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Abstract

We study the wavelet transform of functions invariant under a symmetry group,
where the wavelet transform is associated to an irreducible unitary group represen-
tation. Among other results a new inversion formula and a new covariance principle
are derived. As main examples we discuss the continuous wavelet transform and the
short time Fourier transform of radially symmetric functions on Rd.
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1 Introduction

In the recent years a lot of research activities were dedicated to wavelet analysis and time-
frequency analysis. The outcome of these theories could be successfully applied in various
areas such as signal and image processing, the numerical solution of partial differential
equations and wireless communication just to mention a few. This paper is dedicated
to the wavelet and time-frequency-analysis of functions which are invariant under certain
symmetry groups. This aspect of time-frequency-analysis and wavelet analysis was not
treated thoroughly in the literature before, at least according to my knowledge.

Suppose a function on Rd possesses some symmetries, i.e. is invariant under some
symmetry group. Our main example will be radial symmetry or in other words invariance
under SO(d), but also other symmetry groups such as finite reflection groups may be
considered. Of course, it is possible to do standard wavelet and time-frequency analysis
with such a function. For example we may expand it in terms of certain building blocks
which will be translates and dilates of a single function in case of wavelet analysis and
which consist of modulations and translations of a single function in case of time-frequency
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analysis. Hereby the expansion can be discrete but also a continuous superposition such as
in the inversion formula for the continuous wavelet transform or for the short time Fourier
transform (STFT). However, in both examples the building blocks do not in general obey
the same symmetry properties as the analyzed function. For example, even if we start
with a radial symmetric wavelet, a translated version of it will no longer be radial. So
one might ask the question whether it is possible to make use of the symmetry properties.
In other words, is it possible to construct the building blocks in such a way that they
all possess certain symmetry properties? And can this be done such that all building
blocks are derived from one single function similarly as in standard wavelet and time-
frequency analysis? This paper presents a very natural approach to this problem. We
will only cover the continuous wavelet transform (CWT) and the (continuous) STFT.
Their discrete counterparts, i.e. the construction of invariant wavelet frames and invariant
Gabor frames, will be treated in a subsequent paper. A generalization of the Feichtinger-
Gröchenig theory [7, 8, 10] will be developed to solve the discretization problem. In the
special case of radial functions on R3 the concept of multiresolution analysis could already
be successfully applied to the construction of radial wavelets [15].

The CWT and the STFT are closely connected to the representation theory of the
similitude group of Rd and the Heisenberg group, respectively [1, 11]. It is therefore
possible to treat both transforms simultaneously in the general framework of representation
theory of locally compact groups. This is the reason why I have chosen to investigate the
problem in this abstract setting and then specialize to the examples afterwards.

In order to involve a symmetry group A in this abstract setting we need an action on
the group G whose representation coefficients Vgf(x) = 〈f, π(x)g〉H give the corresponding
wavelet transform where π acting on the Hilbert space H denotes the representation under
consideration. (Here we use the term wavelet transform also in the general context). It
is reasonable to assume that A is a compact automorphism group of G. Moreover, we
require that A has a representation σ on the same Hilbert space H (usually L2(Rd) in
our examples). As a basic assumption all representationsπA := π ◦ A,A ∈ A have to
be equivalent to π with intertwining operators σ(A), see formula (3.1). The invariant
elements of H are those that satisfy σ(A)f = f for all A ∈ A. It turns out that Vgf is
invariant under A if f, g are invariant and can hence be viewed as a function on the orbits
A(x), x ∈ G. The space K of all orbits has a structure called a hypergroup (a generalization
of a group) and in an easy way starting from π we construct a representation π̃ of K on
HA, the Hilbert space of all invariant elements of H. The operators π̃(x) map HA into
HA and thus it seems natural to take the elements π̃(x)g as new building blocks. In fact,
it holds Vgf = 〈f, π̃(x)g〉HA for invariant f, g. In our special cases with radial symmetry
the scalar product on HA = L2

rad(R
d) (the space of radial L2-functions) can actually be

computed by an integral over the positive half line, so this formula means a reduction in
complexity. Moreover, we prove as a main result another inversion formula for the wavelet
transform where an invariant element is represented by a continuous superposition of the
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invariant building blocks π̃(x)g. Also a covariance principle, which involves a generalized
translation coming from the hypergroup K, is shown for the wavelet transform of invariant
elements.

The outline of the paper is the following. We start by discussing briefly the CWT
of functions with radial symmetry as a motivating example. Afterwards we present the
abstract general approach including the main results. In section 4 we continue the discus-
sion of the continuous wavelet transform of radial function thereby illustrating the general
theory. It is worth noting that Rösler [16] and independently Trimeche [17] had already
introduced this transform (writing it is a transform on the positive halfline) in the context
of hypergroup theory. As a second example we discuss the STFT of radially symmet-
ric functions. Actually this example was the original motivation for the investigations
contained in this paper. There have been already other approaches for a radial STFT
[3, 4, 17]. Unfortunately the transforms introduced in these papers lack some important
properties. For example one can show that the Wigner-Bessel transform introduced in
[4] has unbounded inverse (which however is not proven in [4]) and the transform in [3]
makes use of a nonlinear modulation which seems a bit strange. As a last example we
discuss briefly the situation when SO(d) in both previous examples is replaced by a finite
reflection group.

2 A motivating example

We start with the basic example of the continuous wavelet transform of radial functions.
Let L2(Rd) denote the Hilbert space of all complex-valued square-integrable functions on
Rd with the usual norm and scalar product, denoted by ‖ · ‖ and 〈·, ·〉. We introduce the
following unitary operations on L2(Rd), the translation Txf(y) := f(y−x), x ∈ Rd, the di-
lation Daf(y) := a−d/2f(y/a), a ∈ R∗

+ := (0,∞) and the rotation URf(y) = f(R−1y), R ∈
SO(d), where SO(d) denotes the special orthogonal group in dimension d. For a function
ψ ∈ L2(Rd) (called the wavelet) the continuous wavelet transform on Rd is defined by

Vψf(x, a,R) := 〈f, TxDaURψ〉 (2.1)

= a−d/2
∫

Rd
f(y)ψ(a−1R−1(y − x))dy, x ∈ Rd, a ∈ R∗

+, R ∈ SO(d).

A wavelet ψ 6= 0 is called admissible if the wavelet transform Vψf is square integrable for
all f ∈ L2(Rd), i.e. if∫

Rd

∫ ∞

0

∫
SO(d)

|Vψf(x, a,R)|2dR da

ad+1
dx <∞ for all f ∈ L2(Rd)
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where dR denotes the normalized Haar measure on SO(d). It is well-known [1] that this
condition is satisfied iff

cψ :=
∫

Rd

|ψ̂(ξ)|2

|ξ|d
dξ <∞ (2.2)

where ψ̂ denotes the Fourier transform of ψ, i.e. ψ̂(ξ) = (2π)−d/2
∫
Rd ψ(x)e−ix·ξdx and | · |

denotes the Euclidean norm.
We are interested in functions f that are radially symmetric, i.e. f(R−1x) = f(x) for

all R ∈ SO(d). For a radial f there exists a function f0 on R+ := [0,∞) such that f(x) =
f0(|x|). A change to polar coordinates shows that

∫
Rd |f(x)|2dx = |Sd−1|

∫∞
0 |f0(r)|2rd−1dr

where |Sd−1| = 2πd/2

Γ(d/2) denotes the surface area of the sphere Sd−1. Hence L2
rad(R

d) (the
subspace of L2(Rd) of radial functions) is isometrically isomorphic to L2(R+, µd) where
dµd(r) = |Sd−1|rd−1dr.

If ψ and f are radial then a simple calculation shows

Vψf(S−1x, a,R) = Vψf(x, a, Id) for all S,R ∈ SO(d).

With radial ψ we denote the restriction of Vψ to L2
rad(R

d) by Ṽψ. Of course, Ṽψ depends
only on a ∈ R∗

+ and |x| ∈ Rd and may therefore be interpreted as a function on R+ × R∗
+.

Using Fubini’s theorem we may come up with the following formula

Ṽψf(x, a) =
∫
SO(d)

Vψf(S−1x, a, Id)dS (2.3)

= a−d/2
∫

Rd
f(y)

∫
SO(d)

ψ(a−1(y − S−1x))dSdy.

Denoting

τxg(y) :=
∫
SO(d)

g(y − S−1x)dS (2.4)

we have Ṽψf(x, a) = 〈f, τxDaψ〉. The operation τx is called a generalized translation.
It is easy to see that τx preserves radiality. Using Weil’s formula (see for instance [9,
Theorem 2.49]) for the Haar-measure on SO(d) one deduces the following formula for τxg
involving the corresponding function g0 on R+,

τxg(y) =
1

|Sd−1|

∫
Sd−1

g(y − |x|ξ)dS(ξ)

=
|Sd−2|
|Sd−1|

∫ 1

−1
g0(

√
s2 − 2rst+ r2)(1− t2)(d−3)/2dt, r = |x|, s = |y|.
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Clearly, τxg(y) = τyg(x) and τxg(y) depends only on |x| and |y|. Hence, it makes sense
to use the notation τsg0(r), r, s ∈ R∗

+ for the corresponding operation on function on R∗
+.

Since L2
rad(R

d) and L2(R+, µd) are isometrically isomorphic we can express the wavelet
transform also by an integral over R+, i.e.

Ṽψf(s, a) = |Sd−1|
∫ ∞

0
f(r)τsDaψ0(r)rd−1dr, s ∈ R+, a ∈ R∗

+. (2.5)

The generalized translation τ is actually deeply linked to hypergroup theory [2, 13], more
precisely to the so-called Bessel-Kingman hypergroup. And in fact the transform (2.5)
is essentially what Margit Rösler [16] and independently Trimeche [17] introduced as the
wavelet transform on the Bessel-Kingman hypergroup.

Starting from the inversion formula for the wavelet transform and using a similar trick
as in (2.3) we derive a second inversion formula for the wavelet transform of radial functions

f(t) = |Sd−1|
∫

R+

∫
R∗

+

Ṽψf(s, a)τsDaψ(t)
da

ad+1
rd−1dr a.e. (2.6)

where ψ is admissible and normalized such that cψ = 1. Since this inversion formula will
also follow from a general theorem derived in the next section we skip the details of its
proof at this place.

The formula (2.6) states in particular that we may represent a radial function as a
continuous superposition of the radial(!) functions τsDaψ, s ∈ R+, b ∈ R∗

+. The question
arises whether one can discretize this formula in order to have a radial function represented
as a linear combination of radial functions which are all derived from a single function ψ
in a wavelet-like way. In the special case of R3 this problem was recently solved via the
concept of multiresolution analysis [15].

3 Group representations and automorphism groups

We turn over now to the general abstract setting. Let G be a locally compact group and A
be a compact automorphism group (symmetry group) of G, such that A acts continuously
on G, i.e. the mapping G × A → G, (x,A) 7→ A(x) is continuous (where the product
topology is taken on (G,A)). We denote the left Haar measures on G and A by µ and
ν, where ν is assumed to be normalized. However, we usually will write dx and dA
in integrals. The modular function on G is denoted by ∆. (Since A is compact it is
unimodular and no modular function is needed.) It is standard to show (making use of
the compactness of A) that the Haar measure µ and the modular function ∆ are invariant
under A. Given a function F on G and A ∈ A we define FA(x) := F (A−1x).

Further assume that we have given an irreducible unitary (strongly continuous) rep-
resentation π of G on a Hilbert space H and a unitary representation σ (not necessarily
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irreducible) of A on the same Hilbert space H such that

π(A(x))σ(A) = σ(A)π(x). (3.1)

In other words, we require that the representations πA := π ◦A are all unitarily equivalent
to π and that the intertwining operators σ(A) form a representation of A. The condition
(3.1) will be essential in what follows. If for example A is a compact subgroup of G acting
by inner automorphisms and σ = π|A then (3.1) is trivial to check.

For f ∈ H we let fA = σ(A)f and HA := {f ∈ H | σ(A)f = f for all A ∈ A}, the
closed(!) subspace of invariant elements. We always assume that HA is not trivial. The
wavelet transform or voice transform is defined by

Vg(f)(x) := 〈f, π(x)g〉.

It maps H into Cb(G), the space of bounded continuous functions on G. With an element
g ∈ HA we denote by Ṽg the restriction of Vg to HA. Further we define

CbA(G) := {F ∈ Cb(G), FA = F for all A ∈ A}.

Lemma 3.1. Suppose that (3.1) holds.

(a) For f, g ∈ H we have (Vgf)A(x) = VgAfA(x).

(b) Consequently with g ∈ HA, Ṽg maps HA into CbA(G).

(c) For x ∈ G define the operator

π̃(x) :=
∫
A
π(Ax)dA

where the integral is understood weakly, i.e. 〈f, π̃(x)g〉 =
∫
A〈f, π(Ax)g〉dA for all

f, g ∈ H. Then (with g ∈ HA) it holds

Ṽgf(x) = 〈f, π̃(x)g〉HA .

(d) The operators π̃(x), x ∈ G do not depend on the choice of x from the orbit A(x′), x′ ∈
G, i.e. π̃(Ax) = π̃(x) for all A ∈ A, and π̃(x) maps HA into HA for all x ∈ G.

Proof: (a) Using (3.1) we obtain

Vgf(A−1x) = 〈f, π(A−1x)g〉 = 〈f, σ(A−1)π(x)σ(A)g〉
= 〈σ(A)f, π(x)σ(A)g〉 = VgAfA(x).

(b) If gA = g and fA = f then as a consequence of (a) clearly Vgf(A−1x) = Vgf(x).
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(c) Using (b) we have for f, g ∈ HA

Vgf(x) =
∫
A
Vgf(Ax)dA =

∫
A
〈f, π(Ax)g〉dA

which is nothing else than (c).
(d) Using the translation invariance of the Haar measure of A we immediately get

π̃(Bx) = π̃(x) for all B ∈ A. Furthermore for f ∈ HA, using (3.1) we get

σ(B)π̃(x)f = σ(B)
∫
A
π(Ax)fdA =

∫
A
σ(B)σ(A)π(x)σ(A)−1fdA

=
∫
A
σ(BA)π(x)σ(BA)−1fdA =

∫
A
π(BAx)fdA = π̃(x)f

where all expressions are understood in a weak sense. Notice that we have made use of
the invariance of f in the third equality. Hence, π̃(x)f ∈ HA.

For the following we need to recall some facts about convolution of measures. We
denote by M(G) the space of all bounded Radon measures on G, i.e the dual space of the
space C0(G) of continuous functions on G vanishing at infinity. A function G ∈ L1(G)
can be identified with an element µG of M(G) by setting µG(F ) =

∫
G F (x)G(x)dµ(x) and

L1(G) can be viewed as a closed subspace of M(G). With the convolution

τ ∗ ρ(F ) :=
∫
G

∫
G
F (xy)dτ(x)dρ(y), τ, ρ ∈M(G), F ∈ C0(G)

and the involution τ∗(F ) :=
∫
G F (x−1)dτ(x) M(G) becomes a Banach-∗-algebra which

contains L1(G) as a closed subalgebra (actually as a two-sided ideal). The formula for the
convolution of two functions F,G ∈ L1(G) reads F ∗G(x) =

∫
G F (y)G(y−1x)dµ(y).

For a measure τ we denote the action of A ∈ A on τ by τA(F ) = τ(FA−1), F ∈ C0(G).
The closed subspace of M(G) of invariant bounded measures will be denoted by MA(G),
i.e. MA(G) := {τ ∈M(G), τA = τ for all A ∈ A}. We remark that the Haar measure µ of
G is contained in MA(G). Another invariant measure of interest is given for x ∈ G by

εAx(F ) =
∫
A
F (Ax)dA.

We call εAx invariant Dirac measure because for an invariant function F we obviously have
εAx(F ) = F (x). An invariant measure (function) can also be identified with a measure
(function) on the orbits Ax := {A(x), A ∈ A}. The space K := A(G) of all orbits becomes
a topological space in a natural way by defining a set U ⊂ K open iff U viewed as a subset
of G that satisfies U = A(U) is open in the topology of G. It makes sense to use the symbol
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M(K) instead of MA(G). The space K has a canonical measure m inherited from the Haar-
measure of G, i.e. for an invariant function in L1(G),

∫
K F (Ax)dm(Ax) =

∫
G F (x)dµ(x)

where we use the same symbol for a function on K and the corresponding invariant one
on G. The space L1(K) := L1(K,m) is isomorphic to L1

A(G), the subspace of L1(G) of
invariant functions.

Let us now collect some properties of the convolution of invariant functions.

Lemma 3.2. (a) MA(G) = M(K) is a closed subalgebra of M(G), i.e. the convolution
of two invariant measures is again invariant. It follows that L1

A(G) = L1(K) is a
closed subalgebra of L1(G).

(b) For x, y ∈ G, F ∈ Cb(G) let

TyF (x) :=
∫
A
F (A(y)x)dA, LyF (x) :=

∫
A
F (A(y−1)x)dA = Ty−1F (x).

If F ∈ CbA(G) then TyF,LyF ∈ CbA(G) for all y ∈ G and both expressions depend
only on the orbit Ay. Moreover, it holds

LyF (x) = εAy ∗ F (x) = εAy−1 ∗ εAx(F ). (3.2)

(c) If F,G ∈ L1(K) then

F ∗G(x) =
∫
K
F (y)LyG(x)dm(y). (3.3)

(d) If τ, ρ ∈M(K) and F ∈ CA
0 (G) = {F ∈ C0(G), FA = F for all A ∈ A} then

τ ∗ ρ(F ) =
∫
K

∫
K
TxF (y)dτ(y)dρ(x).

(e) Define an involution on K by (Ax)̃ := A(x−1). Then (K, ∗, )̃ is a hypergroup.

Proof: (a) For τ, ρ ∈MA(G), F ∈ C0(G) and A ∈ A we obtain

τ ∗ ρ(FA−1) =
∫
G

∫
G
F (A(xy))dτ(x)dρ(y) =

∫
G

∫
G
F (A(x)A(y))dτ(x)dρ(y)

=
∫
G

∫
G
F (xy)dτ(x)dρ(y) = τ ∗ ρ(F ). (3.4)

The assertions in (b) are verified with easy computations. Note that the expressions in
(3.2) make sense also for F ∈ Cb(G) since the measures εAx and εAy−1 ∗ εAx have compact
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support. For (c) we use (a) and Fubini’s theorem in order to obtain

(F ∗G)(x) =
∫
A

(F ∗G)(Ax)dA =
∫
G
F (y)

∫
A
G(y−1Ax))dAdx

=
∫
K
F (y)LyG(x)dm(y)

and (d) is deduced similarly. For (e) we refer to [13, Theorem 8.3A.]. (Jewett uses the
term convo instead of hypergroup.)

Remark 3.1. For reasons of length we will not go into details on hypergroups which are
generalizations of group algebras. The interested reader is referred to [2, 13]. Although
this paper can also be read without knowing much about hypergroups this theory is very
present in the background and a lot of motivation for this paper took essentially its roots
in hypergroup theory.

Usually the operators Ty,Ly are called generalized translation operators, Ly being the
generalized left translation.

It is well-known [9] that the representation π of G extends to a non-degenerate ∗-
representation of M(G) by letting

π(µ) :=
∫
G
π(x)dµ(x)

where the integral is understood in a weak sense. In other words π(τ ∗ ρ) = π(τ)π(ρ) and
π(τ∗) = π(τ)∗. Further observe that π(εAx) = π̃(x).

Now we are ready to state a covariance principle for Ṽg.

Theorem 3.3. Let f, g ∈ HA, y ∈ G. Then

Ṽg(π̃(y)f) = LyṼgf. (3.5)

Proof: Obviously, it holds (εAy)∗ = εAy−1 . We therefore obtain

Ṽg(π̃(y)f)(x) = 〈π(εAy)f, π(εAx)g〉 = 〈f, π(εAy−1)π(εAx)g〉 = 〈f, π(εAy−1 ∗ εAx)g〉
= εAy−1 ∗ εAx(Ṽgf) = LyṼgf(x).

For completeness we state a Lemma which might be the starting point for further
generalizations of this paper.

Lemma 3.4. The mapping π̃ : K → B(HA), where B(HA) denotes the space of all bounded
operators on HA, is an irreducible representation of the hypergroup (K, ∗, )̃.
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Proof: It is proven in Lemma 3.1 that π̃(x) is a mapping from HA into HA. The
properties π(εAx ∗ εAy) = π(εAx)π(εAy) and π(ε(Ax)˜) = π(ε∗Ax) = π(εAx)∗ follow from the
fact that π generates a ∗-representation of M(G). For the proof of the irreducibility of π̃
the irreducibility of π is used. We skip the details since this fact will not be used later on.

For the following we make the additional assumption that π is square integrable, which
means that there exists a vector g 6= 0 (called admissible) such that

∫
G |Vgf(x)|2dµ(x) <∞

for all f ∈ H. It is well-known [5] that in this case there exists a unique positive, self-
adjoint, densely defined operator K on H whose domain D(K) consists of the admissible
vectors and such that the orthogonality relation holds∫

G
Vg1f1(x)Vg2f2(x)dx = 〈Kg2,Kg1〉〈f1, f2〉 (3.6)

for all fi ∈ H, gi ∈ D(K), i = 1, 2. For unimodular groups K is a scalar multiple of
the identity. It is an easy exercise to check that as a consequence of (3.6) we have the
reproducing formula

Vgf = Vgf ∗ Vgg (3.7)

if g is normalized such that ‖Kg‖ = 1. The mapping Vg : f 7→ Vgf from H into L2(G) is
isometric. We denote DA(K) := HA ∩ D(K).

Lemma 3.5. (a) The operator K commutes with the action of A, i.e. σ(A)K = Kσ(A)
for all A ∈ A. Hence, K maps DA(K) into HA.

(b) The space DA(K) is dense in HA. Hence, if HA is non-trivial then also DA(K) is
non-trivial.

Proof: (a) We know from [5] that K = S−1/2 for some self-adjoint, positive, densely
defined operator S that satisfies π(x)Sπ(x)−1 = ∆(x)−1S. Replacing x by A(x) with
A ∈ A and using (3.1) yields

σ(A)π(x)σ(A)−1Sσ(A)π(x)−1σ(A)−1 = ∆(A(x))−1S.

Using the invariance of the modular function ∆ under A we obtain

π(x)
(
σ(A)−1Sσ(A)

)
π(x)−1 = ∆(x)−1σ(A)−1Sσ(A).

From the positiveness of S if follows that also σ(A)−1Sσ(A) is a positive operator. By
Lemma 1 in [5] there exists a number λ(A) ≥ 0 such that σ(A)−1Sσ(A) = λ(A)S. This
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implies Kσ(A) = λ−1/2(A)σ(A)K for all A ∈ A. Using the theorem of Duflo and Moore
and the invariance of the Haar-measure of G we obtain for all f ∈ H and g ∈ D(K) that

‖Kg‖2 ‖f‖2 =
∫
G
|〈f, π(x)g〉|2dx =

∫
G
|〈σ(A)f, π(A(x))σ(A)g〉|2dx

=
∫
G
|〈σ(A)f, π(x)σ(A)g〉|2dx = ‖Kσ(A)g‖2 ‖σ(A)f‖2 = ‖λ−1/2(A)σ(A)Kg‖2 ‖f‖2

= |λ(A)|−1‖Kg‖2 ‖f‖2.

Together with the positiveness of λ(A) this implies λ(A) = 1 which proves (a).
(b) The weakly defined operator PA :=

∫
A σ(A)dA is the orthogonal projection from

H onto HA. Since K commutes with σ(A) for all A ∈ A and since (by self-adjointness) K
coincides with its closure the domain D(K) is invariant under σ(A) for all A ∈ A (see also
[14, Theorem 1.5.1]). Hence, it holds PA(D(K)) ⊂ D(K). This implies in particular that
DA(K) = PA(D(K)). Since D(K) is dense in H its image DA(K) under the projection
PA is dense in HA = PA(H).

Let us now collect some further properties of the restriction Ṽg of Vg to HA in a theorem
as follows.

Theorem 3.6. Suppose g ∈ DA(K) with ‖Kg‖ = 1.

(a) For γ ∈ DA(K) and f, h ∈ HA then

〈Ṽgf, Ṽγh〉L2(K,m) = 〈Kγ,Kg〉HA〈f, h〉HA . (3.8)

In particular, Ṽg is an isometry from HA onto L2(K,m) = L2
A(G).

(b) For f ∈ HA we have the reproducing formula

Ṽgf = Ṽgf ∗ Ṽgg. (3.9)

(c) The adjoint operator of Ṽg : HA → L2(K,m) is given by

Ṽ ∗
g : L2(K,m) → HA, Ṽ ∗

g F =
∫
K
F (x)π̃(x)g dm(x) (3.10)

where the integral is understood in a weak sense.

(d) Suppose γ ∈ DA(K) with 〈Kγ,Kg〉HA = 1 and f ∈ HA. Then the following inver-
sion formula holds weakly:

f = Ṽ ∗
γ Ṽgf =

∫
K
Ṽgf(x)π̃(x)γ dm(x). (3.11)
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Proof: (a) is an immediate consequence of the orthogonality relation (3.6) and Lemma
3.5 and the reproducing formula in (b) follows from (3.7). For (c) let QF denote the right
hand side of (3.10). Then for h ∈ HA

〈QF, h〉HA =
∫
K
F (x)〈π̃(x)g, h〉dm(x) = 〈F, Ṽgh〉L2(K,m).

Hence Q = Ṽ ∗
g . For (e) let h ∈ HA. Using (3.8) we obtain

〈Ṽ ∗
γ Ṽgf, h〉HA =

∫
K
Ṽgf(x)〈π̃(x)γ, h〉dm(x) =

∫
K
Ṽgf(x)Ṽγh(x)dm(x)

= 〈Kγ,Kg〉HA〈f, h〉HA = 〈f, h〉HA .

Since h is arbitrary the theorem is proved.

Looking at the reproducing formula (3.9) one should think of formula (3.3) for the
convolution. We further remark that the inversion formula (3.11) states on the one hand
that we can reconstruct an element from HA by values of Ṽgf . Of course, to this end
the values of Ṽgf do not have to be computed on the whole group G but only for a
single element out of each orbit Ax. On the other hand formula (3.11) states that we
can represent any f ∈ HA by a continuous superposition of elements π̃(x)g which are all
contained in HA.

4 Examples

4.1 The similitude group and radial functions

Let us return to our motivating example and discuss it in more detail in the context
of the previous section. We consider the similitude group of the Euclidean plane G =
Rd o (R∗

+ × SO(d)), where R∗
+ denotes the multiplicative group of positive real numbers.

We assume that d ≥ 2. For the case d = 1 (which is not very interesting in our context)
some modifications have to be done at some places. The similitude group has left Haar-
measure ∫

G
f(x)dµ(x) =

∫
SO(d)

∫
Rd

∫
R∗

+

f(x, b, A)
db

bd+1
dxdA

and modular function ∆(x, b, A) = b−d. A unitary irreducible representation of G on
L2(Rd) is given by

π(x, b, R)f(t) = b−d/2f
(
b−1R−1(t− x)

)
= TxDbURf(t),
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where the notation of section 2 is used. The corresponding voice transform is the continu-
ous wavelet transform (2.1). We already know that π is square-integrable and the domain
of the operator K is exactly the space of those functions ψ ∈ L2(Rd) that satisfy (2.2).

A compact subgroup of G is given by A := {(0, 1, A) | A ∈ SO(d)} ∼= SO(d), which
acts on G as inner automorphism group, i.e. if B ∈ A, ζ = (x, b, A) ∈ G then

B(ζ) = BζB−1 = (0, 1, B)(x, b, A)(0, 1, B−1) = (Bx, b,BAB−1).

With σ := π|A it obviously holds π(B(ζ)) = π(BζB−1) = σ(B)π(ζ)σ(B)−1 which is
condition (3.1). Clearly, σ(B)f(t) = f(B−1t) and the space HA obviously is the space
of all radial square-integrable functions on Rd denoted by L2

rad(R
d).

The space K = A(G) is the collection of all orbits Aζ = {(Bx, b,BAB−1)|B ∈ SO(d)}.
The operator π̃(ζ), ζ = (x, b, A) on HA = L2

rad(R
d) turns out to be

π̃(ζ)f(t) =
∫
SO(d)

π(Bx, b,BAB−1)f(t)dB = b−d/2
∫
SO(d)

f(b−1BA−1B−1(t−Bx))dB

= b−d/2
∫
SO(d)

f(b−1(t−Bx))dB = τxDbf(t),

where τx denotes the generalized translation (2.4) on Rd. Hence, π̃(A(x, b, A)) depends
only on |x| and on b and therefore we may always choose A = I, the identity matrix.
In fact, the set {εA(x,b,I) | x ∈ Rd, b ∈ R∗

+} generates a subhypergroup K′ of K, i.e. the
generated measure algebra M(K′) is a closed subalgebra of M(K). In other words if
F ∈ CbA(G) then

εA(x,b,I) ∗ εA(y,c,I)(F ) =
∫
SO(d)

F (Ax+ y, bc, I)dA =
∫
SO(d)

εA(Ax+y,bc,I)(F )dA.

The representation π̃ of M(K) restricted to M(K′) generates the same algebra of operators
on L2

rad(R
d). Clearly, an orbit A(x, b, I) = {(Bx, b, I) | B ∈ SO(d)} depends only on |x|

and b ∈ R∗
+. Hence, it holds

K′ ∼= R+ × R∗
+

and we may write π̃(r, b) = π̃(A(x, b, I)) if r = |x|. The hypergroup K′ can also be seen
as a semidirect product of a Bessel-Kingman-Hypergroup and the group R∗

+ as explained
in [16].

For g ∈ L2
rad(R

d) the restriction Ṽψ to L2
rad(R

d) can be computed by formula (2.5).
The projection m′ of the Haar measure of G onto K′ is given by∫

K′
F (y)dm′(y) =

∫
R+

∫
R∗

+

F (r, b)
db

bd+1
dµd(r),
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where dµd(r) = |Sd−1|rd−1dr.
Denoting r = |x|, s = |y| and F0 the function on R+ × R∗

+ corresponding to F such
that F (x, b) = F0(|x|, b), the generalized translation on K′ becomes

T(y,c)F (x, b) =
∫
SO(d)

F (Ay + cx, cb)dA =
1

|Sd−1|

∫
Sd−1

F (sξ + cx, cb)dS(ξ)

=
|Sd−2|
|Sd−1|

∫ π

0
F0(

√
s2 − 2rsc cosφ+ c2r2, cb) sind−2(φ)dφ = T(s,c)F0(r, b).

From A(x, b, I)−1 = A(−b−1x, b−1, I) follows that the left translation is given by

L(r,b) = T(b−1r,b−1), r ∈ R+, b ∈ R∗
+.

Theorems (3.3) and (3.6) immediately yield the following properties of Ṽψ. Some of them
were already noted in section 2.

Theorem 4.1. Suppose ψ ∈ L2
rad(R

d) ∩ D(K) with ‖Kψ‖2
2 = cψ = 1.

(a) For γ ∈ L2
rad(R

d) ∩ D(K) and f, h ∈ L2
rad(R

d) then

〈Ṽψf, Ṽγh〉L2(K′,m′) = 〈Kγ,Kψ〉
L2(Rd

)
〈f, h〉

L2(Rd
)
.

(b) The adjoint operator of Ṽψ is given by

Ṽ ∗
ψ :L2(K′,m′) → L2

rad(R
d)

Ṽ ∗
ψF (t) =

∫
K′
F (x)π̃(x)ψ(t)dm′(x) =

∫
R+

∫
R∗

+

F (r, b)τrDbψ(t)
db

bd+1
dµd(r).

(c) (Inversion) Suppose γ ∈ L2
rad(R

d) with 〈Kγ,Kψ〉 = 1 and f ∈ L2
rad(R

d). Then

f(t) = Ṽ ∗
γ Ṽψf(t) =

∫
R+

∫
R∗

+

Ṽψf(r, b)τrDbγ(t)
db

bd+1
dµd(r) a.e. . (4.1)

(d) (Covariance property) If f ∈ L2
rad(R

d) and r ∈ R+, b ∈ R∗
+ then

Ṽψ(π̃(r, b)f) = L(r,b)(Ṽψf).

Observe that setting γ = ψ in (4.1) yields (2.6).

14



4.2 The Heisenberg group and radial functions

Our second example is connected to the STFT. The (reduced) Heisenberg group Hd is the
locally compact topological space Rd × Rd × T with group law

(x, ω, τ)(x′, ω′, τ ′) = (x+ x′, ω + ω′, ττ ′eπi(x
′·ω−x·ω′)).

It is unimodular and has Haar measure∫
Hd

F (h)dh =
∫

Rd

∫
Rd

∫ 1

0
F (x, ω, e2πit)dtdωdx.

For x, ω ∈ Rd define the translation Txf(t) := f(t − x) and the modulation Mωf(t) :=
e2πiω·tf(t) for a function f on Rd. The Schrödinger representation ρ is an irreducible
unitary representation of the Heisenberg group acting on L2(Rd) by

ρ(x, ω, τ) := τeπix·ωTxMω = τe−πix·ωMωTx.

The corresponding voice transform is essentially the short time Fourier transform, i.e.

Vgf(x, ω, τ) = 〈f, ρ(x, ω, τ)g〉
L2(Rd

)
= τ

∫
Rd
f(t)e−πix·ωMωTxg(t)dt

= τeπix·ω
∫

Rd
f(t)g(t− x)e−2πit·ωdt = τeπix·ω STFTg f(x, ω).

It is not difficult to see that the Schrödinger representation is square-integrable [11, The-
orem 3.2.1] and the operator K is the identity, thus D(K) = H = L2(Rd).

The automorphisms of Rd×Rd that extend to automorphisms of the Heisenberg group
Hd are the elements of the symplectic group Sp(d), which is defined as the subgroup of
GL(2d,R) leaving invariant the symplectic form

[(x, ω), (x′, ω′)] := x′ · ω − x · ω′.

For more details on the Heisenberg group and its relation to the symplectic group the
reader is referred to Gröchenig’s excellent book [11, chapter 9].

A compact subgroup of Sp(d) is given by

A :=
{(

A 0
0 A

)
| A ∈ SO(d)

}
∼= SO(d).

An element A ∈ SO(d) ∼= A acts on Hd by A(x, ω, τ) = (Ax,Aω, τ). In the sequel we
assume d ≥ 2. In the case d = 1 (which is not a very illustrative example) one has to
replace SO(1) = 1 by O(1) = {±1} ∼= Z2 and put some adjustments where necessary.
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As in the previous example we choose the natural representation σ of SO(d) on L2(Rd)
given by σ(A)f(t) = f(A−1t) for A ∈ SO(d), t ∈ Rd. Using the orthogonality of
A ∈ SO(d) we obtain

ρ(Ax,Aω, τ)σ(A)f(t) = τe−πi(Ax·Aω)e2πiAω·tf(A−1(t−Ax))

= τe−πi(x·ω)e2πiω·A
−1tf(A−1t− x) = σ(A)ρ(x, ω, τ)f(t).

Condition (3.1) is hence satisfied. As in the previous example we have HA = L2
rad(R

d)).
The action of ρ̃(x, ω, τ) = ρ(εA(x,ω,τ)) on L2(Rd) is given by

ρ̃(x, ω, τ)f(t) =
∫
SO(d)

ρ(Ax,Aω, τ)f(t)dA = τeπix·ω
∫
SO(d)

e2πiAω·tf(t−Ax)dA.

We already know from the general theory in section 3 that ρ̃(x, ω, τ) maps L2
rad(R

d) onto
L2
rad(R

d).

Lemma 4.2. (a) Let (x, ω, τ), (x′, ω′, τ ′) ∈ Hd. Both elements are contained in the same
orbit under A if and only if τ = τ ′, |x| = |x′|, |ω| = |ω′| and 〈x, ω〉 = 〈x′, ω′〉 where
| · | and 〈·, ·〉 denote the Euclidean norm and scalar product, respectively. Hence with

S := R+ × R+ × [−1, 1]× T

the orbit space A(Hd) is parametrized by

K := S \ {(r, s, t, τ) ∈ S, t 6= 1 and (r = 0 or s = 0)} (4.2)

(b) Consequently, ρ̃(x, ω, τ) depends only on |x|, |ω|, 〈x, ω〉 and τ . If f ∈ L2
rad(R

d) with
corresponding function f0 on R+ then the following formula applies

ρ̃(x, ω, τ)f(t) = τeπix·ω
|Sd−2|
|Sd−1|

×

×
∫ π

0
f0(

√
θ2 − 2rθ cosφ+ r2)e2πiθs cosα cosφBd−1(θs sinα sinφ) sind−2 φdφ

=: ρ̃(r, s, cosα, τ)f0(θ),

where r = |x|, s = |ω|, 〈x, ω〉 = rs cosα, θ = |t| and Bd is the spherical Bessel
function, i.e.

Bd(t) =
1

|Sd−1|

∫
Sd−1

e2πit〈η,ξ〉dS(ξ), η ∈ Sd−1 (4.3)

(independent of the choice of η ∈ Sd−1).
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Proof: (a) Both elements are contained in the same orbit under A if and only if there
exists a matrix A ∈ SO(d) such that (Ax,Aω, τ) = (x′, ω′, τ ′). Assume first that both
elements are in the same orbit. Then it holds necessarily τ = τ ′, |x| = |x′| and |ω| = |ω′|
implying that there exist elements B,C ∈ SO(d) (not unique) such that x′ = Bx and
ω′ = Cω. Hence, we end up with the equations A−1Bx = x and A−1Cω = ω meaning
that D := A−1B ∈ I(x) and E := A−1C ∈ I(ω) where I(x) := {R ∈ SO(d), Rx = x}
denotes the isotropy subgroup of x ∈ Rd (which is isomorphic to SO(d − 1)). Using the
orthogonality of A we finally obtain

〈x′, ω′〉 = 〈Bx,Cω〉 = 〈ADx,AEω〉 = 〈Dx,Eω〉 = 〈x, ω〉.

Now assume that τ = τ ′, |x| = |x′| 6= 0 and |ω| = |ω′| 6= 0 and 〈x′, ω′〉 = 〈x, ω〉. Without
loss of generality we may assume that x = x′ ∈ Sd−1 and ω, ω′ ∈ Sd−1. Since the sphere
Sd−1 is a two-point homogeneous space whose metric is given by cos d(x, y) = 〈x, y〉 there
exists a matrix A ∈ I(x) such that Aω = ω′ implying (Ax,Aω, τ) = (x′, ω′, τ ′). The cases
x = 0 or ω = 0 are trivial.

In order to have an explicit correspondence between A(Hd) and the set in (4.2) fix
elememts η, ξ ∈ Sd−1 with 〈η, ξ〉 = 0. For an element (r, s, t, τ) ∈ K put (x, ω, τ) :=
(rη, s(cos(α)η + sin(α)ξ), τ) ∈ Hd where cosα = t.

The first assertion of (b) is an immediate consequence of (a) which can also be easily
verified directly. For the proof of the second assertion of (b) we use the following rule
for integration on the sphere. If ξ = cosφη + sinφξ′ ∈ Sd−1 where η ∈ Sd−1 is fixed and
ξ′ ∈ Sd−1 with 〈η, ξ′〉 = 0 (obviously the set of those ξ′ is isomorphic to Sd−2) then∫

Sd−1

g(ξ)dS(ξ) =
∫ π

0

∫
Sd−2

g(cosφ η + sinφ ξ′)dSd−2(ξ′) sind−2 φdφ.

Let ω′ such that ω = s(cosαη + sinαω′) with 〈η, ω′〉 = 0. Using Weil’s formula [9,
Theorem 2.49] for the Haar measure on SO(d) we obtain∫

SO(d)
e2πiAω·tf(t−Ax)dA =

∫
SO(d)

e2πiω·A
−1tf(A−1t− x)dA

=
1

|Sd−1|

∫
Sd−1

e2πiθω·ξf(θξ − x)dS(ξ)

=
1

|Sd−1|

∫ π

0

∫
Sd−2

e2πiθs(cosαη+sinαω′)·(cosφ η+sinφ ξ′) ×

× f(θ(cosφ η + sinφ ξ′)− rη)dSd−2(ξ′) sind−2 φdφ

=
1

|Sd−1|

∫ π

0
f0(

√
θ2 − 2rθ cosφ+ r2)e2πiθs cosα cosφ ×

×
∫
Sd−2

e2πiθs sinα sinφω′·ξ′dSd−2(ξ′) sind−2 φdφ
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=
|Sd−2|
|Sd−1|

∫ π

0
f0(

√
θ2 − 2rθ cosφ+ r2)e2πiθs cosα cosφBd−1(θs sinα sinφ) sind−2 φdφ

=: Ω(r, s, cosα)f0(θ). (4.4)

This finishes the proof.

We obtain an easy corollary which nevertheless seems not to be present in the literature.

Corollary 4.3. Let f, g ∈ L2
rad(R

d). Then the short time Fourier transform STFTg f(x, ω)
depends only on |x|, |ω| and 〈x, ω〉.

Note that the spherical Bessel function (4.3) can be expressed by means of the Bessel
function Jα of the first kind

Bd(t) = Γ(α+ 1)(πt)−αJα(2πt), α =
d− 2

2
.

The operator Ω(r, s, cosα) may be viewed as a generalized combined translation and mod-
ulation For special values it simplifies a little,

Ω(0, s, 1)f0(θ) = f0(θ)Bd(sθ),

Ω(r, 0, 1)f0(θ) =
|Sd−2|
|Sd−1|

∫ π

0
f0(

√
θ2 − 2rθ cosφ+ r2) sind−2 φdφ = τrf0(θ).

With g ∈ L2
rad(R

d) let us consider now the restriction Ṽg of Vg to L2
rad(R

d). Interpreting
it as a function on K it holds

Vg(x, ω, τ) = Ṽgf(r, s, cosα, τ) =
∫

Rd
f(t)ρ̃(r, s, cosα, τ)g(t)dt

= τe−πirs cosα

∫ ∞

0
f0(θ)Ω(r, s, cosα)g0(θ)dµd(θ), (4.5)

where dµd(θ) = |Sd−1|θd−1dθ and (x, ω, τ) = (rη, s(cos(α)η+sin(α)ξ), τ) with fixed τ, η ∈
Sd−1 such that 〈η, ξ〉 = 0. The integral is the STFT of a radial function,

STFTg f(x, ω) =
∫ ∞

0
f0(θ)Ω(r, s, cosα)g0(θ)dµd(θ) =: ˜STFTg0f0(r, s, cosα) (4.6)

where r = |x|, s = |ω|, rs cosα = 〈x, ω〉.

Remark 4.1. As already mentioned in the introduction there were recently introduced
other transforms on R+ (or even on more general hypergroups) which were claimed to be
analogues of the STFT on Rd [3, 4]. These approaches try to mimic (in two different
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ways) the STFT directly by using the generalized translation (2.4) of the Bessel-Kingman
hypergroup (a hypergroup on R+) and the Hankel transform as a substitute for the Fourier
transform. It appears however that these transforms lack some important properties which
suggests that the transform (4.6) is more natural despite the fact that it depends on three
parameters rather than the perhaps expected two parameters.

By definition the generalized translation T on the hypergroup A(Hd) is given by

T(x,ω,τ)F (x′, ω′, τ ′) =
∫
SO(d)

F (Ax+ x′, Aω + ω′, ττ ′eπi(x
′·Aω−Ax·ω′))dA,

where dA denotes the Haar measure on SO(d) and (x, ω, τ), (x′, ω′, τ ′) ∈ Hd. We associate
to a function F on Hd invariant under A a function F0 on K by

F0(r, s, cosα, τ) = F (rη, s(cos(α)η + sin(α)ξ), τ), (r, s, cos(α), τ) ∈ K,

where η, ξ are as above. As before we use the same symbol for the generalized translation
for invariant functions on Hd and for functions on K. Let us compute T explicitely for the
case d = 2.

Lemma 4.4. Let d = 2 and F ∈ CbA(H2) with associated function F0 on K. Further let
(r, s, cosα, τ), (r′, s′, cosα′, τ ′) ∈ K. Then it holds

T(r,s,cosα,τ)F0(r′, s′, cosα′, τ ′)

=
∫ 2π

0
F0(

√
r2 + 2rr′ cos θ + (r′)2,

√
s2 + 2ss′ cos(θ + α′ − α) + (s′)2,

rs cosα+ r′s′ cosα′ + r′s cos(α− θ) + rs′ cos(α′ + θ)√
r2 + 2rr′ cos θ + (r′)2

√
s2 + 2ss′ cos(θ + α′ − α) + (s′)2

,

ττ ′eπi(r
′s sin(θ+α)−rs′ sin(α′+θ)))dθ. (4.7)

Proof: We choose η = e1 := (1, 0)T and ξ = e2 := (0, 1)T . The group SO(2) is
parametrized by [0, 2π) by means of the matrices

Aθ :=
(

cos θ sin θ
− sin θ cos θ

)
and has Haar measure

∫
SO(2)G(A)dA =

∫ 2π
0 G(Aθ)dθ. After some calculations involving
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trigonometric identities we obtain∫
SO(2)

F (Ax+ x′, Aω + ω′, ττ ′eπi(x
′·Aω−Ax·ω′))dA

=
∫ 2π

0
F

((
r cos θ + r′

−r sin θ

)
,

(
s cos(α− θ) + s′ cosα′

s sin(α− θ) + s′ sinα′

)
, (4.8)

ττ ′eπi(r
′s sin(α+θ)−rs′ sin(α′+θ))

)
dθ,

where as before (x, ω, τ) = (re1, s(cosαe1+sinαe2), τ) and (x′, ω′, τ ′) = (r′e1, s′(cosα′e1+
sinα′e2), τ ′). Noting that F (x, ω, τ) = F0(|x|, |ω|, 〈x,ω〉|x| |ω| , τ) and computing the Euclidean
norms of the first and second entry of F in (4.8) and their scalar product gives (4.7).

Since (x, ω, τ)−1 = (−x,−ω, τ) the involution of the hypergroup K is given by
(r, s, cosα, τ )̃ = (r, s, cosα, τ) and hence

L(r,s,cosα,τ) = T(r,s,cosα,τ).

A straightforward calculation shows that the projection m of the Haar measure of Hd onto
K is given by∫

K
F (x)dm(x)

=
|Sd−2|
|Sd−1|

∫ 2π

0

∫ ∞

0

∫ ∞

0

∫ π

0
F (r, s, cosα, e2πit) sind−2(α)dαdµd(r)dµd(s)dt.

Now we are ready to apply Theorems 3.3 and 3.6 to our situation.

Theorem 4.5. Let g ∈ L2
rad(R

d) such that ‖g‖
L2(Rd

)
= 1.

(a) For γ, f, h ∈ L2
rad(R

d) then

〈Ṽgf, Ṽγh〉L2(K) = 〈γ, g〉
L2(Rd

)
〈f, g〉

L2(Rd
)

In particular, Ṽg is an isometry from L2
rad(R

d) onto L2(K).

(b) The adjoint operator of Ṽg is given by

Ṽ ∗
g : L2(K) → L2

rad(R
d),

Ṽ ∗
g F (t) =

∫
K
F (r, s, cosα, τ)ρ̃(r, s, cosα, τ)g(t)dm(r, s, α, τ).
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(c) Suppose γ ∈ L2
rad(R

d) with 〈γ, g〉 = 1. Then the following inversion formula holds

f(t) = Ṽ ∗
γ Ṽgf(t)

=
∫
K
Ṽgf(r, s, cosα, τ)ρ̃(r, s, cosα, τ)γ(t)dm(r, s, α, τ) a.e..

(d) (Covariance property) Let f ∈ L2
rad(R

d) and (r, s, cosα, τ) ∈ K. Then it holds

Ṽg(ρ̃(r, s, cosα, τ)f) = L(r,s,cosα,τ)Ṽgf.

Of course, these results immediately imply corresponding results for the STFT. We
only state one property explicitely.

Corollary 4.6. Suppose g, γ ∈ L2
rad(R

d) with 〈γ, g〉 = 1. Then ˜STFT g is inverted on
L2
rad(R

d) by the formula

f(t) =
|Sd−2|
|Sd−1|

∫ ∞

0

∫ ∞

0

∫ π

0

˜STFTgf(r, s, cosα)Ω(r, s, cosα)γ(t) sind−2(α)dαdµd(s)dµd(r)

for almost all t ∈ Rd.

Proof: It holds

Ṽgf(r, s, cosα, τ)ρ̃(r, s, cosα, τ)γ = ˜STFTgf(r, s, cosα)Ω(r, s, cosα)γ,

the latter being independent of τ . Thus the assertion follows from the previous Theorem.

With this example we have in some sense settled the foundations for radial time-
frequency analysis. There are many open questions left such as investigating radial Gabor
frames. Having the formula (4.4) for the generalized combined translation and modulation
Ω in mind it will probably be very involved to get results in this direction. However, using
the abstract approach and a generalization of coorbit space theory [7, 8, 10] the author was
already successful in proving some results concerning invariant frames which will appear
in a future paper. Nevertheless, it is rather unlikely that all problems concerning radial
Gabor frames can be attacked by abstract methods.

4.3 Reflection symmetries

Let us consider both previous examples where the symmetry group A = SO(d) is replaced
by a finite reflection group W , which is a finite subgroup of O(d). Sometimes W is called
Coxeter group or (in the context of Lie algebras) Weyl group [12], [6, chapter 4]. Of course,
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W acts in the same way as SO(d) on the similitude group and the Heisenberg group. The
representation σ is again the natural action on L2(Rd). The Haar measure of W is given
by a sum,

∫
W f(w)dµ(w) = |W |−1

∑
w∈W f(w).

A Coxeter group can be described using a root system. For 0 6= u ∈ Rd denote by Ru
the reflection at the hyperplane perpendicular to u, i.e.

Rux = x− 2
〈x, u〉
|u|2

u, x ∈ Rd.

A root system is a finite set S ⊂ Rd \ {0} such that Ruv ∈ S for all u, v ∈ S. The
Coxeter group W = W (S) associated to the root system S is the (finite!) subgroup of
O(d) generated by the reflections {Ru, u ∈ S}. For a classification of all Coxeter groups
see [12]. The complement of the union of the hyperplanes

⋃
u∈S u

⊥ splits into several open
connected components, called Weyl chambers. For an arbitrary closed Weyl chamber C it
holds

⋃
w∈W w(C) = Rd. Hence, a function on Rd invariant under W (S) is determined by

its values on a closed Weyl chamber C and can hence be regarded as a function on C.
Applying the results of section 3 to this setting yields wavelet analysis and time-

frequency analysis on Weyl chambers. For reasons of length we skip the details at this
place.
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[8] H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group represen-
tations and their atomc decompositions II, Monatsh. f. Mathematik, 108, 129-148,
1989.

[9] G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.
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