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Abstract

We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to
the recovery of low rank tensors of higher order from a small number of linear measurements. While the
theoretical understanding of low rank matrix recovery is already well-developed, only few contributions
on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of
the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order
singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical
Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based
on a variant of the restricted isometry property of the measurement operator adapted to the tensor
decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian
measurement ensembles satisfy the tensor restricted isometry property with high probability under a
certain almost optimal bound on the number of measurements which depends on the corresponding
tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of
the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor
recovery via numerical experiments where we consider recovery from Gaussian random measurements,
tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.

Keywords: low rank recovery, tensor completion, iterative hard thresholding, tensor decompositions,
hierarchical tensor format, tensor train decomposition, higher order singular value decomposition, Gaussian
random ensemble, random partial Fourier ensemble
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1 Introduction and Motivation

Low rank recovery builds on ideas from the theory of compressive sensing which predicts that sparse vectors
can be recovered from incomplete measurements via efficient algorithms including `1-minimization. The goal
of low rank matrix recovery is to reconstruct an unknown matrix X ∈ Rn1×n2 from linear measurements y =
A(X), where A : Rn1×n2 → Rm with m � n1n2. Since this is impossible without additional assumptions,
one requires that X has rank at most r � min{n1, n2}, or can at least be approximated well by a rank-r
matrix. This setup appears in a number of applications including signal processing [2, 36], quantum state
tomography [24, 23, 39, 34] and recommender system design [10, 11].

Unfortunately, the natural approach of finding the solution of the optimization problem

min
Z∈Rn1×n2

rank (Z) s.t. A (Z) = y, (1)

is NP hard in general. Nevertheless, it has been shown that solving the convex optimization problem

min
Z∈Rn1×n2

‖Z‖∗ s.t. A (Z) = y, (2)
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where ‖Z‖∗ = tr
(

(Z∗Z)
1/2
)

denotes the nuclear norm of a matrix Z, reconstructs X exactly under suitable

conditions on A [10, 50, 18, 36]. Provably optimal measurement maps can be constructed using randomness.
For a (sub-)Gaussian random measurement map, m ≥ Crmax{n1, n2} measurements are sufficient to ensure
stable and robust recovery via nuclear norm minimization [50, 9, 36] and other algorithms such as iterative
hard thresholding [60]. We refer to [34] for extensions to ensembles with four finite moments.

In this note, we go one step further and consider the recovery of low rank tensors X ∈ Rn1×n2×···×nd

of order d ≥ 3 from a small number of linear measurements y = A (X), where A : Rn1×n2×···×nd → Rm,
m � n1n2 · · ·nd. Tensors of low rank appear in a variety of applications such as video processing (d = 3)
[40], time-dependent 3D imaging (d = 4), ray tracing where the material dependent bidirectional reflection
function is an order four tensor that has to be determined from measurements [40], numerical solution of the
electronic Schrödinger equation (d = 3N , where N is the number of particles) [41, 4, 67], machine learning
[51] and more.

In contrast to the matrix case, several different notions of tensor rank have been introduced. Similar to
the matrix rank being related to the singular value decomposition, these notions of rank come with different
tensor decompositions. For instance, the CP-rank of a tensor X ∈ Rn1×n2×···×nd is defined as the smallest
number of rank one tensors that sum up to X, where a rank one tensor is of the form u1 ⊗ u2 ⊗ · · · ⊗ ud.
Fixing the notion of rank, the recovery problem can be formulated as computing the minimizer of

min
Z∈Rn1×n2×···×nd

rank (Z) s.t. y = A (Z) . (3)

Expectedly, this problem is NP hard (for any reasonable notion of rank), see [32, 31]. An analog of the
nuclear norm for tensors can be introduced, and having the power of nuclear norm minimization (2) for the
matrix case in mind, one may consider the minimization problem

min
Z∈Rn1×n2×···×nd

‖Z‖∗ s.t. y = A (Z) .

Unfortunately, the computation of ‖·‖∗ and, thereby this problem, is NP hard for tensors of order d ≥ 3
[31], so that one has to develop alternatives in order to obtain a tractable recovery method.

Previous approaches include [19, 40, 50, 42, 70, 49, 3]. Unfortunately, none of the proposed methods are
completely satisfactory so far. Several contributions [19, 40, 42] suggest to minimize the sum of nuclear norms
of several tensor matricizations. However, it has been shown in [50] that this approach necessarily requires a
highly non-optimal number of measurements in order to ensure recovery, see also [42]. Theoretical results for
nuclear tensor norm minimization have been derived in [70], but as just mentioned, this approach does not
lead to a tractable algorithm. The theoretical results in [54] are only applicable to a special kind of separable
measurement system, and require a non-optimal number of measurements. Other contributions [19, 40, 49]
only provide numerical experiments for some algorithms which are often promising but lack a theoretical
analysis. This group of algorithms includes also approaches based on Riemannian optimization on low rank
tensor manifolds [1, 64, 38]. The approaches in [49, 3] are based on tools from real algebraic geometry
and provide sum-of-squares relaxations of the tensor nuclear norm. More precisley, [49] uses theta bodies
[5, 21], but provides only numerical recovery results, whereas the method in [3] is highly computationally
demanding since it requires solving optimization problems at the sixth level of Lassere’s hierarchy.

As proxy for (3), we introduce and analyze tensor variants of the iterative hard thresholding algorithm,
well-known from compressive sensing [6, 18] and low rank matrix recovery [33]. We work with tensorial
generalizations of the singular value decomposition, namely the higher order singular value decomposition
(HOSVD), the tensor train (TT) decomposition, and the hierarchical Tucker (HT) decomposition. These lead
to notions of tensor rank, and the corresponding projections onto low rank tensors — as required by iterative
hard thresholding schemes — can be computed efficiently via successive SVDs of certain matricizations of
the tensor. Unfortunately, these projections do not compute best low rank approximations in general which
causes significant problems in our analysis. Nevertheless, we are at least able to provide a partial convergence
result (under a certain condition on the iterates) and our numerical experiments indicate that this approach
works very well in practice.

The HOSVD decomposition is a special case of the Tucker decomposition which was introduced for the
first time in 1963 in [61] and was refined in subsequent articles [62, 63]. Since then, it has been used e.g.
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in data mining for handwritten digit classification [52], in signal processing to extend Wiener filters [43], in
computer vision [65, 68], and in chemometrics [29, 30].

Recently developed hierarchical tensors, introduced by Hackbusch and coworkers (HT tensors) [26, 22]
and the group of Tyrtyshnikov (tensor trains, TT) [44, 45] have extended the Tucker format into a multi-level
framework that no longer suffers from high order scaling of the degrees of freedom with respect to the tensor
order d, as long as the ranks are moderate. Historically, the hierarchical tensor framework has evolved
in the quantum physics community hidden within renormalization group ideas [69], and became clearly
visible in the framework of matrix product and tensor network states [53]. An independent source of these
developments can be found in quantum dynamics at the multi-layer multi-configurational time dependent
HartreeMCTDH method [4, 67, 41].

The tensor IHT (TIHT) algorithm consists of the following steps. Given measurements y = A(X), one
starts with some initial tensor X0 (usually X0 = 0) and iteratively computes, for j = 0, 1, . . .,

Yj = Xj + µjA
∗ (y −A

(
Xj
))
, (4)

Xj+1 = Hr(Y
j). (5)

Here, µj is a suitable stepsize parameter and Hr(Z) computes a rank-r approximation of a tensor Z within
the given tensor format via successive SVDs (see below). Unlike in the low rank matrix scenario, it is in
general NP hard to compute the best rank-r approximation of a given tensor Z, see [32, 31]. Nevertheless,
Hr computes a quasi-best approximation in the sense that

‖Z−Hr(Z)‖F ≤ Cd‖Z− ZBEST‖F , (6)

where Cd ≤ C
√
d and ZBEST denotes the best approximation of Z of rank r within the given tensor format.

Similarly to the versions of IHT for compressive sensing and low rank matrix recovery, our analysis of
TIHT builds on the assumption that the linear operator A satisfies a variant of the restricted isometry prop-
erty adapted to the tensor decomposition at hand (HOSVD, TT, or HT). Our analysis requires additionally
that at each iteration it holds

‖Yj −Xj+1‖F ≤ (1 + ε)‖Yj −Xr‖F , (7)

where ε is a small number close to 0 and Xr is the best rank-r approximation to X, the tensor to be
recovered, see Theorem 1 for details. (In fact, Xr = X if X is exactly of rank at most r.) Unfortunately,
(6) only guarantees that

‖Yj −Xj+1‖F ≤ Cd‖Yj −YBEST‖F ≤ Cd‖Yj −Xr‖F .

Since Cd cannot be chosen as 1 + ε, condition (7) cannot be guaranteed a priori. The hope is, however,
that (6) is only a worst case estimate, and that usually a much better low rank approximation to Yj is
computed satisfying (7). At least, our numerical experiments indicate that this is the case. Getting rid
of condition (6) seems to be a very difficult, if not impossible, task — considering also that there are no
other completely rigorous results for tensor recovery with efficient algorithms available that work for a near
optimal number of measurements. (At least our TRIP bounds below give some hints on what the optimal
number of measurements should be.)

The second main contribution of this article consists in an analysis of the TRIP related to the tensor
formats HOSVD, TT, and HT for random measurement maps. We show that subgaussian linear maps
A : Rn1×n2×···×nd → Rm satisfy the TRIP at rank r and level δr with probability exceeding 1− ε provided
that

m ≥ C1δ
−2
r max

{(
rd + dnr

)
log (d) , log

(
ε−1
)}
, for HOSVD,

m ≥ C2δ
−2
r max

{(
(d− 1)r3 + dnr

)
log (dr) , log

(
ε−1
)}
, for TT and HT,

where C1, C2 > 0 are universal constants and n = max {ni : i ∈ [d]}, r = max {rt : t ∈ TI} with TI be the
corresponding tree. Up to the logarithmic factors, these bounds match the number of degrees of freedom of
a rank-r tensor in the particular format, and therefore are almost optimal.
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In addition, we show a similar result for linear maps A : Cn1×n2×···×nd → Cm that are constructed
by composing random sign flips of the tensor entries with a d-dimensional Fourier transform followed by
random subsampling, see Theorem 4 for details.

The remainder of the paper is organized as follows. In Section 2, we introduce the HOSVD, TT, and HT
tensor decompositions and the corresponding notions of rank used throughout the paper. Two versions of the
tensor iterative hard thresholding algorithm (CTIHT and NTIHT) are presented in Section 3 and a partial
convergence proof is provided. Section 4 proves the bounds on the TRIP for subgaussian measurement
maps, while Section 5 extends them to randomized Fourier maps. In Section 6, we present some numerical
results on recovery of third order tensors.

1.1 Notation

We will mostly work with real-valued d-th order tensors X ∈ Rn1×n2×···×nd , but the notation introduced
below holds analogously also for complex-valued tensors X ∈ Cn1×n2×···×nd which will appear in Section 5.
Matrices and tensors are denoted with capital bold letters, linear mappings with capital calligraphic letters,
sets of matrices or tensors with bold capital calligraphic letters, and vectors with small bold letters. The
expression [n] refers to the set {1, 2, . . . , n}.

With Xik=p, for p ∈ [nk], we denote the (d− 1)-th order tensor (called subtensor) of size n1 × n2 ×
· · · × nk−1 × nk+1 × · · · × nd that is obtained by fixing the k-th component of a tensor X to p i.e.,
Xik=p (i1, . . . , ik−1, ik+1, . . . , id) = X (i1, . . . , ik−1, p, ik+1, . . . , id), for all il ∈ [nl] and for all l ∈ [d] \ {k}.
A matrix obtained by taking the first rk columns of the matrix U is denoted by U (:, [rk]). Similarly, for
a tensor S ∈ Rn1×n2×···×nd the subtensor S ([r1] , [r2] , . . . , [rd]) ∈ Rr1×r2×···×rd is defined elementwise as
S ([r1] , [r2] , . . . , [rd]) (i1, i2, . . . , id) = S (i1, i2, . . . , id), for all ik ∈ [rk] and for all k ∈ [d].

The vectorized version of a tensor X ∈ Rn1×n2×···×nd is denoted by vec (X) ∈ Rn1n2···nd (where the order
of indices is not important as long as we remain consistent). The operator Tvec transforms back a vector
x ∈ Rn1n2...nd into a d-th order tensor in Rn1×n2×···×nd , i.e.,

Tvec (vec (X)) = X, for X ∈ Rn1×n2×···×nd . (8)

The inner product of two tensors X,Y ∈ Rn1×n2×···×nd is defined as

〈X,Y〉 =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

X (i1, i2, . . . , id) Y (i1, i2, . . . , id) . (9)

The (Frobenius) norm of a tensor X ∈ Rn1×n2×···×nd , induced by this inner product, is given as

‖X‖F = 〈X,X〉1/2 =

√√√√ n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

X2 (i1, i2, . . . , id). (10)

Matricization (also called flattening) is a linear transformation that reorganizes a tensor into a matrix.
More precisely, for a d-th order tensor X ∈ Rn1×n2×···×nd and an ordered subset S ⊆ [d], the S-matricization
XS ∈ R

∏
k∈S nk×

∏
`∈Sc n` is defined as

XS ((ik)k∈S; (i`)`∈Sc) = X (i1, i2, . . . , id) ,

i.e., the indexes in the set S define the rows of a matrix and the indexes in the set Sc = [d] \S define the
columns. For a singleton set S = {k}, where k ∈ [d], matrix XS is called the mode-k matricization or the
k-th unfolding.

For X ∈ Rn1×n2×···×nd , A ∈ RJ×nk , the k-mode multiplication X×k A ∈ Rn1×···×nk−1×J×nk+1×···×nd is
defined element-wise as

(X×k A) (i1, . . . , ik−1, j, ik+1, . . . , id) =

nk∑
ik=1

X (i1, . . . , id) A (j, ik) , k ∈ [d]. (11)
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For a tensor X ∈ Rn1×n2×···×nd and matrices A ∈ RJ×nj , B ∈ RK×nk , C ∈ RL×K it holds

X×j A×k B = X×k B×j A, whenever j 6= k (12)

X×k B×k C = X×k CB. (13)

Notice that the SVD decomposition of a matrix X ∈ Rn1×n2 can be written using the above notation as
X = UΣVT = Σ×1 U×2 V.

We can write the measurement operator A : Rn1×n2×···×nd → Rm in the form

(A (X))i = 〈Ai,X〉 , i ∈ [m] ,

for a set of so-called sensing tensors Ai ∈ Rn1×n2×···×nd , for i ∈ [m]. The matrix representation A ∈
Rm×n1n2···nd of A is defined as

A (i, :) = vec (Ai)
T
, for i ∈ [m] ,

where A (i, :) denotes the i-th row of A and vec (Ai) denotes the vectorized version of the sensing tensor
Ai. Notice that A (X) = A vec (X) .

1.2 Acknowledgement

H. Rauhut and Ž. Stojanac acknowledge support by the Hausdorff Center for Mathematics at the University
of Bonn, by the Hausdorff Institute for Mathematics Bonn during the trimester program Mathematics of
Signal Processing and by the European Research Council through the grant StG 258926.

2 Tensor decompositions and tensor rank

Before studying the tensor recovery problem we first need to introduce the tensor decompositions and the
associated notion of rank that we are working with. We confine ourselves to finite dimensional linear spaces
Rni from which the tensor product space

Hd =

d⊗
i=1

Rni

is built. Then any X ∈ Hd can be represented as

X =

n1∑
µ1=1

. . .

nd∑
µd=1

X (µ1, . . . , µd) e1
µ1
⊗ · · · ⊗ edµd ,

where {ei1, . . . , eini} is the canonical basis of the space Rni . Using this basis, with slight abuse of notation,
we can identify X ∈ Hd with its representation by a d-variate function, often called hyper matrix,

µ = (µ1, . . . , µd) 7→ X (µ1, . . . , µd) ∈ R, µi ∈ [ni] , i ∈ [d] ,

depending on a discrete multi-index µ = (µ1, . . . , µd). We equip the linear space Hd with the inner product
defined in (9) and the Frobenius norm defined in (10).

The idea of the classical Tucker format is to search, given a tensor X and a rank-tuple r = (rj)
d
j=1, for

optimal (or at least near optimal) subspaces Ui ⊂ Rni of dimension ri, i ∈ [d], such that

min
Y∈U1⊗···⊗Ud

‖X−Y‖F

is minimized. Equivalently, for each coordinate direction i ∈ [d], we are looking for corresponding basis{
uiki
}
ki∈[ri]

of Ui, which can be written in the form

uiki :=

ni∑
µi=1

Ui (µi, ki) eiµi , ki ∈ [ri] , ri < ni, (14)
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where Ui (µi, ki) ∈ R. With a slight abuse of notation we often identify the basis vectors uiki with their

representation
(
Ui(µi, ki)

)
µi∈[ni]

. Given the basis
{
uiki
}
ki

, a tensor X ∈
⊗d

i=1 Ui ⊂ Hd =
⊗d

i=1 Rni can

be represented by

X =

r1∑
k1=1

· · ·
rd∑

kd=1

C (k1, . . . , kd) u1
k1 ⊗ · · · ⊗ udkd . (15)

In case
{
uiki
}
ki
, i ∈ [d], form orthonormal bases, the core tensor C ∈

⊗d
i=1 Rri is given entry-wise by

C (k1, . . . , kd) =
〈
X,u1

k1 ⊗ · · · ⊗ udkd
〉
.

In this case, we call the Tucker decomposition (15) a higher order singular value decomposition (or HOSVD
decomposition). The HOSVD decomposition can be constructed such that it satisfies the following properties

• the bases {uiki ∈ Rni : ki ∈ [ri]} are orthogonal and normalized, for all i ∈ [d];

• the core tensor C ∈ Hd is all orthogonal, i.e., 〈Cki=p,Cki=q〉 = 0, for all i ∈ [d] and whenever p 6= q;

• the subtensors of the core tensor C are ordered according to their Frobenius norm, i.e., ‖Cki=1‖F ≥
‖Cki=2‖F ≥ · · · ≥ ‖Cki=ni‖F ≥ 0.

In contrast to the matrix case, the rank of a tensor is a tuple r = (r1, . . . , rd) of d numbers. For X ∈
⊗d

i=1 Ui
it is obtained via the matrix ranks of the unfoldings, i.e.,

rk = rank
(
X{k}

)
, k ∈ [d] .

We say that tensor X ∈ Rn1×n2×···×nd has rank at most r if

rank
(
X{k}

)
≤ rk for k ∈ [d] .

For high order d, the HOSVD has the disadvantage that the core tensor contains r1 · · · rd ∼ rd entries
(assuming ri ≈ r for all i), which may potentially all be nonzero. Therefore, the number of degrees of
freedom that are required to describe a rank-r tensor scales exponentially in d. Assuming ni ∼ n for all
i, the overall complexity for storing the required data (including the basis vectors) scales like O

(
ndr + rd

)
(which nevertheless for small ri/ni ∼ α implies a high compression rate of αd). Without further sparsity of
the core tensor the Tucker format is appropriate for low order tensors, i.e., d = 3.

The HOSVD X = S ×1 U1 ×2 U2 × · · · ×d Ud of a tensor X can be computed via the singular value
decompositions (SVDs) of all unfoldings. The columns of the matrices Uk contain all left-singular vectors
of the kth unfolding X{k}, k ∈ [d], and the core tensor is given by S = X ×1 UT

1 ×2 UT
2 × · · · ×d UT

d . An
important step in the iterative hard thresholding algorithm consists in computing a rank-r approximation
to a tensor X (the latter not necessarily being of low rank). Given the HOSVD decomposition of X as just
described, such an approximation is given by

Hr (X) = S×1 U1 ×2 U2 × · · · ×d Ud,

where S = S ([r1] , [r2] , . . . , [rd]) ∈ Rr1×r2×···×rd and Uk = Uk (:, [rk]) ∈ Rnk×rk for all k ∈ [d]. Thereby, the
matrix Uk contains rk left-singular vectors corresponding to the rk largest singular values of X{k}, for each
k ∈ [d]. In general, Hr (X) is unfortunately not the best rank-r approximation to X, formally defined as
the minimizer XBEST of

min
Z
‖X− Z‖F subject to rank(Z{k}) ≤ rk for all k ∈ [d].

Nevertheless, one can show that Hr (X) is a quasi-best rank-r approximation in the sense that

‖X−Hr (X) ‖F ≤
√
d‖X−XBEST‖F . (16)
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Since the best approximation XBEST is in general NP hard to compute [32, 31], Hr may serve as a tractable
and reasonably good alternative.

The hierarchical Tucker format (HT) in the form introduced by Hackbusch and Kühn in [26], extends
the idea of subspace approximation to a hierarchical or multi-level framework, which potentially does not
suffer exponential scaling of the number of degrees of freedom in d anymore. In order to introduce this
format, we first consider V1 ⊗ V2 = Rn1 ⊗ Rn2 or preferably the subspaces U1 ⊗ U2 ⊂ V1 ⊗ V2, similarly to
the HOSVD above. For the approximation of X ∈ Hd we use a subspace U{1,2} ⊂ U1 ⊗ U2 with dimension

r{1,2} ≤ r1r2. We can define U{1,2} via a basis, U{1,2} = span {u{1,2}k{1,2}
: k{1,2} = 1, . . . , r{1,2}}, with basis

vectors given by

u
{1,2}
k{1,2}

=

r1∑
k1=1

r2∑
k2=1

B{1,2}(k{1,2}, k1, k2) u1
k1 ⊗ u2

k2 , k{1,2} = 1, . . . , r{1,2},

for some numbers B{1,2}(k{1,2}, k1, k2). One may continue hierarchically in several ways, e.g. by building a
subspace U{1,2,3} ⊂ U{1,2} ⊗U3 ⊂ U1 ⊗U2 ⊗U3 ⊂ V1 ⊗ V2 ⊗ V3, or U{1,2,3,4} ⊂ U{1,2} ⊗U{3,4}, where U{3,4}
is defined analogously to U{1,2} and so on.

For a systematic treatment, this approach can be cast into the framework of a partition tree, with leaves
{1}, . . . {d}, simply abbreviated by 1, . . . , d, and vertices α ⊂ D := {1, . . . , d}. The partition tree TI contains
partitions of a vertex α (not being a leaf) into vertices α1, α2, i.e., α = α1 ∪α2, α1 ∩α2 = ∅. We call α1, α2

the sons of the father α. In this notation, we can assume without loss of generality that i < j for all i ∈ α1,
j ∈ α2. The vertex D is called the root of the tree. The set of leaves of a tree TI is denoted by L (TI) and
the set of interior (non-leaf) vertices by I (TI). In the example above we have α := {1, 2, 3} = α1 ∪ α2 with
α1 := {1, 2} and α2 := {3}. The partition tree corresponding to the HT representation in Figure 1 is given
as TI = {{1}, {2}, {1, 2}, {3}, {1, 2, 3}, {4}, {5}, {4, 5}, {1, 2, 3, 4, 5}} with L (TI) = {{1}, {2}, {3}, {4}, {5}}
and I (TI) = {{1, 2}, {1, 2, 3}, {4, 5}, {1, 2, 3, 4, 5}}. In general, we do not need to restrict the number of sons
of a vertex, but for simplicity we confine ourselves in the following to binary trees, i.e., to two sons per
father.

Consider a non-leaf vertex α, α 6= {i}, with two sons α1, α2. Then the corresponding subspace Uα ⊂
Uα1
⊗ Uα2

with dimUα = rα is defined by a basis

uα` =

rα1∑
i=1

rα2∑
j=1

Bα(`, i, j) uα1
i ⊗ uα2

j , ` ∈ [rα], (17)

which is often represented by a matrix Uα ∈ Rnα×rα with columns Uα (:, `) = vec (uα` ) and nα =
∏
`∈α n`.

Without loss of generality, all basis vectors uα` , ` = 1, . . . , rα, can be chosen to be orthonormal as long as
α is not the root (α 6= D). The tensors (`, i, j) 7→ Bα(`, i, j) are called transfer or component tensors. For
a leaf {i} ' i, the matrix (Ui(µi, ki))µi,ki ∈ Rni×ri representing the basis of Ui as in (14) is called i-frame.
The component tensor BD = B{1,...,d} at the root is called the root tensor.

The rank tuple r = (rα)α∈TI of a tensor X associated to a partition tree TI is defined via the (matrix)
ranks of the matricizations Xα, i.e.,

rα = rank (Xα) for α ∈ TI .

In other words, a tensor X of rank r obeys several low rank matrix constraints simultaneously (defined via
the set {Xα : α ∈ TI} of matricizations). When choosing the right subspaces Uα related to X, these ranks
correspond precisely to the numbers rα (and rα1 , rα2) in (17).

It can be shown [25] that a tensor of rank r is determined completely by the transfer tensors Bt, t ∈ I (TI)
and the α-frames Uα, α ∈ L (TI). This correspondence is realized by a multilinear function τ , i.e.,(

{Bt : t ∈ I (TI)}, {Uα : α ∈ L (TI)}
)
7→ X = τ

(
{Bt : t ∈ I (TI)}, {Uα : α ∈ L (TI)}

)
.

For instance, the tensor presented in Figure 1 is completely parametrized by({
B{1,2},B{1,2,3},B{4,5},B{1,2,3,4,5}

}
, {U1,U2,U3,U4,U5}

)
.
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Figure 1: Hierarchical Tensor representation of an order 5 tensor
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The map τ is defined by applying (17) recursively. Since Bt depends bi-linearly on Bt1 and Bt2 , the
composite function τ is indeed multi-linear in its arguments Bt and Uα.

One can store a tensor X ∈ Rn1×n2×···×nd by storing only the transfer tensors Bt, t ∈ I (TI) and the
α-frames Uα, α ∈ L (TI), which implies significant compression in the low rank case. More precisely, setting
n := max{ni : i = 1, . . . , d}, r := max{rt : t ∈ TI} the number of data required for such a representation of
a rank-r tensor is O(ndr + dr3), in particular it does not scale exponentially with respect to the order d.

Like for the HOSVD, computing the best rank-r approximation XBEST to a given tensor X, i.e., the
minimizer of Z 7→ ‖X−Z‖F subject to rank(Zα) ≤ rα for all α ∈ TI is NP hard. A quasi-best approximation
Hr(Z) can be computed efficiently via successive SVDs. In [22] two strategies are introduced: hierarchical
root-to-leaves truncation or hierarchical leaves-to-root truncation, the latter being the computationally more
efficient one. Both strategies satisfy

‖X−Hr(X)‖F ≤ Cd‖X−XBEST‖F , (18)

where Cd =
√

2d− 2 for root-to-leaves truncation and Cd = (2 +
√

2)
√
d for leaves to root truncation. We

refer to [22] for more details and another method that achieves Cd =
√

2d− 3.

An important special case of a hierarchical tensor decomposition is the tensor train decomposition (TT)
[44, 45], also known as matrix product states in the physics literature. It is defined via the unbalanced tree

TI = {{1, 2, 3, . . . , d}, {1}, {2, 3, . . . , d}, {2}, {3, . . . , d}, {3}, . . . , {d− 1, d}, {d− 1}, {d}}.

The corresponding subspaces satisfy U{1,...,p+1} ⊂ U{1,...,p} ⊗ V{p+1}. The α-frame Uα for a leaf α ∈
{{1}, {2}, . . . , {d − 1}} is usually defined as identity matrix of appropriate size. Therefore, the tensor
X ∈ Hd is completely parametrized by the transfer tensors Bt, t ∈ I(TI), and the d-frame U{d}. Applying
the recursive construction, the tensor X can be written as

(µ1, . . . , µd) 7→ X(µ1, . . . , µd) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

B1(µ1, k1)B2(k1, µ2, k2) · · ·Bd(kd−1, µd) , (19)

where Bd := U{d} and we used the abbreviation α ' {α, α + 1, . . . , d}, for all α ∈ [d− 1]. Introducing the
matrices Gi(µi) ∈ Rri−1×ri ,(

Gi(µi)
)
ki−1,ki

= Bi(ki−1, µi, ki), i = 2, . . . , d− 1,

8



Figure 2: TT representation of an order 5 tensor with abbreviation i ' {i, . . . , d} for the interior nodes
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1

and, with the convention that r0 = rd = 1,
(
G1(µ1)

)
k1

= B1(µ1, k1) and(
Gd(µd)

)
kd−1

= Bd(kd−1, µd), (20)

formula (19) can be rewritten entry-wise by matrix–matrix products

X(µ1, . . . , µd) = G1(µ1) · · ·Gi(µi) · · ·Gd(µd) = τ(B1, . . . ,Bd). (21)

This representation is by no means unique. The tree is ordered according to the father-son relation into
a hierarchy of levels, where B1 is the root tensor. As in the HOSVD and HT scenario, the rank tuple
r = (r1, . . . , rd−1) is given by the ranks of certain matricizations, i.e.,

ri = rank
(
X{i,i+1,...,d}

)
for i ∈ [d− 1] .

The computation of XBEST = argminZ ‖X − Z‖F subject to rank(Z{i,i+1,...,d}) ≤ ri is again NP hard (for
d ≥ 3). A quasi-best approximation in the TT-format of a given tensor X can be efficiently determined
by computing the tensors B1 ∈ Rn1×r1 , Bk ∈ Rrk−1×n2×r2 , k ∈ [d − 1], Bd ∈ Rrd−1×nd in a representation

of the form (19) of Hr(X). First compute the best rank-r1 approximation X
{1}

of the matrix X{1} ∈
Rn1×n2···nd via the singular value decomposition so that X

{1}
= B1Σ1V

T
1 = B1M

{1}
1 with B1 ∈ Rn1×r1

and M
{1}
1 ∈ Rr1×n2···nd . Reshaping M

{1}
1 yields a tensor M1 ∈ Rr1×n2×···×nd . Next we compute the

best rank-r2 approximation M
{1,2}
1 of the matricization M

{1,2}
1 ∈ Rr1n1×n2···nd via an SVD as M

{1,2}
1 =

B
{1,2}
2 Σ2V

T
2 = B

{1,2}
2 M

{1}
2 with B

{1,2}
2 ∈ Rr1n2×r2 and M

{1}
2 ∈ Rr2×n3···nd so that B2 ∈ Rr1×n2×r2 . One

iteratively continues in this way via computing approximations of (matrix) rank rk via SVDs,

M
{1,2}
k = B

{1,2}
k+1 Σk+1V

T
k+1 = B

{1,2}
k+1 M

{1}
k+1, for k = 2, . . . , d− 2, Bd = Md−1.

Forming the matrices Gk(µk) ∈ Rrk−1×rk , µk ∈ [nk], k ∈ [d], from the tensors Bk as in (20), the computed
rank-r approximation is given as

Hr (X) (i1, i2, . . . , id) = G1 (i1) G2 (i2) · · ·Gd (id) .

As shown in [44], it satisfies the inequality

‖X−Hr(X)‖F ≤
√
d− 1‖X−XBEST‖F . (22)
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3 Analysis of iterative hard thresholding

We now pass to our iterative hard thresholding algorithms. For each tensor format (HOSVD, TT, HT),
we let Hr be a corresponding low rank projection operator as described in the previous section. Given
measurements y = A(X) of a low rank tensor X, or y = A(X) + e if the measurements are noisy, the
iterative thresholding algorithm starts with an initial guess X0 (often X = 0) and performs the iterations

Yj = Xj + µjA
∗ (y −A

(
Xj
))
, (23)

Xj+1 = Hr(Y
j). (24)

We analyze two variants of the algorithm which only differ by the choice of the step lengths µj .

• Classical TIHT (CTIHT) uses simply µj = 1, see [6] for the sparse recovery variant.

• Normalized TIHT (NTIHT) uses (see [7] for the sparse vector and [60] for the matrix variant)

µj =

∥∥Mj
(
A∗
(
y −A

(
Xj
)))∥∥2

F

‖A (Mj (A∗ (y −A (Xj))))‖22
. (25)

Here, the operator Mj : Rn1×n2×···×nd → Rn1×n2×···×nd depends on the choice of the tensor format and is
computed via projections onto spaced spanned by left singular vectors of several matricizations of Xj . This
choice of µj is motivated by the fact that in the sparse vector recovery scenario, the corresponding choice
of the step length maximally decreases the residual if the support set does not change in this iteration [7].

Let us describe the operator Mj : Rn1×n2×···×nd → Rn1×n2×···×nd appearing in (25). For the sake of
illustration we first specify it for the special case d = 2, i.e., the matrix case. Let P jU1

and P jU2
be the

projectors onto the top r left and right singular vector spaces of Xj , respectively. Then Mj(Z) = Pj
U1

ZPj
U2

for a matrix Z so that (25) yields

µj =

∥∥∥Pj
U1

A∗
(
y −A

(
Xj
))

Pj
U2

∥∥∥2

F∥∥∥A(Pj
U1

A∗ (y −A (Xj)) Pj
U2

)∥∥∥2

2

.

For the general tensor case, let Ui,j be the left singular vectors of the matricizations Xj{i}, Xj{1,...,i},

XjTI(i)
in case of HOSVD, TT, HT decomposition with the corresponding ordered tree TI , respectively.

The corresponding projection operators are given as Pj
Ui

:= Ûi,jÛ
∗
i,j , where Ûi,j = Ui,j (:, [ri]), with

ri = rTI(i) in the HT case. Then in the case of the HOSVD decomposition we define

Mj (Z) = Z×1 Pj
U1
×2 Pj

U2
× · · · ×d Pj

Ud
.

In order to define the operator Mj for the TT decomposition we use the k-mode product defined in (11).
The TT decomposition of a d-th order tensor Z can be written as

Z (i1, i2, . . . , id) = Z1(i1)Z2(i2) · · ·Zd(id)

= Zd ×1

(
Zd−1 ×1

(
· · · (Z2 ×1 Z1)

{1,2} · · ·
){1,2}){1,2}

((i1, i2, . . . , id−1), id) .

Then the operator Mj : Rn1×n2×···×nd → Rn1×n2×···×nd is defined as

Mj (Z) := Tvec

Zd ×1 Pj
Ud−1

(
Zd−1 ×1 Pj

Ud−2

(
· · ·Pj

U2

(
Z2 ×1 Pj

U1
Z1

){1,2}
· · ·
){1,2}){1,2}{1,2} ,

where Tvec (x) ∈ Rn1×n2×···×nd represents the tensorized version of a vector x, defined in (8).

10



Using the general k-mode product, one can define the operator Mj for the general HT-decomposition by
applying the above procedure in an analogous way.

In the normalized version of the tensor iterative hard thresholding algorithm (NTIHT algorithm), one
computes the projection operators P jUi

in each iteration j. To accomplish this, the tensor decomposition
has to be computed one extra time in each iteration which makes one iteration of algorithm substantially
slower in comparison to the CTIHT algorithm. However, we are able to provide better convergence results
for NTIHT than for the CTIHT algorithm.

The available analysis of the IHT algorithm for recovery of sparse vectors [6] and low rank matrices [33]
is based on the restricted isometry property (RIP). Therefore, we start by introducing an analog for tensors,
which we call the tensor restricted isometry property (TRIP). Since different tensor decomposition induce
different notions of tensor rank, they also induce different notions of the TRIP.

Definition 1 (TRIP). Let A : Rn1×n2×···×nd → Rm be a measurement map. Then for a fixed tensor
decomposition and a corresponding rank tuple r, the tensor restricted isometry constant δr of A is the
smallest quantity such that

(1− δr) ‖X‖2F ≤ ‖A (X)‖22 ≤ (1 + δr) ‖X‖2F (26)

holds for all tensors X ∈ Rn1×n2×···×nd of rank at most r.

We say that A satisfies the TRIP at rank r if δr is bounded by a sufficiently small constant between 0
and 1. When referring to a particular tensor decomposition we use the notions HOSVD-TRIP, TT-TRIP,
and HT-TRIP. Under the TRIP of the measurement operator A, we prove partial convergence results for
the two versions of the TIHT algorithm. Depending on some number a ∈ (0, 1), the operator norm and the
restricted isometry constants of A, and on the version of TIHT, we define

δ(a) =

{
a
4 for CTIHT,
a
a+8 for NTIHT,

(27)

ε(a) =


a2

17(1+
√

1+δ3r‖A‖2→2)
2 for CTIHT,

a2(1−δ3r)2

17(1−δ3r+
√

1+δ3r‖A‖2→2)
2 for NTIHT,

(28)

b(a) =

{
2
√

1 + δ3r +
√

4ε(a) + 2ε(a)2 ‖A‖2→2 for CTIHT,

2
√

1+δ3r
1−δ3r +

√
4ε(a) + 2ε(a)2 1

1−δ3r ‖A‖2→2 for NTIHT.
(29)

Theorem 1. For a ∈ (0, 1), let A : Rn1×n2×···×nd → Rm satisfy the TRIP (for a fixed tensor format) with

δ3r < δ(a) (30)

and let X ∈ Rn1×n2×···×nd be a tensor of rank at most r. Given measurements y = A (X), the sequence
(Xj) produced by CTIHT or NTIHT converges to X if∥∥Yj −Xj+1

∥∥
F
≤ (1 + ε(a))

∥∥Yj −X
∥∥
F

for all j = 1, 2, . . . . (31)

If the measurements are noisy, y = A (X) + e for some e ∈ Rm, and if (31) holds, then∥∥Xj+1 −X
∥∥
F
≤ aj

∥∥X0 −X
∥∥
F

+
b(a)

1− a
‖e‖2 for all j = 1, 2, . . . . (32)

Consequently, if e 6= 0 then after at most j∗ := dlog1/a

(∥∥X0 −X
∥∥
F
/ ‖e‖2

)
e iterations, Xj∗+1 estimates X

with accuracy ∥∥∥Xj∗+1 −X
∥∥∥
F
≤ 1− a+ b(a)

1− a
‖e‖2 . (33)

Remark 1. (a) The unpleasant part of the theorem is that condition (31) cannot be checked. It is implied
by the stronger condition ∥∥Yj −Xj+1

∥∥
F
≤ (1 + ε(a))

∥∥∥Yj −Yj
BEST

∥∥∥
F
,
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where Yj
BEST is the best rank-r approximation of Yj , since the best approximation Yj

BEST is by
definition a better approximation of rank r to Yj than X. Due to (16), (18) and (22), we can only
guarantee that this condition holds with (1 + ε(a)) replaced by C(d) �

√
d, but the proof of the

theorem only works for (1 + ε(a)). In fact, ε(a) is close to 0 as ‖A‖2→2 scales like
√
n1 · n2 · · ·nd/m

for reasonable measurement maps with δ3r < 1, see below. However, the approximation guarantees
for Hr are only worst case estimates and one may expect that usually much better approximations are
computed that satisfy (31), which only requires a comparison of the computed approximation error of
the Frobenius distance of Yj to X rather than to Yj

BEST. In fact, during the initial iterations one is
usually still far from the original tensor X so that (31) will hold. In any case, the algorithms work in
practice so that the theorem may explain why this is the case.

(b) The corresponding theorem [60] for the matrix recovery case applies also to approximately low rank
matrices – not only to exactly low rank matrices – and provides approximation guarantees also for this
case. This is in principle also contained in our theorem by splitting X = XBEST + Xc into the best
rank-r approximation and a remainder term Xc, and writing

y = A(X) + e = A(XBEST) + A(Xc) + e = A(XBEST) + ẽ,

where ẽ = A(Xc) + e. Then the theorem may be applied to ẽ instead of e and (33) gives the error
estimate ∥∥∥Xj∗+1 −XBEST

∥∥∥
F
≤ 1− a+ b(a)

1− a
‖A(Xc) + e‖2.

In the matrix case, the right hand side can be further estimated by a sum of three terms (exploiting
the restricted isometry property), one of them being the nuclear norm of Xc, i.e., the error of best
rank-r approximation in the nuclear norm. In the tensor case, a similar estimate is problematic, in
particular, the analogue of the nuclear norm approximation error is unclear.

(c) In [48] local convergence of a class of algorithms including iterative hard thresholding has been shown,
i.e., once an iterate Xj is close enough to the original X then convergence is guaranteed. (The theorem
in [48] requires Hr to be a retraction on the manifold of rank-r tensors which is in fact true [38, 56].)
Unfortunately, the distance to X which ensures local convergence depends on the curvature at X of the
manifold of rank-r tensors and is therefore unknown a-priori. Nevertheless, together with Theorem 1,
we conclude that the initial iterations decrease the distance to the original X (if the initial distance is
large enough), and if the iterates become sufficiently close to X, then we are guaranteed convergence.
The theoretical question remains about the “intermediate phase”, i.e., whether the iterates always do
come close enough to X at some point.

(d) In [28], Hedge, Indyk, and Schmidt find a way to deal with approximate projections onto model
sets satisfying a relation like (6) within iterative hard thresholding algorithms by working with a

second approximate projection H̃r satisfying a so-called head approximation guarantee of the form
‖H̃r(X)‖F ≥ c‖X‖F for some constant c > 0. Unfortunately, we were only able to find such head
approximations for the tensor formats at hand with constants c that scale unfavorably with r and the
dimensions n1, . . . , nd, so that in the end one arrives only at trivial estimates for the minimal number
of required measurements.

Proof of Theorem 1. We proceed similar to the corresponding proofs for the sparse vector [18] and matrix
recovery case [60]. The fact that (31) only holds with an additional ε = ε(a) requires extra care.

It follows from assumption (31) that

(1 + ε)
2 ∥∥Yj −X

∥∥2

F
≥
∥∥Yj −Xj+1

∥∥2

F
=
∥∥Yj −X + X−Xj+1

∥∥2

F

=
∥∥Yj −X

∥∥2

F
+
∥∥X−Xj+1

∥∥2

F
+ 2

〈
Yj −X,X−Xj+1

〉
. (34)
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Subtracting
∥∥Yj −X

∥∥2

F
and using Yj = Xj − µjA∗

(
A
(
Xj
)
− y

)
= Xj − µjA∗A

(
Xj −X

)
+ µjA

∗e gives∥∥Xj+1 −X
∥∥2

F
≤ 2

〈
Yj −X,Xj+1 −X

〉
+
(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A∗A

(
Xj −X

)
,Xj+1 −X

〉
+ 2µj

〈
A∗e,Xj+1 −X

〉
+
(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A
(
Xj −X

)
,A
(
Xj+1 −X

)〉
+ 2µj

〈
e,A

(
Xj+1 −X

)〉
+
(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

≤ 2
〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A
(
Xj −X

)
,A
(
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F
, (35)

where the last inequality is valid since rank
(
Xj+1 −X

)
≤ 2r ≤ 3r so that〈

e,A
(
Xj+1 −X

)〉
≤
∥∥A (Xj+1 −X

)∥∥
2
‖e‖2 ≤

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 .

Now let U j be the subspace of Rn1×n2×···×nd spanned by the tensors X, Xj , and Xj+1 and denote
by Qj : Rn1×n2×···×nd → U j the orthogonal projection onto U j . Then Qj (X) = X, Qj

(
Xj
)

= Xj , and

Qj
(
Xj+1

)
= Xj+1. Clearly, the rank of Qj (Y) is at most 3r for all Y ∈ Rn1×n2×···×nd . Further, we define

the operator A
j
Q : Rn1×n2×···×nd → Rn1×n2×···×nd by A

j
Q (Z) = A

(
Qj (Z)

)
for Z ∈ Rn1×n2×···×nd .

With these notions the estimate (35) is continued as∥∥Xj+1 −X
∥∥2

F
≤ 2

〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A
j
Q

(
Xj −X

)
,AjQ

(
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,

(
Xj+1 −X

)
− µjAj∗QA

j
Q

(
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,

(
I− µjAj∗QA

j
Q

) (
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

≤ 2
∥∥∥I− µjAj∗QA

j
Q

∥∥∥
2→2

∥∥Xj −X
∥∥
F

∥∥Xj+1 −X
∥∥
F

+ 2µj
√

1 + δ3r
∥∥Xj+1 −X

∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F
. (36)

The last term can be bounded by∥∥Yj −X
∥∥
F

=
∥∥Xj − µjA∗A

(
Xj −X

)
+ µjA

∗e−X
∥∥
F

=
∥∥(Xj −X

)
− µjA∗A

(
Xj −X

)
+ µjA

∗e
∥∥
F

=
∥∥(I− µjA∗A)

(
Xj −X

)
+ µjA

∗e
∥∥
F

=
∥∥∥(I− µjA∗AjQ

) (
Xj −X

)
+ µjA

∗e
∥∥∥
F

≤
∥∥∥I− µjA∗AjQ∥∥∥

2→2

∥∥Xj −X
∥∥
F

+ µj ‖A∗e‖F

≤
(

1 + µj ‖A‖2→2

∥∥∥AjQ∥∥∥
2→2

)∥∥Xj −X
∥∥
F

+ µj ‖A‖2→2 ‖e‖2

≤
(

1 + µj
√

1 + δ3r ‖A‖2→2

)∥∥Xj −X
∥∥
F

+ µj ‖A‖2→2 ‖e‖2 . (37)

Using that (u+ v)
2 ≤ 2

(
u2 + v2

)
for all u, v ∈ R, we obtain the estimate

∥∥Yj −X
∥∥2

F
≤ 2

(
1 + µj

√
1 + δ3r ‖A‖2→2

)2 ∥∥Xj −X
∥∥2

F
+ 2µ2

j ‖A‖
2
2→2 ‖e‖

2
2 . (38)
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Combining inequalities (36) and (38) yields∥∥Xj+1 −X
∥∥2

F
≤ 2

∥∥∥I− µjAj∗QA
j
Q

∥∥∥
2→2

∥∥Xj −X
∥∥
F

∥∥Xj+1 −X
∥∥
F

+ 2µj
√

1 + δ3r
∥∥Xj+1 −X

∥∥
F
‖e‖2 + 2

(
2ε+ ε2

) (
1 + µj

√
1 + δ3r ‖A‖2→2

)2 ∥∥Xj −X
∥∥2

F

+ 2
(
2ε+ ε2

)
µ2
j ‖A‖

2
2→2 ‖e‖

2
2 . (39)

This implies that there exist α, β, γ ∈ [0, 1] such that α+ β + γ ≤ 1 and

(1− α− β − γ)
∥∥Xj+1 −X

∥∥2

F
≤ 2

∥∥∥I− µjAj∗QA
j
Q

∥∥∥
2→2

∥∥Xj −X
∥∥
F

∥∥Xj+1 −X
∥∥
F

(40)

α
∥∥Xj+1 −X

∥∥2

F
≤ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 (41)

β
∥∥Xj+1 −X

∥∥2

F
≤ 2

(
2ε+ ε2

) (
1 + µj

√
1 + δ3r ‖A‖2→2

)2 ∥∥Xj −X
∥∥2

F
, (42)

γ
∥∥Xj+1 −X

∥∥2

F
≤ 2

(
2ε+ ε2

)
µ2
j ‖A‖

2
2→2 ‖e‖

2
2 . (43)

Canceling one power of
∥∥Xj+1 −X

∥∥
F

in inequalities (40) and (41), taking the square root of the inequalities
(42) and (43), and summation of all resulting inequalities yields∥∥Xj+1 −X

∥∥
F

≤ f (β, γ)
(

2
∥∥∥I− µjAj∗QA

j
Q

∥∥∥
2→2

+
√

4ε+ 2ε2
(

1 + µj
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+ f (β, γ)
(

2µj
√

1 + δ3r +
√

4ε+ 2ε2µj ‖A‖2→2

)
‖e‖2 (44)

with f (β, γ) = (1− β +
√
β − γ +

√
γ)−1. Notice that f is positive and strictly less than 1 on [0, 1]× [0, 1]

and will therefore be omitted in the following.
Let us now specialize to CTIHT where µj = 1. Since A

j
Q is the restriction of A to the space U j which

contains only tensors of rank at most 3r, we have (with I denoting the identity operator on U j)

‖I− µjAj∗QA
j
Q‖2→2 = ‖I− A

j∗
QA

j
Q‖2→2 = sup

X∈Uj :‖X‖F=1

|‖X‖2F − ‖A(X)‖22|

≤ sup
X:rank(X)≤3r,‖X‖F=1

|‖X‖2F − ‖A(X)‖22| = δ3r.

Plugging µj = 1 and above estimate into (44) yields∥∥Xj+1 −X
∥∥
F
≤
(

2
∥∥∥I−A

j∗
QA

j
Q

∥∥∥
2→2

+
√

4ε+ 2ε2
(

1 +
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+
(

2
√

1 + δ3r +
√

4ε+ 2ε2 ‖A‖2→2

)
‖e‖2

≤
(

2δ3r +
√

4ε+ 2ε2
(

1 +
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+
(

2
√

1 + δ3r +
√

4ε+ 2ε2 ‖A‖2→2

)
‖e‖2 .

Setting κ := 1 +
√

1 + δ3r‖A‖2→2 > 1, the bound δ3r ≤ a/4 with a < 1 and the definition of ε = ε(a) in (28)
yield

2δ3r +
√

4ε+ 2ε2
(

1 +
√

1 + δ3r ‖A‖2→2

)
≤ a

2
+

√
4a2

17κ2
+

2a4

172κ4
κ ≤ a

(
1

2
+

√
4

17
+

2

172

)
< a.

Thus, with the definition (29) of b = b(a) for CTIHT we obtain∥∥Xj+1 −X
∥∥
F
≤ a

∥∥Xj −X
∥∥
F

+ b ‖e‖2 .
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Iterating this inequality leads to (32), which implies a recovery accuracy of
∥∥Xj+1 −X

∥∥
F
≤ 1−a+b

1−a ‖e‖2 if

aj
∥∥X0 −X

∥∥
F
≤ ‖e‖2. Hence, if e 6= 0 then after j∗ := dlog1/a

(∥∥X0 −X
∥∥
F
/ ‖e‖2

)
e iterations, (33) holds.

Let us now consider the variant NTIHT. Since the image of the operator Mj is contained in the set of
rank-r tensors, the tensor restricted isometry property yields

1

1 + δr
≤ µj =

∥∥Mj
(
A∗
(
y −A

(
Xj
)))∥∥2

F

‖A (Mj (A∗ (y −A (Xj))))‖22
≤ 1

1− δr
. (45)

Since Qj maps onto rank-3r tensors, the TRIP implies that every eigenvalue of Aj∗QA
j
Q is contained in the

interval [1− δ3r, 1 + δ3r]. Therefore, every eigenvalue of I− µjAj∗QA
j
Q is contained in [1− 1+δ3r

1−δr , 1−
1−δ3r
1+δr

].
The magnitude of the lower end point is greater than that of the upper end point, giving the operator norm
bound ∥∥∥I− µjAj∗QA

j
Q

∥∥∥
2→2
≤ 1 + δ3r

1− δr
− 1 ≤ 1 + δ3r

1− δ3r
− 1. (46)

Hence, plugging the upper bound on µj in (45) and the above inequality into (44) leads to∥∥Xj+1 −X
∥∥
F
≤
(

2
∥∥∥I− µjAj∗QA

j
Q

∥∥∥
2→2

+
√

4ε+ 2ε2
(

1 + µj
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+
(

2µj
√

1 + δ3r +
√

4ε+ 2ε2µj ‖A‖2→2

)
‖e‖2

≤
(

2

(
1 + δ3r
1− δ3r

− 1

)
+
√

4ε+ 2ε2

(
1 +

√
1 + δ3r

1− δ3r
‖A‖2→2

))∥∥Xj −X
∥∥
F

+

(
2

√
1 + δ3r

1− δ3r
+

√
4ε+ 2ε2

1− δ3r
‖A‖2→2

)
‖e‖2 .

Setting ν := 1 +
√

1+δ3r
1−δ3r ‖A‖2→2 ≥ 1, using δ3r ≤ a/(a+ 8) and the definition (28) of ε = ε(a) = a2/(17ν2),

gives

2

(
1 + δ3r
1− δ3r

− 1

)
+
√

4ε+ 2ε2

(
1 +

√
1 + δ3r

1− δ3r
‖A‖2→2

)
≤ a

2
+ ν

√
4a2

17ν2
+

2a2

172ν4
< a

so that with the definition of b in (29) we arrive at∥∥Xj+1 −X
∥∥
F
≤ a

∥∥Xj −X
∥∥
F

+ b ‖e‖2 .

The proof is concluded in the same way as for CTIHT.

Remark 2. For the noiseless scenario where ‖e‖2 = 0, one may work with a slightly improved definition of
ε(a). In fact, (37) implies then∥∥Yj −X

∥∥
F
≤
(

1 + µj
√

1 + δ3r ‖A‖2→2

)∥∥Xj −X
∥∥
F
.

Following the proof in the same way as above, one finds that the constant 17 in the definition (28) of ε(a)
can be improved to 9.

4 Tensor RIP

Now that we have shown a (partial) convergence result for the TIHT algorithm based on the TRIP, the
question arises which measurement maps satisfy the TRIP under suitable conditions on the number of
measurements in terms of the rank r, the order d and the dimensions n1, . . . , nd. As common in compressive
sensing and low rank recovery, we study this question for random measurement maps. We concentrate first
on subgaussian measurement maps and consider maps based on partial random Fourier transform afterwards.
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A random variable X is called L-subgaussian if there exists a constant L > 0 such that

E exp (tX) ≤ exp
(
L2t2/2

)
holds for all t ∈ R. We call A : Rn1×n2×···×nd → Rm an L-subgaussian measurement ensemble if all elements
of A, interpreted as a tensor in Rn1×n2×···×nd×m, are independent mean-zero, variance one, L-subgaussian
variables. Gaussian and Bernoulli random measurement ensembles where the entries are standard normal
distributed random variables and Rademacher ±1 variables (i.e., taking the values +1 and −1 with equal
probability), respectively, are special cases of 1-subgaussian measurement ensembles.

Theorem 2. Fix one of the tensor formats HOSVD, TT, HT (with decomposition tree TI). For δ, ε ∈ (0, 1),
a random draw of an L-subgaussian measurement ensemble A : Rn1×n2×···×nd → Rm satisfies δr ≤ δ with
probability at least 1− ε provided that

HOSVD: m ≥ C1δ
−2 max

{(
rd + dnr

)
log (d) , log

(
ε−1
)}
,

TT & HT: m ≥ C2δ
−2 max

{(
(d− 1)r3 + dnr

)
log (dr) , log

(
ε−1
)}
,

where n = max {ni : i ∈ [d]}, r = max {rt : t ∈ TI}. The constants C1, C2, C3 > 0 only depend on the
subgaussian parameter L.

One may generalize the above theorem to situations where it is no longer required that all entries of
the tensor A are independent, but only that the sensing tensors Ai ∈ Rn1×n2×···×nd , i = 1, . . . ,m, are
independent. We refer to [15] for details, in particular to Corollary 5.4 and Example 5.8. Furthermore, we

note that the term dnr in all bounds for m may be refined to
∑d
i=1 niri.

The proof of Theorem 2 uses ε-nets and covering numbers, see e.g. [66] for more background on this
topic.

Definition 2. A set NX
ε ⊂ X, where X is a subset of a normed space, is called an ε-net of X with respect

to the norm ‖·‖ if for each v ∈ X, there exists v0 ∈ NX
ε with ‖v0 − v‖ ≤ ε. The minimal cardinality of an

ε-net of X with respect to the norm ‖·‖ is denoted by N (X, ‖·‖ , ε) and is called the covering number of X
(at scale ε).

The following well-known result will be used frequently in the following.

Lemma 1 ([66]). Let X be a subset of a vector space of real dimension k with norm ‖ · ‖, and let 0 < ε < 1.

Then there exists an ε-net NX
ε satisfying NX

ε ⊂ X and
∣∣NX

ε

∣∣ ≤ Vol(X+ ε
2B)

Vol( ε2B)
, where ε

2B is an ε/2 ball with

respect to the norm ‖·‖ and X+ ε
2B =

{
x+ y : x ∈ NX

ε , y ∈ ε
2B
}

. Specifically, if X is a subset of the ‖·‖-unit

ball then X + ε
2B is contained in the

(
1 + ε

2

)
-ball and thus

∣∣NX
ε

∣∣ ≤ (1 + ε/2)
k

(ε/2)
k

=

(
1 +

2

ε

)k
< (3/ε)

k
.

It is crucial for the proof of Theorem 2 to estimate the covering numbers of the set of unit Frobenius
norm rank-r tensors with respect to the different tensor formats. We start with the HOSVD.

Lemma 2 (Covering numbers related to HOSVD). The covering numbers of

Sr =
{
X ∈ Rn1×n2×···×nd : rankHOSVD (X) ≤ r, ‖X‖F = 1

}
with respect to the Frobenius norm satisfy

N (Sr, ‖·‖F , ε) ≤ (3 (d+ 1) /ε)
r1r2···rd+

∑d
i=1 niri . (47)
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Proof. The proof follows a similar strategy as the one of [9, Lemma 3.1]. The HOSVD decomposition
X = S ×1 U1 ×2 U2 × · · · ×d Ud of any X ∈ Sr obeys ‖S‖F = 1. Our argument constructs an ε-net for
Sr by covering the sets of matrices U1,U2, . . . ,Ud with orthonormal columns and the set of unit Frobenius
norm tensors S. For simplicity we assume that n1 = n2 = . . . = nd = n and r1 = r2 = . . . = rd = r since
the general case requires only a straightforward modification.

The set D of all-orthogonal d-th order tensors X ∈ Rr×r×···×r with unit Frobenius norm is contained in
F = {X ∈ Rr×r×···×r : ‖X‖F = 1}. Lemma 1 therefore provides an ε/ (d+ 1)-net NF

ε/(d+1) with respect to

the Frobenius norm of cardinality
∣∣∣NF

ε/(d+1)

∣∣∣ ≤ (3 (d+ 1) /ε)
rd

. For covering On,r = {U ∈ Rn×r : U∗U = I},
it is beneficial to use the norm ‖·‖1,2 defined as

‖V‖1,2 = max
i
‖V (:, i)‖2 ,

where V (:, i) denotes the i-th column of V. Since the elements of On,r have normed columns, it holds

On,r ⊂ Qn,r =
{

V ∈ Rn×r : ‖V‖1,2 ≤ 1
}

. Lemma 1 gives N
(
On,r, ‖·‖1,2 , ε/ (d+ 1)

)
≤ (3 (d+ 1) /ε)

nr
,

i.e., there exists an ε/ (d+ 1)-net N
On,r
ε/(d+1) of this cardinality.

Then the set

NSr
ε :=

{
S×1 U1 ×2 U2 × · · · ×d Ud : S ∈ ND

ε/(d+1) and Ui ∈ N
On,r
ε/(d+1) for all i ∈ [d]

}
,

obeys ∣∣NSr
ε

∣∣ ≤ N (D, ‖·‖F , ε/ (d+ 1))
[
N
(
On,r, ‖·‖1,2 , ε/ (d+ 1)

)]d
≤ (3 (d+ 1) /ε)

rd+dnr
.

It remains to show that NSr
ε is an ε-net for Sr, i.e., that for all X ∈ Sr there exists X ∈ NSr

ε with∥∥X−X
∥∥
F
≤ ε. To this end, we fix X ∈ Sr and decompose X as X = S ×1 U1 ×2 U2 × · · · ×d Ud. Then

there exists X = S ×1 U1 ×2 U2 × · · · ×d Ud ∈ NSr
ε with Ui ∈ N

On,r
ε/(d+1), for all i ∈ [d] and S ∈ ND

ε/(d+1)

obeying
∥∥Ui −Ui

∥∥
1,2
≤ ε/ (d+ 1), for all i ∈ [d] and

∥∥S− S
∥∥
F
≤ ε/ (d+ 1). This gives∥∥X−X

∥∥
F

=
∥∥S×1 U1 × · · · ×d Ud − S×1 U1 × · · · ×d Ud

∥∥
F

=
∥∥S×1 U1 ×2 U2 × · · · ×d Ud ± S×1 U1 ×U2 × · · · ×d−1 Ud−1 ×d Ud

± S×1 U1 ×2 U2 × · · · ×d−2 Ud−2 ×d−1 Ud−1 ×d Ud

± · · · ± S×1 U1 × · · · ×d Ud − S×1 U1 × · · · ×d Ud

∥∥
F

≤
∥∥S×1 U1 ×2 U2 × · · · ×d

(
Ud −Ud

)∥∥
F

+
∥∥S×1 U1 ×2 U2 × · · · ×d−1

(
Ud−1 −Ud−1

)
×d Ud

∥∥
F

+ · · · +
∥∥S×1

(
U1 −U1

)
×2 U2 × · · · ×d Ud

∥∥
F

+
∥∥(S− S

)
×1 U1 ×2 U2 × · · · ×d Ud

∥∥
F
. (48)

For the first d terms note that by unitarity
∑
ij

Uj (ij , kj) Uj (ij , lj) = δkj lj and
∑
ij

Uj (ij , kj) Uj (ij , lj) =
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δkj lj , for all j ∈ [d], and
〈
Sij=kj ,Sij=lj

〉
= 0 for all j ∈ [d] whenever kj 6= lj . Therefore, we obtain∥∥S×1 U1 ×2 U2 × · · · ×j−1 Uj−1 ×j
(
Uj −Uj

)
×j+1 Uj+1 × · · · ×d Ud

∥∥2

F

=
∑

i1,...,id

[(
S×1 U1 ×2 U2 × · · · ×j−1 Uj−1 ×j

(
Uj −Uj

)
×j+1 Uj+1 × · · · ×d Ud

)
(i1, . . . , id)

]2
=

∑
i1,...,id

∑
k1,...,kd

∑
l1,...,ld

S (k1, . . . , kd) S (l1, . . . , ld) U1 (i1, k1) U1 (i1, l1) U2 (i2, k2) U2 (i2, l2)

· . . . ·
(
Uj −Uj

)
(ij , kj)

(
Uj −Uj

)
(ij , lj) · . . . ·Ud (id, kd) Ud (id, ld)

=
∑
ij

∑
k1,...,kd

∑
lj

S (k1, . . . , kj , . . . , kd) S (k1, . . . , lj , . . . , kd)
(
Uj −Uj

)
(ij , kj)

(
Uj −Uj

)
(ij , lj)

=
∑
ij

∑
k1,k2,...,kd

S (k1, k2, . . . , kd)
2 ((

Uj −Uj

)
(ij , kj)

)2 ≤ ∥∥Uj −Uj

∥∥2

1,2
‖S‖2F =

∥∥Uj −Uj

∥∥2

1,2

≤ (ε/ (d+ 1))
2
.

In order to bound the last term in (48), observe that the unitarity of the matrices Ui gives∥∥(S− S
)
×1 U1 × · · · ×d Ud

∥∥
F

=
∥∥S− S

∥∥
F
≤ ε/ (d+ 1) .

This completes the proof.

Next, we bound the covering numbers related to the HT decomposition, which includes the TT decom-
position as a special case.

Lemma 3 (Covering numbers related to HT-decomposition). For a given HT-tree TI , the covering numbers
of the set of unit norm, rank-r tensors

SHT
r =

{
X ∈ Rn1×n2×···×nd : rankHT (X) ≤ rHT, ‖X‖F = 1

}
satisfy

N
(
SHT
r , ‖·‖F , ε

)
≤
(
3(2d− 1)

√
r/ε
)∑

t∈I(TI) rtrt1rt2+
∑d
i=1 rini for 0 ≤ ε ≤ 1, (49)

where r = max {rt : t ∈ TI}, and t1, t2 are the left and the right son of a node t, respectively.

The proof requires a non-standard orthogonalization of the HT-decomposition. (The standard orthog-
onalization leads to worse bounds, in both TT and HT case.) We say that a tensor Bt ∈ Crt×rt1×rt2 is

right-orthogonal if
(
B
{2,3}
t

)T
B
{2,3}
t = Irt . We call an HT-decomposition right-orthogonal if all transfer

tensors Bt, for t ∈ I(TI)\{troot}, i.e. except for the root, are right orthogonal and all frames Ui have orthog-
onal columns. For the sake of simple notation, we write the right-orthogonal HT-decomposition of a tensor
X ∈ Rn1×n2×n3×n4 with the corresponding HT-tree as in Figure 3 as

X = B{1,2,3,4} 5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
. (50)

In fact, the above decomposition can be written as

X = B{1,2,3,4} 5
(
B{1,2} ×2 U1 ×3 U2

)
5
(
B{3,4} ×2 U3 ×3 U4

)
.

since Ui is a matrix for all i ∈ [4]. However, for simplicity, we are going to use the notation as in (50). A right-
orthogonal HT-decomposition can be obtained as follows from the standard orthogonal HT-decomposition
(see [22]), where in particular, all frames Ui have orthogonal columns.
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B{1,2,3,4}

B{1,2}

U1 U2

B{3,4}

U3 U4

1

Figure 3: Tree for the HT-decomposition with d = 4

We first compute the QR-decomposition of the flattened transfer tensors B
{2,3}
t = Q

{2,3}
t Rt for all nodes

t at the highest possible level ` = p− 1. The level ` of the tree is defined as the set of all nodes having the
distance of exactly ` to the root. We denote the level ` of the tree TI as T `I = {t ∈ TI : level(t) = `}. (For
example, for tree TI as in Figure 3, T 0

I = {{1, 2, 3, 4}}, T 1
I = {{1, 2}, {3, 4}}, T 2

I = {{1}, {2}, {3}, {4}}.) The
Qt’s are then right-orthogonal by construction. In order to obtain a representation of the same tensor, we
have to replace the tensors Bt′ with nodes at lower level p− 2 by B̄t′ = Bt′ ×2 Rtleft ×3 Rtright , where tleft

corresponds to the left son of t′ and tright to the right son. We continue by computing the QR-decompositions

of B̄
{2,3}
t′ with t′ at level p − 2 and so on until we finally updated the root B{1,2,...,d} (which may remain

the only non right-orthogonal transfer tensor). We illustrate this right-orthogonalization process for an
HT-decomposition of the form (50) related to the HT-tree of Figure 3:

X = B{1,2,3,4} 5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
= B{1,2,3,4} 5

([
Q{1,2} ×1 R{1,2}

]
5U1 5U2

)
5
([

Q{3,4} ×1 R{3,4}
]
5U3 5U4

)
=
[
B{1,2,3,4} ×2 R{1,2} ×3 R{3,4}

]
5
(
Q{1,2} 5U1 5U2

)
5
(
Q{3,4} 5U3 5U4

)
.

The second identity is easily verified by writing out the expressions with index notation. The last expression
is a right-orthogonal HT decomposition with root tensor B{1,2,3,4} = B{1,2,3,4} ×2 R{1,2} ×3 R{3,4}.

Proof of Lemma 3. For the sake of better readability, we will show the result for the special cases of the
order 4 HT-decomposition as in Figure 3 as well as for the special case of the TT decomposition for arbitary
d. The general case is then done analogously.

For the HT-tree TI as in Figure 3 we have TI = {{1, 2, 3, 4}, {1, 2}, {1}, {2}, {3, 4}, {3}, {4}} and the
number of nodes is |TI | = 2d− 1 = 7. We have to show that for TI as in Figure 3, the covering numbers of

SHT
r =

{
X ∈ Rn1×n2×···×nd : rankHT (X) ≤ rHT, ‖X‖F = 1

}
,

satisfy

N
(
SHT
r , ‖·‖F , ε

)
≤
(
21
√
r/ε
)r{1,2,3,4}r{1,2}r{3,4}+r{1,2}r1r2+r{3,4}r3r4+

∑4
i=1 rini for 0 ≤ ε ≤ 1.

For simplicity, we treat the case that rt = r for all t ∈ TI and ni = n for i ∈ [4]. We will use the right-
orthogonal HT-decomposition introduced above and we cover the admissible components Ui and Bt in (50)
separately, for all t ∈ TI and i ∈ [4].

We introduce the set of right-orthogonal tensors Oright
r,r,r =

{
U ∈ Rr×r×r : U{2,3}

T
U{2,3} = Ir

}
which we

will cover with respect to the norm

‖U‖F,1 := max
i
‖U (i, :, :)‖F . (51)
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The set Qright
r,r,r :=

{
X ∈ Rr×r×r : ‖X‖F,1 ≤ 1

}
contains Oright

r,r,r . Thus, by Lemma 1 there is an ε/ (7
√
r)-set

N
Oright
r,r,r

ε/(7
√
r)

for Oright
r,r,r obeying ∣∣∣∣NOright

r,r,r

ε/(7
√
r)

∣∣∣∣ ≤ (3 · 7√r/ε)r3 =
(
21
√
r/ε
)r3

.

For the frames Ui ∈ Rn×r with i ∈ [4], we define the set On,r =
{
U ∈ Rn×r : UTU = Ir

}
which we cover

with respect to
‖U‖1,2 := max

i
‖U (:, i)‖2 .

Clearly, On,r ⊆ Qn,r :=
{

X ∈ Rn×r : ‖X‖1,2 ≤ 1
}

since the elements of an orthonormal set are unit normed.

Again by Lemma 1, there is an ε/ (7
√
r)-set N

On,r

ε/(7
√
r)

for On,r obeying

∣∣∣∣NOn,r

ε/(7
√
r)

∣∣∣∣ ≤ (21
√
r/ε
)nr

.

Finally, to cover B{1,2,3,4}, we define the set Fr,r =
{
X ∈ R1×r×r : ‖X‖F = 1

}
which has an ε/ (7

√
r)-net

N
Fr,r

ε/(7
√
r)

of cardinality at most (21
√
r/ε)

r2
. We now define

N
SHT
r
ε :=

{
B{1,2,3,4} 5

(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
:

B{1,2},B{3,4} ∈ N
Oright
r,r,r

ε/(7
√
r)
,B{1,2,3,4} ∈ N

Fr,r

ε/(7
√
r)
,Ui ∈ N

On,r

ε/(7
√
r)

for all i ∈ [4]

}
and remark that

N
(
SHT
r , ‖·‖F , ε

)
≤
∣∣∣∣NOright

r,r,r

ε/(7
√
r)

∣∣∣∣2 ∣∣∣∣NOn,r

ε/(7
√
r)

∣∣∣∣4 ∣∣∣∣NFr,r

ε/(7
√
r)

∣∣∣∣ ≤ (21
√
r/ε
)3r3+4nr

.

It remains to show that for any X ∈ SHT
r there exists X ∈ N

SHT
r
ε such that

∥∥X−X
∥∥
F
≤ 1. For X =

B{1,2,3,4}5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
, we choose X = B{1,2,3,4}5

(
B{1,2} 5U1 5U2

)
5(

B{3,4} 5U3 5U4

)
∈ N

SHT
r
ε such that B{1,2,3,4} ∈ Fr,r, B{1,2},B{3,4} ∈ Oright

r,r,r , Ui ∈ On,r for all i ∈ [4]
and ∥∥Ui −Ui

∥∥
1,2
≤ ε

7
√
r

for all i ∈ [4] ,∥∥B{1,2,3,4} −B{1,2,3,4}
∥∥
F
≤ ε

7
√
r
,∥∥B{1,2} −B{1,2}

∥∥
F,1
≤ ε

7
√
r
, and

∥∥B{3,4} −B{3,4}
∥∥
F,1
≤ ε

7
√
r
.

Applying the triangle inequality results in∥∥X−X
∥∥
F
≤
∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5

(
U4 −U4

))∥∥
F

(52)

+
∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5

(
U3 −U3

)
5U4

)∥∥
F

+
∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
((

B{3,4} −B{3,4}
)
5U3 5U4

)∥∥
F

(53)

+ · · ·+
∥∥(B{1,2,3,4} −B{1,2,3,4}

)
5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F
. (54)
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To estimate (52), we use orthogonality of Ui, i ∈ [4], and the right-orthogonality of B{1,2}, B{3,4} to obtain∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5

(
U4 −U4

))∥∥2

F

=
∑

i1,...,i4

∑
j1,...,j4
k1,...,k4

∑
j12,
k12

∑
j34,
k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, k12, k34) B{1,2} (j12, j1, j2) B{1,2} (k12, k1, k2)

·U1 (i1, j1) U1 (i1, k1) U2 (i2, j2) U2 (i2, k2) B{3,4} (j34, j3, j4) B{3,4} (k34, k3, k4)

·U3 (i3, j3) U3 (i3, k3)
(
U4 −U4

)
(i4, j4)

(
U4 −U4

)
(i4, k4)

=
∑
i4

∑
j3,j4
k4

∑
j12

∑
j34,
k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34) B{3,4} (j34, j3, j4) B{3,4} (k34, j3, k4)

·
(
U4 −U4

)
(i4, j4)

(
U4 −U4

)
(i4, k4) =

〈
∆U4,�B{3,4}

〉
≤ ‖∆U4‖2→2

∥∥�B{3,4}
∥∥
∗

where

∆U4 (j4, k4) =
∑
i4

(
U4 −U4

)
(i4, j4)

(
U4 −U4

)
(i4, k4) = (U4 −U4)T (U4 −U4)(j4, k4),

�B{3,4} (j4, k4) =
∑
j3

∑
j12

∑
j34,k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34)

·B{3,4} (j34, j3, j4) B{3,4} (k34, j3, k4) .

Since the Frobenius norm dominates the spectral norm, we have

‖∆U4‖2→2 =
∥∥U4 −U4

∥∥2

2→2
≤
∥∥U4 −U4

∥∥2

F
≤ r

∥∥U4 −U4

∥∥2

1,2
. (55)

Since �B{3,4} is symmetric and positive semidefinite, it holds

1 =
∥∥X∥∥2

F
=
〈
I,�B{3,4}

〉
= tr

(
�B{3,4}

)
=
∥∥�B{3,4}

∥∥
∗ .

Hence,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5

(
U4 −U4

))∥∥
F
≤
√
r
∥∥U4 −U4

∥∥
1,2
≤ ε

7
.

A similar procedure leads to the estimates∥∥B{1,2,3,4} 5 (B{1,2} 5 (U1 −U1

)
5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F
≤
√
r
∥∥U1 −U1

∥∥
1,2
≤ ε

7
,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5

(
U2 −U2

))
5
(
B{3,4} 5U3 5U4

)∥∥
F
≤
√
r
∥∥U2 −U2

∥∥
1,2
≤ ε

7
,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5

(
U3 −U3

)
5U4

)∥∥
F
≤
√
r
∥∥U3 −U3

∥∥
1,2
≤ ε

7
.

Since Ui is orthogonal for all i ∈ [4] and B{1,2},B{3,4} are right-orthogonal, we similarly estimate (53),∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
((

B{3,4} −B{3,4}
)
5U3 5U4

)∥∥
F

=
∑

i1,...,i4

∑
j1,...,j4
k1,...,k4

∑
j12,
k12

∑
j34,
k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, k12, k34) B{1,2} (j12, j1, j2) B{1,2} (k12, k1, k2)

·U1 (i1, j1) U1 (i1, k1) U2 (i2, j2) U2 (i2, k2)
(
B{3,4} −B{3,4}

)
(j34, j3, j4)

(
B{3,4} −B{3,4}

)
(k34, k3, k4)

·U3 (i3, j3) U3 (i3, k3) U4 (i4, j4) U4 (i4, k4)

=
∑
j3,j4

∑
j12

∑
j34,
k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34)
(
B{3,4} −B{3,4}

)
(j34, j3, j4)

·
(
B{3,4} −B{3,4}

)
(k34, j3, j4) =

〈
∆B{3,4},�B{1,2,3,4}

〉
≤
∥∥∆B{3,4}

∥∥
2→2

∥∥�B{1,2,3,4}
∥∥
∗
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where

∆B{3,4} (j34, k34) =
∑
j3,j4

(
B{3,4} −B{3,4}

)
(j34, j3, j4)

(
B{3,4} −B{3,4}

)
(k34, j3, j4)

=
(
B
{2,3}
{3,4} −B

{2,3}
{3,4}

)T (
B
{2,3}
{3,4} −B

{2,3}
{3,4}

)
(j34, k34)

�B{1,2,3,4} (j34, k34) =
∑
j12

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34) .

The spectral norm of ∆B{3,4} can be estimated as∥∥∆B{3,4}
∥∥

2→2
=
∥∥∥B{2,3}{3,4} −B

{2,3}
{3,4}

∥∥∥2

2→2
≤
∥∥B{3,4} −B{3,4}

∥∥2

F
≤ r

∥∥B{3,4} −B{3,4}
∥∥2

F,1
. (56)

Since �B{1,2,3,4} is symmetric and positive semidefinite

1 =
∥∥X∥∥2

F
=
〈
I,�B{1,2,3,4}

〉
= tr

(
�B{1,2,3,4}

)
=
∥∥�B{1,2,3,4}

∥∥
∗ .

Hence,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
((

B{3,4} −B{3,4}
)
5U3 5U4

)∥∥
F
≤
√
r
∥∥B{3,4} −B{3,4}

∥∥
F,1
≤ ε

7
.

A similar procedure leads to the following estimates∥∥(B{1,2,3,4} −B{1,2,3,4}
)
5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F
≤
∥∥B{1,2,3,4} −B{1,2,3,4}

∥∥
F
≤ ε

7
,∥∥B{1,2,3,4} 5 ((B{1,2} −B{1,2}

)
5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F
≤
√
r
∥∥B{1,2} −B{1,2}

∥∥
F,1
≤ ε

7
.

Plugging the bounds into (54) completes the proof for the HT-tree of Figure 3.

Let us now consider the TT-decomposition for tensors of order d ≥ 3 as illustrated in Figure 4. We start
with a right-orthogonal decomposition (see also the discussion after Lemma 3) of the form

X (i1, i2, . . . , id) =
∑

j1,j23...d

∑
j2,j3...d

· · ·
∑

jd−1,d,jd

B{1,2,...,d} (1, j1, j23...d) U1 (i1, j1) B{2,3,...,d} (j23...d, j2, j3...d)

·U2 (i2, j2) · · ·B{d−1,d} (jd−1,d, jd−1, jd) Ud−1 (id−1, jd−1) Ud (id, jd) .

As for the general HT-decomposition, we write this as

X = B{1,2,3,...,d}OU1O
(
B{2,3,...,d}OU2O

(
· · ·O

(
B{d−1,d}OUd−1OUd

)
· · ·
))
. (57)

As above, we cover each set of admissible components Ui, Bt separately, and then combine these components
in order to obtain a covering of

STT
r =

{
X ∈ Rn1×n2×···×nd : rankTT (X) ≤ rTT, ‖X‖F = 1

}
with respect to the Frobenius norm, that is, we form

N
STT
r
ε :=

{
B{1,2,3,...,d}OU1O

(
B{2,3,...,d}OU2O

(
· · ·O

(
B{d−1,d}OUd−1OUd

)
· · ·
))

: Ui ∈ N
On,r

ε/((2d−1)
√
r)
,

B{1,...,d} ∈ N
Fr,r

ε/((2d−1)
√
r)
,B{j,j+1,...,d} ∈ N

Oright
r,r,r

ε/((2d−1)
√
r)
, i ∈ [d− 1], j = 2, . . . , d− 1

}
.

In order to show that N
STT
r
ε forms an ε-net of STT

r we choose an arbitrary X ∈ STT
r with right-orthogonal

decomposition of the form (57) and for each Ui and B{j,...,d} the closest corresponding points Ui ∈
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Figure 4: TT decomposition

N
On,r

ε/((2d−1)
√
r)

, B{1,...,d} ∈ N
Fr,r

ε/((2d−1)
√
r)

, B{j,j+1,...,d} ∈ N
Oright
r,r,r

ε/((2d−1)
√
r)

, j = 2, . . . , d − 1 resulting in X ∈

N
STT
r
ε . The triangle inequality yields∥∥X−X

∥∥
F
≤
∥∥B{1,2,...,d}OU1O

(
B{2,...,d}O · · ·

(
B{d−1,d}OUd−1O

(
Ud −Ud

))
· · ·
)∥∥
F

+
∥∥B{1,2,...,d}OU1O

(
B{2,...,d}O · · ·O

(
B{d−1,d}O

(
Ud−1 −Ud−1

)
OUd

)
· · ·
)∥∥
F

+ · · ·+
∥∥(B{1,2,...,d} −B{1,2,...,d}

)
OU1O

(
B{2,...,d}O · · ·O

(
B{d−1,d}OUd−1OUd

)
· · ·
)∥∥
F
.

(58)

We need to bound terms of the form∥∥B{1,2,...,d}OU1O · · ·O
(
B{q−1,q,...,d}O

(
Uq −Uq

)
O
(
B{q,q+1,...,d}O · · ·OUd

)
· · ·
)∥∥
F
, q ∈ [d] (59)

and
∥∥B{1,2,...,d}OU1O · · ·OUp−1O

((
B{p,p+1,...,d} −B{p,p+1,...,d}

)
OUpO

(
· · ·OUd

)
· · ·
)∥∥
F
, p ∈ [d− 1] .

(60)

To estimate (59), we use orthogonality of Uq, Uq, q ∈ [d], and right-orthogonality of B{p,p+1...,d}, B{p,p+1,...,d},
p = 2, 3, . . . , d− 1, to obtain∥∥B{1,2,...,d}OU1O · · ·O

(
B{q−1,q,...,d}O

(
Uq −Uq

)
O
(
B{q,q+1,...,d}O · · ·OUd

)
· · ·
)∥∥2

F

=
∑

i1,...,id

∑
j1,...,jd
k1,...,kd

∑
j23...d,
j3...d,

...,jd−1,d

∑
k23...d,
k3...d,

...,kd−1,d

B{1,2,...,d} (1, j1, j23...d) B{1,2,...,d} (1, k1, k23...d) U1 (i1, j1) U1 (i1, k1)

· · ·B{q−1,q,...,d} (jq−1,q...d, jq−1, jq...d) B{q−1,q,...,d} (kq−1,q...d, kq−1, kq...d)

·
(
Uq −Uq

)
(iq, jq)

(
Uq −Uq

)
(iq, kq) B{q,q+1,...,d} (jq,q+1...d, jq, jq+1...d)

·B{q,q+1,...,d} (kq,q+1...d, kq, kq+1...d) · · ·Ud (id, jd) Ud (id, kd)

=
∑
iq

∑
j1,...,jq
kq

∑
j23...d,
j3...d,...,
jq+1...d

∑
k23...d,
k3...d,...,
kq...d

B{1,2,...,d} (1, j1, j23...d) B{1,2,...,d} (1, j1, k23...d)

· · ·B{q−1,q,...,d} (jq−1,q...d, jq−1, jq...d) B{q−1,q,...,d} (kq−1,q...d, jq−1, kq...d)

·
(
Uq −Uq

)
(iq, jq)

(
Uq −Uq

)
(iq, kq)

·B{q,q+1,...,d} (jq,q+1...d, jq, jq+1...d) B{q,q+1,...,d} (kq,q+1...d, kq, jq+1...d)

=
〈
∆Uq,�B{q,q+1,...,d}

〉
≤ ‖∆Uq‖2→2

∥∥�B{q,q+1,...,d}
∥∥
∗ ,
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where

∆Uq (jq, kq) =
∑
iq

(
Uq −Uq

)
(iq, jq)

(
Uq −Uq

)
(iq, kq) ,

�B{q,q+1,...,d} (jq, kq) =
∑

j1,...,jq−1

∑
j23...d,
j3...d,

...,jq+1,...,d

∑
k23...d,
k3...d,

...,kq,...,d

B{1,2,...,d} (1, j1, j23...d) B{1,2,...,d} (1, j1, k23...d)

· · ·B{q−1,q,...,d} (jq−1,q...d, jq−1, jq...d) B{q−1,q,...,d} (kq−1,q...d, jq−1, kq...d)

·B{q,q+1,...,d} (jq,q+1...d, jq, jq+1...d) B{q,q+1,...,d} (kq,q+1...d, kq, jq+1...d) .

We have
‖∆Uq‖2→2 = ‖Uq −Uq‖22→2 ≤

∥∥Uq −Uq

∥∥2

F
≤ r

∥∥Uq −Uq

∥∥2

1,2
. (61)

Since �B{q,q+1,...,d} is symmetric and positive semidefinite

1 =
∥∥X∥∥2

F
=
〈
I,�B{q,q+1,...,d}

〉
= tr

(
�B{q,q+1,...,d}

)
=
∥∥�B{q,q+1,...,d}

∥∥
∗ .

Hence,∥∥B{1,2,...,d}OU1O · · ·O
(
B{q−1,q,...,d}O

(
Uq −Uq

)
O
(
B{q,q+1,...,d}O · · ·OUd

)
· · ·
)∥∥
F
≤
√
r
∥∥Uq −Uq

∥∥
1,2

≤ ε

2d− 1
.

In a similar way, distinguishing the cases p = 1 and p = 2, . . . , d− 1, we estimate terms of the form (60) as∥∥B{1,2,...,d}OU1O · · ·OUpO
((

B{p,p+1,...,d} −B{p,p+1,...,d}
)
OUp+1O

(
· · ·OUd

)
· · ·
)∥∥
F
≤ ε

2d− 1
, q ∈ [d− 1] .

Plugging the bounds into (58) completes the proof for the TT decomposition.

The proof of Theorem 2 also requires a recent deviation bound [35, 14] for random variables of the form

X = supB∈B

∣∣∣‖Bξ‖22 − E ‖Bξ‖22
∣∣∣ in terms of a complexity parameter of the set of matrices B involving

covering numbers. In order to state it, we introduce the radii of a set of matrices B in the Frobenius norm,
the operator norm, and the Schatten-4 norm as

dF (B) := sup
B∈B

‖B‖F , d2→2 (B) := sup
B∈B

‖B‖2→2 , d4 (B) := sup
B∈B

‖B‖S4
= sup

B∈B

(
tr
(
BTB

)2)1/4

.

The complexity parameter is Talagrand’s γ2-functional γ2 (B, ‖·‖2→2). We do not give the precise definition
here, but refer to [59] for details. For us, it is only important that it can be bounded in terms of covering
numbers via a Dudley type integral [16, 59] as

γ2 (B, ‖·‖2→2) ≤ C
∫ d2→2(B)

0

√
logN (B, ‖·‖2→2 , u)du. (62)

We will use the following result from [14, Theorem 6.5] which is a slightly refined version of the main result
of [35].

Theorem 3. Let B be a set of matrices, and let ξ be a random vector whose entries ξj are independent,
mean-zero, variance 1 and L-subgaussian random variables. Set

E = γ2 (B, ‖·‖2→2) (γ2 (B, ‖·‖2→2) + dF (B)) + dF (B) d2→2 (B)

V = d2
4 (B) , and U = d2

2→2 (B) .

Then, for t > 0,

P
(

sup
B∈B

∣∣∣‖Bξ‖22 − E ‖Bξ‖22
∣∣∣ ≥ c1E + t

)
≤ 2 exp

(
−c2 min

{
t2

V 2
,
t

U

})
.

The constants c1, c2 only depend on L.

24



Proof of Theorem 2. We write
A (X) = VXξ,

where ξ is an L-subgaussian random vector of length n1n2 · · ·ndm and VX is the m× n1n2 · · ·ndm block-
diagonal matrix

VX =
1√
m


xT 0 · · · 0
0 xT · · · 0
...

...
. . .

...
0 0 · · · xT

 ,
with x being the vectorized version of the tensor X. With this notation the restricted isometry constant is
given by

δr = sup
X∈T

∣∣‖VXξ‖22 − E‖VXξ‖22
∣∣ ,

where in the HOSVD case T = Sr = {X ∈ Rn1×n2×···×nd : rankHOSVD (X) ≤ r, ‖X‖F = 1}, and in the HT-

case (including the TT case) T = SHT
r = {X ∈ Rn1×n2×···×nd : rankHT (X) ≤ r, ‖X‖F = 1}. Theorem 3

provides a general probabilistic bound for expressions in the form of the right hand side above in terms of
the diameters dF (B), d2→2(B), and d4(B) of the set B := {VX : X ∈ T}, as well as in terms of Talagrand’s
functional γ2(B, ‖·‖2→2). It is straightforward to see that dF (B) = 1, since ‖X‖F = 1, for all X ∈ T.
Furthermore, for all X ∈ T,

mVXVT
X =


xTx 0 · · · 0
0 xTx · · · 0
...

...
. . .

...
0 0 · · · xTx

 =


‖x‖22 0 · · · 0

0 ‖x‖22 · · · 0
...

...
. . .

...

0 0 · · · ‖x‖22

 = Im, (63)

so that ‖VX‖2→2 = 1√
m

and d2→2(B) = 1√
m

. (Since the operator norm of a block-diagonal matrix is the

maximum of the operator norm of its diagonal blocks we obtain

‖VX‖2→2 =
1√
m
‖x‖2 =

1√
m
‖X‖F .) (64)

From the cyclicity of the trace and (63) it follows that

‖VX‖4S4
= tr

[(
VT

XVX

)2]
= tr

[(
VXVT

X

)2]
= tr

[(
1

m
Im

)2
]

= tr

(
1

m2
Im

)
=

1

m
, (65)

for all VX ∈ B. Thus, d2
4 (B) = supVX∈B ‖VX‖2S4

= 1√
m

. Using observation (64), the bound of the

γ2-functional via the Dudley type integral (62) yields

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√
log (N (Sr, ‖·‖F , u)) du, (66)

where Sr is replaced by SHT
r in the HT case.

Let us first continue with the HOSVD case. Using the bound (47) for N (Sr, ‖·‖F , u) and the triangle

25



inequality we reach

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√√√√(r1r2 · · · rd +

d∑
i=1

niri

)
log (3 (d+ 1) /u) du

= C

√
r1r2 · · · rd +

∑d
i=1 niri

m

∫ 1

0

√
log (d+ 1) + log (3/u) du

≤ C

√
r1r2 · · · rd +

∑d
i=1 niri

m

(√
log (d+ 1) +

∫ 1

0

√
log (3/u) du

)

≤ C̃

√√√√(r1r2 · · · rd +
∑d
i=1 niri

)
log (d)

m
≤ C̃

√
(rd + dnr) log(d)

m
, (67)

where r := max {ri : i ∈ [d]} and n := max {ni : i ∈ [d]}.
Let us now consider the HT case (including the TT case). Using the bound (66) of the γ2-functional via

Dudley type integral and the covering number bound (49) for N
(
SHT
r , ‖·‖F , u

)
, we obtain

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√
log
(
N
(
SHT
r , ‖·‖F , u

))
du

≤ C 1√
m

√√√√ ∑
t∈I(TI)

rtrt1rt2 +

d∑
i=1

rini ·
∫ 1

0

√
log
(
3(2d− 1)

√
r/u
)
du.

≤ C̃1

√√√√(∑t∈I(TI) rtrt1rt2 +
∑d
i=1 rini

)
log ((2d− 1)

√
r)

m

≤ C̃1

√
((d− 1)r3 + dnr) log ((2d− 1)

√
r)

m
. (68)

In order to apply Theorem 3 we note that

E = γ2 (B, ‖·‖2→2) (γ2 (B, ‖·‖2→2) + dF (B)) + dF (B) d2→2 (B)

= γ2
2 (B, ‖·‖2→2) + γ2 (B, ‖·‖2→2) +

1√
m
,

V = d2
4 (B) =

1√
m
, U = d2

2→2 (B) =
1

m
.

The bound on m of Theorem 2 ensures that c1E ≤ δ/2 and that 2 exp
(
−c2 min

{
t2

V 2 ,
t
U

})
≤ ε with t = δ/2

(provided constants are chosen appropriately). Therefore, the claim follow from Theorem 3.

5 Random Fourier measurements

While subgaussian measurements often provide benchmark guarantees in compressive sensing and low rank
recovery in terms of the minimal number of required measurements, they lack of any structure and therefore
are of limited use in practice. In particular, no fast multiplication routines are available for them. In order
to overcome such limitations, structured random measurement matrices have been studied in compressive
sensing [47, 18, 36, 12] and low rank matrix recovery [10, 11, 17, 36] and almost optimal recovery guarantees
have been shown.
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In this section, we extend one particular construction of a randomized Fourier transform from the matrix
case [17, Section 1] to the tensor case. The measurement map

A : Cn1×n2×···×nd → Cm, A =
1√
m
RΩFdD

is the composition of a random sign flip map D : Cn1×n2×···×nd → Cn1×n2×···×nd defined componentwise as
D(X) (j1, . . . , jd) = εj1,...,jdX (j1, . . . , jd) with the εj1,...,jd being independent ±1 Rademacher variables, a
d-dimensional Fourier transform

Fd : Cn1×n2×···×nd → Cn1×n2×···×nd , Fd(X) (j1, . . . , jd) =

n1∑
k1=1

· · ·
nd∑
kd=1

X (k1, . . . , kd) e
−2πi

∑d
`=1

k`j`
n` ,

and a random subsampling operator RΩ : Cn1×n2×···×nd → CΩ = Cm, RΩ(X)j = X (j) for j ∈ Ω ⊂
[n1]×· · ·× [nd], where Ω is selected uniformly at random among all subsets of [n1]×· · ·× [nd] of cardinality
m. Instead of the d-dimensional Fourier transform, we can also use the 1-dimensional Fourier transform
applied to the vectorized version of a tensor X without changes in the results below. Since the Fourier
transform can be applied quickly in O(nd logd n), n = max {n` : ` ∈ [d]}, operations using the FFT, the
map A runs with this computational complexity – as opposed to the trivial running time of O(n2d) for
unstructured measurement maps. By vectorizing tensors in Cn1×n2×···×nd , the map A can be written as a
partial random Fourier matrices with randomized column signs.

The randomized Fourier map A satisfies the TRIP for an almost optimal number of measurements as
shown by the next result.

Theorem 4. Let A : Cn1×n2×···×nd → Cm be the randomized Fourier map described above. Then A satisfies
the TRIP with tensor restricted isometry constant δr with probability exceeding 1− 2e−η as long as

m ≥ Cδ−1
r (1 + η) log2(nd) max

{
δ−1
r (1 + η) log2(nd), f(n, d, r)

}
, (69)

where

f(n, d, r) =
(
rd + dnr

)
log (d) for the HOSVD case ,

f(n, d, r) =
(
dr3 + dnr

)
log (dr) for the TT and HT case,

n = max {ni : i ∈ [d]} and r = max {rt : t ∈ TI}.

To prove Theorem 4 we use a special case of Theorem 3.3 in [46] for the partial Fourier matrix with
randomized column signs, which generalizes the main result of [37]. Using that the Gaussian width of a set
T is equivalent to γ2(T, ‖ · ‖2) by Talagrand’s majorizing theorem [58, 57], this result reads in our notation
as follows.

Theorem 5. Let T ⊂ Cn1×n2×···×nd and let A : Cn1×n2×···×nd → Cm be the randomized Fourier map as
described above. Then for 0 < δ < 1

sup
X∈T

∣∣∣‖A(X)‖22 − ‖X‖
2
2

∣∣∣ ≤ δ · (dF (T))
2
,

holds with probability at least 1− 2e−η as long as

m ≥ Cδ−2 (1 + η)
2

(log(n1 · · ·nd))4
max

{
1,
γ2 (T, ‖·‖F )

(dF (T))
2

}
. (70)

Proof of Theorem 4. We use T = Sr and T = SHT
r and recall that dF (T) = 1. Moreover, γ2(T, ‖ · ‖F ) has

been estimated in (67) and (68). By distinguishing cases, one then verifies that (69) implies (70) so that
Theorem 5 implies Theorem 4.

Using recent improved estimates for the standard RIP for random partial Fourier matrices [8, 27] in
connection with techniques from [46] it may be possible to improve Theorem 5 and thereby (69) in terms of
logarithmic factors.
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6 Numerical results

We present numerical results for recovery of third order tensors X ∈ Rn1×n2×n3 and the HOSVD format
which illustrate that tensor iterative hard thresholding works very well despite the fact that we only have a
partial recovery result. We ran experiments for both versions (CTIHT and NTIHT) of the algorithm and for
Gaussian random measurement maps, randomized Fourier measurement maps (where X ∈ Cn1×n2×n3), and
tensor completion, i.e., recovery from randomly chosen entries of the tensor. (No theoretical investigations
are yet available for the latter scenario).

For other related numerical results, we refer to papers [13, 20], where they have considered a slightly
different versions of the tensor iterative hard thresholding algorithm and compared it with NTIHT.

We consider recovery of a cubic tensor, i.e., n1 = n2 = n3 = 10, with equal and unequal ranks of
its unfoldings, respectively, (first and second experiment) and of a non-cubic tensor X ∈ R6×10×15 with
equal ranks of the unfoldings, i.e., r1 = r2 = r3 = r (third experiment). For fixed tensor dimensions
n1 × n2 × n3, fixed HOSVD-rank r = (r1, r2, r3) and a fixed number of measurements m we performed 200
simulations. We say that an algorithm successfully recovers the original tensor X0 if the reconstruction
X# satisfies

∥∥X0 −X#
∥∥
F
< 10−3 for Gaussian measurement maps and Fourier measurement ensembles,

and X# such that
∥∥X0 −X#

∥∥
F
< 2.5 · 10−3 for tensor completion. The algorithm stops in iteration j if∥∥Xj+1 −Xj

∥∥
F
< 10−4 in which case we say that the algorithm converged, or it stops if it reached 5000

iterations.
A Gaussian linear mapping A : Rn1×n2×n3 → Rm is defined by tensors Ak ∈ Rn1×n2×n3 via [A (X)] (k) =

〈X,Ak〉, for all k ∈ [m], where the entries of the tensors Ak are i.i.d. Gaussian N
(
0, 1

m

)
. The tensor

X0 ∈ Rn1×n2×n3 of rank r = (r1, r2, r3) is generated via its Tucker decomposition X0 = S×1U1×2U2×3U3:
Each of the elements of the tensor S is taken independently from the normal distribution N (0, 1), and the
components Uk ∈ Rnk×rk are the first rk left singular vectors of a matrix Mk ∈ Rnk×nk whose elements are
also drawn independently from the normal distribution N (0, 1).

We have used the toolbox TensorLab [55] for computing the HOSVD decomposition of a given tensor and
the truncation operator Hr. By exploiting the Fast Fourier Transform (FFT), the measurement operator A

from Section 5 related to the Fourier transform and its adjoint A∗ can be applied efficiently which leads to
reasonable run-times for comparably large tensor dimensions, see Table 6.

The numerical results for low rank tensor recovery obtained via the NTIHT algorithm for Gaussian
measurement maps are presented in Figures 5, 6, and 7. In Figure 5 and 6 we present the recovery results
for low rank tensors of size 10× 10× 10. The horizontal axis represents the number of measurements taken
with respect to the number of degrees of freedom of an arbitrary tensor of this size. To be more precise, for a
tensor of size n1×n2×n3, the number n̄ on the horizontal axis represents m =

⌈
n1n2n2

n̄
100

⌉
measurements.

The vertical axis represents the percentage of successful recovery.
Finally, in Table 6 we present numerical results for third order tensor recovery via the CTIHT and the

NTIHT algorithm. We consider Gaussian measurement maps, Fourier measurement ensembles, and tensor
completion. With m0 we denote the minimal number of measurements that are necessary to get full recovery
and with m1 we denote the maximal number of measurements for which we do not manage to recover any
out of 200 tensors.
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