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Abstract

This article provides a variational formulation for hard and firm thresholding. A
related functional can be used to regularize inverse problems by sparsity constraints.
We show that a damped hard or firm thresholded Landweber iteration converges to its
minimizer. This provides an alternative to an algorithm recently studied by the authors.
We prove stability of minimizers with respect to the parameters of the functional and
its regularization properties by means of Γ-convergence. All investigations are done in
the general setting of vector-valued (multi-channel) data.
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1 Introduction

Thresholding is a simple technique for denoising signals and images. When the signal is
represented in terms of a suitable basis (for instance a wavelet basis) small coefficients are
set to zero and larger coefficients above some threshold are possibly shrinked. Therefore,
thresholding (or shrinkage) usually produces signals that are sparse, i.e., that have only a
small number of non-zero coefficient. So it works particular well if the original noise free
signal can be well-approximated by a sparse one.

Since the seminal papers [15, 18, 19] soft and hard thresholding operators have been
extensively studied. While both have been used indifferently in the practice, from a theo-
retical point of view the first attracted most of the attention. In fact [7] established a varia-
tional formulation for denoising by `1 penalization, which results in simple soft-thresholding.
This interpretation has caught much attention due to its similarity and near-equivalence
to the well-known Rudin-Osher-Fatemi de-noising model [29] based on total variation min-
imization. While soft-thresholding is a very simple operation, total variation minimization
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requires the solution of a degenerate PDE. Although the latter problem has stimulated
interesting results both in theory and practice, see for instance [8], soft-thresholding still
remains a very efficient and simple numerical strategy. The interested reader is referred to
[13] for a recent and interesting comparison of these two methods.

As one of the main contributions of this paper we establish a connection between hard-
thresholding and the minimizer of a convex functional. To our knowledge this is the first
convex variational interpretation of hard-thresholding. We had actually introduced the
corresponding functional already in [24], but while later investigating the role of its param-
eters we realized the surprising fact that its minimizer is connected to hard-thresholding in
a special case. Varying parameters allows further to “interpolate” between soft and hard
thresholding. It turns out that the resulting generalized thresholding operators coincide
with the ones introduced in [25] under the name of firm shrinkage.

In many situations the signal is not given explicitly but implicitly by an operator equa-
tion or linear inverse problem with possibly noisy data. We refer for instance to deconvolu-
tion and super-resolution problems [14, 16, 31], image recovery and enhancing [12, 21], prob-
lems arising in geophysics and biomedical imaging [23, 26], statistical estimation [20, 34],
or to compressed sensing [3, 5, 17, 28]. A strategy which has recently become popular is
to regularize these reconstruction problems by `1-constraints. Unfortunately, the minimizer
of the resulting functional can no longer be computed explicitly. Several authors have pro-
posed an iterative soft thresholding algorithm to approximate the solution [22, 30, 31, 20],
and in [11] its convergence was proved. On the basis of these recent achievements for the
solution of inverse problems with sparsity constraints, several articles appeared with further
generalizations [2, 27, 32, 33].

In [24] we proposed a new functional involving a weighted `1-norm with adaptive weights,
i.e., the weights are variables of the functional as well. The minimizer of this functional
is suggested as the regularized solution of the corresponding linear inverse problem. This
functional again promotes sparsity with respect to a suitable basis or frame, and as we
already mentioned above it is related to a (damped) hard or firm thresholding operator.
However, we note that unless the operator in the inverse problem is unitary, the correspond-
ing functional is only convex if we introduce a certain quadratic term which leads to an
additional damping in the hard or firm thresholding operator.

Recently, similar approaches to adaptive weights appeared also in sparse statistical es-
timation, see e.g. [37] and references therein.

Our work in [24] was originally motivated by vector valued (multi-channel) problems,
where each vector component possesses a sparse expansion with respect to the same frame,
and additionally the different components obey the same sparsity pattern, i.e., have their
non-zero components at the same locations. Color images are a typical example of such
vector valued data with coupled components. Common sparsity patterns can be modelled
with weighted `1-norms of componentwise `q norms of the coefficients where typically q > 1,
see also [6, 35]. All results in this article will be derived in this general multi-channel setting,
although for many applications the mono-channel case will be sufficient. In particular, we
will also derive (several) generalizations of the hard and firm thresholding operator to the
vector-valued case (while corresponding soft thresholding operators were already computed
in [24]).

In [24] we suggested an algorithm for the minimization of our new functional. It consists
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in alternating a minimization with respect to the frame coefficients and a minimization with
respect to the weights in the `1-norm. The former is done via a (possibly damped) soft
thresholded Landweber iteration scheme, which in the monochannel case coincides with
the algorithm analyzed by Daubechies et al. in [11]. The minimizing weights (for fixed
coefficients) can be computed explicitly. The convergence of this two-step algorithm is
shown in [24].

Realizing the connection of our functional to (damped) hard and firm thresholding, it is
natural to ask whether the corresponding thresholded Landweber iteration converges as well
to its minimizer. Under certain conditions on the parameters ensuring (strict) convexity
of the functional, we prove such convergence. Compared with our first two-step algorithm
the new algorithm clearly has the advantage of providing a single iteration scheme, and
we expect that it will have faster convergence in practice (although this issue is postponed
to later investigations). Our variational formulation generates a new family of iterative
damped thresholding algorithms as a natural extension of soft and hard thresholding. We
further note that [4, 36] investigate properties of iterative pure hard thresholding schemes,
in particular, [4] shows its convergence. However, for non-trivial operators it seems that
one can only associate a non-convex functional to the pure non-damped hard-thresholding
operator, so the algorithm provides only a local minimum which may differ for different
initial points.

We also discuss the dependence of the minimizers on the parameters and their stability
properties. In particular, we show that the minimizers of our functional weakly converge
to the minimizer of the `1-regularized functional analyzed in [11] for certain limits of the
parameters. The proof requires the use of the Γ-convergence machinery [10]. As a further
corollary we prove regularization results, which correspond again to certain limits of the
parameters. The variational techniques employed in the last part of the paper reflect very
much the similarities between our functional with the one proposed by Chambolle in [6] as
the discrete counterpart of the Ambrosio-Tortorelli approximation [1] of the Mumford-Shah
functional.

The paper is organized as follows. Section 2 introduces notation and our functional.
Further, we recall the double-minimization algorithm in [24] and the corresponding conver-
gence result. Section 3 discusses the connection to hard and firm thresholding operators,
and derives their generalization to the vector valued case. Section 4 is devoted to the conver-
gence proof of the thresholded Landweber iteration to minimizers of our original functional.
The dependence of minimizer on the parameters will be discussed in Section 5.

2 Motivation

2.1 Some notation

Before starting our discussion let us briefly introduce some of the spaces we will use in the
following. For some countable index set Λ we denote by `p = `p(Λ), 1 ≤ p ≤ ∞ the space
of real sequences u = (uλ)λ∈Λ with norm

‖u‖p = ‖u|`p‖ :=

(
∑

λ∈Λ

|uλ|p
)1/p

, 1 ≤ p <∞
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and ‖u‖∞ := supλ∈Λ |uλ| as usual. If (vλ) is a sequence of positive weights then we define
the weighted spaces `p,v = `p,v(Λ) = {u, (uλvλ) ∈ `p(Λ)} with norm

‖u‖p,v = ‖u|`p,v‖ = ‖(uλvλ)‖p =

(
∑

λ∈Λ

vp
λ|uλ|p)

)1/p

(with the usual modification for p = ∞). If the entries uλ are actually vectors in a Banach
space X with norm ‖ · ‖X then we denote

`p,v(Λ,X) := {(uλ)λ∈Λ, uλ ∈ X, (‖uλ‖X)λ∈Λ ∈ `p,v(Λ)}

with norm ‖u|`p,v(Λ,X)‖ = ‖(‖uλ‖X)λ∈Λ|`p,v(Λ)‖. Usually X will be R
M endowed with

the Euclidean norm, or the M -dimensional space `Mq , i.e., R
M endowed with the `q-norm.

By R+ we denote the non-negative real numbers.

2.2 A functional modelling joint sparsity

Let K and Hj , j = 1, . . . , N , be (separable) Hilbert spaces and A`,j : K → Hj, j = 1, . . . ,M ,
` = 1, . . . , N some bounded linear operators. Assume we are given data gj ∈ Hj ,

gj =

M∑

`=1

A`,jf`, j = 1, . . . , N.

Our main task consists in reconstructing the (unknown) elements f` ∈ K, ` = 1, . . . ,M .
To address the formulation of an algorithm to recover the vector components f` ∈ K,

` = 1, . . . ,M , assume that we have given a suitable frame (ψλ)λ∈Λ ⊂ K indexed by a
countable set Λ. This means that there exist constants C1, C2 > 0 such that

C1‖f‖2
K ≤

∑

λ∈Λ

|〈f, ψλ〉|2 ≤ C2‖f‖2
K for all f ∈ K. (2.1)

Orthonormal bases are particular examples of frames. Frames allow for a (stable) series
expansion of any f ∈ K of the form

f = Fu :=
∑

λ∈Λ

uλψλ (2.2)

where u = (uλ)λ∈Λ ∈ `2(Λ). The linear operator F : `2(Λ) → K is called the synthesis map
in frame theory. It is bounded due to the frame inequality (2.1). In contrast to orthonormal
bases, the coefficients uλ need not be unique, in general. For more information on frames
we refer to [9].

By using frames the problem of recovering f` ∈ K can be restated in terms of frame
coefficients in `2(Λ,R

M ). To this end we introduce the operators T`,j = A`,jF : `2(Λ) → H`

and

T : `2(Λ,R
M ) → H, Tu =

(
M∑

`=1

T`,ju
`

)N

j=1

=

(
M∑

`=1

A`,jFu
`

)N

j=1

,
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where H :=
⊕N

j=1 Hj is the Hilbert space equipped with the inner product 〈
∑

j gj ,
∑

j hj〉 :=
∑

j〈gj , hj〉 with gj , hj ∈ Hj. Then we want to solve approximatively the equation

gj =

M∑

`=1

T`,ju
`, j = 1, . . . , N.

Resuming the data vector into g = (gj)j=1,...,M ∈ H the above equation can be written as

g = Tu. (2.3)

Once the solution u = (u`
λ) is determined we obtain a reconstruction of the vectors of

interest by means of f` = Fu` =
∑

λ u
`
λψλ.

In practice, it often happens that the problem of recovering u from g is ill-posed or
ill-conditioned, i.e., the operator T is not boundedly invertible or has very large condition
number. A usual way out is regularization. In [24] we proposed to work with the following
functional

J(u, v) = J
(q)
θ,ρ,ω(u, v) := ‖Tu− g|H‖2 +

∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖2
2 +

∑

λ∈Λ

θλ(ρλ − vλ)2,

(2.4)

where q ∈ [1,∞] and θ = (θλ), ω = (ωλ) and ρ = (ρλ) are suitable sequences of positive
parameters. The variable u is supposed to be in `2(Λ,R

M ) and v ∈ `∞,ρ−1(Λ)+, i.e., the
subset of positive sequences in `∞,ρ−1(Λ). Observe, that uλ is a vector in R

M while vλ is
just a positive scalar for all λ ∈ Λ.

We are interested in the joint minimizer (u∗, v∗) of this functional, and u∗ is then
considered as a regularized solution of (2.3). The variable v is an auxiliary variable that
plays the role of an indicator of the sparsity pattern.

Regularization always implicitly models the solution u. In other words, one assumes
preknowledge about u. Our functional (2.4) is related to joint sparsity. This means that
we assume that all the components of the solution f`, ` = 1, . . . ,M can be well-represented
as a linear combination of the same small subset of frame elements ψλ, λ ∈ Λ0, where Λ0 is
a finite (small) subset of Λ, i.e.,

f` ≈
∑

λ∈Λ0

u`
λψλ.

It is important to note that Λ0 does not depend on `. For some intuition why the functional
J promotes joint sparsity we refer to [24], but we will also see some reasons below. Further,
we note that the functional is even interesting in the monochannel case M = 1. Then it
just promotes usual sparsity and provides an alternative regularization to the one analyzed
in [11].

At this point it is useful to denote the ’sparsity measure’ by

Φ(q)(u, v) := Φ
(q)
θ,ρ,ω(u, v) :=

∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖2
2 +

∑

λ∈Λ

θλ(ρλ − vλ)2 (2.5)

which allows to write
J(u, v) = ‖Tu− g|H‖2 + Φ(q)(u, v).
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In [24] we gave a criterion on the parameters ω, θ, ρ for the (strict) convexity of Φ(q)(u, v),
and hence of J , for the cases q = 1, 2,∞. Let us a provide a slight generalization of this
criterion.

Lemma 2.1. Let smin := minSp(T ∗T ), where Sp(T ∗T ) denotes the spectrum of T ∗T . A

sufficient condition for the (strict) convexity of J
(q)
θ,ρ,ω(u, v) is that the functions

Fλ(x, y) := (ωλ + smin)‖x‖2
2 + y‖x‖q + θλy

2, x ∈ R
M , y ≥ 0

are (strictly) convex for all λ ∈ Λ. In the cases q ∈ {1, 2,∞} this is satisfied if

(ωλ + smin)θλ ≥ κq

4
(2.6)

(with strict inequality for strict convexity), where

κq =







M, q = 1
1, q = 2,
1, q = ∞.

(2.7)

Proof. The discrepancy with respect to the data in the functional J(u, v) can be written as

‖Tu− g|H‖2 = 〈Tu, Tu〉 − 2〈Tu, g〉 + ‖g|H‖2 = 〈u, T ∗Tu〉 − 2〈Tu, g〉 + ‖g|H‖2

= smin‖u‖2
2 + 〈u, (T ∗T − sminI)u〉 − 2〈Tu, g〉 + ‖g|H‖2,

where I denotes the identity. Since smin = min Sp(T ∗T ) the operator T ∗T−sminI is positive,
and consequently the functional

u 7→ 〈u, (T ∗T − sminI)u〉 − 2〈Tu, g〉 + ‖g‖2
2.

is convex. Thus, J is (strictly) convex if the functional

J ′(u, v) = smin‖u‖2
2 + Φ(q)(u, v) =

∑

λ∈Λ

Fλ(uλ, vλ)

is (strictly) convex. Clearly, this is the case if and only if all the Fλ are (strictly) convex,
which shows the first claim. The second claim for the cases q = {1, 2,∞} is shown precisely
as in [24, Proposition 2.1].

Usually one has smin = 0 and then (2.6) reduces to the condition already provided in
[24]. However, there are cases where T ∗T is invertible and then smin > 0, so (2.6) is weaker
than ωλθλ ≥ κq/4 in [24]. Further, we expect that condition (2.6) with suitable κq is also
sufficient in the general case q ∈ [1,∞].

2.3 An algorithm for the minimization of J

In [24] we developed an iterative algorithm for computing the minimizer of J(u, v). It
consists of alternating a minimization with respect to u and v. More formally, for some
initial choice v(0), for example v(0) = (ρλ)λ∈Λ, we define

u(n) := arg minu∈`2(Λ,RM ) J(u, v(n−1)),

v(n) := argminv∈`
∞,ρ−1 (Λ)+ J(u(n), v).

(2.8)
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The minimizer v(n) of J(u(n), v) for fixed u(n) can be computed explicitly by the formula

v
(n)
λ =

{

ρλ − 1
2θλ

‖u(n)
λ ‖q, ‖u(n)

λ ‖q < 2θλρλ,

0, otherwise .
(2.9)

The minimization of J(u, v(n−1)) with respect to u and fixed v(n−1) can be done by an
thresholded Landweber iteration scheme similar to the one analyzed in [11]. So let v =
(vλ)λ∈Λ be a fixed positive sequence and u(0) ∈ `2(Λ,R

M ) be some arbitrary initial point
and define

u(m) := U (q)
v,ω(u(m−1) + T ∗(g − Tu(m−1))), m ≥ 1, (2.10)

where
(U (q)

v,ω(u))λ = (1 + ωλ)−1S(q)
vλ

(uλ) (2.11)

and
S(q)

v (x) = x− P q′

v/2(x), x ∈ R
M , (2.12)

with P q′

v/2 denoting the orthogonal projection onto the unit ball of radius v/2 in R
M with

respect to the q′-norm where 1/q′ + 1/q = 1. For q ∈ {1, 2,∞} explicit formulas for Sq
v/2

are given in [24].
By extending the arguments in [11] it was shown in [24, Proposition 4.9] that the itera-

tion (2.10) strongly converges to the minimizer of K(u) = J(u, v) under mild conditions on
v and ω.

In [24] we showed that algorithm (2.8) indeed computes the minimizer of the functional
J . For technical reasons we assume that ‖T‖ < 1. This can always be achieved by a suitable
scaling of the functional.

Theorem 2.2. Let 1 ≤ q ≤ ∞ and assume that J is strictly convex (see also Lemma 2.1).
Moreover, we assume that `2,ω1/2(Λ,RM ) is embedded into `2(Λ,R

M ), i.e., infλ∈Λ ωλ > 0.

Then the sequence (u(n), v(n))n∈N converges to the unique minimizer (u∗, v∗) ∈ `2(Λ,R
M )×

`∞,ρ−1(Λ)+ of J . The convergence of u(n) is weak in `2(Λ,R
M ) and that of v(n) holds

componentwise.
For the most interesting cases q ∈ {1, 2,∞}, assume in addition

4θλωλ ≥ σ > κq (2.13)

for all λ ∈ Λ, with κq in (2.7). Then the convergence of u(n) to u∗ is also strong in
`2(Λ,R

M ). Moreover, v(n) − v∗ converges to 0 strongly in `2,θ(Λ).

We note that condition (2.13) can actually be relaxed to

inf
λ∈Λ

4(ωλ + smin)θλ > κq

in order to ensure strong convergence. A careful inspection of the proof of [24, Theorem
3.1] allows to relax also the condition infλ∈Λ ωλ > 0 to smin + infλ∈Λ ωλ > 0. Indeed this
condition is sufficient to ensure the coerciveness (see Definition 1 below) of the functional
and hence the existence of minimizers (see the direct method of the calculus of variation,
e.g. [10, Theorem 1.15]). More details on the analysis of the algorithm and an implementable
version can be found in the original paper [24].
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3 Relation to Hard and Firm Thresholding

The functional J = J
(q)
θ,ρ,ω depends on many parameters. So far their role was not yet com-

pletely clarified. It turns out that there is an intriguing relationship to hard-thresholding,
which explains the parameters as well.

3.1 A simple monochannel case

For the sake of simple illustration we start with the monochannel case M = 1 and the
parameter ω = 0 for the moment. (The choice of q becomes clearly irrelevant if M = 1).
Further, we assume that (ψλ)λ is actually an orthonormal basis of H and A : H → H is
unitary, so that T ∗T is the identity operator on `2(Λ) and T ∗ is an isometry. Then

‖Tu− g|H‖2 = ‖u− T ∗g‖2
2. (3.1)

Setting f = T ∗g ∈ `2(Λ) we consequently study the functional

J(u, v) = Jθ,ρ(u, v) = ‖Tu− g‖2
2 +

∑

λ∈Λ

vλ|uλ| +
∑

λ∈Λ

θλ(ρλ − vλ)

=
∑

λ∈Λ

[
(uλ − fλ)2 + vλ|uλ| + θλ(ρλ − vλ)2

]
.

Due to Lemma 2.1 and since smin(T
∗T ) = smin(I) = 1 a sufficient (and actually necessary)

condition for convexity of J is

θλ ≥ 1/4 for all λ ∈ Λ,

and J is strictly convex in case of a strict inequality. In our special case, J decouples as the
sum

J(u, v) =
∑

λ∈Λ

Gθλ,ρλ;fλ
(uλ, vλ)

where
Gθ,ρ;z(x, y) = (x− z)2 + y|x| + θ(ρ− y)2, x ∈ R, y ≥ 0.

Hence, the component (u∗λ, v
∗
λ), λ ∈ Λ, of the minimizer (u∗, v∗) of J(u, v) is the minimizer

of Gθλ,ρλ;fλ
(x, y).

Lemma 3.1. Let ρ > 0, θ ≥ 1/4 and z ∈ R. Then the minimizer (x∗, y∗) of Gθ,ρ;z(x, y)
for x ∈ R, y ≥ 0 is given by

x∗ = hθ,ρ(z)

y∗ =

{
ρ− 1

2θ |x∗|, |x∗| < 2θρ,
0, otherwise ,

where

hθ,ρ(z) =







0, |z| ≤ ρ/2,
4θ

4θ−1

(
z − sign(z)ρ

2

)
, ρ/2 < |z| ≤ 2θρ,

z, |z| > 2θρ.

(3.2)
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Figure 1: Typical shape of the function hθ,ρ. Here the parameters are ρ = 2 and θ = 1/2.

Proof. The statement follows from a straightforward computation, but can also be deduced
as a special case of Theorem 3.2 below (considering ω = 0 and q = 2 for instance).

Note that for θ = 1/4 the function h1/4,ρ equals the hard thresholding function,

h1/4,ρ(z) = hρ(z) :=

{
0, |z| ≤ ρ

2
z, |z| > ρ

2 .

In particular, hard-thresholding can be interpreted in terms of the (joint) minimizer of the
functional

J(u, v) = ‖u− f‖2
2 +

∑

λ∈Λ

vλ|uλ| +
1

4

∑

λ∈Λ

(ρλ − vλ)2,

and the minimizer is even unique although the functional is convex but not strictly convex.
Note that it can be shown directly that also for θ < 1/4 the minimizer of the functional J
is still unique and coincides with the one for θ = 1/4, although the functional is then even
not convex any more.

Hence, not only soft-thresholding, but also hard-thresholding is related to the minimizer
of a certain convex functional. This observation applies for instance to wavelet thresholding.

In the case θ > 1/4 the function hθ,ρ is the firm thresholding operator introduced in [25],
see Figure 1 for a plot.

Furthermore, letting θ → ∞ in the above lemma, we recover the soft-thresholding
function,

lim
θ→∞

hθ,ρ(z) = sρ(z) =

{
0, |z| ≤ ρ

2
z − sign(z)ρ

2 , |z| > ρ
2 .

Hence, hθ,ρ can be interpreted as an interpolation between soft and hard thresholding.
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3.2 The multichannel case with identity operator

Let us now consider the general multichannel case M ≥ 1 with non-trivial parameter ωλ.
However, we again assume that T is as simple as in the previous section. In light of (3.1)
we actually take T to be the identity on `2(Λ).

Our functional now has the form

J(u, v) = J
(q)
θ,ρ,ω(u, v) = ‖u− f‖2

2 +
∑

λ∈Λ

ωλ‖uλ‖2
2 +

∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

θλ(ρλ − vλ)2 (3.3)

with u ∈ `2(Λ,R
M ) and v ∈ `∞,ρ−1(Λ)+. By Lemma 2.1 a sufficient (and actually necessary)

condition for convexity of J in the cases q ∈ {1, 2,∞} is

(1 + ωλ)θλ ≥ κq

4

with κq as in (2.7). The functional J decouples as the following sum,

J(u, v) =
∑

λ∈Λ

G
(q)
θλ,ρλ,ωλ;fλ

(uλ, vλ)

with

G
(q)
θ,ρ,ω;z(x, y) := ‖x− z‖2

2 + ω‖x‖2
2 + y‖x‖q + θ(ρ− y)2, x ∈ R

M , y ∈ R+. (3.4)

As in the previous section the minimization of J reduces to determining the minimizer of

the function G
(q)
θ,ρ,ω;z on R

M × R+.
Before stating the theoretical result let us introduce the following functions for q =

1, 2,∞, respectively. For q = 2, θ > 1/4 and z ∈ R
M we define

h
(2)
θ,ρ(z) :=







0, ‖z‖2 ≤ ρ/2,
4θ

4θ−1
‖z‖2−ρ/2

‖z‖2
z, ρ/2 < ‖z‖2 ≤ 2θρ,

z, ‖z‖2 > 2θρ.

Now let q = 1, θ > M/4 (ensuring strict convexity) and z ∈ R
M . Then we distinguish

different cases.

1. If ‖z‖∞ < ρ/2 then

h
(1)
θ,ρ(z) := 0.

2. If ‖z‖1 ≥ 2θρ then

h
(1)
θ,ρ(z) := z.

3. If ‖z‖∞ ≥ ρ/2 and ‖z‖1 < 2θρ then we order the entries of z by magnitude, |z`1 | ≥
|z`2 | ≥ . . . ≥ |z`M

|. For n = 1, . . . ,M define

tn(z) := ρ/2 −
∑n

j=1 |z`j
| − nρ

2

4θ − n
. (3.5)
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As follows from the proof of the next theorem there exists a unique n ∈ {1, . . . ,M}
such that

∑n
j=1 |z`j

| ≥ nρ/2,
|z`n | ≥ tn(z) (3.6)

and
|z`n+1 | < tn(z) (3.7)

(where the latter condition is void if n = M). With this particular n we define the

components of h
(1)
θ,ρ(z) as

(h
(1)
θ,ρ(z))`j

:= z`j
− sign(z`j

)tn(z), j = 1, . . . , n,

(h
(1)
θ,ρ(z))`j

:= 0, j = n+ 1, . . . ,M.

Finally, let q = ∞, θ > 1/4 and z ∈ R
M . Again we have to distinguish several cases.

1. If ‖z‖1 < ρ/2 then

h
(∞)
θ,ρ (z) = 0.

2. If ‖z‖∞ ≥ 2θρ then

h
(∞)
θ,ρ (z) = z.

3. If ‖z‖1 ≥ ρ/2 and ‖z‖∞ < 2θρ then we order the coefficients of z by magnitude,
|z`1 | ≥ |z`2 | ≥ . . . ≥ |z`M

|. Define

sn(z) :=
4θ

4θn− 1





n∑

j=1

|z`j
| − ρ/2



 .

Let m be the minimal number in {1, . . . ,M} such that sm(z) ≥ 0. (Such m exists
since sM (z) ≥ 0 follows from ‖z‖1 ≥ ρ/2.) As follows from the proof of the next
theorem there exists a unique n ∈ {m, . . . ,M} such that

|z`n | ≥ sn−1(z) and |z`n+1 | < sn(z)

(where the first condition is void if n = 1 and the second condition is void if n = M).

Then we define the components of h
(∞)
θ,ρ as

(h
(∞)
θ,ρ (z))`j

:= sign(z`j
)sn(z), j = 1, . . . , n,

(h
(∞)
θ,ρ (z))`j

:= z`j
, j = n+ 1, . . . ,M.

These functions h
(q)
θ,ρ provide different generalizations of the firm shrinkage function hθ,ρ in

(3.2) to the multichannel case. As shown in the next result they are intimately related to

the minimizer of the function G
(q)
θ,ρ,ω;z.
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Theorem 3.2. Let q ∈ {1, 2,∞} and z ∈ R
M . Assume

(ω + 1)θ > κq/4 (3.8)

with κq in (2.7) ensuring strict convexity of the function G
(q)
θ,ρ,ω;z in (3.4) by Lemma 2.1.

Then the minimizer (u, v) ∈ R
M × R+ of G

(q)
θ,ρ,ω;z(x, y) over (x, y) ∈ R

M × R+ is given by

u = (1 + ω)−1h
(q)
θ(1+ω),ρ(z),

v =

{

ρ− ‖u‖q

2θ , ‖u‖q < 2θρ,
0, otherwise .

(3.9)

The proof of this theorem is rather long and technical, and therefore postponed to the
Appendix. We note that condition (3.8) is required to ensure uniqueness of the minimizer
of Gθ,ρ,ω;z. In case of equality in (3.8) a variant of the above theorem still holds. Only the

uniqueness of n in the definition of the function h
(q)
θ,ρ for q = 1 and q = ∞ is not clear yet,

but any valid n would yield a minimizer of Gθ,ρ,ω;z.
Now, the minimizer (u∗, v∗) of the functional J for trivial operator T in (3.3) is clearly

given by

u∗ = H
(q)
θ,ρ,ω(f), (3.10)

v∗ = V
(q)
θ,ρ (u∗), (3.11)

where (

H
(q)
θ,ρ,ω(f)

)

λ
:= (1 + ωλ)−1h

(q)
θλ(1+ωλ),ρλ

(fλ), (3.12)

and
(

V
(q)
θ,ρ (u∗)

)

λ
:=

{
ρλ − 1

2θλ
‖u∗λ‖q, ‖u∗λ‖q < 2θλρλ

0, otherwise .
(3.13)

We note the following relation to the damped soft-thresholding operator U
(q)
v,ω in (2.11),

which will be useful later.

Lemma 3.3. Suppose (1 + ωλ)θλ > κq/4 for all λ ∈ Λ. Let v = V
(q)
θ,ρ (Hθ,ρ,ω(f)). Then

H
(q)
θ,ρ,ω(f) = U (q)

v,ω(f).

Proof. Let (u∗, v∗) be the minimizer of the functional J in (3.3). Then u∗ = H
(q)
θ,ρ,ω(f) and

v∗ = V
(q)
θ,ρ (u) by (3.10) and (3.11). Since (u∗, v∗) minimizes J(u, v), we have in particular

u∗ = arg minu J(u, v∗). By Lemma 4.1 in [24] it holds u∗ = U
(q)
v∗,ω(f), which shows the

claim.

Finally note that there is also the following alternative iterative way of computing the
functions hθ,ρ.
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Proposition 3.4. Let q ∈ {1, 2,∞} and 4θ ≥ κq. For z ∈ R
M and some v(0) ∈ R+ define

for n ≥ 1

z(n) = S
(q)

v(n−1)(z) = x− P q′

v(n−1)/2
(x)

v(n) =

{
ρ− 1

2θ‖z(n)‖q, ‖z(n)‖q < 2θρ
0, otherwise .

Then z(n) converges and limn→∞ z(n) = h
(q)
θ,ρ(z). Moreover, if 4θ > κq then we have the

error estimate |z(n) − h
(q)
θ,ρ(z)| ≤ γ|z(n−1) − h

(q)
θ,ρ(z)| with γ :=

κq

4θ < 1.

Proof. By Lemma 2.1 the corresponding function

Jz(u, v) = ‖u− z‖2 + v‖u‖q + θ(ρ− v)2, u ∈ R
M , v ∈ R+, (3.14)

is convex. The proposed iteration corresponds precisely to the scheme (2.8) and by Theorem
4.3 the scheme thus converges. The error estimate follows from Proposition 5.4 in [24].

Convergence of the scheme in the previous lemma holds even for general q ∈ [1,∞]
provided the parameters are such that the corresponding functional in (3.14) is convex
(although it is not completely clear yet that also the corresponding error estimate is true).

However, it remains open whether a practical way of computing the projection P q′

v/2
exists

for values of q different from 1, 2,∞.

4 Iterative Thresholding Algorithms

Now we return to the analysis of the functional J with a general bounded operator T and
M ≥ 1 channels. By rescaling J we may assume without loss of generality that ‖T‖ < 1.
However, note that rescaling changes the parameters θ, ω and smin = smin(T

∗T ), so that
eventually one has to take care not to destroy the convexity condition

θλ(smin(T
∗T ) + ωλ) ≥ κq/4. (4.1)

We will now formulate and analyze a new algorithm for the minimization of J with non-
trivial operator T . In contrast to the algorithm (2.8) analyzed in [24] it consists only of a
single iteration scheme rather than a double minimization algorithm.

We first need to introduce surrogate functionals similar to the one in [11]. For some
additional parameter a ∈ `2(Λ,R

M ) let

Js(u, v; a) := J(u, v) + ‖u− a‖2
2 − ‖T (u− a)|H‖2.

Our iterative algorithm reads then as follows. For some arbitrary u(0) ∈ `2(Λ,R
M ) we let

(u(n), v(n)) := arg min
(u,v)

Js(u, v;u(n−1)), n ≥ 1. (4.2)

The minimizer of Js(u, v; a) can be computed explicitly as we explain now. Denoting by
Φ(q)(u, v) the ’sparsity measure’ defined in (2.5) a straightforward calculation yields

Js(u, v; a) = ‖Tu− g|H‖2 − ‖Tu− Ta|H‖2 + ‖u− a‖2
2 + Φ(q)(u, v)

= ‖u− (a+ T ∗(g − Ta))‖2
2 + Φ(q)(u, v) + ‖g|H‖2 − ‖Ta|H‖2 + ‖a‖2

2 − ‖a+ T ∗(g − Ta)‖2
2.
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Since the terms after Φ(q)(u, v) are constant with respect to u and v it follows that

arg min
(u,v)

Js(u, v; a) = arg min
(u,v)

J ′(u, v; a)

where
J ′(u, v; a) = ‖u− (a+ T ∗(g − Ta))‖2

2 + Φ(q)(u, v).

We note that J ′ and, hence, Js(u, v; a) (for fixed a) is strictly convex if

θλ(1 + ωλ) > κq/4

by Lemma 2.1. Since J ′ coincides with J where T is replaced by the identity and g by
a+ T ∗(g − Ta) we can invoke the results of the previous section to compute the minimizer
(u∗, v∗) of J ′ and of Js(u, v; a). Indeed, if q ∈ {1, 2,∞} and θλ(1 +ωλ) > κq/4 for all λ ∈ Λ
then

u∗ = H
(q)
θ,ρ,ω(a+ T ∗(g − Ta)), (4.3)

and v∗ = V
(q)
θ,ρ (u∗) with H

(q)
θ,ρ,ω and V

(q)
θ,ρ defined in (3.12) and (3.13). It immediately follows

that the algorithm in (4.2) reads

u(n) = H
(q)
θ,ρ,ω(u(n−1) + T ∗(g − Tu(n−1))). (4.4)

It is actually not necessary to compute all the corresponding v(n)’s. The final v∗ can easily

be computed by v∗ = V
(q)
θ,ρ (u∗) if one is interested in it.

Algorithm (4.4) is a thresholded Landweber iteration. We note, however, that we cannot
treat pure hard thresholding in this way, as this requires θ = 1/4 and ω = 0. Since
‖T‖ < 1 we have certainly also smin = smin(T

∗T ) < 1 and hence the convexity condition
1
4smin ≥ κq/4 cannot be satisfied. Moreover, if smin = 0 (which often happens in inverse
problems) then we have to take ωλ > 0, which enforces a damping in the thresholding
operation. Nevertheless, an “interpolation” between soft and hard thresholding is possible.

Before investigating the convergence of the thresholding algorithm (4.4) let us state an
immediate implication of the previous achievements.

Proposition 4.1. If ‖T‖ < 1 and 4(1+ωλ)θλ > κq for all λ ∈ Λ (ensuring strict convexity
of the surrogate functional Js) then a minimizer (u∗, v∗) of J satisfies the fixed point relation

u∗ = H
(q)
θ,ω,ρ(u

∗ + T ∗(g − Tu∗)),

v∗ = V
(q)
θ,ρ (u∗).

Conversely, if J is convex and (u∗, v∗) satisfies the above fixed point equation then it is a
minimizer of J .

Proof. Observe that Js(u∗, v∗;u∗) = Js(u∗, v∗), but in general Js(u, v; a) ≥ J(u, v) for
all (u, v) because ‖T‖ < 1. Hence, if (u∗, v∗) minimizes J(u, v) then it also minimizes
Js(u, v;u∗) and by (4.3) (noting that 4(1 + ωλ)θλ > κq) the stated fixed point equation is
satisfied.
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Conversely, if (u∗, v∗) satisfies the fixed point equation then by Theorem 3.2 (u∗λ, v
∗
λ)

is the minimizer of Gλ = Gθλ,ρλ,ωλ;z for z = (u∗ + T ∗(g − Tu∗))λ, i.e., 0 is contained in
the subdifferential of Gλ for all λ ∈ Λ. If J is convex then by Proposition 3.5 in [24] the
subdifferential of J at (u, v) contains the set

DJ(u, v) = (2T ∗(Tu− g), 0) +DΦ(q)(u, v),

where

DΦ(q)(u, v) = {(ξ, η) ∈ `2(Λ,R
M ) × `1,ρ(Λ), ξλ ∈ vλ∂‖ · ‖q(uλ) + 2ωλuλ,

ηλ ∈ ‖uλ‖q∂s
+(vλ) + 2θλ(vλ − ρλ), λ ∈ Λ}

where ∂s+(x) = {1} for x > 1 and ∂s+(0) = (−∞, 1]. Using Lemma A.1 it is then
straightforward to verify that 0 is contained in DJ(u∗, v∗) ⊂ ∂J(u∗, v∗), and hence, (u∗, v∗)
minimizes J .

Note that the first part of the above theorem does not require convexity of J as the gen-
eral convexity condition (smin(T

∗T ) +ωλ)θλ ≥ κq/4 is stronger than the required condition
since smin < 1.

For later reference we note that the minimizer of J actually satisfies also another fixpoint
relation in terms of the soft-thresholding operator:

Proposition 4.2. If ‖T‖ < 1 then a minimizer (u∗, v∗) of J satisfies the fixed point equa-
tions

u∗ = U
(q)
v∗,ω(u∗ + T ∗(g − T ∗a)),

v∗ = V
(q)
θ,ρ (u∗),

with U
(q)
v,ω defined by (2.11).

Proof. The relation v∗ = V
(q)
θ,ρ (u∗) is clear. Similarly as in the previous proof we have

J(u∗, v∗) = min
u
J(u, v∗) = min

u
Js(u, v∗;u∗),

and u∗ minimizes Js(u, v∗;u∗) for fixed v∗ and u∗. By Lemma 4.1 in [24] it follows that

u∗ = U
(q)
v∗,ω(u∗ + T ∗(g − Tu∗)) as claimed.

Note that the previous result does not pose any restrictions on the parameters θ, ρ, ω. In
particular, J(u, v) may even fail to be jointly convex in u, v. Furthermore, the two relations
in Theorem 4.2 are coupled whereas the first relation in Theorem 4.1 is independent of the
second one.

4.1 Convergence of the iterative algorithm

Let us now investigate the convergence of the iterative algorithm (4.4).
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Theorem 4.3. Let q ∈ {1, 2,∞} and assume that ‖T‖ < 1 and

inf
λ∈Λ

4θλ(smin + ωλ) > κq (4.5)

with smin = min Sp(T ∗T ) (ensuring strict convexity of J by Lemma 2.1). Then for any
choice u(0) ∈ `2(Λ; RM ) the iterative algorithm (4.2), i.e.,

u(n) := H
(q)
θ,ρ,ω

(

u(n−1) + T ∗(g − Tu(n−1))
)

, (4.6)

converges strongly to a fixed point u∗ ∈ `2(Λ; RM ) and the couple (u∗, v∗) with v∗ = V
(q)
θ,ρ (u∗)

is the unique minimizer of J . Moreover, we have the error estimate

‖u(n) − u∗‖2 ≤ βn‖u(0) − u∗‖2 (4.7)

with β := supλ∈Λ
4θλ(1−smin)

4θλ(1+ωλ)−κq
< 1.

An essential ingredient for the proof of this theorem is the following.

Lemma 4.4. Assume q ∈ {1, 2,∞} and 4θλ(1+ωλ) > κq for all λ ∈ Λ. Then the operators

H
(q)
θ,ρ,ω are Lipschitz continuous,

‖H(q)
θ,ρ,ω(y) −H

(q)
θ,ρ,ω(z)‖2 ≤ L‖y − z‖2

with constant L := supλ∈Λ
4θλ

4θλ(1+ωλ)−κq
.

Proof. By Lemma 3.3 we have H
(q)
θ,ρ,ω(z) = U

(q)
v,ω(z) with v = V

(q)
θ,ρ (H

(q)
θ,ρ,ω(z)) =: v(z). By

the triangle inequality

‖(H(q)
θ,ρ,ω(y))λ − (H

(q)
θ,ρ,ω(z))λ‖2

≤ ‖U (q)
v(y),ω(y)λ − U

(q)
v(y),ω(z)λ‖2 + ‖U (q)

v(y),ω(z)λ − U
(q)
v(z)),ω(z)λ‖2

= (1 + ωλ)−1
[

‖S(q)
vλ(y)(yλ) − S

(q)
vλ(y)(zλ)‖2 + ‖S(q)

vλ(y)(zλ) − S
(q)
vλ(z)(zλ)‖2

]

. (4.8)

Since S
(q)
vλ (x) = x − P q′

vλ/2(x), where P q′

vλ/2 is the orthogonal projection onto the `q′-ball of

radius vλ/2 the first term can be estimated by

‖S(q)
vλ(y)(yλ) − S

(q)
vλ(y)(zλ)‖2 ≤ ‖yλ − zλ‖2.

Further, it was proved in [24, Lemma 5.2] that ‖P q′
v (x)−P q′

w (x)‖ ≤ Kq|v−w| for all v,w ≥ 0,
and x ∈ R

M , with K1 =
√
M and K2 = K∞ = 1. The second term in (4.8) can thus be

estimated by

‖S(q)
vλ(y)(zλ) − S

(q)
vλ(z)(zλ)‖2 = ‖P q′

vλ(y)/2(zλ) − P q′

vλ(z)/2(zλ)‖2 ≤ Kq

2
|vλ(y) − vλ(z)|

=
Kq

2
|V (q)

θ,ρ (H
(q)
θ,ρ,ω(y))λ − V

(q)
θ,ρ (Hθ,ρ,ω(z))λ|.
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Using the definition of V
(q)
θ,ρ in (3.13) and distinguishing different cases we obtain

|V (q)
θ,ρ (H

(q)
θ,ρ,ω(y))λ − V

(q)
θ,ρ (H

(q)
θ,ρ,ω(z))λ| ≤

1

2θλ

∣
∣
∣‖(H(q)

θ,ρ,ω(y))λ‖q − ‖(H(q)
θ,ρ,ω(z))λ‖q

∣
∣
∣

≤ 1

2θλ
‖(H(q)

θ,ρ,ω(y))λ − (H
(q)
θ,ρ,ω(z))λ‖q ≤ Rq

2θλ
‖(H(q)

θ,ρ,ω(y))λ − (H
(q)
θ,ρ,ω(z))λ‖2,

where Rq = 1 for q ∈ {2,∞} and R1 =
√
M . Altogether we deduced

‖(H(q)
θ,ρ,ω(y))λ − (H

(q)
θ,ρ,ω(z))λ‖2

≤ (1 + ωλ)−1

[

‖yλ − zλ‖2 +
KqRq

4θλ
‖(H(q)

θ,ρ,ω(y))λ − (H
(q)
θ,ρ,ω(z))λ‖2

]

.

Noting that KqRq = κq we obtain

(

1 − κq

4θλ(1 + ωλ)

)

‖(H(q)
θ,ρ,ω(y))λ − (H

(q)
θ,ρ,ω(z))λ‖2 ≤ (1 + ωλ)−1‖yλ − zλ‖2.

Summing over λ ∈ Λ we finally obtain

‖H(q)
θ,ρ,ω(y) −H

(q)
θ,ρ,ω(z)‖2 ≤ sup

λ∈Λ

1

(1 + ωλ) − κq

4θλ

‖y − z‖2 = L‖y − z‖2,

and the proof is completed.

Proof of Theorem 4.3. Let Γ denote the operator

Γ(u) := H
(q)
θ,ρ,ω(u+ T ∗(g − Tu)). (4.9)

Then clearly, u(n) = Γ(u(n−1)). By Lemma 4.4 Γ is Lipschitz,

‖Γ(y) − Γ(z)‖2 ≤ ‖H(q)
θ,ρ,ω(y + T ∗(g − Ty)) −H

(q)
θ,ρ,ω(z + T ∗(g − Tz))‖2

≤ L‖y + T ∗(g − Ty) − z − T ∗(g − Tz)‖2 = L‖(I − T ∗T )(y − z)‖2

≤ L‖I − T ∗T‖ ‖y − z‖2 = L(1 − smin)‖y − z‖2 = sup
λ∈Λ

4θλ(1 − smin)

4θλ(1 + ωλ) − κq
‖y − z‖2

= β‖y − z‖2. (4.10)

Since by assumption β < 1 it follows from Banach’s fixed point theorem that u(n) converges
to the unique fixed point u∗ of Γ and

‖u(n) − u∗‖2 = ‖Γ(u(n−1)) − Γ(u∗)‖2 ≤ β‖u(n−1) − u∗‖2.

By induction we deduce (4.7). By Theorem 4.1 (u∗, v∗) with v∗ = V
(q)
θ,ρ (u∗) is the unique

minimizer of J .
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4.2 Convergence for the non-contractive case

In the previous section we have established with relatively simple arguments the convergence
of the algorithm (4.2) to the minimizer of J under the condition (4.5). Thus, we provided
an alternative to the first established algorithm (2.8) in [24].

It is intriguing to investigate what happens in the case when condition (4.5) is relaxed
to

inf
λ∈Λ

4θλ(smin + ωλ) ≥ κq, (4.11)

and clearly, the remaining case is when there is equality in the above condition. The latter
means that the iteration map Γ, see (4.9), is still non-expansive, but not strictly contractive
anymore.

We will use Opial’s fixed point theorem:

Theorem 4.5. Let the mapping Γ from H to H satisfy the following conditions:

(i) Γ is nonexpansive: for all z, z′ ∈ H, ‖Γz − Γz′‖ ≤ ‖z − z′‖;

(ii) Γ is asymptotically regular: for all z ∈ H, ‖Γn+1z − Γnz‖ → 0, for n→ ∞;

(iii) the set F of fixed points of Γ in H is not empty.

Then for all z ∈ H, the sequence (Γnz)n∈N converges weakly to a fixed point in F .

A simple proof of this theorem can be found in [11].
The goal of our analysis in this section is to show that the map Γ defined in (4.9) and

ruling the iteration of the algorithm (4.2) fulfills the requirements of Theorem 4.5. By
condition (4.11) and (4.10) we have

‖Γ(z) − Γ(z′)‖2 ≤ ‖z − z′‖2,

which shows the non-expansiveness (i). If smin +ωλ ≥ γ > 0 for all λ ∈ Λ, then there exists
a minimizer of J(u, v) by coerciveness as already noted before. From Theorem 4.1 we have
that such minimizers are fixed points of Γ, and hence also (iii) is satisfied. It remains to
show (ii).

Lemma 4.6. If ‖T‖ < 1 and 4(1 + ωλ)θλ > κq for all λ ∈ Λ then the mapping Γ is
asymptotically regular.

Proof. We first show that both (J(u(n), V
(q)
θ,ρ (u(n))))n∈N and (Js(u(n+1), V

(q)
θ,ρ (u(n+1));u(n)))n∈N

are nondecreasing sequences. By definition of u(n+1), we have

J(u(n+1), V
(q)
θ,ρ (u(n+1))) ≤ Js(u(n+1), V

(q)
θ,ρ (u(n+1));u(n)) ≤ Js(u(n), V

(q)
θ,ρ (u(n));u(n))

= J(u(n), V
(q)
θ,ρ (u(n))),

and

Js(u(n+2), V
(q)
θ,ρ (u(n+2));u(n+1)) ≤ J(u(n+1), V

(q)
θ,ρ (u(n+1))) ≤ Js(u(n+1), V

(q)
θ,ρ (u(n+1));u(n)).
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Moreover, observe that

Js(u(n+1), V
(q)
θ,ρ (u(n+1));u(n)) − Js(u(n+2), V

(q)
θ,ρ (u(n+2));u(n+1))

≥ Js(u(n+1), V
(q)
θ,ρ (u(n+1));u(n)) − J(u(n+1), V

(q)
θ,ρ (u(n+1)))

= ‖u(n+1) − u(n)‖2
2 − ‖T (u(n+1) − u(n))|H‖2 ≥ (1 − ‖T‖2)

︸ ︷︷ ︸

:=C

‖u(n+1) − u(n)‖2
2.

Clearly, C > 0 and by the latter inequality we have

C

N∑

n=0

‖u(n+1) − u(n)‖2

≤
N∑

n=0

(

Js(u(n+1), V
(q)
θ,ρ (u(n+1));u(n)) − Js(u(n+2), V

(q)
θ,ρ (u(n+2));u(n+1))

)

=
(

Js(u(1), V
(q)
θ,ρ (u(1));u(0)) − Js(u(N+2), V

(q)
θ,ρ (u(N+2));u(N+1))

)

≤ Js(u(1), V
(q)
θ,ρ (u(1));u(0)) <∞.

This implies
∑∞

n=0 ‖u(n+1) − u(n)‖2
2 < ∞ and ‖u(n+1) − u(n)‖ → 0 for n → ∞. Therefore

‖Γn+1(u(0)) − Γn(u(0))‖2 = ‖u(n+1) − u(n)‖2 → 0 and the mapping Γ is asymptotically
regular.

By combining the previous achievements, we obtain the following convergence result.

Theorem 4.7. If ‖T‖ < 1, infλ∈Λ 4θλ(smin + ωλ) ≥ κq and smin + infλ∈Λ ωλ > 0 then for
any initial choice u(0) ∈ `2(Λ,R

M ), the sequence

u(n+1) := H
(q)
θ,ρ,ω

(

u(n) + T ∗(g − Tu(n))
)

, (4.12)

converges weakly to a fixed point u∗ of Γ and (u∗, V
(q)
θ,ρ (u∗)) is a minimizer of J . Moreover,

if 4θλ(smin +ωλ) > κq for all λ ∈ Λ then u∗ is the unique fixed point of Γ and (u∗, V
(q)
θ,ρ (u∗))

is the unique minimizer of J .

We do not further insist in the task of investigating the strong convergence of the
sequence (u(n))n∈N under the conditions of Theorem 4.7 when infλ∈Λ 4θλ(smin + ωλ) = κq.
We refer to [11, Proposition 2.1, Proposition 3.10, Section 3.2] for results in this direction
related to soft-thresholding.

5 On Variational Limits

In this section we investigate how the minimizers of J = J
(q)
θ,ρ,ω vary when the parameters

are changed.
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5.1 Approaching soft-thresholding

We will now keep the sequence ρ fixed and let ω = ω(k) and θ = θ(k) vary with k ∈ N. For

brevity we denote the corresponding functionals by J(k) = J
(q)

θ(k),ρ,ω(k) .

The result below reveals how one can continuously approach minimizers of the functional

Kρ(u) := ‖Tu− g|H‖2 +
∑

λ∈Λ

ρλ‖uλ‖q,

by means of minimizers of J(k). Kρ is closely related to the soft thresholding operator S
(q)
ρ

in (2.12), and its minimizer can be approximated by the algorithm (2.10) with ωλ = 0,
which indeed is a pure soft-thresholded Landweber iteration, see [11, 24].

Theorem 5.1. Let q ∈ {1, 2,∞}. Suppose ρ is a sequence satisfying infλ∈Λ ρλ > 0. Assume

that the entries θ
(k)
λ are monotonically increasing with k for all λ and

lim
k→∞

( inf
λ∈Λ

θ
(k)
λ ) = ∞. (5.1)

Further suppose

κq < 4ω
(k)
λ θ

(k)
λ ≤ C (5.2)

for some constant C > κq and

ω
(k)
λ − 1

4κq′θ
(k)
λ

≤ ω
(k−1)
λ − 1

4κqθ
(k−1)
λ

(5.3)

for all λ ∈ Λ and k ∈ N, where q′ denotes the dual index of q, i.e., 1/q′ + 1/q = 1

as usual. Denote by (u(k), v(k)) the (unique) minimizer of J(k)(u, v) = J
(q)

θ(k),ρ,ω(k)(u, v).

Then the accumulation points of the sequence (u(k))k∈N with respect to the weak topology in
`2(Λ,R

M ) are minimizers of Kρ. In particular, if the minimizer of Kρ is unique then u(k)

converges weakly to it.

The proof of this theorem uses some machinery from Γ-convergence [10] as a main tool.
To state the corresponding result we first need to introduce some notion.

Definition 1. (a) A functional F : X → R on a topological space X satisfying the first
axiom of countability (i.e., being metrizable) is called lower semicontinuous if for all
x and all sequences xk converging to x it holds F (x) ≤ lim infk F (xk).

(b) A function F : X → R is called coercive if for all t ∈ R the set {x : F (x) ≤ t} is
contained in a compact set.

The following well-known result can be achieved as a direct combination of [10, Propo-
sition 5.7, Theorem 7.8, Corollary 7.20, Corollary 7.24]. For the sake of completeness we
provide a proof, which implicitly uses techniques from Γ-convergence. For more details we
refer to [10].
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Theorem 5.2. Let X be a topological space which satisfies the first axiom of countabil-
ity. Assume that Fk, k ∈ N, is a monotonically decreasing sequence of functionals on a
topological space X that converges pointwise to a functional F , i.e., Fk+1(x) ≤ Fk(x) and
limk→∞ Fk(x) = F (x) for all x ∈ X. Assume that F is lower semicontinuous and coer-
cive. Suppose that xk minimizes Fk over X. Then the accumulation points of the sequence
(xk)k∈N are minimizers of F . Moreover, if the minimizer of F is unique then xk converges
to it.

Proof. Let (xk) be a sequence converging to x ∈ X. By lower-semicontinuity and since Fk

is monotonically decreasing we have

F (x) ≤ lim inf
k

F (xk) ≤ lim inf
k

Fk(xk). (5.4)

Furthermore, by pointwise convergence we have

inf{lim sup
k

Fk(xk), xk → x} ≤ F (x)

where the infimum is taken over all sequences xk converging x, and in the inequality it was
used that this infimum is certainly less then the quantity attained for the constant sequence
xk = x. The above infimum is actually attained, see [10, Proposition 8.1 c) and d)], so
there exists a sequence xk → x such that F (x) ≥ lim supk Fk(xk) and by (5.4) it follows
F (x) = limk Fk(xk), and furthermore F (x) ≥ limk(infx∈X Fk(x)). Since x was arbitrary, it
follows that

inf
x∈X

F (x) ≥ lim
k

(min
x∈X

Fk(x)). (5.5)

Since Fk ≥ F , we have {x, Fk(x) ≤ t} ⊂ {x, F (x) ≤ t} for all t and the latter is contained
in a compact set by coerciveness. Thus, if xk minimizes Fk for each k then the sequence xk

is contained in a compact set. Hence, we can extract a subsequence xkj
which converges to

one of the accumulation points x′ of xk. Then inequality (5.4) yields

inf
x∈X

F (x) ≤ F (x′) ≤ lim
j
Fkj

(xkj
) = lim

kj

(min
x∈X

Fkj
(x)).

Together with (5.5) it follows that

F (x′) = inf
x∈X

F (x) = lim
j

(min
x∈X

Fkj
(x)).

This means that x′ minimizes F and we showed that all accumulation points of the sequence
(xk) are minimizers of F . Now if the minimizer of F is unique then with the same argument
as above it follows that every subsequence of xk contains another subsequence that converges
to x′. But then xk itself must converge to x′.

Proof of Theorem 5.1. First we show that Kρ is coercive and lower-semicontinuous with
respect to the weak topology of `2(Λ,R

M ). Since infλ ρλ > 0 we have

‖u‖2 ≤
(

sup
λ∈Λ

ρ−1
λ

)
∑

λ∈Λ

ρλ‖uλ‖2 ≤ Cq

∑

λ∈Λ

ρλ‖uλ‖q.
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Hence, if u is such that Kρ(u) ≤ t, then ‖u‖2 ≤ Cqt, which shows that {u ∈ `2,Kρ(u) ≤ t}
is contained in the `2 ball of radius Cqt, which is compact in the weak topology. Hence, Kρ

is coercive.
Since we are interested in minimization problems it suffices to consider our functionals

on the set X = {u ∈ `2,Kρ(u) ≤ C} for a sufficiently large C. Observe that by [10,
Proposition 8.7] the space X is indeed metrizable with the weak topology inherited from
`2(Λ,R

M ).
Now consider a sequence (u(k)) which is weakly convergent to u. By weak convergence

and lower semicontinuity of the H norm we have ‖Tu − g‖H ≤ limk ‖Tu(k) − g‖H. Weak

convergence in `2 implies convergence of the components u
(k)
λ . Hence, by Fatou’s lemma we

further have
∑

λ

ρλ‖uλ‖q =
∑

λ

ρλ lim inf
k

‖u(k)
λ ‖q ≤ lim inf

k

∑

λ

ρλ‖u(k)
λ ‖q.

This implies that Kρ is lower-semicontinuous in X.

If (u(k), v(k)) minimizes J(k) then v(k) = V
(q)

θ(k),ρ(k)(u
(k)). Hence, (u(k), v(k)) is a minimizer

of J(k) if and only if u(k) minimizes as well the functional

F(k)(u) := J(k)(u, V
(q)

θ(k),ρ(k)(u)).

Above we have already seen that the set X is bounded in the `2 norm, hence, if u ∈ X
then its components satisfy ‖uλ‖q ≤ C ′. By assumption (5.1) and since ρλ is bounded away

from 0, there exists a k0 ∈ N such that ‖uλ‖q ≤ 2θ
(k)
λ ρλ for all k ≥ k0 and all λ ∈ Λ.

Consequently

v
(k)
λ = ρλ − ‖uλ‖q

2θ
(n)
λ

, ∀λ ∈ Λ,

and the functional F(k) is given by

F(k)(u) = ‖Tu− g‖2 +
∑

λ∈Λ

ρλ‖uλ‖q +
∑

λ∈Λ

(

ω
(k)
λ ‖uλ‖2

2 −
‖uλ‖2

q

4θ
(k)
λ

)

for all k ≥ k0 and u ∈ X. Clearly, it suffices to restrict all considerations to k ≥ k0.
Since the `q-norm on R

M is equivalent to the `2-norm it follows from (5.1) and (5.2)
that

lim
k→∞

∑

λ∈Λ

(

ω
(k)
λ ‖uλ‖2

2 −
‖uλ‖2

q

4θ
(k)
λ

)

= 0

for all u ∈ X. Hence F(k) converges pointwise to Kρ on X. Further, note that (5.3) implies

ω
(k)
λ ‖uλ‖2

2 −
‖uλ‖2

q

4θ
(k)
λ

≤
(

ω
(k)
λ − 1

4κq′θ
(k)
λ

)

‖uλ‖2
2 ≤

(

ω
(k−1)
λ − 1

4κqθ
(k−1)
λ

)

‖uλ‖2
2

≤ ω
(k−1)
λ ‖uλ‖2

2 −
‖uλ‖2

q

4θ
(k)
λ

.
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Thus, F(k)(u) ≤ F(k−1)(u) for all u ∈ X and k ≥ k0. In particular, F(k) ≥ Kρ and,
hence, coerciveness of Kρ implies that F(k) is coercive as well. Thus, F(k) has a minimizer.
Moreover, by (5.2) J(k) is strictly convex, and therefore the minimizer is unique. Invoking
Theorem 5.2 yields the statement.

REMARK: Let us give explicit examples of sequences θ
(k)
λ and ω

(k)
λ satisfying the condition

in Theorem 5.1. For q ∈ {2,∞} one may choose θ
(k)
λ increasing with k and satisfying (5.1),

for instance θ
(k)
λ = k. Then with C > 1 one chooses ω

(k)
λ = C

4θ
(k)
λ

and it is not difficult to

verify (5.2) and (5.3).

For q = 1 one may choose C > M and a sequence θ
(k)
λ such that θ

(k)
λ ≥ (C−1)M

CM−1 θ
(k−1)
λ

and (5.1) is satisfied, for instance

θ
(k)
λ =

(
(C − 1)M

CM − 1

)k

.

Then as before set ω
(k)
λ = C

4θ
(k)
λ

and again it is easy to verify (5.2) and (5.3).

5.2 Regularization results

By using the tool of Γ-convergence provided by Theorem 5.2 we can easily show two regu-
larization results associated to the functional J . Let us first consider the functional

J 1
τ (u, v) := J 1

θ,ρ,ω;τ(u, v) := ‖Tu− g|H‖2 + τΦ
(q)
θ,ρ,ω(u, v).

We are interested in studying the behavior of the minimizers (u∗τ , v
∗
τ ) of J 1

τ for τ → 0.
We have the following straightforward result.

Lemma 5.3. Let q ∈ {1, 2,∞} and assume that ‖T‖ < 1 and

inf
λ∈Λ

4θλ(smin + ωλ) > κq (5.6)

with smin = min Sp(T ∗T ). For τ > 0 let (u∗τ , v
∗
τ ) be a minimizer of J 1

τ . Then v∗τ = V
(q)
θ,ρ (u∗τ ).

Proof. Observe that both J 1
τ and J

(q)
θ
τ

,τρ,τω
are strictly convex and J 1

τ (u, v) = J
(q)
θ
τ

,τρ,τω
(u, τv).

Therefore (u∗τ , v
∗
τ ) is the minimizer of J 1

τ if and only if (u∗τ , τv
∗
τ ) is the minimizer of J

(q)
θ
τ

,τρ,τω
.

Hence, τv∗τ = V
(q)
θ
τ

,τρ
(u∗τ ), due to the minimality of τv∗τ for J

(q)
θ
τ

,τρ,τω
(u∗τ , ·), and by definition,

V
(q)
θ
τ

,τρ
(u∗τ ) = τV

(q)
θ,ρ (u∗τ ). We conclude that v∗τ = V

(q)
θ,ρ (u∗τ ).

Proposition 5.4. Let q ∈ {1, 2,∞} and assume that ‖T‖ < 1 and

inf
λ∈Λ

4θλωλ > κq. (5.7)

Furthermore suppose ωλ ≥ γ > 0 for all λ ∈ Λ. Choose u◦ ∈ `2(Λ,R
M ) and set g = Tu◦.

Then for all τ > 0 the functional J 1
θ,ω,ρ;τ has a unique minimizer (u∗τ , V

(q)
θ,ρ (u∗τ )). Choose a
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sequence (τn)n∈N of positive reals which converges monotonically to 0. Then u∗τn
converges

weakly to the unique solution u∗ of the minimization problem

min
u

Φ
(q)
θ,ρ,ω(u, V

(q)
θ,ρ (u)) subject to Tu = g. (5.8)

Proof. We first argue that (5.8) has a unique solution. Existence follows from coerciveness,

lower semicontinuity of Φ
(q)
θ,ω,ρ(u, V

(q)
θ,ρ (u)) and because g = Tu◦. Furthermore, the problem

min
(u,v)

Φ
(q)
θ,ω,ρ(u, v) subject to Tu = g

has a unique solution (u†, v†) since (5.7) implies strict convexity of Φ
(q)
θ,ω,ρ. Then v† =

V
(q)
θ,ρ (u†), and hence, u† is also the unique minimizer of (5.8).

By the condition ωλ ≥ γ > 0 for all λ ∈ Λ we have J 1
τ (u, v) ≥ τγ‖u‖2

2, and hence

u 7→ J 1
τ (u, V

(q)
θ,ρ (u)) is coercive with respect to the weak topology in `2. Hence, it has a

minimizer and (u, v) 7→ J 1
τ (u, v) has a minimizer as well. Condition (5.7) implies strict

convexity of J 1
τ , and thus the minimizer is unique. Now, we can estimate

‖u∗τn
‖2
2 ≤ 1

γ
Φ

(q)
θ,ρ,ω(u∗τn

, V
(q)
θ,ρ (u∗τn

)) ≤ 1

γτn
J 1

τn
(u∗τn

, V
(q)
θ,ρ (u∗τn

)) ≤ 1

γτn
J 1

τn
(u†, V

(q)
θ,ρ (u†))

=
1

γ
Φ

(q)
θ,ρ,ω(u†, V

(q)
θ,ρ (u†)).

Therefore, the sequence (u∗τn
)n∈N is uniformly bounded in `2(Λ,R

M ). Hence, there exists a
subsequence (u∗τnj

)j∈N which converges weakly to u∗ ∈ `2(Λ,R
M ). Let us denote again this

subsequence by (u∗τn
)n∈N. Since it is bounded we can restrict our attention to the space

X = {u ∈ `2,Φ
(q)
θ,ρ,ω(u, V

(q)
θ,ρ (u)) ≤ Φ

(q)
θ,ρ,ω(u†, V

(q)
θ,ρ (u†))}. With the same argument as above

X is contained in the `2 ball of radius 1/γ, and hence, X is metrizable when endowed with
the weak topology induced by `2, see [10, Proposition 8.7].

Clearly, the term τnΦ(q)(u, V
(q)
θ,ρ (u)) converges monotonically to 0 for all u ∈ X. Hence,

the sequence (J 1
τn

(u, τnV
(q)
θ,ρ (u)))n∈N converges pointwise and monotonically decreasing to

‖Tu − g|H‖2. Since ‖Tu − g|H‖2 is lower semicontinuous and trivially coercive in X (by
weak compactness of X itself), we conclude by Theorem 5.2 that u∗ minimizes ‖Tu−g|H‖2,
i.e., Tu∗ = g.

Certainly

Φ
(q)
θ,ρ,ω(u∗, V

(q)
θ,ρ (u∗)) ≥ Φ

(q)
θ,ρ,ω(u†, V

(q)
θ,ρ (u†)). (5.9)

Since limn→∞ V
(q)
θ,ρ (u∗τn

)λ = V
(q)
θ,ρ (u∗)λ, by Fatou’s lemma, we can estimate

Φ
(q)
θ,ρ,ω(u∗, V

(q)
θ,ρ (u∗)) ≤ lim inf

n→∞
Φ

(q)
θ,ρ,ω(u∗τn

, V
(q)
θ,ρ (u∗τn

)).

Since Φ
(q)
θ,ρ,ω(u∗τn

, V
(q)
θ,ρ (u∗τn

)) is bounded, we may again pass to a subsequence of τn (labelled
again τn) so that the right hand side above converges, and

Φ
(q)
θ,ρ,ω(u∗, V

(q)
θ,ρ (u∗)) ≤ lim

n→∞
Φ

(q)
θ,ρ,ω(u∗τn

, V
(q)
θ,ρ (u∗τn

)).
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We have shown before (actually by definition of X) that

Φ
(q)
θ,ρ,ω(u∗τn

, V
(q)
θ,ρ (u∗τn

)) ≤ 1

τn
J 1

τn
(u∗τn

, V
(q)
θ,ρ (u∗τn

)) ≤ Φ
(q)
θ,ρ,ω(u†, V

(q)
θ,ρ (u†))

and therefore Φ
(q)
θ,ρ,ω(u∗, V

(q)
θ,ρ (u∗)) ≤ Φ

(q)
θ,ρ,ω(u†, V

(q)
θ,ρ (u†)). Combining the last inequality with

(5.9) we obtain that u∗ solves the minimization problem (5.8) and thus coincide with u†.
Hence, any subsequence of u∗τn

possesses another subsequence which converges to u†, and
we conclude that u∗τn

itself must converge to u†.

A similar result can be achieved as well by considering a slightly different sequence of
functionals. Define

Ψ(q)
ω (u, v) :=

∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖2
2

and

J 2
τ (u, v) := J 2

θ,ω,ρ;τ (u, v) := ‖Tu− g|H‖2 + τΨ(q)
ω (u, v) +

∑

λ

θλ(ρλ − vλ)2. (5.10)

Similarly to the arguments above we can show the following results.

Lemma 5.5. Let q ∈ {1, 2,∞} and assume that ‖T‖ < 1 and

inf
λ∈Λ

4θλ(smin + ωλ) > κq (5.11)

with smin = min Sp(T ∗T ). For τ > 0 let (u∗τ , v
∗
τ ) be a minimizer of J 2

τ . Then v∗τ = V
(q)
θ
τ
,ρ
(u∗τ ).

Proposition 5.6. Let q ∈ {1, 2,∞} and assume that ‖T‖ < 1 and

inf
λ∈Λ

4θλ(smin + ωλ) > κq (5.12)

with smin = minSp(T ∗T ). We furthermore assume that ωλ ≥ γ > 0 for all λ ∈ Λ.
Choose u◦ ∈ `2(Λ,R

M ) and set g = Tu◦. Then for all τ > 0 the functional J 2
τ = J 2

θ,ω,ρ;τ

has a unique minimizer (u∗τ , V
(q)
θ
τ

,ρ
(u∗τ )). Let (τn)n∈N be a sequence of positive reals which

converges monotonically to 0. Then u∗τn
converges weakly, and its limit u∗ uniquely solves

the minimization problem

min
u

Ψ(q)
ω (u, ρ) subject to Tu = g. (5.13)

Proof. Exactly as in the proof of Proposition 5.4 one shows uniqueness of the minimizer u∗τ .
Let u† be a solution of the minimization problem (5.13), which is unique since ωλ ≥ γ > 0

implies that u 7→ Ψ
(q)
ω (u, ρ) is strictly convex. We can estimate

‖u∗τn
‖2
2 ≤ 1

γ
Ψ(q)

ω (u∗τn
, V

(q)
θ

τn
,ρ
(u∗τn

)) ≤ 1

γτn
J 2

τn
(u∗τn

, V
(q)
θ

τn
,ρ
(u∗τn

)) ≤ 1

γτn
J 2

τn
(u†, ρ))

=
1

γ
Ψ(q)

ω (u†, ρ).

25



Therefore, the sequence (u∗τn
)n∈N is uniformly bounded in `2(Λ,R

M ) and we can extract
a subsequence (u∗τnj

)j∈N which converges weakly to u∗ ∈ `2(Λ,R
M ). Let us denote again

such subsequence by (u∗τn
)n∈N. We may restrict our attention to the space

X :=
{

u ∈ `2, ‖u‖2
2 ≤ γ−1Ψ(q)

ω (u†, ρ)
}

∩
{
u ∈ `2,∃v such that J 2

1 (u, v) <∞
}
.

By definition X is contained in an `2-ball and hence, metrizable when endowed with the
weak topology induced from `2. It is easy to see that J 2

τ (u, v) < ∞ for arbitrary τ > 0 if
J 2

1 (u, v) < ∞. Moreover, for fixed u ∈ X the weight v′ = V θ
τ

,ρ(u) minimizes v 7→ J 2
τ (u, v),

i.e., J 2
τ (u, V θ

τ
,ρ(u)) ≤ J 2

τ (u, v). In particular, u∗τn
is contained in X for all n.

Now, a straightforward computation shows that

τ2
n

∑

λ∈Λ

‖uλ‖2
q

4θλ
=
∑

λ∈Λ

θλ(ρλ − V
(q)
θ

τn
,ρ
(u)λ)2 ≤ J 1

τn
(u, V

(q)
θ

τn
,ρ
(u)) <∞

for all u ∈ X and n large enough, hence the first term converges monotonically to 0 as

n → ∞. It follows that the sequence (J 2
τn

(u, V
(q)
θ

τn
,ρ
(u)))n∈N monotonically converges to

‖Tu− g|H‖2 for all u ∈ X.
Since ‖Tu − g|H‖2 is lower semicontinuous and coercive in X it follows from Theorem

5.2 that u∗ minimizes ‖Tu− g|H‖2, i.e., Tu∗ = g.
Clearly,

Ψ(q)
ω (u∗, ρ) ≥ Ψ(q)

ω (u†, ρ). (5.14)

Using limn V
(q)
θ

τn
,ρ
(u∗τn

)λ = ρλ we can show (by possibly passing to a subsequence of (τn))

Ψ(q)
ω (u∗, ρ) = Φ

(q)
θ,ρ,ω(u∗, ρ) ≤ lim

n→∞
Φ

(q)
θ,ρ,ω(u∗τn

, V
(q)
θ

τn
,ρ
(u∗τn

)).

We have shown before that Φ
(q)
θ,ρ,ω(u∗τn

, V
(q)
θ

τn
,ρ
(u∗τn

)) ≤ 1
τn
J 2

τn
(u∗τn

, V
(q)
θ

τn
,ρ
(u∗τn

)) ≤ Ψ
(q)
ω (u†, ρ)

and therefore we have Ψ
(q)
ω (u∗, ρ) ≤ Ψ

(q)
ω (u†, ρ). Together with (5.14) we obtain u∗ = u†, and

with the same argument as in the proof of Proposition 5.4 we argue that the full sequence
uτn converges weakly to u†.

A Appendix

Proof of Theorem 3.2

The proof uses subdifferentials. This requires to formally extend the function Gθ,ρ,ω;z to
R

M × R by setting Gθ,ρ,ω;z(x, y) = ∞ if y < 0. In [24] the following characterization was
provided.

Lemma A.1. Let (u, v) ∈ R
M×R+. Then (ξ, η) ∈ R

M×R is contained in the subdifferential

∂G
(q)
θ,ρ,ω;z(x, y) if and only if

ξ ∈ 2(1 + ω)u− 2z + v∂‖ · ‖q(u),

η ∈ ‖u‖q∂s
+(v) + 2θ(v − ρ),
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where s+(v) := v for v ≥ 0 and s+(v) = ∞ for v < 0.

REMARK: We recall that the subdifferential of the q-norm on R
M is given as follows.

• If 1 < q <∞ then

∂‖ · ‖q(x) =







Bq′(1) if x = 0,
{(

|x`|q−1 sign(x`)

‖x‖q−1
q

)M

`=1

}

otherwise,

where Bq′(1) denotes the ball of radius 1 in the dual norm, i.e., in `q′ with 1
q + 1

q′ = 1.

• If q = 1 then

∂‖ · ‖1(x) = {ξ ∈ R
M : ξ` ∈ ∂| · |(x`), ` = 1, . . . ,M} (A.1)

where ∂| · |(z) = {sign(z)} if z 6= 0 and ∂| · |(0) = [−1, 1].

• If q = ∞ then

∂‖ · ‖∞(x) =

{
B1(1) if x = 0,
conv{(sign(x`)e` : |x`| = ‖x‖∞} otherwise,

(A.2)

where convA denotes the convex hull of a set A and e` the `-th canonical unit vector
in R

M .

Proof of Theorem 3.2. First observe that Gθ,ρ,ω;z is strictly convex, continuous on its do-
main R

M ×R+, and bounded from below, further Gθ,ρ,ω;z(x, y) → ∞ when ‖x‖2 + |y| → ∞.
Thus, there exists a unique minimizer. Hence, we have to prove that 0 ∈ ∂Gθ,ρ,ω;z(u, v). It
is straightforward to see that once ‖u‖q is known then v is given by (3.9).

From here on we have to distinguish between the different q. Let us start with the easiest
case q = 2. Assume u 6= 0 and ‖u‖2 ≤ 2θρ. By the characterization of the subdifferential in

Lemma A.1 it follows that v = ρ− ‖u‖2

2θ , and 0 ∈ 2(1+ω)u− 2z+(ρ− ‖u‖2

2θ )∂‖ · ‖2(u). Since
u 6= 0, we have ∂‖ ·‖2(u) = { u

‖u‖2
} and 0 = 2(1+ω)u−2z+( ρ

‖u‖2
− 1

2θ )u. A straightforward
computation gives

z =

(

(1 + ω) +
ρ

2‖u‖2
− 1

4θ

)

u

and hence

‖z‖2 =

(

(1 + ω) +
ρ

2‖u‖2
− 1

4θ

)

‖u‖2 =

(

(1 + ω) − 1

4θ

)

‖u‖2 +
ρ

2
.

Since by assumption 4θ(1 + ω) > 1 we find that

‖u‖2 =
‖z‖2 − ρ/2

(1 + ω) − 1
4θ

.

The latter equivalence makes sense only if ‖z‖2 − ρ/2 > 0, otherwise we would have a
contradiction to u 6= 0.
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If u = 0 then v = ρ and necessarily ‖z‖2 ≤ ρ/2. This proves that u = 0 if and only if
‖z‖2 ≤ ρ/2. So let us assume then ‖z‖2 − ρ/2 > 0. By the computations done above we
obtain

z =



(1 + ω) +
ρ

2 ‖z‖2−ρ/2

(1+ω)− 1
4θ

− 1

4θ



u,

which is equivalent to

u =
‖z‖2 − ρ/2

(1 + ω − 1
4θ )‖z‖2

z = (1 + ω)−1 4θ(1 + ω)

4θ(1 + ω) − 1

‖z‖2 − ρ/2

‖z‖2
z.

Due to the assumption ‖u‖2 ≤ 2θρ, this relation can only hold if ‖z‖2 ≤ 2θ(1 + ω)ρ.
Let us finally assume that ‖u‖2 > 2θρ. Then v = 0 and it is straightforward to check

that u = (1 + ω)−1z, and ‖z‖2 ≥ 2θ(1 + ω)ρ. Summarizing the results, and considering the

definition of h
(2)
θ(1+ω),ρ we have

u = (1 + ω)−1h
(2)
θ(1+ω),ρ(z)

as claimed.

Let us turn to the case q = 1. We assume first u 6= 0 and ‖u‖1 ≤ 2θρ. By Lemma A.1 it

follows that v = ρ− ‖u‖1

2θ , and 0 ∈ 2(1+ω)u−2z+(ρ− ‖u‖1

2θ )∂‖ · ‖1(u). The latter condition
implies

u` = (1 + ω)−1

{

0, |z`| ≤ ρ/2 − ‖u‖1

4θ ,

z` − sign(z`)
(

ρ/2 − ‖u‖1

4θ

)

, |z`| > ρ/2 − ‖u‖1

4θ .
(A.3)

Thus, we need to determine ‖u‖1. Let ` ∈ {1, . . . ,M} and assume u` 6= 0. Then we have

0 = 2(1 + ω)u − 2z + (ρ − ‖u‖1

2θ ) sign(u`), hence z` = (1 + ω)u` +
(

ρ
2 − ‖u‖1

4θ

)

sign(u`) and

|z`| = (1 + ω)|u`| +
(

ρ
2 − ‖u‖1

4θ

)

. Denoting S = supp(u) = {` : u` 6= 0} and n = #S we

obtain
∑

`∈S

|z`| = (1 + ω)‖u‖1 + n

(
ρ

2
− ‖u‖1

4θ

)

, (A.4)

Thus, we need to determine S and n in order to compute ‖u‖1, i.e.,

‖u‖1 =
4θ

4θ(1 + ω) − n

(
∑

`∈S

|z`| −
nρ

2

)

=: vS(z). (A.5)

Summarizing the conditions needed so far, the set S (of cardinality n) has to satisfy

|z`| > ρ/2 −
∑

`∈S |z`| − nρ
2

4θ(1 + ω) − n
, for all ` ∈ S, (A.6)

|z`| ≤ ρ/2 −
∑

`∈S |z`| − nρ
2

4θ(1 + ω) − n
, for all ` /∈ S, (A.7)

and
0 ≤ vS(z) = ‖u‖1 ≤ 2θρ (A.8)
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by the initial assumption ‖u‖1 ≤ 2θρ. By (A.6) and (A.7), S has to contain the n largest
absolute value coefficients of z. Thus, if the entries of z are ordered such that |z`1 | ≥ |z`2 | ≥
. . . ≥ |z`M

| then it suffices to find n such that

1

n

n∑

j=1

|z`j
| ≥ ρ

2
, (A.9)

n∑

j=1

|z`j
| ≤ 2θ(1 + ω)ρ, (A.10)

and

|z`n | >
ρ

2
−
∑n

j=1 |z`j
| − nρ

2

4θ(1 + ω) − n
, (A.11)

|z`n+1 | ≤
ρ

2
−
∑n

j=1 |z`j
| − nρ

2

4θ(1 + ω) − n
, (A.12)

where the last condition is void if n = M . Note that condition (A.10) is a straightforward
consequence of (A.5) and ‖u‖1 ≤ 2θρ.

Observe that the sequence n 7→ n−1
∑n

j=1 |z`nj
| is decreasing with n by the ordering

of |z`j
|. Thus, if ρ/2 > |z`1 | = ‖z‖∞ then condition (A.9) cannot be satisfied for any

n ∈ {1, . . . ,M}. In this case the initial assumption was consequently wrong, and hence,
either u = 0 or ‖u‖1 > 2θρ. If ‖u‖1 > 2θρ then v = 0, and hence, u = (1 + ω)−1(z),
i.e., ‖z‖1 = (1 + ω)‖u‖1 ≥ 2θ(1 + ω)ρ which contradicts ‖z‖∞ < ρ/2 as ‖z‖1 ≤ M‖z‖∞ <
Mρ/2 < 2θ(1 + ω)ρ by the assumption θ(1 + ω) > M/4. Thus, we conclude that u = 0 if
‖z‖∞ < ρ/2.

Now assume that ‖z‖1 > 2θ(1+ω)ρ. First note that then u = 0 is not possible. Indeed,
if u = 0 then v = ρ and hence, z ∈ ρ/2∂‖ · ‖1(0) = B∞(ρ/2). Hence, ‖z‖∞ ≤ ρ/2 which
contradicts ‖z‖1 > 2θ(1 + ω) by the same reasoning as above. We now argue that also
‖u‖1 ≤ 2θρ is not possible. Clearly, if ‖z‖1 > 2θ(1 + ω)ρ then (A.10) is not satisfied for
n = M . However, there might exist n = m < M for which (A.10) is satisfied. In this case it
suffices to show that condition (A.12) is never satisfied for n = 1, . . . ,m. Indeed, for n ≤ m
we estimate the right hand side of (A.12) as

ρ

2
−
∑n

j=1 |z`j
| − nρ

2

4θ(1 + ω) − n
=

ρ

2
−

‖z‖1 −
∑M

j=n+1 |z`j
| − nρ

2

4θ(1 + ω) − n

<
ρ

2
− 2θ(1 + ω)ρ− (M − n)|z`n+1 | − nρ

2

4θ(1 + ω) − n
=

M − n

4θ(1 + ω) − n
|z`n+1 | < |z`n+1 |.

Here we used the ordering of the |z`j
| and 4θ(1 +ω) > M . Thus, (A.12) cannot be satisfied

and, hence, we necessarily have ‖u‖1 > 2θρ. As already mentioned above we obtain u =
(1 + ω)−1z in this case.

It remains to treat the case ‖z‖∞ > ρ/2 and ‖z‖1 ≤ 2θ(1 + ω). In this case it it is not
possible that u = 0 since then v = ρ and, hence, z ∈ B∞(ρ/2), i.e., ‖z‖∞ ≤ ρ/2, as already
noted above. Also ‖u‖1 > 2θρ cannot hold since this would imply u = (1 + ω)−1z and
consequently ‖z‖1 = (1 + ω)‖u‖1 > 2θρ(1 + ω). This means that we are in the situation
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assumed in the beginning of the proof for q = 1. Since u exists and and is unique also
its support is unique and there must exist a unique n satisfying (A.9), (A.10), (A.11) and
(A.12). Once n is known, the support S of u corresponds to the indices of the n largest
entries of z and ‖u‖1 is given by (A.5), while the entries of u` are determined by (A.3).
Considering the definition of tn(z) in (3.5) (with θ replaced by θ(1 + ω)) we deduce that

u = (1 + ω)−1h
(1)
θ(1+ω),ρ(z)

for all the cases as claimed.

Let us finally consider q = ∞. Let us assume for the moment that u 6= 0 and ‖u‖∞ ≤
2θρ. Then v = ρ − ‖u‖∞

2θ . Let S be the set of indices ` for which |u`| = ‖u‖∞. We
enumerate them by `1, . . . , `n. For simplicity we further assume that entries z`1 , . . . , z`n are
positive (the other cases can be treated similarly by taking into account the corresponding
signs). Then the numbers u`1, . . . , u`n are also positive since choosing them with opposite
signs would increase the function Gθ,ρ,ω;z. From Lemma A.1 and the characterization of
∂‖ · ‖∞(u) we see that 2(u`(1 + ω) − z`) = 0 for the u` not giving the maximum, i.e.,

u` = (1 + ω)−1z` for ` /∈ S.

If n := #S = 1, i.e., the maximum is attained at only one entry, then for the corresponding
` ∈ S we obtain by Lemma A.1, 0 = 2(1 + ω)u` − 2z` + ρ− ‖u‖∞

2θ , i.e.,

u` = (1 + ω)−1

(

z` −
(
ρ

2
− ‖u‖∞

4θ

))

.

As u` = ‖u‖∞ this necessarily implies z` > z`′ for `′ /∈ S = {`}, i.e., |z`| = ‖z‖∞. Moreover,
solving for u` yields

u` =
4θ

4θ(1 + ω) − 1
(z` − ρ/2) .

Since u` > 0 and u` ≤ 2θρ this necessarily requires z` = ‖z‖∞ > ρ/2 and ‖z‖∞ ≤ 4θ(1+ω)ρ.
The realization of the maximum only at u` is valid only if u`′ < u` for all `′ /∈ S = {`}, i.e.,

z`′ <
4θ(1 + ω)

4θ(1 + ω) − 1
(‖z‖∞ − ρ/2) .

Otherwise we may assume that n = #S > 1 and we put

t := ‖u‖∞ = u` for all ` ∈ S.

By the characterization in Lemma A.1 and the explicit form of ∂‖ · ‖∞(u) we then have

2t− 2z`j
= −

(

ρ− t

2θ

)

aj , j = 1, . . . , n− 1,

2t− 2z`n = −
(

ρ− t

2θ

)(

1 −
n−1∑

k=1

ak

)

for some numbers a1, . . . , an−1 ∈ [0, 1] satisfying
∑

j aj ≤ 1. This is a system of n nonlinear
equations in t and a1, . . . , an−1. We proceed to its explicit solution by following two steps:

30



• We solve first the linear problem

2(1 + ω)t− 2z`j
= −vaj , j = 1, . . . , n− 1,

2(1 + ω)t− 2z`n = −v
(

1 −
n−1∑

k=1

ak

)

.

• The solution t = T (v, z`1 , . . . , z`n) of the linear problem depends on the data v, z`1 , . . . , z`n .
Since v =

(
ρ− t

2θ

)
we can find the solution of the nonlinear system by solving the

fixed point equation

t = T (ρ− t

2θ
, z`1 , . . . , z`n).

So, let us solve the linear problem. To this end we follow the computations in [24, Lemma
4.2]. The linear system can be reformulated in matrix form as follows:








1 + ω v/2 0 0 · · · 0
1 + ω 0 v/2 0 · · · 0

...
...

...
...

...
...

1 + ω −v/2 −v/2 −v/2 · · · −v/2








︸ ︷︷ ︸

:=B








t
a1
...

an−1








=








z`1
...

z`n−1

z`n − v/2







.

Denoting the matrix on the left hand side by B, a simple computation verifies that

B−1 =
1

n











(1 + ω)−1 (1 + ω)−1 (1 + ω)−1 · · · (1 + ω)−1

2(n−1)
v − 2

v − 2
v · · · − 2

v

− 2
v

2(n−1)
v − 2

v · · · − 2
v

...
...

. . .
...

...

− 2
v · · · − 2

v
2(n−1)

v − 2
v











.

Then we can compute explicitly the solution t by

t =
1

n(1 + ω)





n∑

j=1

z`j
− v

2



 .

By substituting v = ρ− ‖u‖∞
2θ = ρ− t

2θ into the last expression and solving the equation for
t we obtain

u`1 = · · · = u`n = t =
4θ

4θ(1 + ω)n− 1





n∑

j=1

z`j
− ρ

2



 .

Since ‖u‖∞ = t and 0 < ‖u‖∞ ≤ 2θρ by the initial assumption this requires

n∑

j=1

|z`j
| > ρ/2 (A.13)
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and
1

n

n∑

j=1

|z`| ≤ 2ρθ(1 + ω). (A.14)

The solution of the linear system gives also aj = 2
nv

(

v/2 + (n − 1)z`j
−∑k∈{1,...,n}\{j} z`k

)

.

We require aj ≥ 0 and 1 −
∑n−1

j=1 aj ≥ 0. We have aj ≥ 0 if and only if

z`j
≥ 1

n− 1




∑

k∈{1,...,n}\{j}

z`k
− v/2



 .

By substituting v =
(
ρ− t

2θ

)
and recalling the value of t as just computed above we obtain

z`j
≥ 4θ(1 + ω)

4θ(1 + ω)(n− 1) − 1




∑

k∈{1,...,n}\{j}

z`k
− ρ/2



 . (A.15)

A direct computation also shows that
∑n−1

j=1 aj = n−1
n + 2

nv

(
∑n−1

j=1 z`j
− (n− 1)z`n

)

. Thus,

it holds 1 −∑n−1
j=1 aj ≥ 0 if and only if

z`n ≥ 1

n− 1





n−1∑

j=1

z`j
− v/2



 .

Again the substitution of v =
(
ρ− t

2θ

)
gives

z`n ≥ 4θ(1 + ω)

4θ(1 + ω)(n − 1) − 1





n−1∑

j=1

z`j
− ρ/2



 . (A.16)

The initial assumption that the maximum of n is attained precisely at u`1 , . . . , u`n can be
true only if

z`′ = (1 + ω)u`′ < (1 + ω)t =
4θ(1 + ω)

4θ(1 + ω)n− 1





n∑

j=1

z`j
− ρ/2



 for all `′ /∈ S. (A.17)

By combining this condition with (A.15) and (A.16) we deduce that S necessarily contains
the indices `j corresponding to the largest coefficients of z. Thus, we may assume that the
indices are ordered such that |z`1 | ≥ |z`2 | ≥ . . . ≥ |z`M

|.
Summarizing what we have deduced so far, in particular, (A.13), (A.14), (A.16) and

(A.17), the conditions u 6= 0 and ‖u‖1 ≤ 2θ(1 + ω)ρ hold if and only if there exists n ∈
{1, . . . ,M} such

n∑

j=1

|z`j
| > ρ/2, (A.18)

1

n

n∑

j=1

|z`j
| ≤ 2ρθ(1 + ω), (A.19)
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and

|z`n+1 | <
4θ(1 + ω)

4θ(1 + ω)n− 1





n∑

j=1

|z`j
| − ρ

2



 = sn(z), (A.20)

|z`n | ≥
4θ(1 + ω)

4θ(1 + ω)(n− 1) − 1





n−1∑

j=1

|z`j
| − ρ

2



 = sn−1(z), (A.21)

where the first condition is only considered if n ≤M − 1 and the last condition if n > 1.
Now assume that ‖z‖1 ≤ ρ/2. Then clearly, there exists no n ∈ {1, . . . ,M} such that

(A.18) is satisfied. Thus, either u = 0 or ‖u‖∞ > 2θρ. If ‖u‖∞ > 2θρ then v = 0 and
u = (1 + ω)−1z. Consequently, ‖z‖∞ = (1 + ω)−1‖u‖∞ > 2ρθ(1 + ω) which yields a
contradiction to the assumption as ‖z‖∞ ≤ ‖z‖1 ≤ ρ/2 < 2ρθ(1 + ω) by (3.8). Thus, u = 0
if ‖z‖1 ≤ ρ/2.

We assume next that ‖z‖∞ > 2θρ(1 + ω). In this case condition (A.19) is certainly not
satisfied for n = 1. However, there might exist n > 1 such that

∑n−1
j=1 |z`j

| > 2ρθ(1+ω)(n−1)
but

∑n
j=1 |z`j

| ≤ 2ρθ(1 + ω)n. A straightforward computation shows then that |z`n | <
2θρ(1 + ω). Furthermore,

sn−1(z) =
4θ(1 + ω)

4θ(1 + ω)(n− 1) − 1





n−1∑

j=1

|z`j
| − ρ

2





>
4θ(1 + ω)

4θ(1 + ω)(n− 1) − 1
(2θρ(1 + ω)(n− 1) − ρ/2) = 2θρ(1 + ω).

Hence, condition (A.21) is not satisfied for this particular n. We now argue that then also
for n′ > n (A.21) cannot be satisfied. To this end we claim that |z`m | ≥ sm(z) implies
sm(z) ≥ sm−1(z) for arbitrary m. Then |z`n+1 | ≥ sn(z) would imply |z`n | ≥ |z`n+1 | ≥
sn(z) ≥ sn−1(z), a contradiction to what we have just shown, and by induction (A.21)
cannot hold for arbitrary n′ > n. To prove the claim we estimate

1

4θ(1 + ω)
(sn(z) − sn−1(z))

=

(
1

4θ(1 + ω)n− 1
− 1

4θ(1 + ω)(n− 1) − 1

)




n∑

j=1

|z`j
| − ρ

2



+
|z`n |

4θ(1 + ω)(n− 1) − 1

≥ − 4θ(1 + ω)

(4θ(1 + ω)n− 1)(4θ(1 + ω)(n− 1) − 1)





n∑

j=1

|z`j
| − ρ

2



+
sn(z)

4θ(1 + ω)(n − 1) − 1
= 0.

We conclude that either u = 0 or ‖u‖1 > 2θρ. The former case is impossible since u = 0
implies z ∈ B1(ρ/2), i.e., ‖z‖1 < ρ/2 < 2ρθ(1 + ω). Thus, ‖u‖1 > 2θρ and consequently
u = (1 + ω)−1z as already noted above.

We finally assume ‖z‖1 > ρ/2 and ‖z‖∞ ≤ 2ρθ(1 + ω). Then certainly u 6= 0 since this
would imply z ∈ B1(ρ/2), i.e., ‖z‖1 ≤ ρ/2. Moreover, ‖u‖∞ ≤ 2θρ since the opposite would
result in z = (1+ω)u, i.e., ‖z‖∞ > 2ρθ(1+ω). Hence, by the arguments above there exists
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n such that conditions (A.18), (A.19), (A.20) and (A.21) hold. Considering the definition

of h
(∞)
θ(1+ω),ρ we conclude that

u = (1 + ω)h
(∞)
θ(1+ω),ρ(z),

in all cases.
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