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Abstract. Motivated by surprisingly good generalization properties of learned deep neural networks in over-
parameterized scenarios and by the related double descent phenomenon, this paper analyzes the
relation between smoothness and low generalization error in an overparameterized linear learning
problem. We study a random Fourier series model, where the task is to estimate the unknown Fourier
coefficients from equidistant samples. We derive exact expressions for the generalization error of both
plain and weighted least squares estimators. We show precisely how a bias towards smooth inter-
polants, in the form of weighted trigonometric interpolation, can lead to smaller generalization error
in the overparameterized regime compared to the underparameterized regime. This provides insight
into the power of overparameterization, which is common in modern machine learning.
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1. Introduction. Consider the regression/interpolation problem: Given training data
(xj , yj) ∈ D×C, j = 1, . . . , n, corresponding to samples of an unknown function y = f(x) and
the sampling points drawn from D ⊂ Rd, we would like to fit the data to a hypothesis class
H := {fθ(x) : Rd → C,θ ∈ Cp} by solving for parameters minimizing the empirical `2-risk

θopt ∈ arg min
θ∈Cp

n∑
j=1

|fθ(xj)− yj |2.(1.1)

Traditionally, the number of parameters p is restricted to be smaller than the number
of training samples, i.e., p ≤ n, to avoid overfitting. For p > n, the solution θopt is often
not unique and traditional wisdom says that explicit regularization such as weight decay
must be added to ensure that the solution is stable or meaningful. However, such wisdom
has been challenged by modern machine learning practice, where small generalization error
is achieved with massively overparameterized (p � n) hypothesis classes H such as deep
neural networks, without any explicit regularization. This implies that in such settings, the
optimization method used for (1.1) has a favorable implicit bias towards a particular choice
of θopt ∈ H among all empirical risk minimizers. As neural networks can be trained with a
particularly simple algorithm, (stochastic) gradient descent, a flurry of research in the past
several years, starting with [15, 9, 16, 5], has been devoted to answering the question:
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How and when does the implicit bias of gradient descent interact favorably with the structure
of a particular problem to achieve better performance in the interpolation regime?

The papers [4] and [11] were the first to observe that the power of overparameterization is
not limited to neural networks, and can even be found in linear interpolation models, where the
feature basis {ψk}pk=1 is fixed and the empirical risk is a quadratic function of the parameters:
‖Ψθ−y‖2 =

∑n
j=1(

∑p
k=1 θkψk(xj)−yj)

2. In this setting, the implicit bias of gradient descent
is well understood: by applying (stochastic) gradient descent to the empirical loss (1.1) with
initialization belonging to the range of the feature matrix Ψ, the solution converges to the
parameter solution θmin of minimal `2-norm among all interpolating solutions.1

The seminal work [2] claimed that improvement in generalization error is due to the connec-
tion between small `2-norm of a parameter solution θopt and smoothness of the corresponding
interpolating function fθopt . This connection was highlighted through the example of linear
interpolation with random Fourier features [14] where the features basis ψk : Rd → C are
random complex exponentials ψk(x) = ei〈wk,x〉 with wk ∼ N (0, Id), and which can be viewed
as a class of two-layer neural networks with fixed weights in the first layer. As the number of
features p→∞, this basis converges to that of the reproducing kernel Hilbert space (RKHS)
of smooth functions corresponding to the Gaussian kernel, and the interpolating solution by
gradient descent converges to the smooth function with minimal RKHS norm.

However, while this connection between the minimal `2-norm and smoothness of the so-
lution is intriguing, there is no rigorous analysis. In this paper, we initiate this analysis
by deriving exact non-asymptotic expressions for the generalization error and corresponding
confidence bounds in a random Fourier series model. We show precisely how a bias towards
smooth interpolants, in the form of weighted trigonometric interpolation, results in a smaller
generalization error in the overparameterized regime compared to the underparameterized
regime. We note that in the linear setting, randomness in the model is required (here in the
form of random Fourier coefficients), as there may be pathological counter-examples. Our
analysis provides insight into the power of overparameterization in modern machine learning.

1.1. Main Contribution and Outline. In this paper, we consider the method of weighted
`2-norm trigonometric interpolation in Fourier feature space, where the weight on a particular
feature is proportional to the qth power of its gradient norm to encourage lower-frequency
features. This additional degree of freedom, which is possible only in the overparameterized
regime, enables us to reduce the risk.

We consider the weighted `2-norm interpolation in Fourier feature space to equispaced
training data (xj , fθ(xj)) from functions with sharply decaying Fourier series θ. Our key
theoretical results are as follows. In Theorem 3.1 and 4.1, we derive analytic expressions for
the risk E‖θ−θ̂‖22 both in overparameterized and underparameterized regimes. The expression

in overparameterized regime is particularly representative since θ−θ̂ concentrates well around
its expectation, as shown in Theorem 3.8. We then derive more informative upper bounds for
the risk in Theorem 3.5. Moreover, Theorem 4.4 states that with sufficient decay, the solution
in the overparameterized regime is strictly better than that in the underparameterized regime.
We illustrate the trends of empirical risks in Figure 1 and detailed numerical results with

1Observe that the gradient descent iterates θt remain in the row span of the feature matrix Ψ if θ0 is in
the row span, and the minimal-norm solution is the unique solution in the row span of the feature matrix.
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different settings can be found in Figure 2.

Figure 1. Above is a demonstration of empirical risks (‖θ− θ̂‖2, average of 100 runs) of plain and weighted
min-norm (with q = 0.5) estimators. Here, θ is sampled from the distribution in Def. 2.1 for D = 1024, r = 0.5.

In Section 2 we introduce the notation and formulation of the problem. In Section 3 and
4 we analyze the risks in both over- and under-parameterized regime, respectively. We show
the numerical results in Section 5 and discuss the importance of randomness in Section 6.

1.2. Previous work on generalization and overparameterization. The work of [2] initi-
ated the study of the extended bias-variance trade-off curve, and showed that double descent
behavior is often exhibited, where the risk in the overparameterized regime p� n can decrease
to a point below the best possible risk in the underparameterized regime. They illustrated
that this behavior also occurs in kernel regression/interpolation problems.

Subsequently, several works derived quantitative bounds on the risk in the interpolating
setting but required that (a) the features are random (so that random matrix theory can be
leveraged) or (b) p and n are in the asymptotic regime and go to infinity at a comparable rate
(or both). In contrast, our results are for deterministic Fourier features and hold for any p and
n. The precise high-dimensional asymptotic risk for a general random model with correlated
covariates was derived in [8]. The work [1] derived sharp bounds on the risk in general linear
regression problems with non-isotropic subgaussian covariates and highlighted the importance
of selecting features according to higher-variance covariates. Other works include [7, 12, 6, 13].

Prior to the above line of work, [3]—which was a large inspiration for us—considered the
discrete Fourier series model we consider, but with a theoretical analysis only for randomly
chosen Fourier features, unweighted optimization, and isotropic covariates, in the asymptotic
setting. Empirical evidence pointing to improved generalization using weighted optimization
and truncated Fourier series instead of random Fourier frequencies was provided, but without
theoretical analysis. In this sense, our paper can be viewed as answering an open question
regarding the role of weighted optimization in Fourier series interpolation from [3].

We acknowledge a concurrent preprint [10] that also studies generalization error of mini-
mum weighted norm interpolation, but it focuses on providing upper bounds in the asymptotic
setting from an approximation theory viewpoint. Compared to it, our work provides exact
non-asymptotic expressions and bounds in probability for the generalization error.

2. Formulation. Smooth functions are characterized by the rate of decay in their Fourier
series coefficients—the smoother the function, the faster the decay.2 Drawing inspiration from

2The classical Sobolev spaces are Hilbert spaces defined in terms of Fourier series whose coefficients decay
sufficiently rapidly. For square-integrable complex-valued functions f on the circle T, consider the space of
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this connection, we consider as a model for random smooth periodic functions the class of
trigonometric polynomials f : [−π, π]→ C with random r-decaying Fourier series coefficients:

Definition 2.1. (Random Fourier series with r-decaying coefficients) Fix D ∈ N
and r ≥ 0. We say that a function is a random Fourier series with r-decaying coefficients if3

fθ(x) =

D−1∑
k=0

θke
ikx, 0 ≤ x ≤ 2π,(2.1)

where θ ∈ CD is a random vector satisfying E[θ] = 0 and E[θθ∗] = crΣ
2r, where Σ :=

diag
(
(k + 1)−1, k = 0, . . . , D − 1

)
∈ RD×D and cr = (

∑D−1
k=0 (k + 1)−2r)−1s.t. E[‖θ‖2] = 1.

We observe n ≤ D training samples (xj , yj)
n−1
j=0 = (xj , fθ(xj))

n
j=1 of such a function fθ at

equispaced points on the domain, xj = 2πj
n , j ∈ [n], where [n] denotes the set {0, . . . , n − 1}

for notation simplicity. We can express the observation vector y ∈ Cn concisely as y = Fθ
in terms of the sample discrete Fourier matrix F ∈ Cn×D whose entries are (F )j,k = eikxj =
e2πijk/n, j ∈ [n], k ∈ [D]. If D is a multiple of n, i.e., D = τn for τ ∈ N, then we can write
F = [F (n)|F (n)| · · · |F (n)], where F (n) ∈ Cn×n is the discrete Fourier matrix in dimension n.

We fit the training samples to a degree-p trigonometric polynomial fθ̂(x) =
∑p−1

k=0 θ̂ke
ikx

such that f̂θ̂(xj) ≈ fθ(xj), j ∈ [n], i.e., y ≈ FT θ̂T and θT c = 0, where FT ∈ Cn×p is the

matrix containing the first p columns of F , indexed by T = [p]. We solve for θ̂T as the least
squares fitting vector in the regression regime p < n, and as the solution of minimal weighted
`2 norm in the interpolation regime p > n:

θ̂T =

{
arg minw∈Cp ‖FTw − y‖22; p ≤ n
arg minw∈Cp ‖Σ−qT w‖22 s.t. FTw = y p > n

}
,(2.2)

where ΣT ∈ Rp×p is the diagonal matrix as in Def. 2.1 restricted to its first p rows and p
columns and q ≥ 0 controls the rate of growth of the weight. Note that the weight matrix
Σ−qT has no influence on the estimator in the underparameterized regime p ≤ n. Denoting by
A† the Moore-Penrose pseudo-inverse of a matrix A, we can write the solution in both the
under- and overparameterized case as θ̂T = Σq

T (FTΣq
T )†y.

We will derive sharp non-asymptotic expressions for the risk of the estimator f
θ̂

in terms
of p, n,D, r, and q. The risk in this setting is defined as

risk = riskq = Eθ
[∫ π

−π
|fθ(x)− fθ̂(x)|2dx

]
= Eθ‖θ − θ̂‖22,(2.3)

where the last equality follows from Parseval’s identity.

functions Hr(T) = {f ∈ L2(T) : ‖f‖2r,2} :=
∑∞
j=−∞(1+|j|2)r|f̂(j)|2 <∞}, r ∈ R, r ≥ 0, where f̂(j) is the jth

Fourier series coefficient of f . If r ∈ N, by duality between differentiation in time and multiplication in frequency,
the Sobolev norm is equivalently defined in terms of the rth derivative f (r): ‖f‖2r,2 = ‖f‖2L2

+ ‖f (r)‖2L2
.

3For ease of exposition we only work with positive frequencies, although it may seem more natural to work
with trigonometric polynomials of the form f(x) =

∑D
k=−D θke

ikx. All our results can be formulated within
that setting, by symmetrically extending the weights to negative indices k and by replacing D with 2D − 1,
and similarly for n and p. The notation, however, will be more heavy and then make the comparison with
other works less straightforward.
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3. Risk Analysis for Decaying Fourier Series Model in the Overparameterized Setting.
First, we derive non-asymptotic expressions, asymptotic rate, and concentration for the risk
via plain and weighted `2 regression with Fourier series features in the overparameterized
regime (p ≥ n). For ease of exposition, we restrict below to the case where p is an integer
multiple of n, but note that the result can be extended to the general case. Moreover, we
introduce the notation tj = (j+1)−1, j ∈ [D], Σ = diag([t0, . . . , tD−1]), and cr = 1/

∑D−1
j=0 t

2r
j .

Theorem 3.1. (Risk in overparameterized regime) Assume D = τn and p = ln for
τ ≥ l, ∀τ, l ∈ N+ := {1, 2, . . . } (p ≥ n). Let the feature vector θ be drawn from a distribution
with E[θ] = 0 and E[θθ∗] = crΣ

2r. Then the risks (E[‖θ − θ̂‖2]) of the regression coefficients
θ̂ fitted by plain min-norm estimator (q = 0) and weighted min-norm estimator are

risk0 = 1− n

p
+

2n

p
· cr

D−1∑
j=p

t2rj ,(3.1)

riskq = 1− cr
n−1∑
k=0

∑l−1
ν=0 t

2q+2r
k+nν∑l−1

ν=0 t
2q
k+nν︸ ︷︷ ︸

Pq

+ cr

n−1∑
k=0

(
∑l−1

ν=0 t
4q
k+nν)(

∑τ−1
ν=l t

2r
k+nν)

(
∑l−1

ν=0 t
2q
k+nν)2

.︸ ︷︷ ︸
Qq

(3.2)

Remark 3.2. While the general risk expressions are difficult to parse, special cases are
straightforward: if p = D, then risk0 = 1− n

D and riskq = 1− Pq since Qq = 0. Moreover, if

n = p = D (l = τ = 1), then Pq = cr
∑D−1

n=0 (t2q+ms /t2qs ) = 1 so that risk0 = riskq = 0.

Using the expressions in Theorem 3.1, we can quantify how smoothness (as reflected in the
rate of decay r > 0 in the underlying Fourier series coefficients) can be exploited by setting
the weights accordingly (q = r) to reduce the risk in the overparameterized setting.

3.1. Proof of Theorem 3.1. The proof is based on the following lemmas. Below, the
matrix FT c ∈ Cn×(D−p) is the submatrix of F with the columns in T c = [D] \ T .

Lemma 3.3. (Risks of estimators in overparameterized regime) Assume p ≥ n and
let the feature vector θ ∈ CD be drawn from a distribution with E[θ] = 0 and E[θθ∗] = K,
where K is a diagonal matrix. The risk of the weighted min-norm estimator with q ≥ 0 is
riskq = E[‖θ − θ̂‖2] = tr (K) − Pq + Qq, where Pq = tr(FTΣ2q

T KTFT
∗(FTΣ2q

T FT
∗)−1) and

Qq = tr(FTΣ4q
T FT

∗(FTΣ2q
T FT

∗)−1FT cKT cFT c
∗(FTΣ2q

T FT
∗)−1).

Proof of Lemma 3.3. Using the re-parameterization β = Σ−qθ , the weighted min-norm
estimator is β̂T := F̃ †Ty, β̂T c := 0, where y = F̃TβT + F̃T cβT c and F̃ = FΣq. Since F̃T has

full rank, the matrix F̃T F̃
∗
T = FTΣ2q

T FT
∗ is invertible and F̃ †T = F̃ ∗T (F̃T F̃

∗
T )−1. Then,

‖θ − θ̂‖22 = ‖Σq
T (βT − β̂T )‖2 + ‖Σq

TΣT c(βT c − β̂T c)‖2

= ‖Σq
TβT − Σq

T F̃
†
T (F̃TβT + F̃T cβT c)‖2 + ‖Σq

T cβT c‖
2

= ‖Σq
T (I − F̃ †T F̃T )βT − Σq

T F̃
†
T F̃T cβT c‖

2 + ‖Σq
T cβT c‖

2

= ‖Σq
T (I − F̃ †T F̃T )βT ‖2 + ‖Σq

T F̃
†
T F̃T cβT c‖

2 + ‖Σq
T cβT c‖

2

− 2 Re(β∗T (I − F̃ †T F̃T )Σ2q
T F̃

†
T F̃T cβT c)︸ ︷︷ ︸

=:C1

.

(3.3)
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Since F̃ †T F̃T is Hermitian, we have

‖Σq
T

(
I − F̃ †T F̃T

)
βT ‖2 =

∥∥Σq
TβT

∥∥2 + ‖Σq
T F̃
†
T F̃TβT ‖

2 − 2(β∗TΣ2q
T F̃

†
T F̃TβT )︸ ︷︷ ︸

=:C2

.(3.4)

Combining (3.3) and (3.4) and taking expectation yields

E[‖Σq(β − β̂)‖2] = E[‖Σqβ‖2] + E[‖Σq
T F̃
†
T F̃TβT ‖

2] + E[‖Σq
T F̃
†
T F̃T cβT c‖

2]− E[C1]− E[C2].
(3.5)

The “trace trick” and F̃ †T F̃T = F̃ ∗T (F̃T F̃
∗
T )−1F̃T give

E[‖Σq
T F̃
†
T F̃TβT ‖

] = E
[
tr
(
β∗T F̃

†
T F̃TΣ2q

T F̃
†
T F̃TβT

)]
= tr

(
F̃ †T F̃TΣ2q

T F̃
†
T F̃TE[βTβ

∗
T ]
)

= tr
(

Σ2q
T F̃

†
T F̃TΣ−qT KTΣ−qT

)
= tr

(
F̃TKT F̃

∗
T (F̃T F̃

∗
T )−1

)
= tr

(
KT F̃

†
T F̃T

)
.

Moreover,

E[‖Σq
T F̃
†
T F̃T cβT c‖

2] = tr
(
F̃ ∗T c(F̃

†
T )∗Σ2q

T F̃
†
T F̃T cE[βT cβ

∗
T c ]
)

= tr
(

Σ2q
T F̃

†
T F̃T cΣ

−q
T cKT cΣ

−q
T c

)
F̃ ∗T c(F̃

†
T )∗

= tr
(

Σ2q
T F̃

∗
T (F̃T F̃

∗
T )−1FT cKT cFT c

∗(F̃T F̃
∗
T )−1F̃T

)
.

Since E[βT cβ
∗
T ] = Σ−qT cE[θT cθ

∗
T ]Σ−qT = 0 we have E[C1] = 0. Furthermore, since K commutes

with Σ−q by diagonality, we have Σ2q
T E [βTβ

∗
T ] = Σ2q

T E[Σ−qθθ∗Σ−q] = K so that

E[C2] = 2 tr
(
F̃ †T F̃TΣ2q

T E [βTβ
∗
T ]
)

= 2 tr
(
KT F̃

†
T F̃T

)
.

Plugging all terms into (3.5), we have

riskq = E[‖Σq(β − β̂)‖2] = tr (K)− tr
(
FTΣ2q

T KTFT
∗(FTΣ2q

T FT
∗)−1

)
+ tr

(
FTΣ4q

T FT
∗(FTΣ2q

T FT
∗)−1FT cKT cFT c

∗(FTΣ2q
T FT

∗)−1
)
.

The risk of the plain min-norm estimator corresponds to q = 0, which gives

risk0 = E[‖θ − θ̂‖2] = tr (K)− tr
(
FTKTFT

∗(FTFT
∗)−1

)
+ tr

(
FT cKT cFT c

∗(FTFT
∗)−1

)
.

Lemma 3.4. (Properties of FT ) Assume that D = τn and p = nl for τ, l ∈ N+. Then,
FTFT

∗ = pIn. For u ∈ N+, define Au := FTΣu
TFT

∗ and Cu := FT cΣ
u
T cFT c

∗, where Σ is
a diagonal matrix (e.g., the diagonal matrix in Def. 2.1). Then, Au and Cu are circulant
matrices.
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Proof of Lemma 3.4. For u ≥ 0, we set Au = FTΣu
TFT

∗ and Cu = FT cΣ
u
T cFT c

∗, and
define ωn = exp(−2πi

n ). Since p = nl, we have, for j1, j2 ∈ [n],

(Au)j1,j2 = (FTΣu
TFT

∗)j1,j2 =

p−1∑
k=0

tuk exp

(
−2πi

n
(j2 − j1) · k

)
=

l−1∑
ν=0

n−1∑
k=0

tuk+nνω
(j2−j1)k
n ,

(Cu)j1,j2 = (FT cΣ
u
T cFT c

∗)j1,j2 =

D−1∑
k=p

tuk exp

(
−2πi

n
(j2 − j1) · k

)
=

τ−1∑
ν=l

n−1∑
k=0

tuk+nνω
(j2−j1)k
n .

In the above equations, we use ωk+nνn = ωkn for ν ∈ N+.
For j ∈ [n], let aj =

∑l−1
ν=0

∑n−1
k=0 t

u
k+nνω

−jk
n and cj =

∑τ−1
ν=l

∑n−1
k=0 t

u
k+nνω

−jk
n . Then

(Au)j1,j2 =

l−1∑
ν=0

n−1∑
k=0

tuk+nνω
(j2−j1)k
n = aj2−j1 (mod n),

(Cu)j1,j2 =
τ−1∑
ν=l

n−1∑
k=0

tuk+nνω
(j2−j1)k
n = cj2−j1 (mod n).

(3.6)

Hence, for any u ≥ 0, Au and Cu are circulant matrices.
For u = 0 we use again p = nl, l ∈ N+ to obtain that, for j1, j2 ∈ [n],

(FTFT
∗)j1,j2 =

p−1∑
k=0

ω(j2−j1)k
n =

{
p, if j1 = j2,

0, if j1 6= j2.

Hence, FTFT
∗ = pIn as claimed.

Proof of the risk of the plain min-norm estimator. Lemma 3.3 with K = crΣ
2r gives

risk0 = 1− crtr
(
FTΣ2r

T FT
∗(FTFT

∗)−1
)

+ crtr
(
FT cKT cFT c

∗(FTFT
∗)−1

)
.(3.7)

By Lemma 3.4, we have FTFT
∗ = pIp, so that

P0 =
1

p
tr
(
crFTΣ2r

T FT
∗) =

cr
p

tr (A2r) ;Q0 =
1

p
tr
(
crFT cΣ

2r
T cFT c

∗) =
cr
p

tr (C2r) .(3.8)

The diagonal entries of A2r and C2r are given by

A
(i,i)
2r =

p−1∑
j=0

t2rj exp(0) =

p−1∑
j=0

t2rj and C
(i,i)
2r =

D−1∑
j=0

t2rj exp(0) =
D−1∑
j=p

t2rj , i ∈ [n].(3.9)

It follows that P0 = cr
p tr (A2r) = ncr

p

∑p−1
j=0 t

2r
j and Q0 = cr

p tr (C2r) = ncr
p

∑D−1
j=p t

2r
j so that

the risk is given by

risk0 = E
[
‖θ − θ̂‖2

]
= 1− ncr

p

 1

cr
− 2

D−1∑
j=p

t2rj

 = 1− n

p
+

2n

p
·
∑D−1

j=p t
2r
j∑D−1

j=0 t
2r
j

.
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Proof of the risk of the weighted min-norm estimator. Since Au and Cu are circulant ma-
trices, we can write Au = UnΛa,uU

∗
n and Cu = UnΛc,uU

∗
n, where Un is the unitary discrete

Fourier matrix of size n, and Λa,u and Λc,u are diagonal matrices with eigenvalues of Au and
Cu on the diagonal, respectively. The eigenvalues can be calculated by taking discrete Fourier
transform of the first column of Au or Cu.

Let Fn be the nth order discrete Fourier matrix, i.e., (Fn)s,j = ωsjn , then for any s ∈ [n],
the sth diagonal element (eigenvalue) of Λa,u or Λc,u is

λ(s)a,u = Fn[s, :]Au[:, 0] =
n−1∑
j=0

ωsjn

(
l−1∑
ν=0

n−1∑
k=0

tuk+nνω
−jk
n

)
=

n−1∑
k=0

(
l−1∑
ν=0

tuk+nν

)n−1∑
j=0

ω(s−k)j
n


λ(s)c,u = Fn[s, :]Cu[:, 0] =

n−1∑
j=0

ωsjn

(
τ−1∑
ν=l

n−1∑
k=0

tuk+nνω
−jk
n

)
=

n−1∑
k=0

(
τ−1∑
ν=l

tuk+nν

)n−1∑
j=0

ω(s−k)j
n


For s, k ∈ [n] we define

e
(n)
s,k :=

n−1∑
j=0

ω(s−k)j
n =

{
n, if k = s,

0, otherwise.
(3.10)

If the random Fourier series has r-decaying coefficients, i.e., K = crΣ
2r (r ≥ 0), then by

Lemma 3.3,

Pq = crtr
(
FTΣ2q+2r

T FT
∗(FTΣ2q

T FT
∗)−1

)
= crtr

(
UnΛa,2q+2rU

∗
nUnΛ−1a,2qU

∗
n

)
= crtr

(
Λa,2q+2rΛ

−1
a,2q

)
= cr

n−1∑
s=0

∑n−1
k=0

(∑l−1
ν=0 t

2q+2r
k+nν

)
e
(n)
s,k∑n−1

k=0

(∑l−1
ν=0 t

2q
k+nν

)
e
(n)
s,k

=
1∑D−1

j=0 t
2r
j

n−1∑
k=0

∑l−1
ν=0 t

2q+2r
k+nν∑l−1

ν=0 t
2q
k+nν

,

and

Qq = crtr
(
FT cΣ

2r
T cFT c

∗(FTΣ2q
T FT

∗)−1FTΣ4q
T FT

∗(FTΣ2q
T FT

∗)−1
)

= crtr
(
UnΛc,2rU

∗
nUnΛ−1a,2qU

∗
nUnΛa,4qU

∗
nUnΛ−1a,2qU

∗
n

)
= crtr

(
Λc,2rΛ

−1
a,2qΛa,4qΛ

−1
a,2q

)
= cr

n−1∑
s=0

(∑n−1
k=0

(∑l−1
ν=0 t

4q
k+nν

)
e
(n)
s,k

)(∑n−1
k=0

(∑τ−1
ν=l t

2r
k+nν

)
e
(n)
s,k

)
(∑n−1

k=0

(∑l−1
ν=0 t

2q
k+nν

)
e
(n)
s,k

)2
= cr

n−1∑
k=0

(∑l−1
ν=0 t

4q
k+nν

)(∑τ−1
ν=l t

2r
k+nν

)
(∑l−1

ν=0 t
2q
k+nν

)2 .

Therefore, the risk satisfies

riskq = 1− Pq +Qq = 1− cr
n−1∑
k=0

∑l−1
ν=0 t

2q+2r
k+nν∑l−1

ν=0 t
2q
k+nν

+ cr

n−1∑
k=0

(∑l−1
ν=0 t

4q
k+nν

)(∑τ−1
ν=l t

2r
k+nν

)
(∑l−1

ν=0 t
2q
k+nν

)2 .
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3.2. Asymptotic Rate of Weighted Min-norm Risk. In this section, we will derive an
informative upper bound of equation 3.2 in Theorem 3.5 that demonstrates the asymptotic
behavior of the risk and its relation to the parameters n, p, and r.

Theorem 3.5. (Asymptotic rate of weighted min-norm risk) In the overparameter-
ized setting of Theorem 3.1, if q = r > 1/2 and p = nl with l ∈ N+, l ≥ 2, then the risk of
weighted optimization satisfies

riskq ≤ an−2r+1 + bn−2rp−2r+1

with a = 2+drn−2r

(1+drn−2r)(1−(D+1)−2r+1)
, b = dr

(1+drn−2r)(1−(D+1)−2r+1)
, and dr = 2−2r+1−(l+1)−2r+1

2r−1 .

Remark 3.6. For sufficiently large D and n, the constants in the above theorem satisfy
a ≤ 2 and b ≤ 2−2r+1/(2r − 1) so that then

riskq ≤ 2n−2r+1 +
2

2r − 1
(2n)−2rp−2r+1.

To prove Theorem 3.5, we start with a lemma that provides an explicit bound for the
summation, and in particular cr.

Lemma 3.7. (Bounds for the summation) For n1 < n2 and α > 1,

n2∑
n=n1

(an+ b)−α ≥ 1

a(α− 1)
((an1 + b)−α+1 − (a(n2 + 1) + b)−α+1)

n2∑
n=n1

(an+ b)−α ≤ (an1 + b)−α +
1

a(α− 1)
((an1 + b)−α+1 − (an2 + b)−α+1).

Consequently, for r > 1/2, the constant cr = (
∑D−1

j=0 (j + 1)−2r)−1 satisfies

2r − 1

2r −D−2r+1
≤ cr ≤

2r − 1

1− (D + 1)−2r+1
.

Proof of Lemma 3.7. By comparison of the sum to an integral, we have that

n2∑
n=n1

(an+ b)−α ≥
∫ n2+1

n1

(ax+ b)−αdx =
1

a(α− 1)
((an1 + b)−α+1 − (a(n2 + 1) + b)−α+1)

n2∑
n=n1

(an+ b)−α = (an1 + b)−α +

n2∑
n=n1+1

(an+ b)−α ≤ (an1 + b)−α +

∫ n2

n1

(ax+ b)−αdx

= (an1 + b)−α +
1

a(α− 1)
((an1 + b)−α+1 − (an2 + b)−α+1).

In particular, for α = 2r, a = 1, b = 0, n1 = 1, n2 = D,

c−1r ≥
1

2r − 1
(1− (D + 1)−2r+1)

c−1r ≤ 1 +
1

2r − 1
(1−D−2r+1) =

1

2r − 1
(2r −D−2r+1).
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Proof of Theorem 3.5. For k ∈ [n] and α ∈ R, we define

A(k, α) :=

l−1∑
ν=0

tαk+nν and B(k, α) =

l−1∑
ν=1

tαk+nν = A(k, α)− 1

(1 + k)α
,

where we understand that B(k, α) = 0 if l = 1. By Theorem 3.1 we can write

1− Pq = cr

(
c−1r −

n−1∑
k=0

A(k, 2q + 2r)

A(k, 2q)

)

= cr

n−1∑
k=0

(
1

(1 + k)2r
− A(k, 2q + 2r)

A(k, 2q)

)
︸ ︷︷ ︸

=:γk

+cr

D−1∑
k=n

1

(1 + k)2r
.

We have

γk−1 =
1

k2r
−

1
k2q+2r +B(k − 1, 2q + 2r)

1
k2q

+B(k − 1, 2q)
=

1

k2r
− 1 + k2q+2rB(k − 1, 2q + 2r)

k2r + k2r+2qB(k − 1, 2q)

=
1 + k2qB(k − 1, 2q)− 1− k2q+2rB(k − 1, 2q + 2r)

k2r(1 + k2qB(k − 1, 2q))

=
k2qB(k − 1, 2q)− k2q+2rB(k − 1, 2q + 2r))

k2r(1 + k2qB(k − 1, 2q))
.

Furthermore, if l = 1 (i.e., p = n) then the numerator in the last expression vanishes and for
l > 1 it satisfies

k2qB(k − 1, 2q)− k2q+2rB(k − 1, 2q + 2r) =

l−1∑
ν=1

(
k

k + nν

)2q

−
l−1∑
ν=1

(
k

k + nν

)2q+2r

=
l−1∑
ν=1

(
k

k + nν

)2q
(

1−
(

k

k + nν

)2r
)
.

Altogether, we have that 1− Pq = cr
∑D

k=n+1 k
−2r if l = 1 and for l > 1 it holds

(3.11) 1−Pq = cr

l−1∑
ν=1

n∑
k=1

k2q−2r

1 + k2qB(k − 1, 2q)

1

(k + nν)2q

(
1−

(
k

k + nν

)2r
)

+ cr

D∑
k=n+1

1

k2r
.

For r > 1/2, the last term can be upper bounded by cr(2r − 1)−1n−2r+1 according to lemma
3.7. Similarly,

B(k − 1, 2q) ≥ 1

n(2q − 1)

(
(k + n)−2q+1 − (k + `n)−2q+1

)
,

where we use the fact that q > 1/2. Since the last expression is decreasing with k ∈ {1, . . . , n},
we obtain the lower bound

B(k − 1, 2q) ≥ 1

n(2q − 1)

(
(2n)−2q+1 − ((l + 1)n)−2q+1

)
=

dq
n2q

,
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where dq := 2−2q+1−(l+1)−2q+1

2q−1 . Hence, we have

1− Pq ≤
cr

1 + dqn−2q

l−1∑
ν=1

n∑
k=1

k2q−2r

(k + nν)2q

(
1−

(
k

k + nν

)2r
)

+
cr

2r − 1
n−2r+1

≤ cr
1 + dqn−2q

l−1∑
ν=1

n∑
k=1

k2q−2r

(k + nν)2q
+

cr
2r − 1

n−2r+1.

If q = r then the double sum above can be estimated as

l−1∑
ν=1

n∑
k=1

1

(k + nν)2q
=

p∑
j=n+1

1

j2q
≤
∫ p

n

1

x2q
dx =

1

2q − 1

(
n−2q+1 − p−2q+1

)
.

Altogether, for r = q > 1/2 and p = ln for l ≥ 2,

1− Pq ≤
cr

2r − 1

(
n−2r+1 − p−2r+1

1 + drn−2r
+ n−2r+1

)
≤ 1

1− (D + 1)−2r+1

(
n−2r+1 − p−2r+1

1 + drn−2r
+ n−2r+1

)
,

where we have used Lemma 3.7 in the last step.
It remains to bound Qq from above. Towards this goal, we observe the simple inequality∑l−1

ν=0 t
4q
k+nν ≤

(∑l−1
ν=0 t

2q
k+nν

)2
. Thus by Lemma 3.7, we have the immediate bound

Qq ≤ cr
n−1∑
k=0

τ−1∑
ν=l

t2rk+nν = cr

D∑
k=p+1

1

k2r
≤ p−2r+1

1− (D + 1)−2r+1
.

Altogether, for r = q > 1/2 and p = ln with l ≥ 2,

riskq = 1− Pq +Qq

≤ 1

1− (D + 1)−2r+1

((
1

1 + drn−2r
+ 1

)
n−2r+1 +

(
1− 1

1 + drn−2r

)
p−2r+1

)
=

1

1− (D + 1)−2r+1

(
2 + drn

−2r

1 + drn−2r
n−2r+1 +

dr
1 + drn−2r

n−2rp−2r+1

)
.(3.12)

The previous expression can be bounded by Cn−2r+1 for a suitable constant C.
If l = 1 so that p = n then the above derivations give

riskq = 1− Pq +Qq ≤
1

1− (D + 1)−2r+1

(
n−2r+1 + p−2r+1

)
=

2

1− (D + 1)−2r+1
n−2r+1,

which gives the statement of the theorem also in this case.
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3.3. Concentration of Error. In this section, we will justify that equation 3.2 is indeed
representative due to the concentration of the error θ − θ̂, i.e., it is close to its expectation
with high probability.

Theorem 3.8. (Probabilistic Bound) In the overparameterized setting of Theorem 3.1,
if r ≥ q ≥ 1

2 and θ has independent sub-Gaussian coordinates with ‖θk‖ψ2 =
√
crk
−r, where

‖X‖ψ2 := inf{t > 0 : E(exp(X2/t2)) > 2} is the sub-Gaussian norm. For any t > 0,

P
(∣∣∣‖θ − θ̂‖22 − E‖θ − θ̂‖22

∣∣∣ ≤ t) ≥ 1− 2exp

[
−min

(
t2

T 2
,
t

T

)]
,(3.13)

where T = 4(2r − 1)
√

q(24q2−17q+3)
(2q−1)2(4q−1) .

Proof of Theorem 3.8. From Lemma 3.3, we have

(3.14) ‖θ − θ̂‖22 =
∥∥∥Σq

T

(
I − F̃ †T F̃T

)
βT

∥∥∥2 +
∥∥∥Σq

T F̃
†
T F̃T cβT c

∥∥∥2 +
∥∥Σq

T cβT c
∥∥2 − C1,

where C1 = 2 Re
(
β∗T

(
I − F̃ †T F̃T

)
Σ2q
T F̃

†
T F̃T cβT c

)
. Equation (3.14) can be expressed as

‖θ − θ̂‖22 =
[
β∗T β∗T c

] [D1 B
B∗ D2

] [
βT
βT c

]
= β∗Mβ,

where D1 =
(
I − F̃ †T F̃T

)
Σ2q
T

(
I − F̃ †T F̃T

)
, D2 = Σ2q

T c + F̃ ∗T c(F̃
†
T )∗Σ2q

T F̃
†
T F̃T c , and B =(

I − F̃ †T F̃T
)

Σ2q
T F̃

†
T F̃T c . Since θ (and hence β) has independent sub-Gaussian coordinates,

the Hanson-Wright inequality gives

P(|β∗Mβ − Eβ∗Mβ| ≥ t) ≤ 2exp

[
−cmin

(
t2

K4‖M‖2F
,

t

K2‖M‖

)]
,

where K = maxk ‖βk‖ψ2 =
√
cr because r ≥ q. Since ‖M‖2 ≤ ‖M‖F , it suffices to bound

‖M‖2F = tr(D∗1D1 + 2B∗B +D∗2D2).

Since F̃T has full rank, F̃ †T = F̃ ∗T (F̃T F̃
∗
T )−1 = Σq

TFT
∗(FTΣ2q

T FT
∗)−1. By the circulant property

from Lemma 3.4, we have

tr(F̃TΣu
T F̃
†
T ) = tr(FTΣq

TΣu
TΣq

TFT
∗(FTΣ2q

T FT
∗)−1) = tr(Λa,2q+uΛ−1a,2q)

tr((F̃ †T )∗Σu
T F̃
†
T ) = tr(((FTΣ2q

T FT
∗)−1)∗FTΣq

TΣu
TΣq

TFT
∗(FTΣ2q

T FT
∗)−1) = tr(Λa,2q+uΛ−2a,2q).
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An explicit calculation yields

tr (D∗1D1) = tr
(

(I − F̃ †T F̃T )Σ2q
T (I − F̃ †T F̃T )2Σ2q

T (I − F̃ †T F̃T )
)

= tr

([
Σ2q
T (I − F̃ †T F̃T )2

]2)
= tr

([
Σ2q
T (I − F̃ †T F̃T )

]2)
= tr

(
Σ4q
T − 2F̃TΣ4q

T F̃
†
T + (F̃TΣ2q

T F̃
†
T )2
)

= tr
(

Σ4q
T − 2Λa,6qΛ

−1
a,2q + (Λa,4qΛ

−1
a,2q)

2
)

;

tr(D∗2D2) = tr
(

Σ4q
T c + 2Σ2q

T cF̃
∗
T c(F̃

†
T )∗Σ2q

T F̃
†
T F̃T c + F̃ ∗T c(F̃

†
T )∗Σ2q

T F̃
†
T F̃T cF̃

∗
T c(F̃

†
T )∗Σ2q

T F̃
†
T F̃T c

)
= tr

(
Σ4q
T c + 2F̃T cΣ

2q
T cF̃

∗
T c(F̃

†
T )∗Σ2q

T F̃
†
T + (F̃T cF̃

∗
T c(F̃

†
T )∗Σ2q

T F̃
†
T )2
)

= tr
(

Σ4q
T c + 2Λc,4qΛa,4qΛ

−2
a,2q + (Λc,2qΛa,4qΛ

−2
a,2q)

2
)

;

tr(B∗B) = tr
(
F̃ ∗T c(F̃

†
T )∗Σ2q

T (I − F̃ †T F̃T )2Σ2q
T F̃

†
T F̃T c

)
= tr

(
F̃T cF̃

∗
T c(F̃

†
T )∗Σ2q

T (I − F̃ †T F̃T )Σ2q
T F̃

†
T

)
= tr

(
F̃T cF̃

∗
T c(F̃

†
T )∗Σ4q

T F̃
†
T − F̃T cF̃

∗
T c(F̃

†
T )∗Σ2q

T F̃
†
T F̃TΣ2q

T F̃
†
T

)
= tr

(
Λc,2qΛa,6qΛ

−2
a,2q − Λc,2qΛa,4qΛ

−2
a,2qΛa,4qΛ

−1
a,2q

)
.

Therefore,

‖M‖2F = tr (D∗1D1 +D∗2D2 +BB∗ +B∗B)

= tr
(

Σ4q + (Λ2
a,4q + 2Λc,4qΛa,4q + 2Λc,2qΛa,6q)Λ

−2
a,2q + Λ2

c,2qΛ
2
a,4qΛ

−4
a,2q

)
− tr

(
2Λa,6qΛ

−1
a,2q + 2Λc,2qΛ

2
a,4qΛ

−3
a,2q

)
.

(3.15)

We will now bound this expression using the information on Λ. Note that λ
(s)
a,q, the s-th

diagonal entry of Λa,q, follows the inequality λ
(s)
a,q1+q2 ≤ n−1λ

(s)
a,q1λ

(s)
a,q2 for any q1, q2 > 0.

Hence,

tr
(

Λ2
a,4qΛ

−2
a,2q

)
≤ n−1tr

(
Λa,4qΛ

2
a,2qΛ

−2
a,2q

)
= n−1tr (Λa,4q) = tr(Σ4q

T )

tr
(

Λc,4qΛa,4qΛ
−2
a,2q

)
≤ n−1tr

(
Λc,4qΛ

2
a,2qΛ

−2
a,2q

)
= n−1tr (Λc,4q) = tr(Σ4q

T c)

tr
(

Λc,2qΛa,6qΛ
−2
a,2q

)
≤ n−2tr

(
Λc,2qΛ

3
a,2qΛ

−2
a,2q

)
= n−2tr (Λc,2qΛa,2q) ≤ tr(Σ2q

T )tr(Σ2q
T c)

tr
(

Λ2
c,2qΛ

2
a,4qΛ

−4
a,2q

)
≤ n−2tr

(
Λ2
c,2qΛ

4
a,2qΛ

−4
a,2q

)
= n−2tr

(
Λ2
c,2q

)
≤ tr(Σ2q

T c)
2

Lemma 3.7 implies that for α > 1,

1

2(α− 1)
≤ tr(Σα) ≤ α

α− 1
, K2 ≤ 2(2r − 1),
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and hence,

‖M‖2F ≤ tr
(

Σ4q + Σ4q
T + 2Σ4q

T c

)
+ 2tr(Σ2q

T )tr(Σ2q
T c) + tr(Σ2q

T c)
2

≤ 12q

4q − 1
+

16q2

(4q − 1)(2q − 1)
+

4q2

(2q − 1)2
=

4q(24q2 − 17q + 3)

(2q − 1)2(4q − 1)
.

The conclusion then follows by plugging all the bounds into the Hanson-Wright inequality.

4. Risk Analysis in the Underparameterized Setting and Benefits of Overparameteri-
zation. In order to fully understand the benefit of overparameterization, we derive the non-
asymptotic risk for the estimators in the underparameterized regime (p ≤ n), where q does
not have an influence on the estimators and, hence, on the risk.

Theorem 4.1. (Risk in underparameterized regime) Suppose D = τn for τ ∈ N+.
Suppose p ≤ n, and assume that the feature vector θ is drawn from a distribution with E[θ] = 0
and E[θθ∗] = crΣ

2r. Then the risk (E[‖θ − θ̂‖2]) is given by

riskunder = cr

D−1∑
j=p

t2rj +

τ−1∑
k=1

p−1∑
j=0

t2rkn+j

.(4.1)

Remark 4.2. When r = 0, riskunder = 1
D (D − p + (τ − 1)p) = 1 + p( 1

n −
2
D ) and the risk

increases with p until p = n, provided n < D/2. From Figure 2, as we vary r in the range
0 ≤ r ≤ 1, this behavior persists for a while, then changes to a U -shape curve, and lastly to
a decreasing curve. For r ≥ 1, we prove that the risk is monotonically decreasing in p.

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.3. (Risks of weighted and plain min-norm estimator in the underpa-
rameterized regime) Let the feature vector θ be sampled from a distribution with E[θ] = 0
and E[θθ∗] = K. In the underparameterized regime (p ≤ n), the regression coefficients θ̂ are
fitted by weighted least squares with Σq as the re-parameterization matrix, then for any q ≥ 0,
θ̂T = (FT

∗FT )−1FT
∗y, θ̂T c = 0, where y = FTθT + FT cθT c. The risk is given by

riskunder = E[‖θ − θ̂‖2] = tr (KTc) + tr
(
FT (FT

∗FT )−2FT
∗FT cKTcFT c

∗) .
Proof of Lemma 4.3. In the under-parameterized setting, the error of the least squares

estimator satisfies

‖θ − θ̂‖2 =
∥∥(FT

∗FT )−1FT
∗(FTxT + FT cxT c)− xT

∥∥2 + ‖xT c‖2

=
∥∥(FT

∗FT )−1FT
∗FT cxT c

∥∥2 + ‖xT c‖2

= tr
(
FT c

∗FT (FT
∗FT )−2FT

∗FT cxT cx
∗
T c
)

+ ‖xT c‖2 .

Taking expectation yields

E
[
‖θ − θ̂‖2

]
= crtr

(
Σ2r
T c
)

+ crtr
(
FT (FT

∗FT )−2FT
∗FT cΣ

2r
T cFT c

∗) .
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Proof of Theorem 4.1. [of Theorem 4.1] Then, denoting ωn = exp(−2πi
n ) we have, for

k1, k2 ∈ [p] with p < n,

(FT
∗FT )k1,k2 =

n−1∑
j=0

exp

(
−2πi

n
k1 · j

)
exp

(
2πi

n
k2 · j

)
=

n−1∑
j=0

ω(k1−k2)·j
n =

{
n, if k1 = k2,

0, otherwise.

Moreover, for 0 ≤ k1, k2 ≤ D − p− 1, we have

(FT c
∗FT c)k1,k2 =

n−1∑
j=0

exp

(
−2πi

n
(k1 + p) · j

)
exp

(
2πi

n
(k2 + p) · j

)
=

n−1∑
j=0

ω(k1−k2)·j
n

=

{
n, if ∃γ ∈ N, s.t. k1 − k2 = γn,

0, otherwise.

Since D = τn and 0 < p < n it holds v = D−p−n · bD−pn c = n−p and p = n−v. Introducing

the matrices Mn×v =

[
Iv×v
Op×v

]
, Nv×n =

[
Iv×v Ov×p

]
, In,v = Mn×vNv×n =

[
Iv×v Ov×p
Op×v Op×p

]
,

we can write

(FT c
∗FT c)

2 = n2


In · · · In Mn×v
...

. . .
...

...
In · · · In Mn×v
Nv×n · · · Nv×n Iv×v


2

= n2


(τ − 1)In + In,v · · · (τ − 1)In + In,v τMn×v

...
. . .

...
...

(τ − 1)cIn + In,v · · · (τ − 1)In + In,v τMn×v
τNv×n · · · τNv×n τIv×v

 , n2L.

Since FTFT
∗ + FT cFT c

∗ = DIn the risk is given as

E[‖θ − θ̂‖2] = crtr
(
Σ2r
T c
)

+
cr
n2

tr
(
(DIn − FT cFT c∗)FT cΣ2r

T cFT c
∗)

= crtr
(
Σ2r
T c
)

+
cr
n2

tr
((
DFT c

∗FT c − (FT c
∗FT c)

2
)
Σ2r
T c
)

= cr(1 + τ)tr
(
Σ2r
T c
)
− crtr

(
LΣ2r

T c
)

= cr(1 + τ)tr
(
Σ2r
T c
)
− crτtr

(
Σ2r
T c
)

+ cr

τ−1∑
k=1

p−1∑
j=0

t2rkn+j

= cr

D−1∑
j=p

t2rj + cr

τ−1∑
k=1

p−1∑
j=0

t2rkn+j =

∑D−1
j=p t

2r
j +

∑τ−1
k=1

∑p−1
j=0 t

2r
kn+j∑D−1

j=0 t
2r
j

.

Finally, we show that the “second descent” of the weighted min-norm estimator in the
overparameterized regime achieves a lower risk than in the underparameterized regime, pro-
vided q ≥ r ≥ 1. In other words, it is where “over- is better than under-parameterization”.
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Theorem 4.4. (Lowest risk) In the setting of Theorems 3.1 and 4.1, if q ≥ r ≥ 1, then
(a) In the underparameterized regime (p ≤ n), the risk is monotonically decreasing in p

and the lowest risk in this regime is risk∗under = 2cr
∑D−1

j=n t
2r
j .

(b) The lowest risk in the overparameterized regime (p > n) is strictly less than the lowest
possible risk in the underparameterized regime.

Remark 4.5. While the above theorem holds for any q satisfying q ≥ r ≥ 1, our experi-
ments suggest that q = r is an appropriate choice for any r ≥ 0, corresponding to the case
where the assumed smoothness q employed in the weighted optimization matches the true
underlying smoothness r. For a range of choices for r and q, the plots of the theoretical
extended risk curves (fixed n, varying p) can be found in the appendix.

Proof of Theorem 4.4. (a) We show that, for fixed n and r ≥ 1, the risk in the un-
derparameterized setting is monotonically decreasing in p. To this end, we set f(p) =∑D−1

j=p t
2r
j +

∑τ−1
k=1

∑p−1
j=0 t

2r
kn+j , where tj = (j + 1)−1. Let ∆(p) = f(p + 1) − f(p) be the

increment. Then ∆(p) = −t2rp +
∑τ−1

k=1 t
2r
kn+p. The goal is to show ∆(p) ≤ 0 for all p ∈ [n].

Since 2r > 1, by Lemma 3.7

∆(p) ≤ −(p+ 1)−2r +
1

n(2r − 1)
[(p+ 1)−2r+1 − (n(τ − 1) + p+ 1)−2r+1] =: ∆+(p).

Hence, it suffices to show that ∆+(p) ≤ 0 for p ∈ [n]. Its derivative w.r.t. p is

∆+′(p) = 2r(p+ 1)−2r−1 +
1

n
[(n(τ − 1) + p+ 1)−2r − (p+ 1)−2r]

= (p+ 1)−2r
(

2r(p+ 1)−1 − 1

n

)
+

1

n
(n(τ − 1) + p+ 1)−2r > 0

since 2nr > p + 1 and hence all the terms are positive. Because ∆+ is increasing, it suffices
to check if the end point, ∆+(n− 1), is non-positive in order to ensure ∆+ ≤ 0. Indeed,

∆+(n− 1) = −n−2r +
1

n(1− 2r)
[(nτ)1−2r − n1−2r] = −n−2r +

n−2r

2r − 1
[1− τ1−2r]

= −n−2r
(

1− 1

2r − 1

)
− n−2rτ1−2r

2r − 1
< 0

because 2r−1 > 1. Therefore, the lowest risk in the underparameterized regime is risk∗under =
2cr
∑D−1

j=n t
2r
j .

(b) Next, we consider two cases in the overparameterized regime: p = n and p = D.
When p = n (i.e., l = 1), the risk can be written as

riskq(p = n) = 1− cr
n−1∑
k=0

t2rk + cr

n−1∑
k=0

τ−1∑
ν=l

t2rk+nν = 1− cr
n−1∑
k=0

(
t2rk −

τ−1∑
ν=1

t2rk+nν

)
︸ ︷︷ ︸

=:bk

.
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When p = D (i.e., l = τ), we have Qq = 0 so that

riskq(p = D) = 1− cr
n−1∑
k=0

∑l−1
ν=0 t

2q+2r
k+nν∑l−1

ν=0 t
2q
k+nν

= 1− cr
n−1∑
k=0

∑τ−1
ν=0 t

2q+2r
k

t2qk +
∑τ−1

ν=1 t
2q
k+nν︸ ︷︷ ︸

=:dk

.

The quotient dk/bk satisfies

dk
bk

=
t2q+2r
k +

∑τ−1
ν=1 t

2q+2r
k+nν(

t2qk +
∑τ−1

ν=1 t
2q
k+nν

)(
t2qk −

∑τ−1
v=1 t

2q
k+nν

) =
t2q+2r
k +

∑τ−1
ν=1 t

2q+2r
k+nν

t4qk −
(∑τ−1

v=1 t
2q
k+nν

)2 .
If q ≥ r then dk/bk > 1. Hence, if τ > 1, then riskq(p = D) < riskq(p = n). In other words,
the lowest risk in the over- regime is strictly less than that in the underparameterized regime.

5. Experiments.
Discrete Fourier Models. In this experiment, we use Fourier series models F ∈ Cn×D, D =

1024, n = 64 with r-decaying multivariate Gaussian coefficients (r = 0.3, 0.5, 1.0). FT ∈ Cn×p
is the observation matrix with p < n in underparameterized regime; and p = ln, l = 1, 2, . . . , τ ,
in the overparameterized regime. The weighted min-norm estimator uses Σq, q ≥ 0 to define
the weighted `2-norm. The theoretical curves are the risks calculated according to Theorem
3.1 and 4.1. The empirical mean curves and the 80% confidence intervals (CI) are estimated
by 100 runs of independently sampled feature vectors θ.

Figure 2. Theoretical and empirical risks (‖θ− θ̂‖2) of plain and weighted min-norm estimators in log-log
scale. Left to right: r = q = 0.3, 0.5, 1.0.

Figure 2 shows that the empirical mean risks match the theoretical risks E[‖θ − θ̂‖2]
of Theorems 3.1 and 4.1 very accurately. Figure 2 validates that weighted optimization
results in better generalization in the overparameterized regime (Theorem 4.4), and shows
non-degenerated double descent curves when r = q = 0.5.

Function Interpolation. In this experiment, we interpolate the functions at n equispaced
points xj on [−1, 1]. The observed n samples are (xj , yj)

n
j=1, where yj = f(xj) with Fourier se-

ries f(x) =
∑∞

k=−∞ θk exp (πikx). We fit training samples to a hypothesis class of p-truncated

Fourier series: fθ̂(x) =
∑m

k=−m θ̂k exp (πikx) with p = 2m + 1 via least squares in underpa-
rameterized case; via plain and weighted min-norm estimator in overparameterized case with
Fθ = y, where F ∈ Cn×p with Fj,k = e2πijk/n. In the experiment, we use D = 1000, n = 15,
q = 1.5 for f1(x) and q = 2 for f2(x).
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Figure 3. Interpolation (in orange) of stage function and smooth function. Up: f1(x) = 1, ∀x ∈
[−1, 0); f1(x) = 1,∀x ∈ [0, 1]. Down: f2(x) = 2.5(x3 − x) with noise. From left to right: least square with
p = 1; least square with p < n; p = n; interpolation by weighted min-norm estimator (p > n); interpolation by
plain min-norm estimator (p > n).

Figure 3 presents the interpolation (in orange) using different estimators with the same
set of equispaced samples (dark green). The overparameterization with the plain min-norm
estimator is useless, while the weighted min-norm estimator has the best performance in both
noiseless and noise cases. It also shows the benefit of the weighted optimization’s regularization
towards smoother interpolants.

6. Discussion on Necessity of Randomness. In order to illustrate the necessity of ran-
domness, we provide an example of a nontrivial function f which has r-decaying Fourier
coefficients and vanishes at all the sample points xj in Figure 4. According to the algo-
rithm, the estimation of those signals will be identically zero, which is clearly incorrect.
The example is generated numerically by applying gradient descent to the loss function

L(φ) :=
∑n−1

j=0

∣∣∑D−1
k=0 (k + 1)−reiφke

2πijk
n

∣∣2. Once we find φ∗ such that L(φ∗) = 0, we set

f(x) =
∑D−1

k=0 (k + 1)−reiφkeikx, which vanished on all xj by construction.

Figure 4. In this example we see that requiring θk decaying at rate r is insufficient, because it is possible
that f vanishes on all the sample points, and hence impossible to recover. Here D = 100, n = 10, r = 0.6.

Besides the numerical experiment, we also prove the existence of such counterexamples.
For n = 1, finding φ∗s.t. L(φ∗) = 0 is reduced to constructing a D-polygon in R2 (equivalent
to C) with edges of length (k + 1)−r for k ∈ [D]. For r ≤ 1, since any edge is shorter
than the sum of other edges, i.e., (k′ + 1)−r <

∑
k∈[D]\{k′}(k + 1)−r, ∀k′ ∈ [D], such polygon

always exists, which can be proved by induction and triangle inequality. Thus, there exists a
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nontrivial function which has r-decaying Fourier coefficients and vanishes at the origin (x0).

7. Conclusion and Outlook. This paper answers an open question on how and when the
weighted minimal `2 norm trigonometric interpolation achieves low generalization error in the
overparameterized regime. From our non-asymptotic expressions for the risk, we quantify how
the bias towards smooth interpolations can be exploited to reduce the risk in the overparam-
eterized setting and show that this risk is strictly better than the lowest possible risk in the
underparameterized regime under certain conditions. In this way, our work also contributes to
the understanding of the “double descent” curve. Extending our theoretical results to general
bounded orthonormal systems and neural networks is an exciting direction for future research.
It is also interesting to choose random sampling points instead of equidistant sampling points.
First numerical experiments show similar behavior except around the pole p = n, where the
risk for random samples blows up. The theoretical investigation of the generalization error in
such context is left for future work.

Acknowledgments. R. Ward and Y. Xie were supported in part by AFOSR 2018 MURI
Award “Verifiable, Control-Oriented Learning On The Fly”. H.H Chou and H. Rauhut were
supported in part by the DAAD grant 57417829 ”Understanding stochastic gradient descent in
deep learning” and by the Excellence Initiative of the German federal and state governments.

Appendix A. Visualization of Theoretical Risks.

A.1. Heat Maps of Theoretical Risks. We show the heat maps of the theoretical risks of
weighted and plain min-norm estimators in Figure 5, which are calculated by Theorem 3.1 and
4.1. Here, we use Fourier series models with D = 1024, varying n, and q = r. The x-axis is r
of the r-decaying coefficients (from 0 to 2 with 0.1 as the step), the y-axis is p (where p < n in
the underparameterized regime and p = ln, l ∈ N+ in the overparameterized regime), and the
risks are in log scale. We can see the trends of the risks: the top three plots show that when
q = r > 1 the risk monotonically decreases as p increases in the underparameterized regime
and the lowest risk lies in the overparameterized regime; while the bottom three plots show
that after p > n, the risks of plain min-norm estimator (q = 0) increase suddenly and they are
higher (i.e., the light color block in each heat map) than the risks in then underparameterized
regime when r > 1. Hence, these plots also verify Theorem 4.4.

A.2. Theoretical Risks with varying r and q. Figure 6 shows the plots of the theo-
retical extended risk curves (fixed n) with a range of choices for r and q as mentioned in
Remark 4.5, from which we can see the trends and patterns of the risks. In this experiment,
we use Fourier series models with D = 1024, n = 8, 128 to 1024, p < n in the underpa-
rameterized regime and p = ln, l ∈ N+ in the overparameterized regime. We investigate on
r = 0, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0 and p with the same range but not necessarily equal to
r. The curves with q = 0 correspond to the risks of the plain min-norm estimator. Some
observations of the plots are as follows.

1. For varying n, the trends with the same r and q are similar along with different
transition points (p = n), except for the case r = 0 and n ≥ D/2 (as it states in
Remark 4.2, when n < D/2, the risk increases with p in the underparameterized
regime while for n ≥ D/2 it goes to the other direction.)
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Figure 5. Heat maps of theoretical risks of weighted (up) and plain min-norm (down) estimators of r-
decaying features. D = 1024, q = r, and n = 16, 64, 128. (Note the these heat maps on the right are not
corrupted: there are light color blocks since the risks of the plain min-norm estimators (i.e., q = 0 in Figure 6)
changes to around 1 after p > n, and the color bar is in log scale. This transition also occurs with the weighted
estimator, where the faint horizontal line takes place (p = n). It corresponds to a peak in risk, as in Figure 6.)

2. In the underparameterized regime, when r = 0 and n < D/2, the risk increases with
p until p = n. The phase transition from r = 0 to r ≥ 1 validates Theorem 4.4.

3. In the overparameterized regime, the risk of the plain min-norm estimator is almost
above the weighted min-norm estimator when r ≥ 0.5. Even if the weight matrix
does not match the covariance matrix exactly for r-decaying coefficients, the weighted
min-norm estimator usually achieves lower risks than the plain min-norm estimator.

4. As stated in the proof of Theorem 4.4, the plots also show that when q ≥ r, the risk
at p = D is strictly lower than that at p = n, and r ≥ 1 is a sufficient condition to
assure the monotonic decrease when p < n and the lowest risk in the over- is strictly
lower than that in the under-parameterized regime.
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