} such that there exist at least one k
and at least one ` for which

I1,i(k) < I2,i(k) and I1,i(`) > I2,i(`) (30)

and let I3,i be the remaining index in {Î1,i, Î2,i, Î3,i}\{I1,i, I2,i}.
3) Define

S1,i := {k ∈ [d] : I1,i(k) < I2,i(k)}, S2,i := {` ∈ [d] : I1,i(`) > I2,i(`)},
Si := S1,i ∪ S2,i.

If |Si| is odd set Mi :=

{
S1,i, if |S1,i| ≤ b |Si|2 c,
S2,i, if |S2,i| ≤ b |Si|2 c.

If |Si| is even setMi :=

{
S1,i, if |S1,i| ≤ b |Si|−1

2 c or |S1,i| = |Si|
2 and 1 ∈ S1,i,

S2,i, if |S2,i| ≤ b |Si|−1
2 c or |S2,i| = |Si|

2 and 1 ∈ S2,i.

Define

IMi
(k) :=

{
I1,i(k) if k ∈ S1,i

I2,i(k) if k /∈ S1,i

and IMc
i
(k) :=

{
I1,i(k) if k /∈ S1,i

I2,i(k) if k ∈ S1,i

.

4) Divide Si by fSi,Mi

d,
(
IMi

,IMc
i

) = xI1,ixI2,i − xIMi
xIMc

i
to obtain

Si = LC(Si)
[
xI3,i(−xIMi

xIMc
i

+ xI1,ixI2,i) + xIMi
xIMc

i
xI3,i −NLM(Si)

]
.

5) Define
Si+1 := xIMi

xIMc
i
xI3,i −NLM(Si).

6) i = i+ 1
end while

Table 5. The division algorithm on the ideal 〈Gd〉.

Before passing to the general proof, we illustrate the division algorithm on an example for
d = 4. The experienced reader may skip this example.

Let f1 = f
[4],{2}
4,(1112,2223) = −x1112x2223 +x1212x2123 ∈ G4 and f2 = f

[4],{1,2}
4,(2111,3323) = −x2111x3323 +

x2123x3311 ∈ G4. We will show that S(f1, f2) = −x1112x2223x3311 + x1212x2111x3323 →G4 0 by
going through the division algorithm.

In iteration i = 0 we set S0 = S(f1, f2) = −x1112x2223x3311 + x1212x2111x3323. The leading
monomial is LM(S0) = x1112x2223x3311, the leading coefficient LC(S0) = −1 and the non-leading
monomial NLM(S0) = x1212x2111x3323. Among the two options for choosing a pair of indexes
(I1,0, I2,0) in step 2), we decide to take I1,0 = 1112 and I2,0 = 3311 such that S1 = {1, 2}
and M0 = S2 = {4}. The polynomial xI1,0xI2,0 − xIM0

xIMc
0

then equals the polynomial
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f
{1,2,4},{4}
4,(1111,3312) = −x1111x3312 + x1112x3311 ∈ G4 and we can write

S0 = −1 ·
(
x2223 (−x1111x3312 + x1112x3311) + x1111x2223x3312 − x1212x2111x3323︸ ︷︷ ︸

= S1

)
.

The leading and non-leading monomials of S1 are LM(S1) = x1111x2223x3312 and NLM(S1) =
x1212x2111x3323, respectively, while LC(S1) = 1. The only option for a pair of indices as in
(30) is I1,1 = 2223, I2,1 = 3312, so that S1 = {1, 2}, S2 = {3, 4} and M1 = S1. The divisor

xI1,1xI2,1 − xIM1
xIMc

1
in the step 4) equals f

[4],{1,2}
4,(2212,3323) = −x2212x3323 + x2223x3312 ∈ G4 and we

obtain

S1 = 1 ·
(
x1111 (−x2212x3323 + x2223x3312) + x1111x2212x3323 − x1212x2111x3323︸ ︷︷ ︸

= S2

)
.

The index sets of the monomial xI1xI2xI3 = x1111x2212x3323 in S2 satisfy

I1(k) ≤ I2(k) ≤ I3(k), for all k ∈ [4]

and therefore it is the non-leading monomial of S2, i.e. NLM(S2) = x1111x2212x3323. Thus,
LM(S2) = x1212x2111x3323 and LC(S2(f1, f2)) = −1. Now the only option for a pair of indices
as in step (30) is I1,2 = 1212, I2,2 = 2111 with S1 = {1}, S2 = {2, 4} and M2 = S1. This yields

S2 = −1 ·
(
x3323 (−x1111x2212 + x1212x2111) + x1111x2212x3323 − x1111x2212x3323︸ ︷︷ ︸

= S3 = 0

)
.

Thus the division algorithm stops and we obtained after three steps

S(f1, f2) = S0 = LC(S0)x2223f
{1,2,4},{4}
4,(1111,3312) + LC(S0) LC(S1)x1111f

[4],{1,2}
4,(2212,3323)

+ LC(S0) LC(S1) LC(S2)x3323f
{1,2,4},{1}
4,(1111,2212).

Thus, S(f1, f2)→G4 0.

Let us now return to the general proof and first show that there always exist indices I1,i, I2,i
satisfying (30) unless Si = 0. We start by setting xαi = xÎ1,ixÎ2,ixÎ3,i with xÎ1,i ≥ xÎ2,i ≥ xÎ3,i
to be the leading monomial and xβi be the non-leading monomial of Si. The existence of a
polynomial h ∈ Gd such that LM(h) divides LM(Si) = xÎ1,ixÎ2,ixÎ3,i = x

αÎi is equivalent to the

existence of I1,i, I2,i ∈
{
Î1, Î2, Î3

}
such that there exists at least one k and at least one ` for

which I1,i(k) < I2,i(k) and I1,i(`) > I2,i(`). If such pair does not exist in iteration i, we have

Î1,i(k) ≤ Î2,i(k) ≤ Î3,i(k) for all k ∈ [d] . (31)

We claim that this cannot happen if Si 6= 0. In fact, (31) would imply that the monomial
xαi = xÎ1,ixÎ2,ixÎ3,i is the smallest monomial xIxJxL (with respect to the grevlex order) which

satisfies

{I(k), J(k), L(k)} = {Î1,i(k), Î2,i(k), Î3,i(k)} for all k ∈ [d] .

However, then xαi would not be the leading monomial by definition of the grevlex order, which
leads to a contradiction. Hence, we can always find indices I1,i, I2,i satisfying (30) in step 2)
unless Si = 0.

Next we show that the division algorithm always stops in a finite number of steps. We start
with iteration i = 0 and assume that S0 6= 0. We choose I1,0, I2,0, I3,0 as in (30). Then we
divide the polynomial LM(S0) = xÎ1,0xÎ2,0xÎ3,0 = xI1,0xI2,0xI3,0 by a polynomial h ∈ Gd such

that LM(h) = xI1,0xI2,0 . The polynomial h ∈ Gd is defined via the sets S1,0, S2,0 and M0 as
introduced in step 3) of the algorithm, i.e.,

h(x) = fS0,M0

d,
(
IM0

,IMc
0

) = xI1,0xI2,0 − xIM0
xIMc

0
∈ Gd.
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The division of S0 by h results in

S0 = LC(S0)
(
xI3,0 · f

S0,M0

d,
(
IM0

,IMc
0

) + xIM0
xIMc

0
xI3,0 −NLM(S0)︸ ︷︷ ︸
= S1

)
.

Note that by construction

IM0
(k) ≤ IM0

c(k) for all k ∈ [d] . (32)

If S1 6= 0, then in the following iteration i = 1 we can write LM(S1) = xM0
xMc

0
xI3,0 . Due

to (32), a pair I1,1, I2,1 as in (30) can be either IM0
, I3,0 or IMc

0
, I3,0. Let us assume the former.

Then this iteration results in

S1 = LC(S1)
(
xI3,1 · f

S1,M1

d,
(
IM1

,IMc
1

) + xIM1
xIMc

1
xIMc

0

−NLM(S0)︸ ︷︷ ︸
= S2

)

with

IM1(k) ≤ IMc
0
(k), IMc

1
(k) for all k ∈ [d] .

Next, if S2 6= 0 and LM(S2) = xIM1
xIMc

1
xIMc

0
then a pair of indices satisfying (30) must be

IMc
0
IMc

1
so that the iteration ends up with

S2 = LC(S2)
(
xI3,2 · f

S2,M2

d,
(
IM2

,IMc
2

) + xIM1
xIMc

2
xIM1

−NLM(S0)︸ ︷︷ ︸
= S3

)

such that

xIM1
(k) ≤ xIM2

(k) ≤ xIMc
2
(k) for all k ∈ [d] .

Thus, in iteration i = 3 the leading monomial LM(S3) must be NLM(S0).
A similar analysis can be performed on the monomial NLM(S0) and therefore the algorithm

stops after at most 6 iterations. The division algorithm results in

S(f1, f2) =

p∑
i=0

 i∏
j=0

LC(Sj)

xI3,if
Si,Mi

d,
(
IMi

,IMc
i

),
where fSi,Mi

d,
(
IMi

,IMc
i

) = −xIMi
xIMc

i
+ xI1,ixI2,i ∈ Gd and p ≤ 5. All the cases that we left out

above are treated in a similar way. This shows that Gd is a Gröbner basis.
In order to show that Gd is the reduced Gröbner basis, first notice that LC(g) = 1 for all

g ∈ Gd. Furthermore, the leading term of any polynomial in Gd is of degree two. Thus, it is

enough to show that for every pair of different polynomials fS1,M1

d,(I1,Î1)
, fS2,M2

d,(I2,Î2)
∈ Gd it holds that

LM(fS1,M1

d,(I1,Î1)
) 6= LM(fS2,M2

d,(I2,Î2)
) with (Ik, Îk) ∈ T Skd for k = 1, 2. But this follows from the fact

that all elements of Gd are different as remarked before the statement of the theorem. �

Remark 4. We have concentrated above on the polynomial ideal generated by all second
order minors of all matricizations of the tensor. One may also consider a subset of all possible
matricizations corresponding to various tensor decompositions and notions of tensor rank. For
example, the Tucker(HOSVD)-rank (corresponding to the Tucker or HOSVD decomposition) of a
dth order tensor X is a d-dimensional vector rHOSVD = (r1, r2, . . . , rd) such that ri = rank

(
X{i}

)
for all i ∈ [d], see [24]. The unit unfolding-θ1-norm (defined above for order four tensors) forms
the corresponding relaxation of the tensor nuclear norm.

The tensor train (TT) decomposition is another popular approach for tensor computations
[41]. The corresponding TT-rank of a dth order tensor X is a (d − 1)-dimensional vector
rTT = (r1, r2, . . . , rd−1) such that ri = rank

(
X{1,...,i}

)
, i ∈ [d− 1]. By taking into account

only minors of order two of the matricizations τ ∈ {{1}, {1, 2}, . . . , {1, 2, . . . , d− 1}}, one may
introduce a corresponding polynomial ideal and θk-norm.

We leave the investigation of such θ-norms to future contributions.
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5. Computational Complexity

The computational complexity of the semidefinite programs for computing the θ1-norm of a
tensor or for minimizing the θ1-norm subject to a linear constraint depends polynomially on the
number of variables, i.e., on the size of B2k, and on the dimension of the moment matrix M. We
claim that the overall complexity scales polynomially in n, where for simplicity we consider d-th
order tensors in Rn×n×···×n. Therefore, in contrast to tensor nuclear norm minimization which is
NP-hard for d ≥ 3, tensor recovery via θ1-norm minimization is tractable.

Indeed, the moment matrix M is of dimension (1 + nd)× (1 + nd) (see also (15) for matrices
in R2×2) and if a = nd denotes the total number of entries of a tensor X ∈ Rn×···×n, then the

number of the variables is at most a·(a+1)
2 ∼ O(a2) which is polynomial in a. (A more precise

counting does not give a substantially better estimate.)
Symmetric tensors. We may reduce the complexity of our semidefinite program by reducing

to tensors possessing symmetries. Of course, in practice this requires additional information about
the tensors to be recovered. For example, let us consider the case of dth order supersymmetric
tensors, i.e., tensors X ∈ Rn×n×···×n such that Xi1i2...id = Xσ(i1)σ(i2)...σ(id) for all possible
permutations σ : {i1, i2, . . . , id} → {i1, i2, . . . , id}. In this scenario, the semidefinite program for
computing the θ1-norm is of dimension (a+ 1)× (a+ 1), where

a =

(
n+ d− 1

d

)
≤
(
e
n+ d− 1

d

)d
= ed

(
1 +

n− 1

d

)d
,

where this inequality uses the general estimate
(
p
q

)
≤ (ep/q)q, see e.g. [18, Lemma C.5]. The

number of variables in the corresponding semidefinite program for computing the θ1-norm equals
the number of monomials xIxÎ such that i1 ≤ i2 ≤ . . . ≤ id ≤ î1 ≤ . . . ≤ îd, excluding the
monomial x11...1 = LM(gd), which is(

n+ 2d− 1

2d

)
− 1 ≤ e2d

(
1 +

n− 1

2d

)2d

.

We leave it to future investigation to study in the detail the recovery of low rank supersymmetric
tensors via θk-minimization.

6. Numerical experiments

Let us now empricially study the performance of low rank tensor recovery via θ1-norm
minimization via numerical experiments, where we concentrate on third order tensors. Given
measurements b = Φ(X) of a low rank tensor X ∈ Rn1×n2×n3 , where Φ : Rn1×n2×n3 → Rm
is a linear measurement map, we aim at reconstructing X as the solution of the minimization
program

min ‖Z‖θ1 subject to Φ(Z) = b. (33)

As outlined in Section 2, the θ1-norm of a tensor Z can be computed as the minimizer of the
semidefinite program

min
t,y

t subject to M(t,y,Z) < 0,

where M(t,y,X) = MB1
(t,X,y) is the moment matrix of order 1 associated to the ideal J3, see

Theorem 3. This moment matrix for J3 is explicitly given by

M (t,y,X) = tM0 +

n1∑
i=1

n2∑
j=1

n3∑
k=1

XijkMijk +

9∑
i=2

|Mi|∑
j=1

y`M
i
j ,

where ` =
∑i
k=3

∣∣M(k−1)
∣∣ + j. The matrices M0,Mijk and Mi

j are provided in Table 6. As
discussed in Section 2 for the general case, the θ1-norm minimization problem (33) is then
equivalent to the semidefinite program

min
t,y,Z

t subject to M (t,y,Z) � 0 and Φ(Z) = b. (34)
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θ-basis position (p, q) in the matrix Mpq Range of i, î, j, ĵ, k, k̂

M0 1 (1, 1) , (2, 2) 1
Mijk xijk (1, f(i, j, k)) 1 i ∈ [n1] , j ∈ [n2] , k ∈ [n3]
M2

f2
x2
ijk (2, 2) −1

(f(i, j, k), f(i, j, k)) 1 {i ∈ [n1] , j ∈ [n2] , k ∈ [n3]}
\ {i = j = k = 1}

M3
f3

xiĵkxijk̂ (f(i, j, k), f(i, ĵ, k̂)), (f(i, j, k̂), f(i, ĵ, k)) 1 i ∈ [n1] , j < ĵ, k < k̂

M4
f4

xijkxîĵk̂ (f(i, j, k), f (̂i, ĵ, k̂)), (f(i, ĵ, k), f (̂i, j, k̂)) 1

(f(i, ĵ, k̂), f (̂i, j, k)), (f(i, j, k̂), f (̂i, ĵ, k)) 1 i < î, j < ĵ, k < k̂

M5
f5

xijkxîjk̂ (f(i, j, k), f (̂i, j, k̂)), (f(i, j, k̂), f (̂i, j, k)) 1 i < î, j ∈ [n2] , k < k̂

M6
f6

xijkxîĵk (f(i, j, k), f (̂i, ĵ, k)), (f(i, ĵ, k), f (̂i, j, k)) 1 i < î, j < ĵ, k ∈ [n3]

M7
f7

xîjkxijk (f(i, j, k), f (̂i, j, k)) 1 i < î, j ∈ [n2] , k ∈ [n3]

M8
f8

xiĵkxijk (f(i, j, k), f(i, ĵ, k)) 1 i ∈ [n1] , j < ĵ, k ∈ [n3]

M9
f9

xijk̂xijk (f(i, j, k), f(i, j, k̂)) 1 i ∈ [n1] , j ∈ [n2] , k < k̂

Table 6. The matrices involved in the definition of the moment matrix
M (t,X,y). Due to symmetry only the upper triangle part of the matrices is
specified. The non-specified entries of the matrices M ∈ R(n1n2n3+1)×(n1n2n3+1)

from the first column are equal to zero. The index fj of Mj
fj

correspond-

ing to the element fj + J of the θ-basis is specified in the second column.
For ` ∈ [9] \{1}, the function f` denotes an arbitrary but fixed bijection

{(i, î, j, ĵ, k, k̂)} 7→
{

1, 2, . . . ,
∣∣M`

∣∣}, where M` = {M`
f`
} with i, î, j, ĵ, k, k̂

in the range of the last column. The function f : Z3 → R is defined as
f (i, j, k) = (i− 1)n2n3 + (j − 1)n3 + k + 1.

For our experiments, the linear mapping is defined as (Φ (X))k = 〈X,Φk〉, k ∈ [m], with
independent Gaussian random tensors Φk ∈ Rn1×n2×n3 , i.e., all entries of Φk are independent
N
(
0, 1

m

)
random variables. We choose tensors X ∈ Rn1×n2×n3 of rank one as X = u⊗ v ⊗w,

where each entry of the vectors u, v and w is taken independently from the normal distribution
N (0, 1). Tensors X ∈ Rn1×n2×n3 of rank two are generated as the sum of two random rank one
tensors. With Φ and X given, we compute b = Φ(X, run the semidefinite program (34) and
compare its minimizer with the original low rank tensor X. For a given set of parameters, i.e.,
dimensions n1, n2, n3, number of measurements m and rank r, we repeat this experiment 200
times and record the empirical success rate of recovering the original tensor, where we say that
recovery is successful if the elementwise reconstruction error is at most 10−6. We use MATLAB
(R2008b) for these numerical experiments, including SeDuMi 1.3 for solving the semidefinite
programs.

Table 7 summarizes the results of our numerical tests for cubic and non-cubic tensors of rank
one and two and several choices of the dimensions. Here, the number mmax denotes the maximal
number of measurements for which not even one out of 200 generated tensors is recovered and
mmin denotes the minimal number of measurements for which all 200 tensors are recovered.The
fifth column in Table 7 represents the number of independent measurements which are always
sufficient for the recovery of a tensor of an arbitrary rank. For illustration, we present the average
cpu time (in seconds) for solving the semidefinite programs via SeDuMi 1.3 in the last column.
We remark that no attempt of accelerating the optimization algorithm has been made. This task
is left for future research.

Except for very small tensor dimensions, we can always recover tensors of rank one or two from
a number of measurements which is significantly smaller than the dimension of the corresponding



TENSOR THETA NORMS AND LOW RANK RECOVERY 25

n1 × n2 × n3 rank mmax mmin n1n2n3 cpu(sec)

2× 2× 3 1 4 12 12 0.1976
3× 3× 3 1 6 19 27 0.3705
3× 4× 5 1 11 30 60 6.6600
4× 4× 4 1 11 32 64 7.2818
4× 5× 6 1 18 42 120 129.4804
5× 5× 5 1 18 43 125 138.9040

3× 4× 5 2 27 56 60 7.5494
4× 4× 4 2 26 56 64 8.6525
4× 5× 6 2 41 85 120 192.5787

Table 7. Numerical results for low rank tensor recovery in Rn1×n2×n3 .

tensor space. Therefore, low rank tensor recovery via θ1-minimization seems to be a promising
approach. Of course, it remains to investigate the recovery performance theoretically.

7. Appendix: Monomial orderings and Gröbner bases

An ordering on the set of monomials xα ∈ R[x], xα = xα1
1 · x

α2
2 · xαn

n , is essential for dealing
with polynomial ideals. For instance, it determines an order in a multivariate polynomial division
algorithm. Of particular interest is the graded reverse lexicographic (grevlex) ordering.

Definition 6. For α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Zn≥0, we write xα >grevlex xβ

(or α >grevlex β) if |α| > |β| or |α| = |β| and the rightmost nonzero entry of α− β is negative.

Once a monomial ordering is fixed, the meaning of leading monomial, leading term and leading
coefficient of a polynomial (see Section 2) is well-defined. For more information on monomial
orderings, we refer the interested reader to [13, 12].

A Gröbner basis is a particular kind of generating set of a polynomial ideal. It was first
introduced in 1965 in the Phd thesis of Buchberger [4].

Definition 7 (Gröbner basis). For a fixed monomial order, a basis G = {g1, g2, . . . , gs} of a
polynomial ideal J ⊂ R [x] is a Gröbner basis (or standard basis) if for all f ∈ R [x] there exist a
unique r ∈ R [x] and g ∈ J such that

f = g + r

and no monomial of r is divisible by any of the leading monomials in G, i.e., by any of the
monomials LM (g1) ,LM (g2) , . . . ,LM (gs).

A Gröbner basis is not unique, but the reduced version defined next is.

Definition 8. The reduced Gröbner basis for a polynomial ideal J ∈ R [x] is a Gröbner basis
G = {g1, g2, . . . , gs} for J such that

1) LC(gi) = 1, for all i ∈ [s].
2) gi does not belong to 〈LT(G\{gi})〉 for all i ∈ [s].

In other words, a Gröbner basis G is the reduced Gröbner basis if for all i ∈ [s] the polynomial
gi ∈ G is monic (i.e., LC(gi) = 1) and the leading monomial LM(gi) does not divide any monomial
of gj , j 6= i.

Many important properties of the ideal and the corresponding algebraic variety can be deduced
via its (reduced) Gröbner basis. For example, a polynomial belongs to a given ideal if and
only if the unique r from the Definition 7 equals zero. Gröbner bases are also one of the main
computational tools in solving systems of polynomial equations [13].

With f
F

we denote the remainder on division of f by the ordered k-tuple F = (f1, f2, . . . , fk).
If F is a Gröbner basis for an ideal 〈f1, f2, . . . , fk〉, then we can regard F as a set without any
particular order by Definition 7, or in other words, the result of the division algorithm does not

depend on the order of the polynomials. Therefore, f
G

= r in Definition 7.
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The following result follows directly from Definition 7 and the polynomial division algorithm
[13].

Corollary 2. Fix a monomial ordering and let G = {g1, g2, . . . , gs} ⊂ R [x] be a Groebner basis
of a polynomial ideal J . A polynomial f ∈ R [x] is in the ideal J if it can be written in the form
f = a1g1 + a2g2 + . . .+ asgs, where ai ∈ R [x], for all i ∈ [s], s.t. whenever aigi 6= 0 we have

multideg (f) ≥ multideg (aigi) .

Definition 9. Fix a monomial order and let G = {g1, g2, . . . , gs} ⊂ R [x]. Given f ∈ R [x], we
say that f reduces to zero modulo G and write

f →G 0

if it can be written in the form f = a1g1 + a2g2 + . . . + akgk with ai ∈ R [x] for all i ∈ [k] s.t.
whenever aigi 6= 0 we have multideg (f) ≥ multideg (aigi).

Assume that G in the above definition is a Gröbner basis of a given ideal J . Then a polynomial
f is in the ideal J if and only if f reduces to zero modulo G. In other words, for a Gröbner basis
G,

f →G 0 if and only if f
G

= 0.

The Gröbner basis of a polynomial ideal always exists and can be computed in a finite number
of steps via Buchberger’s algorithm [4, 13, 12].

Next we define the S-polynomial of given polynomials f and g which is important for checking
whether a given basis of the ideal is a Gröbner basis.

Definition 10. Let f, g ∈ R [x] be a non-zero polynomials.

(1) If multideg (f) = α and multideg (g) = β, then let γ = (γ1, γ2, . . . , γn), where γi =
max {αi, βi}, for every i. We call xγ the least common multiple of LM (f) and LM (g)
written xγ = LCM (LM (f) ,LM (g)).

(2) The S-polynomial of f and g is the combination

S (f, g) =
xγ

LT (f)
f − xγ

LT (g)
g.

The following theorem gives a criterion for checking whether a given basis of a polynomial
ideal is a Gröbner basis.

Theorem 6 (Buchberger’s criterion). A basis G = {g1, g2, . . . , gs} for a polynomial ideal J ⊂ R [x]
is a Gröbner basis if and only if S (gi, gj)→G 0 for all i 6= j.

Computing whether S (gi, gj)→G 0 for all possible pairs of polynomials in the basis G can be a
tedious task. The following proposition tells us for which pairs of polynomials this is not needed.

Proposition 1. Given a finite set G ⊂ R [x], suppose that the leading monomials of f, g ∈ G are
relatively prime, i.e.,

LCM (LM (f) ,LM (g)) = LM (f) LM (g) ,

then S (f, g)→G 0.

Therefore, to prove that the set G ⊂ R [x] is a Gröbner basis, it is enough to show that
S (gi, gj)→G 0 for those i < j where LM (gi) and LM (gj) are not relatively prime.
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[45] H. Rauhut, R. Schneider, and Ž. Stojanac. Tensor completion in hierarchical tensor representations. In
H. Boche, R. Calderbank, G. Kutyniok, and J. Vybiral, editors, Compressed sensing and its applications.

Springer, 2015.
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