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Abstract

Functions of interest are often smooth and sparse in some sense, and both pri-
ors should be taken into account when interpolating sampled data. Classical linear
interpolation methods are effective under strong regularity assumptions, but cannot
incorporate nonlinear sparsity structure. At the same time, nonlinear methods such
as `1 minimization can reconstruct sparse functions from very few samples, but do
not necessarily encourage smoothness. Here we show that weighted `1 minimization
effectively merges the two approaches, promoting both sparsity and smoothness in
reconstruction. More precisely, we provide specific choices of weights in the `1 ob-
jective to achieve rates for functions with coefficient sequences in weighted `p spaces,
p ≤ 1. We consider the implications of these results for spherical harmonic and poly-
nomial interpolation, in the univariate and multivariate setting. Along the way, we
extend concepts from compressive sensing such as the restricted isometry property and
null space property to accommodate weighted sparse expansions; these developments
should be of independent interest in the study of structured sparse approximations and
continuous-time compressive sensing problems.

Key words: bounded orthonormal systems, compressive sensing, interpolation, weighted
sparsity, `1 minimization
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1 Introduction

This paper aims to merge classical smoothness-based methods for function interpolation
with modern sparsity constraints and nonlinear reconstruction methods. We will focus on
the classical interpolation problem, where given sampling points and associated function
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values, we wish to find a function agreeing with the data which is suitably well-behaved.
Classically, well-behavedness has been measured in terms of smoothness: the more deriva-
tives a function has, the stronger the reconstruction rate obtained using linear methods.
More recently, areas such as compressive sensing have focused on sparsity rather than
smoothness as a measure of complexity. Results in compressive sensing imply that a func-
tion with sparse representation in a known basis can be reconstructed from a small number
of suitably randomly distributed sampling points, and reconstructed using nonlinear tech-
niques such as convex optimization or greedy methods. In reality, functions of interest
may only be somewhat smooth and somewhat sparse. This is particularly apparent in
high-dimensional problems, where sparse and low-degree tensor product expansions are of-
ten preferred according to the sparsity-of-effects principle, which states that most models
are principally governed by main effects and low order interactions. We might hope to com-
bine classical smoothness-based approaches with the nonlinear sparsity-based approaches
to arrive at better interpolation methods for such functions.

Recall that the smoothness of a function tends to be reflected in the rapid decay of
its Fourier series, and vice versa. Smoothness can then be viewed as a structured sparsity
constraint, with low-order Fourier basis functions being more likely to contribute to the
best s-term approximation. We will show that structured sparse expansions are imposed
by weighted `p coefficient spaces in the range 0 < p ≤ 1. Accordingly, we will use weighted
`1 minimization, a convex surrogate for weighted `p minimization with p < 1, as our
reconstruction method of choice.

The contributions of this paper are as follows.

1. We provide the first rigorous analysis for function interpolation using weighted `1
minimization. We show that with the appropriate choice of weights, one obtains ap-
proximation rates for functions with coefficient sequences lying in weighted `p spaces
with 0 < p ≤ 1. In the high-dimensional setting, our rates are better than those
possible by classical linear interpolation methods, and require only mild smoothness
assumptions. Indeed, the number of sampling points required by weighted `1 mini-
mization to achieve a desired rate grows only linearly with the ambient dimension,
rather than exponentially. We illustrate the power of our results through several
specific examples, including spherical harmonic interpolation and tensorized Cheby-
shev and Legendre polynomial interpolation, and show how we are able to improve
on previous estimates for unweighted `1 minimization for such problems. We expect
that the results for polynomial interpolation should have applications in uncertainty
quantification [25] and, in particular, in the computation of generalized polynomial
chaos expansions [13, 14].
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Figure 1: Illustration of the effectiveness of weighted `1 minimization for function inter-
polation. All approximations were obtained from the same set of m = 30 sampling points
chosen i.i.d. from the Chebyshev distribution on [−1, 1].

2. We show through numerical experiments that weighted `1 minimization tends to pro-
duce more accurate approximations which are less sensitive to the choice of interpola-
tion points, compared to more classical reconstruction methods like least squares and
weighted `2 minimization. As such, reconstructions using weighted `1 minimization
appear to be more robust to Runge’s phenomenon, or the tendency of high-degree
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polynomial interpolants to oscillate near the edges of their domain. To illustrate these
effects, Figure 1 plots several Legendre polynomial interpolations of the function

f1(x) =
1

1 + 25x2
,

which was originally considered by Runge [34] to illustrate the instability of poly-
nomial interpolation. Among all interpolation methods, we find that weighted `1
minimization results in smaller residual error. More details and extensive numerical
experiments can be found in Section 2.3.

3. In order to derive stability and robustness recovery guarantees for weighted `1 min-
imization, we generalize the notion of restricted isometry property in compressive
sensing to weighted restricted isometry property, and also develop notions of weighted
sparsity which take into account prior information on the likelihood that any par-
ticular index contributes to the sparse expansion. These developments should be
of independent interest as tools that can be used more generally for the analysis of
structured sparsity models and continuous-time sparse approximation problems.

We will assume throughout that the sampling points for interpolation are drawn from
a suitable probability distribution, and we focus only on the setting where interpolation
points are chosen in advance, independent of the target function.

1.1 Organization

The remainder of the paper is organized as follows. In Sections 1.2 and 1.3, we introduce
weighted `p spaces and discuss how they promote smoothness and sparsity. In Section 1.4
we state two of the main interpolation results, and in Section 1.5 we introduce the concept
of weighted restricted isometry property for a linear map. Section 1.6 discusses previous
work on weighted `1 minimization, and in Section 1.7 we compare our main results to those
possible with linear reconstruction methods. In Section 2 we discuss the implications of our
main results for spherical harmonic and tensorized polynomial bases, and provide several
numerical illustrations. We further analyze concepts pertaining to weighted sparsity in
Section 3, and in Section 4 we elaborate on the weighted restricted isometry property and
weighted null space property. In Section 5 we show that matrices arising from orthonormal
systems have the weighted restricted isometry property as long as the weights are matched
to the L∞ norms of the function system, and we finish in Section 6 by presenting our main
results on interpolation via weighted `1 minimization.

1.2 Preliminaries on weighted sparsity

We will work with coefficient sequences x indexed by a set Λ which may be finite or
countably infinite. We will associate to a vector ω = (ωj)j∈Λ of weights ωj ≥ 1 the
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weighted `p spaces,

`ω,p :=

x = (xj)j∈Λ, ‖x‖ω,p :=
(∑
j∈Λ

ω2−p
j |xj |p

)1/p
<∞

 , 0 < p ≤ 2. (1)

Also central to our analysis will be the weighted `0-“norm”,

‖x‖ω,0 =
∑

{j:xj 6=0}

ω2
j ,

which counts the squared weights of non-zero entries of x. We also define the weighted
cardinality of a set S to be ω(S) :=

∑
j∈S ω

2
j . Since ωj ≥ 1 by assumption, we always

have ω(S) ≥ |S|, the cardinality of S. When ω ≡ 1, these weighted norms reproduce the
standard `p norms, in which case we use the standard `p-notation ‖ · ‖p. The exponent
2 − p in the definition of the spaces `ω,p is somewhat uncommon but turns out to be the
most convenient definition for our purposes. For x ∈ `ω,p and for a subset S of the index
set Λ, we define xS ∈ `ω,p as the restriction of x to S.

For s ≥ 1, the error of best weighted s-term approximation of the vector x ∈ `ω,p is
defined as

σs(x)ω,p = inf
z:‖z‖ω,0≤s

‖x− z‖ω,p. (2)

Unlike unweighted best s-term approximations, weighted approximations of vectors are
not straightforward to compute in general. Nevertheless, we will show in Section 3 how
to approximate σs(x)ω,p using a quantity that can easily computed from x by sorting and
thresholding.

1.3 Weighted `p spaces for smoothness and sparsity

The weighted `p coefficient spaces introduced in the previous section can be used to de-
fine weighted function spaces. Let ψj : D → C, j ∈ Λ, be a sequence of functions on
some domain D indexed by the set Λ. For a probability measure ν on D we assume the
orthonormality condition ∫

D
ψj(t)ψk(t)dν(t) = δj,k for all j, k.

We will call ν the orthogonalization measure associated to the system (ψj)j∈Λ. The function
spaces we consider are the weighted quasi-normed spaces,

Sω,p :=

f(t) =
∑
j∈Λ

xjψj(t), t ∈ D, |||f |||ω,p := ‖x‖ω,p <∞

 , 0 < p ≤ 1,
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again with ωj ≥ 1 implicitly assumed. The best s-term approximation to f ∈ Sω,p is the
function

fS =
∑
j∈S

xjψj , (3)

where S ⊂ Λ is the set realizing the weighted best s-term approximation of x, and the best
weighted s-term approximation error is

σs(f)ω,p = σs(x)ω,p. (4)

The following Stechkin-type estimate, described in more detail in Section 3, can be used to
bound the best s-term approximation of a vector by an appropriate weighted vector norm:

σs(x)ω,q ≤
(
s− ‖ω‖2∞

)1/q−1/p‖x‖ω,p, p < q ≤ 2, ‖ω‖2∞ < s. (5)

This estimate illustrates how small `p−norm for p < 1 supports small sparse approximation
error. Conditions of the form ‖ω‖2∞ < s are somewhat natural in the context of weighted
sparse approximations, as those indices with weights ω2

j > s cannot possibly contribute to
best weighted s-term approximations. Without loss of generality, we will usually replace a
countably-infinite set Λ by the finite subset Λ0 ⊂ Λ corresponding to indices with weights
ω2
j < s (or, for technical reasons, ω2

j ≤ s/2), if such a finite set exists.

1.4 Interpolation via weighted `1 minimization

In treating the interpolation problem, we first assume that the index set Λ is finite with
N = |Λ|. Given sampling points t1, . . . , tm ∈ D and f =

∑
j∈Λ xjψj we can write the vector

of sample values y = (f(t`))`=1,...,m succinctly in matrix form as y = Ax, where A is the
sampling matrix with entries

A`,j = ψj(t`), ` = 1, . . . ,m, j ∈ Λ.

Better sets of interpolation points are usually associated with better condition number
for the sampling matrix A. In our theorems, the sampling points are drawn indepen-
dently from the orthogonalization measure ν associated to the orthonormal system (ψj);
as a consequence, the random matrix AA∗, properly normalized, is the identity matrix in
expectation.

We will consider the setting where the number of samples m is smaller than the ambient
dimension N , in which case there are infinitely many functions g ∈ Sω,p which interpolate
the given data. From within this infinite set, we would like to pick out the function of
minimal quasi-norm |||g |||ω,p. However, this minimization problem only becomes tractable
once p = 1 whence the quasi-norm becomes a norm. As a convex relaxation to the weighted
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quasi-norm p < 1, we consider for interpolation the function f ](t) =
∑

j∈Λ x
]
jψj(t) whose

coefficient vector x] is the solution of the weighted `1 minimization program

min ‖z‖ω,1 subject to Az = y

The equality constraint in the `1 minimization ensures that the function f ] interpolates f
at the points t`, that is, f ](t`) = f(t`), ` = 1, . . . ,m. Let us give the following result on
interpolation via weighted `1 minimization with respect to ‖ · ‖ω,1.

Theorem 1.1. Suppose (ψj)j∈Λ is an orthonormal system of finite size |Λ| = N , and
consider weights ωj ≥ ‖ψj‖∞. For s ≥ 2‖ω‖2∞, fix a number of samples

m ≥ c0s log3(s) log(N), (6)

and suppose that t`, ` = 1, . . . ,m, are sampling points drawn i.i.d. from the orthogonaliza-
tion measure associated to (ψj)j∈Λ. With probability exceeding 1−N− log3(s), the following
holds for all functions f =

∑
j∈Λ xjψj: given samples y` = f(t`), ` = 1, . . . ,m, let x] be

the solution of
min ‖z‖ω,1 subject to Az = y

and set f ](t) =
∑

j∈Λ x
]
jψj(t). Then the following error rates are satisfied:

‖f − f ]‖L∞ ≤ |||f − f ] |||ω,1 ≤ c1σs(f)ω,1,

‖f − f ]‖L2 ≤ d1σs(f)ω,1/
√
s.

Here σs(f)ω,1 is the best s-term approximation error of f defined in (4). The constants
c0,c1, and d1 are universal, independent of everything else.

This interpolation theorem is nonstandard in two respects: the number of samples m
required to achieve a prescribed rate scales only logarithmically with the size of the system,
and the error guarantees are given by best s-term approximations in weighted coefficient
norms.

The constraint on the weights ωj ≥ ‖ψj‖∞ allows us to bound the L∞ norm by the
weighted `1 coefficient norm: for a function f ∈ Sω,p,

‖f‖L∞ = sup
t∈D

∣∣∣∣∣
∞∑

n=−∞
xnψn(t)

∣∣∣∣∣ ≤ sup
t∈D

∞∑
n=−∞

|xn||ψn(t)| ≤
∞∑

n=−∞
|xn|ωn = |||f ||| 1,

and so if f0 =
∑

j∈S xjψj with |S| = s is the best s-term approximation to f in the L∞
norm, then by the Stechkin-type estimate (5) with q = 1 we have

‖f − f0‖L∞ ≤ |||f − f0 ||| 1 ≤ (s− ‖ω‖2∞)1−1/p |||f |||ω,p, p < 1.
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By choosing weights so that ωj ≥ ‖ψj‖L∞ + ‖ψ′j‖L∞ , one may also arrive at bounds of the
form ‖f‖L∞+‖f ′‖L∞ ≤ |||f ||| 1, reflecting how steeper weights encourage more smoothness.
We do not pursue such a direction in this paper, but this should be interesting for future
research.

In Section 6 we will prove a more general version of Theorem 1.1 showing robustness
of weighted `1 minimization to noisy samples,

y = Ax+ ξ.

Using this robustness to noise, we will be able to treat the case where the index set Λ is
countably infinite, by regarding the values f(t`), ` = 1, . . . ,m, as noisy samples of a finite-
dimensional approximation to f . For example, this will allow us to show the following
result.

Theorem 1.2. Suppose (ψj)j∈Λ is an orthonormal system, consider weights ωj ≥ ‖ψj‖∞,
and for a parameter s ≥ 1, let N = |Λ0| where Λ0 = {j : ω2

j ≤ s/2}. Consider a number of
samples

m ≥ c0s log3(s) log(N).

Consider a fixed function f =
∑

j∈Λ xjψj with |||f |||ω,1 < ∞. Draw sampling points t`,
` = 1, . . . ,m, independently from the orthogonalization measure associated to (ψj)j∈Λ. Let
A ∈ Cm×N be the sampling matrix with entries A`,j = ψj(t`). Let η > 0 and ε ≥ 0 be such
that η ≤ |||f − fΛ0 |||ω,1 ≤ η(1 + ε). From samples y` = f(t`), ` = 1, . . . ,m, let x] be the
solution of

min ‖z‖ω,1 subject to ‖Az − y‖2 ≤ (m/s)1/2η

and set f ](t) =
∑

j∈Λ0
x]jψj(t). Then with probability exceeding 1−N− log3(s),

‖f − f ]‖L∞ ≤ |||f − f ] |||ω,1 ≤ c1σs(f)ω,1,

‖f − f ]‖L2 ≤ d1σs(f)ω,1/
√
s.

Above, c0 is an absolute constant and c1, d1 are constants which depend only on the distor-
tion ε.

Several remarks should be made about Theorem 1.2.

1. The minimization problem in Theorem 1.2 requires knowledge of, or at least an
estimate of, the tail bound |||f − fΛ0 |||ω,1. It might be possible to avoid this using
greedy or iterative methods, but this remains to be investigated. In subsequent
corollaries of this result, we will assume exact knowledge of the tail bound, η =
|||f − fΛ0 |||ω,1, for simplicity of presentation.

2. If the size N of Λ0 is polynomial in s, then the number of samples reduces to m ≥
Cs log4(s) to achieve reconstruction with probability > 1− s− log3(s).
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1.5 Weighted restricted isometry property

One of the main tools we use in the proofs of Theorems 1.1 and 1.2 is the weighted restricted
isometry property (ω-RIP) for a linear map A : CN → Cm, which generalizes the concept
of restricted isometry property in compressive sensing.

Definition 1.3 (ω-RIP constants). For A ∈ Cm×N , s ≥ 1, and weight ω, the ω-RIP
constant δω,s associated to A is the smallest number for which

(1− δω,s)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δω,s)‖x‖22 (7)

for all x ∈ CN with ‖x‖ω,0 =
∑

j∈supp(x) ω
2
j ≤ s.

For weights ω ≡ 1, the ω-RIP reduces to the standard RIP, as introduced in [7, 6]. For
general weights ωj ≥ 1, the ω-RIP is a weaker assumption for a matrix than the standard
RIP, as it requires the map to act as a near-isometry on a smaller set.

Example 1.4. If the weights grow like ωj = jα/2 with α > 0, then without loss we may
take N = s1/α, as even single indices j > N have weighted cardinality exceeding s. One
also calculates that if ‖x‖ω,0 ≤ s, then x is supported on an index set of cardinality at
most α1/αs1/(α+1). Following the approach of [1], see also [2, 3], taking a union bound
and applying covering arguments, one may argue that an m×N i.i.d. subgaussian random
matrix has the ω-RIP with high probability once

m = O
(
α1/α−1s1/(α+1) log s

)
.

This is a smaller number of measurements than the m = O
(
s log(N/s)

)
lower bound

required for the unweighted RIP. This observation should be of independent interest, but
we focus in this paper on random matrices formed by sampling orthonormal systems.

1.6 Related work on weighted `1 minimization

Weighted `1 minimization has been analyzed previously in the compressive sensing litera-
ture. Weighted `1 minimization with weights ωj ∈ {0, 1} was introduced independently in
the papers [20, 37, 36] and extended further in [19]. The paper [18] seems to be the first
to provide conditions under which weighted `1 minimization is stable and robust under
weaker sufficient conditions than the analogous conditions for standard `1 minimization
for general weights. Improved sufficient conditions were recently provided for this setting
in [39]. The analysis in all of these works is based on the standard restricted isometry
property and does not directly extend to the setting of function interpolation.

Weighted `1 minimization has also been considered under probabilistic models. In [38],
the vector indices are partitioned into two sets, and indices on each set have different prob-
abilities p1, p2 of being nonzero; the weights are partitioned into two ω1, ω2 accordingly.
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The papers [20, 21] provide further analysis in this setting where the entries of the unknown
vector fall into two or more sets, each with a different probability of being nonzero. Finally,
the paper [28] considers a full Bayesian model, where certain probabilities are associated
with each component of the signal in such a way that the probabilities vary in a “contin-
uous” manner across the indices. All of these works take a Grassmann angle approach,
and the analysis is thus restricted to the setting of Gaussian matrices and to the noiseless
setting.

1.7 Comparison with classical interpolation results

Although weighted `1 minimization was recently investigated empirically in [15] for multi-
variate polynomial interpolation in the context of polynomial chaos expansions, weighted
`p spaces, for 0 < p ≤ 1, are nonstandard in the interpolation literature. More standard
spaces are the weighted `2 spaces (see e.g. [24, 29]) such as

Sω :=

f =
∑
j∈Λ

xjφj , ‖f‖2ω :=
∑
j∈Λ

ωj |xj |2 <∞

 . (8)

where (φj) is the tensorized Fourier basis on the torus Td. For the choice of weights
ωj = (1 + ‖j‖22)r, these spaces coincide with the Sobolev spaces W r,2(Td) of functions
with r derivatives in L2(Td). Optimal interpolation rates for these Sobolev spaces are
obtained using smooth and localized kernels (as opposed to polynomials). For example,
from equispaced points on the d-dimensional torus with mesh size h > 0, [29] derives error
estimates of the form

‖f − f#‖∞ = O(hr−d/2)‖f‖ω.

Writing out this error rate in terms of the number of samples m = (1/h)d, this is

‖f − f#‖∞ ≤ O(m1/2−r/d)‖f‖ω.

In contrast, Theorem 6.4 implies that weighted `1 minimization gives the rate

‖f − f#‖∞ ≤ O
(

m

log4(m)

)1−1/p

|||f |||ω,p.

A striking distinction between the two bounds is their behavior in high dimensions d: while
the Sobolev bound deteriorates exponentially with increasing dimension, the weighted `1
minimization bound is essentially independent of the dimension. Asymptotically in the
number of samples m, the rate provided in this paper is better when

p <
1

r
d + 1

2

,
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(a) sin(θ) dθdϕ (b) dθdϕ (c) | tan(θ)|1/3 dθdϕ

Figure 2: An illustration of i.i.d. samples from various spherical measures. (π, ϕ) ∈
[0, π) × [0, 2π]. The distribution (c) is the most incoherent with respect to the spherical
harmonic basis.

where we recall that r is the highest order of differentiability and d is the ambient dimension.
While we made this comparison in the setting of interpolation on the d-dimensional torus,
a similar comparison between classical results and the bounds provided in this paper could
be made for interpolation on the sphere or the d-dimensional cube. In all settings, the
interpolation theorems in this paper improve on smoothness-based bounds in the regime
of high dimensions / mild smoothness.

2 Case studies

In this section we consider several examples and demonstrate how Theorem 1.2 gives rise
to various sampling theorems for polynomial and spherical harmonic interpolation. One
could derive similar results in weighted `p spaces using Theorem 6.4.

2.1 Spherical harmonic interpolation

The spherical harmonics Y k
` form an orthonormal system for square-integrable functions

on the sphere S2 = {x ∈ R3 : ‖x‖2 = 1}, and serve as a higher-dimensional analog
of the univariate trigonometric basis. They are orthogonal with respect to the uniform
spherical measure. In spherical coordinates (ϕ, θ) ∈ [0, 2π)× [0, π), (x = cos(ϕ) sin(θ), y =
sin(ϕ) sin(θ), z = cos(θ)) for (x, y, z) ∈ S2, the orthogonality reads∫ 2π

0

∫ π

0
Y k
` (ϕ, θ)Ȳ k′

`′ (ϕ, θ) sin(θ)dθdϕ = δ``′,kk′ , k, ` ∈ Z, |k| ≤ `. (9)

The spherical harmonics are bounded according to ‖Y k
` ‖L∞ ≤ `1/2, and this bound is

realized at the poles of the sphere, θ = 0, π. As shown in [32, 5], one can precondition
the spherical harmonics to transform them into a system with smaller uniform bound,
orthonormal with respect to a different measure. For example, the preconditioned function
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system
Zk` (ϕ, θ) = sin(θ)1/2Y k

` (ϕ, θ),

normalized by the proper constant, is orthonormal on the sphere with respect to the mea-
sure dµ = dθdϕ by virtue of (9). The Zk` are more uniformly bounded than the spherical
harmonics Y k

` ; as noted in [23],

‖Zk` ‖L∞ ≤ C`1/4

for a universal constant C. A sharper preconditioning estimate was shown in [5] for the
system

Z̃k` (ϕ, θ) := (sin2(θ) cos(θ))1/6Y k
` (ϕ, θ). (10)

Normalized properly, this system is orthonormal on the sphere with respect to the measure
dν = | tan(θ)|1/3dθdϕ, which is nonstandard and illustrated in Figure 2. This system obeys
the uniform bound

‖Z̃k` ‖∞ ≤ C`1/6, (11)

with C a universal constant.
We consider implications of Theorem 1.2 for interpolation with spherical harmonic

expansions. We state a result in the setting where sampling points are drawn from the
measure | tan(θ)|1/3dθdϕ, but similar results (albeit with steeper weights) can be obtained
for sampling from the measures dθdϕ and sin(θ) dθdϕ.

Corollary 2.1 (Interpolation with spherical harmonics). Consider the preconditioned spher-
ical harmonics Z̃k` , |k| ≤ `, and associated orthogonalization measure dν = | tan(θ)|1/3dθdϕ.
Fix weights ω`,k = C`1/6 and index set Λ0 = {(`, k) : |k| ≤ ` ≤ s3} of size N = s6, and fix
a number of samples

m ≥ c0s log4(s).

Consider a fixed function f(ϕ, θ) =
∑

`,k x`,kZ̃
k
` (ϕ, θ) ∈ Sω,1 and let η = |||f − fΛ0 |||ω,1.

Draw (ϕj , θj), j = 1, . . . ,m, i.i.d. from dν, and consider sample values yj = f(ϕj , θj), j =

1, . . . ,m. Then with probability exceeding 1−N− log3(s), the function f ] =
∑

(`,k)∈Λ0
x]`,kZ̃

k
`

formed from the solution x] of the weighted `1 minimization program

min
u`,k

∑
`,k∈Λ0

ω`,k|u`,k| subject to
m∑
j=1

( ∑
`,k∈Λ0

u`,kZ̃
k
` (ϕj , θj)− yj

)2
≤ (m/s)η2

satisfies the error bounds

‖f − f ]‖∞ ≤ |||f − f ] |||ω,1 ≤ c1σs(f)ω,1,

‖f − f ]‖L2 ≤ c2σs(f)ω,1/
√
s.
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It is informative to compare these results with previously available bounds for un-
weighted `1 minimization. Using the same sampling distribution dν = | tan(θ)|1/3dθdϕ and
number of basis elements N = s6, existing bounds for unweighted `1 minimization (see [5])
require a number of samples

m ≥ cN1/6s log4(s)= cs2 log4(s)

to achieve an error estimate of the form ‖f −f ]‖L∞ ≤
√
sσs(f)1 (see [32] for more details).

That is, more measurements m are required to achieve a weaker reconstruction rate. How-
ever, stronger assumptions on f are required in the sense that the result above requires the
weighted best s-term approximation error to be small while the bound from [32] works with
the unweighted best s-term approximation error. Expressed differently, our result requires
more smoothness which is in line with the general philosophy of this paper.

2.2 Tensorized polynomial interpolation

The tensorized trigonometric polynomials on D = Td are given by

ψk(t) = ψk1(t1)ψk2(t2) . . . ψkd(td), k ∈ Zd,

with ψj(t) = e2πijt. These functions are orthonormal with respect to the tensorized uniform
measure. Because this system is uniformly bounded, Theorem 1.2 applies with constant
weights ωj ≡ 1. Nevertheless, higher weights promote smoother reconstructions.

Other tensorized polynomial bases of interests are not uniformly bounded, but we
can get reconstruction guarantees by considering weighted `1 minimization with properly
chosen weights.

2.2.1 Chebyshev polynomials

Consider the tensorized Chebyshev polynomials on D = [−1, 1]d:

Ck(t) = Ck1(t1)Ck2(t2) . . . Ckd(td), k ∈ Nd, (12)

where Ck(t) =
√

2 cos
(
(k − 1) arccos(t)

)
. The Chebyshev polynomials form a basis for

the real algebraic polynomials on D, and are orthonormal with respect to the tensorized
Chebyshev measure

dµ =
dt

(2π)dΠd
j=1(1− t2j )1/2

. (13)

The tensorized Chebyshev polynomials are not uniformly bounded; since ‖Ck‖∞ = 21/2 we

have ‖Ck‖∞ = 2
‖k‖0

2 . This motivates us to apply Theorem 1.2 with weights

ωk=
d∏
`=1

(k` + 1)1/2, (14)
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noting that ‖Ck‖∞ ≤ ωk. (More generally, one could also work with weights of the form

ωk = 2
‖k‖0

2 vk, where vk tends to infinity as ‖k‖2 → ∞.) Such weights encourage both
sparse and low order tensor products of Chebyshev polynomials. The subset of indices

Hd
s = {k ∈ Nd0, ω2

k ≤ s} =

{
k ∈ Nd0,

d∏
`=1

(k` + 1) ≤ s

}

forms a hyperbolic cross. As argued in [12], the size of a hyperbolic cross can be bounded
according to

|Hd
s | ≤ Csmin{log(s)d−1, dlog(s)}.

Corollary 2.2. Consider the tensorized Chebyshev polynomial basis (Ck) for [−1, 1]d,
and weights ωk as in (14). Let Λ0 = {k ∈ Nd0 : ω2

k ≤ s/2}, and let N = |Λ0| ≤
C(smin{log(s)d−1, dlog(s)}). Fix a number of samples

m ≥ c0s log3(s) log(N). (15)

Consider a function f =
∑

k∈Λ xkCk, and sampling points t`, ` = 1, . . . ,m drawn i.i.d.
from the tensorized Chebyshev measure on [−1, 1]d. Let A ∈ Cm×N be the sampling matrix
with entries A`,j = ψj(t`). From samples y` = f(t`), ` = 1, . . . ,m, let x] be the solution of

min ‖z‖ω,1 subject to ‖Az − y‖2 ≤
√
m/s |||f − fΛ0 |||ω,1

and set f ](t) =
∑

k∈Λ0
xk

]Ck(t). Then with probability exceeding 1−N− log3(s),

‖f − f ]‖L∞ ≤ |||f − f ] |||ω,1 ≤ c1σs(f)ω,1,

‖f − f ]‖L2 ≤ d1σs(f)ω,1/
√
s.

Above, c0, c1, and d1 are universal constants.

Note that with the stated estimate of N , m satisfies (15) once

m ≥ c0 log(d)s log4(s).

This means that the required number of samples m above grows only logarithmically with
the ambient dimension d as opposed to exponentially, as required for classical interpolation
bounds using linear reconstruction methods.

2.2.2 Legendre polynomials

Consider now the tensorized Legendre polynomials on D = [−1, 1]d:

Lk(t) = Lk1(t1)Lk2(t2) . . . Lkd(td), k ∈ Nd, (16)

14



where Lk is the univariate orthonormal Legendre polynomial of degree k. The Legendre
polynomials form a basis for the real algebraic polynomials on D, and are orthonormal
with respect to the tensorized uniform measure on D. Since ‖Lk‖∞ ≤

√
k we have

‖Lk‖∞ ≤
d∏
`=1

(k` + 1)1/2, (17)

and we may apply Theorem 1.2 with hyperbolic cross weights ωk =
∏d
`=1(k` + 1)1/2 as in

Corollary 2.2. In doing so, we arrive at the following result.

Corollary 2.3. Consider the tensorized Legendre polynomial basis and weights ωk as in
(14) and with Λ0, N , and m as in Corollary 2.2. Consider a function f =

∑
k∈Λ xkLk,

and suppose that t`, ` = 1, . . . ,m, are drawn i.i.d. from the tensorized uniform measure
on [−1, 1]d. Let A ∈ Cm×N be the associated sampling matrix with entries A`,j = ψj(t`).
From samples y` = f(t`), ` = 1, . . . ,m, let x] be the solution of

min ‖z‖ω,1 subject to ‖Az − y‖2 ≤
√
m/s |||f − fΛ0 |||ω,1

and set f ](t) =
∑

k∈Λ0
x]kLk(t). Then with probability exceeding 1−N− log3(s),

‖f − f ]‖L∞ ≤ |||f − f ] |||ω,1 ≤ c1σs(f)ω,1,

‖f − f ]‖L2 ≤ d1σs(f)ω,1/
√
s. (18)

Above, c0, c1, and d1 are universal constants.

Although the univariate orthonormal Legendre polynomials are not uniformly bounded
on [−1, 1], they can be transformed into a bounded orthonormal system by considering the
weight

v(t) = (π/2)1/2(1− t2)1/4, t ∈ [−1, 1],

and recalling Theorem 7.3.3 from [35] which states that, for all j ≥ 1,

sup
t∈[−1,1]

v(t)|Lj(t)| ≤
√

2 + 1/j ≤
√

3. (19)

Then the preconditioned system Qj(t) = v(t)Lj(t) is orthonormal with respect to the
Chebyshev measure, and is uniformly bounded on [−1, 1] with constant K =

√
3. A

statement similar to Corollary 2.2 can also be applied to tensorized preconditioned Legendre
polynomials, if sampling points are chosen from the tensorized Chebyshev measure. For
further details, we refer the reader to [31].
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2.3 Numerical illustrations

2.3.1 Polynomial interpolation

Polynomial interpolation usually refers to fitting the unique trigonometric or algebraic
polynomial of degree m − 1 through a given set of data of size m. When m is large, this
problem becomes ill-conditioned, as illustrated for example by Runge’s phenomenon, or the
tendency of high-degree polynomial interpolants to oscillate at the edges of an interval (the
analogous phenomenon for trigonometric polynomial interpolation is Gibb’s phenomenon
[16]). While Runge’s phenomenon can be significantly minimized by carefully choosing
interpolation nodes – Chebyshev nodes for algebraic polynomial interpolation or equispaced
nodes for trigonometric interpolation – the effects cannot be completely eliminated. Two
methods known to reduce the effects of Runge’s phenomenon are the method of least
squares, where one foregoes exact interpolation for a least squares projection of the data
onto a polynomial of lower degree [11], or by doing weighted `2 regularization [24], e.g. use

for interpolation the function f ](t) =
∑

j∈Λ x
]
jψj(t) where the coefficient vector x] solves

the minimization problem

min
∑
j∈Λ

ω2
j z

2
j subject to Az = y

where A is the sampling matrix as in (1.4).
In this section we provide numerical evidence that weighted `1 regularization can sig-

nificantly outperform unweighted `1 minimization, least squares projections, and weighted
`2 regularization in reducing the effect of oscillatory artifacts in polynomial interpolation,
and more generally provides more accurate reconstructions which are less sensitive to per-
turbations in the choice of sampling points.

For our numerical experiments, we follow the examples in [11] and consider on [−1, 1]
the smooth function

f1(x) =
1

1 + 25x2
,

which was originally considered by Runge [34] to illustrate the instability of polynomial
interpolation at equispaced points. We also consider the non-smooth function

f2(x) = |x|.

For f1 and f2, we repeat the following experiment 100 times: draw m = 25 sampling
points x1, x2, . . . , xm, i.i.d. from a measure µ on D = [−1, 1] and compute the noise-free
observations yk = f(xk): we will use the uniform measure for real trigonometric polyno-
mial interpolation and the Chebyshev measure for Legendre polynomial interpolation. We
then compare the least squares approximation, unweighted `1 approximation, weighted `2
approximations with weights ωj = j and ωj = j1/2, and weighted `1 approximations with
weights ωj = j and weights ωj = j1/2. In figures 3-6 we display the interpolations resulting
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from all 100 experiments, overlaid so as to illustrate the sensitivity of each interpolation
method to the choice of sampling points. In all experiments, we fix in the `1 and `2 mini-
mization a maximal polynomial degree N = 100. For the least squares solution to be stable
[11], we project onto the span of the first d = 50 basis elements. In all experiments, we
observe that the weighted `1 interpolants are more accurate and more robust with respect
to the choice of sampling points.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2
Residual error

−1 −0.5 0 0.5 1
0

0.5

1

1.5
Original function

(a) Original function

(b) Least squares (c) Weighted `2, ωj = j1/2 (d) Weighted `2, ωj = j

(e) Unweighted `1 (f) Weighted `1, ωj = j1/2 (g) Weighted `1, ωj = j

Figure 3: Overlaid interpolations of the function f1(x) = 1
1+25x2

by real trigonometric
polynomials using various reconstruction methods.

2.3.2 Spherical harmonic interpolation

We now numerically compare the performance of weighted `1 minimization with various
weights in reconstructing functions on the sphere using spherical harmonic interpolations
(see also the theoretical results in Section 2.1).

We consider the smooth function

f1(θ, ϕ) =
1

|θ|2 + .1
, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π
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(a) Least squares (b) Weighted `2, ωj = j1/2 (c) Weighted `2, ωj = j

(d) Unweighted `1 (e) Weighted `1, ωj = j1/2 (f) Weighted `1, ωj = j

Figure 4: Overlaid interpolations of the function f1(x) = 1
1+25x2

by Legendre polynomials
using various reconstruction methods.

which has a localized maximum at the north pole, and the function

f2(θ, ϕ) =
1

|θ − π/2|+ π/6
,

which has a ring of maxima around the equator.
In the following experiments we use for interpolation m = 30 sampling points (θj , ϕj)

i.i.d. with respect to the spherical tangent measure dν = | tan(θ)|1/3dθdϕ. We compare the
performance of unweighted `1 minimization with weighted `1 minimization using weights
ωk,` = `1/6 as described in Theorem 2.1, and weights ωk,` = `1/2. In all experiments, we
restrict in the `1 minimization program to the first N = 152 = 225 spherical harmonics per
the usual ordering.

Figure 7 illustrates the approximations resulting from a representative randomized sam-
pling of points. We find that weighted `1 minimization using larger weights tends to give
the most accurate reconstructions, while using smaller weights as supported by Theorem
2.1 nevertheless outperforms unweighted `1 minimization.

3 Weighted sparsity and quasi-best s-term approximations

In this section we revisit some important technical results pertaining to weighted `p
spaces that were touched upon in the introduction. First, unlike unweighted s-term approx-
imations for finite vectors, the weighted s-term approximations σs(x)ω,p = infz:‖z‖ω,0≤s ‖x−
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(a) Original function

(b) Least squares (c) Weighted `2, ωj = j1/2 (d) Weighted `2, ωj = j

(e) Unweighted `1 (f) Weighted `1, ωj = j1/2 (g) Weighted `1, ωj = j

Figure 5: Overlaid interpolations of the function f2(x) = |x| by real trigonometric polyno-
mials using various reconstruction methods.

z‖ω,p are not straightforward to compute in general. Nevertheless, we can approximate
σs(x)ω,p using a quantity that can easily computed from x by sorting and thresholding,
which we will call the quasi-best s-term approximation.

Let v denote the non-increasing rearrangement of the sequence (|xj |pω−pj ), that is,

vj = |xπ(j)|pω
−p
π(j) for some permutation π such that v1 ≥ v2 ≥ · · · ≥ 0. Let k be the

maximal number such that
∑k

j=1 ω
2
π(j) ≤ s and set S = {π(1), π(2), . . . , π(k)} so that

ω(S) ≤ s. Then we call xS a weighted quasi-best s-term approximation to x and define
the corresponding error of weighted quasi-best s-term approximation as

σ̃s(x)ω,p = ‖x− xS‖ω,p = ‖xSc‖ω,p.

By definition, σs(x)ω,p ≤ σ̃s(x)ω,p. We also have a converse inequality relating the two
s-term approximations in the case of bounded weights.
Lemma 3.1. Suppose that s ≥ ‖ω‖2∞. Then

σ̃3s(x)ω,p ≤ σs(x)ω,p
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(a) Least squares (b) Weighted `2, ωj = j1/2 (c) Weighted `2, ωj = j

(d) Unweighted `1 (e) Weighted `1, ωj = j1/2 (f) Weighted `1, ωj = j

Figure 6: Overlaid interpolations of the function f2(x) = |x| by Legendre polynomials
using various reconstruction methods.

Proof. Let xS be the weighted best s-term approximation to x, and let xS̃ be the weighted
quasi-best 3s-term approximation to x. Because the supports of xS and x− xS , and also
xS̃ and x− xS̃ , do not overlap, it suffices to show that

‖xS‖ω,p ≤ ‖xS̃‖ω,p.

Assume without loss of generality that the terms in x are ordered so that |xj |pω−pj ≥
|xj+1|pω−pj+1 for all j; let J be the largest integer such that

∑J
j=1 ω

2
j ≤ 3s, and S̃ =

{1, 2, . . . , J}. Because |ωj |2 ≤ s, we know also that
∑J

j=1 ω
2
j ≥ 2s.

Let nj = bω2
j +1c be the largest integer less than or equal to ω2

j +1, and let rj = nj−ω2
j .

Then
∑

j∈S ω
2
j ≤ s implies that

∑
j∈S

nj ≤
∑
j∈S

ω2
j + |S| ≤ s+ s ≤

J∑
j=1

ω2
j ≤

J∑
j=1

nj (20)

Now, let

z =
(
|x1|pω−p1 , . . . , |x1|pω−p1 , (1− r1)|x1|pω−p1︸ ︷︷ ︸

n1 coefficients

, |x2|pω−p2 , . . . , |x2|pω−p2 , (1− r2)|x2|pω−p2︸ ︷︷ ︸
n2 coefficients

, . . .
)
.

We constructed z so that the first n1 terms in z sum to |x1|pω2−p
1 , the next n2 terms sum
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(a) Original function (b) unweighted (c) weights ωk,` = `1/6
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1
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1
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1

(d) weights ωk,` = `1/2

(e) Original function (f) unweighted (g) weights ωk,` = `1/6 (h) weights ωk,` = `1/2

Figure 7: Comparing unweighted and weighted `1 minimization for spherical harmonic
interpolation. For the top function, the relative L∞ errors between the original and recon-
structed functions are (b) .87, (c) .67, and (d) .49, respectively. For the bottom function,
the errors are (f) .42, (g) .25, and (h) .22, respectively.

to |x2|pω2−p
2 , and so on. Then

‖xS‖pω,p := maxS
∑
j∈S

ω2
j |xj |pω

−p
j subject to

∑
j∈S

ω2
j ≤ s

≤ maxS
∑
j∈S

ω2
j |xj |pω

−p
j subject to

∑
j∈S

nj ≤
J∑
j=1

nj

≤ maxΛ

∑
k∈Λ

zk subject to ‖Λ‖0 ≤
J∑
j=1

nj

≤
J∑
j=1

ω2−p
j |xj |p = ‖xS̃‖

p
ω,p

This completes the proof.

In the remainder of this section, we prove the Stechkin-type estimate (5) which bounds
the quasi-best s-term approximation of a vector (and hence also the best s-term approxi-
mation) by an appropriate weighted vector norm.
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Theorem 3.2. For p < q ≤ 2, let x ∈ `ω,p. Then, for s > ‖ω‖2∞,

σs(x)ω,q ≤ σ̃s(x)ω,q ≤
(
s− ‖ω‖2∞

)1/q−1/p‖x‖ω,p. (21)

Proof. Let S be the support of the weighted quasi-best s-term approximation, so that
σ̃s(x)ω,p = ‖x− xS‖ω,p. Since the number k in the construction of S is maximal, we have
with π denoting the corresponding permutation,

s− ‖ω‖2∞ ≤ s− ω2
π(k) < ω(S) ≤ s.

Then

σ̃s(x)pω,p ≤
∑
j /∈S

|xj |pω2−p
j ≤ max

j /∈S
{|xj |p−qωq−pj }

∑
j /∈S

|xj |qω2−q
j ≤

(
max
j /∈S
|xj |ω−1

j

)p−q
‖x‖qω,q.

Now let αk := (
∑

j∈S ω
2
j )
−1ω2

k ≤ (s − ‖ω‖2∞)−1ω2
k. Then

∑
j∈S αk = 1. Moreover, by

definition of S we have |xj |ω−1
j ≤ |xk|ω

−1
k for all k ∈ S and j /∈ S. This implies(

max
j /∈S
|xj |ω−1

j

)q
≤
∑
k∈S

αk|xk|qω−qk ≤ (s− ‖ω‖2∞)−1
∑
k∈S

ω2−q
k |xk|q ≤ (s− ‖ω‖2∞)−1‖x‖qω,q.

Combining the above estimates yields

σ̃s(x)pω,p ≤
(
(s− ‖ω‖2∞)−1‖x‖qω,q

)(p−q)/q ‖x‖qω,q
which is equivalent to the claim.

Theorem 3.2 will be used in deriving weighted null space properties and weighted re-
stricted isometry properties in the following sections.

4 Weighted null space and restricted isometry property

As is the case for unweighted `1 minimization, one can derive reconstruction guarantees
for weighted `1 minimization via appropriate weighted versions of the null space property
and restricted isometry property [10, 7]. Below we work out these approaches.

4.1 Weighted null space property

We start directly with a robust version of the null space property in the weighted case.

Definition 4.1 (Weighted robust null space property). Given a weight ω, a matrix A ∈
Cm×N is said to satisfy the weighted robust null space property of order s with constants
ρ ∈ (0, 1) and τ > 0 if

‖vS‖2 ≤
ρ√
s
‖vSc‖ω,1 + τ‖Av‖2 for all v ∈ CN and all S ⊂ [N ] with ω(S) ≤ s. (22)
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The inequalities stated in the next theorem are crucial for deriving error bounds for
recovery via weighted `1 minimization.

Theorem 4.2. Suppose that A ∈ Cm×N is such that (22) holds for ρ ∈ (0, 1) and τ > 0.
Then, for all x, z ∈ CN , we have

‖z − x‖ω,1 ≤
1 + ρ

1− ρ
(‖z‖ω,1 − ‖x‖ω,1 + 2σs(x)ω,1) +

2τ
√
s

1− ρ
‖A(z − x)‖2 (23)

and, additionally assuming s ≥ 2‖ω‖2∞,

‖x− z‖2 ≤
C1√
s

(‖z‖ω,1 − ‖x‖ω,1 + 2σs(x)ω,1) + C2‖A(x− z)‖2. (24)

Proof. We start with the proof of (23). Let S with ω(S) ≤ s be such that σs(x)ω,1 =
‖x− xS‖ω,1 = ‖xSc‖ω,1. The triangle inequality gives

‖x‖ω,1 + ‖(x− z)Sc‖ω,1 ≤ ‖xSc‖ω,1 + ‖xS‖ω,1 + ‖xSc‖ω,1 + ‖zSc‖ω,1
≤ 2‖xSc‖ω,1 + ‖(x− z)S‖ω,1 + ‖zS‖ω,1 + ‖zSc‖ω,1 = 2σs(x)ω,1 + ‖(x− z)S‖ω,1 + ‖z‖1.

Rearranging and setting v := z − x leads to

‖vSc‖ω,1 ≤ ‖z‖ω,1 − ‖x‖ω,1 + ‖vS‖ω,1 + 2σs(x)ω,1. (25)

The Cauchy-Schwarz inequality implies

‖vS‖ω,1 =
∑
j∈S
|vj |ωj ≤

√∑
j∈S
|vj |2

√∑
j∈S

ω2
j =

√
ω(S)‖vS‖2 ≤

√
s‖vS‖2,

and therefore by (22)

‖vS‖ω,1 ≤
√
s‖vS‖2 ≤ ρ‖vSc‖ω,1 + τ

√
s‖Av‖2. (26)

We combine with (25) to arrive at

‖vSc‖ω,1 ≤
1

1− ρ
(
‖z‖ω,1 − ‖x‖ω,1 + τ

√
s‖Av‖2 + 2σs(x)ω,1

)
.

Using (26) once more finally gives

‖x− z‖ω,1 = ‖vS‖ω,1 + ‖vSc‖ω,1 ≤ (1 + ρ)‖vSc‖ω,1 + τ
√
s‖Av‖2

≤ 1 + ρ

1− ρ
(‖z‖ω,1 − ‖x‖ω,1 + 2σs(x)ω,1) +

2τ
√
s

1− ρ
‖A(x− z)‖2.
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We pass to the proof of (24). Let S with ω(S) ≤ s be such that ‖v − vS‖2 = ‖vSc‖2 =
σ̃s(v)ω,2 (recalling that ‖ · ‖2 = ‖ · ‖ω,2). Using the weighted Stechkin estimate (21) and
the robust null space property (22) as well as the error bound (23) we obtain

‖x− z‖2 ≤ ‖(x− z)Sc‖2 + ‖(x− z)S‖2

≤ 1√
s− ‖ω‖2∞

‖x− z‖ω,1 +
ρ√
s
‖(x− z)Sc‖ω,1 + τ‖A(x− z)‖2

≤ 1 + ρ√
s− ‖ω‖2∞

‖x− z‖ω,1 + τ‖A(x− z)‖2

≤ 2(1 + ρ)2

(1− ρ)
√
s− ‖ω‖2∞

(‖z‖ω,1 − ‖x‖ω,1 + σs(x)ω,1)

+

(
τ +

2τ(1 + ρ)
√
s

(1− ρ)
√
s− ‖ω‖2∞

)
‖A(x− z)‖2.

Since s ≥ 2‖ω‖2∞ the statement follows with C1 = 2
√

2(1 + ρ)2/(1 − ρ) and C2 = τ +
2
√

2τ(1 + ρ)/(1− ρ).

As an easy consequence of the previous result we obtain error bounds for sparse recovery
via weighted `1 minimization.

Corollary 4.3. Let A ∈ Cm×N satisfy the weighted robust null space property of order s
and constants ρ ∈ (0, 1) and τ > 0. For x ∈ CN and y = Ax+ e with ‖e‖2 ≤ η, let x] be
the solution of

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ η.

Then the reconstruction error satisfies

‖x− x]‖ω,1 ≤ c1σs(x)ω,1 + d1

√
sη (27)

‖x− x]‖2 ≤ c2
σs(x)ω,1√

s
+ d2η, (28)

where the second bound additionally assumes s ≥ 2‖ω‖2∞. The constants c1, c2, d1, d2 > 0
depend only on ρ and τ .

Proof. The reconstruction errors follow from the error bounds in Theorem 4.2 with z = x#,
noting that ‖x#‖1 − ‖x‖1 ≤ 0 and ‖A(x− x#)‖2 ≤ ‖Ax− y‖2 + ‖Ax# − y‖2 ≤ 2η.

Remark 4.4. In the case of noiseless measurements, the previous result gives error bounds
for equality-constrained weighted `1 minimization by setting η = 0.
Moreover, with a similar technique as used for the previous result, one can generalize (27)
and (28) to error bounds in weighted `ω,p for 1 ≤ p ≤ 2, see [17] for the unweighted case.
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4.2 Weighted restricted isometry property

It is often unclear how to show the weighted null space property directly for a given matrix.
In the unweighted case, it therefore has become useful to work instead with the restricted
isometry property, which implies the null space property. As introduced in Definition 1.3,
we define the weighted restricted isometry (ω-RIP) constant δω,s associated to a matrix A
as the smallest number such that

(1− δω,s)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δω,s)‖x‖22 for all x with ‖x‖ω,0 ≤ s.

We say thatA satisfies a weighted restricted isometry property (ω-RIP) if δω,s is small for s
relatively large compared to m. The ω-RIP implies the weighted robust null space property
and therefore the error bounds (27) and (28) for recovery via weighted `1 minimization as
shown in the following result.

Theorem 4.5. Let A ∈ Cm×N with ω-RIP constant

δω,3s < 1/3 (29)

for s ≥ 2‖ω‖2∞. Then A satisfies the weighted robust null space property of order s with
constants ρ = 2δω,3s/(1− δω,3s) < 1 and τ =

√
1 + δω,3s/(1− δω,3s).

Before proving Theorem 4.5, we make the following observations. As in the unweighted
case (see e.g. [17, 30]) the ω-RIP constants can be rewritten as

δω,s = max
S⊂[N ],ω(S)≤s

‖A∗SAS − Id‖2→2,

where AS denotes the submatrix of A restricted to the columns indexed by S.

Lemma 4.6. If u,v ∈ CN are such that ‖u‖ω,0 ≤ s, ‖v‖ω,0 ≤ t and suppu ∩ suppv = ∅
then

|〈Au,Av〉| ≤ δω,s+t‖u‖2‖v‖2.

Proof. Let S = suppu ∪ suppv so that ω(S) ≤ s+ t. Since 〈u,v〉 = 0 we have

|〈Au,Av〉| = |〈ASuS ,ASvS〉 − 〈uS ,vS〉| = |〈(A∗SAS − Id)uS ,vS〉|
≤ ‖A∗SAS − Id ‖2→2‖uS‖2‖vS‖2 ≤ δω,s+t‖u‖2‖v‖2.

This completes the proof.

Now we are prepared for the proof of the main result of this section.
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Proof of Theorem 4.5. Let v ∈ CN and S ⊂ [N ] with ω(S) ≤ s. We partition Sc into blocks
S1, S2, . . . with s − ‖ω‖2∞ ≤ ω(S`) ≤ s according to the nonincreasing rearrangement of
vSc ·ω−1

Sc , that is, |vj |ω−1
j ≤ |vk|ω

−1
k for all j ∈ S` and all k ∈ S`−1, ` ≥ 2. Then we estimate

‖vS + vS1‖22 ≤
1

1− δω,2s
‖A(vS + vS1)‖22 =

1

1− δω,2s

〈
A(vS + vS1),Av −

∑
`≥2

AvS`

〉

=
1

1− δω,2s

〈A(vS + vS1),Av〉 −
∑
`≥2

〈A(vS + vS1),AvS`〉


≤ 1

1− δω,2s

√1 + δω,2s‖vS + vS1‖2‖Av‖2 + δω,3s‖vS + vS1‖2
∑
`≥2

‖vS`‖2

 ,

where we have used Lemma 4.6 in the third line. Dividing by ‖vS + vS1‖2 and using the
fact that δω,2s ≤ δω,3s we arrive at

‖vS‖2 ≤ ‖vS + vS1‖2 ≤
δω,3s

1− δω,3s

∑
`≥2

‖vS`‖2 +

√
1 + δω,3s

1− δω,3s
‖Av‖2.

Now for k ∈ S`, set αk = (
∑

j∈S` ω
2
j )
−1ω2

k ≤ (s − ‖ω‖2∞)−1ω2
k. Then

∑
k∈S` αk = 1 and

|vj |ω−1
j ≤

∑
k∈S`−1

αk|vk|ω−1
k ≤ (s− ‖ω‖2∞)−1

∑
k∈S`−1

|vk|ωk for all j ∈ S`, ` ≥ 2, by our

construction of the partitioning. By the Cauchy-Schwarz inequality and since s ≥ 2‖ω‖2∞
this gives

‖vS`‖2 ≤
√
s

s− ‖ω‖22
‖vS`−1

‖ω,1 ≤
2√
s
‖vS`−1

‖ω,1.

Therefore,

‖vS‖2 ≤
2δω,3s

(1− δω,3s)
√
s

∑
`≥1

‖vS`‖ω,1 +

√
1 + δω,3s

1− δω,3s
‖Av‖2

≤ 2δω,3s
(1− δω,3s)

√
s
‖vSc‖ω,1 +

√
1 + δω,3s

1− δω,3s
‖Av‖2.

This yields the desired estimate with τ =
√

1 + δω,3s/(1− δω,3s) and ρ = 2δω,3s/(1− δω,3s)
which is strictly smaller than 1 if δω,3s < 1/3.

We remark that we did not attempt to provide the optimal constant in (29). Im-
provements can be achieved by pursuing more complicated arguments, see e.g. [17]. Also,
conditions involving δω,2s instead of δω,3s are possible.
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5 Weighted RIP estimates for orthonormal systems

In this section, we provide a quite general class of structured random matrices which satisfy
the ω-RIP. For finite orthonormal systems (φj)j∈Λ which are bounded, i.e., supj∈Λ ‖ψj‖∞ ≤
K for some constant K ≥ 1, the following unweighted RIP estimates have been shown.

Proposition 5.1 (Theorems 4.4 and 8.4, [30]). Fix parameters δ, γ ∈ (0, 1). Let (ψj)j∈Λ

be a bounded orthonormal system with uniform bound K. Suppose

m ≥ CK2δ−2s log2(s) log(m) log(N),

m ≥ DK2δ−2s log(1/γ), (30)

where N = |Λ|. Assume that t1, t2, . . . , tm are drawn independently from the orthogonal-
ization measure ν associated to the orthonormal system. Then with probability exceeding
1 − γ, the normalized sampling matrix Ã ∈ Cm×N with entries Ã`,k = 1√

m
ψk(t`), ` ∈

[m], k ∈ [N ], satisfies the restricted isometry property of order s, that is, δs ≤ δ.

We could not expect to get standard RIP if ‖ψj‖∞ grows with j, no matter what
normalization we impose. However, we can allow ‖ψj‖∞ to depend on j if we ask only for
ω-RIP with weights ωj = ‖ψj‖∞, or more generally, ωj ≥ ‖ψj‖∞. The main theorem of
this section is that matrices arising from orthonormal systems satisfy the ω-RIP as long as
the weights grow at least as quickly as the L∞ norms of the functions they correspond to.

Theorem 5.2 (ω-RIP for orthonormal systems). Fix parameters δ, γ ∈ (0, 1). Let (ψj)j∈Λ

be an orthonormal system of finite size N = |Λ|. Consider weights satisfying ωj ≥ ‖ψj‖∞.
Fix

m ≥ Cδ−2smax{log3(s) log(N), log(1/γ)}

and suppose that t1, t2, . . . , tm are drawn independently from the orthogonalization measure
associated to the (ψj). Then with probability exceeding 1 − γ, the normalized sampling
matrix Ã ∈ Cm×N with entries Ã`,k = 1√

m
ψk(t`) satisfies the weighted restricted isometry

property of order s, that is, δω,s ≤ δ.

We remark that if K = maxj ‖ψj‖∞ is a constant independent or only mildly dependent
on N , then Theorem 5.2 essentially reduces to Proposition 5.1 concerning the unweighted
RIP for bounded orthonormal systems. Note, however, that in the restricted parameter
regime of s . log(N), the above result gives a slight improvement over the classical result
stated in Proposition 5.1 – generalizing the main result of [9]. The remainder of this section
is reserved for the proof of Theorem 5.2.

Proof of Theorem 5.2. The proof proceeds similar to those in [33, 30, 17], with some adap-
tations to account for the weights – see the application of Maurey’s lemma (Lemma 5.3) –
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and with a twist from [9] leading to the slight improvement in the logarithmic factor. Note
that our analysis improves the result of [9] in terms of the probability estimate.

Introducing the set

T s,Nω = {x ∈ CN , ‖x‖2 ≤ 1, ‖x‖0,ω ≤ s}, (31)

we can rephrase the weighted isometry constant of A as

δω,s = sup
x∈T s,Nω

|〈(A∗A− Id)x,x〉|.

The quantity
|||B|||s := sup

z∈T s,Nω
|〈Bz, z〉| (32)

defines a semi-norm on matrices B ∈ CN×N , and we can write

δω,s = |||A∗A− Id|||s.

Consider the random variable associated to a column of the adjoint matrix,

X` =
(
ψj(t`)

)
j∈Λ

(33)

By orthonormality of the system (ψj) we have EX`X
∗
` = Id, and the restricted isometry

constant equals

δω,s =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

m

m∑
`=1

X`X
∗
` − Id

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
s

=
1

m

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
`=1

(X`X
∗
` − EX`X

∗
` )

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
s

.

As a first step we estimate the expectation of δω,s and later use a concentration result to
deduce the probability estimate. We introduce a Rademacher sequence ε = (ε1, . . . , εm),
i.e., a sequence of independent Rademacher variables ε` taking the values +1 and −1
with equal probability, also independent of the variables X`. Symmetrization, see e.g. [26,
Lemma 6.3] or [30, Lemma 6.7], yields

Eδω,s ≤
2

m
E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
`=1

ε`X`X
∗
`

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
s

=
2

m
EXEε sup

x∈T s,Nω
|〈

m∑
`=1

ε`X`X
∗
`x,x〉|

=
2

m
EXEε sup

x∈T s,Nω
|
m∑
`=1

ε`|〈X`,x〉|2|. (34)

Conditional on (X`), we arrive at a Rademacher (in particular, subgaussian) process in-
dexed by T s,Nω . For a set T , a metric d and given u > 0, the covering numbers N (T, d, u)
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are defined as the smallest number of balls with respect to d and centered at points of T
necessary to cover T . For fixed (X`), we work with the (pseudo-)metric

d(x, z) =

(
m∑
`=1

(|〈X`,x〉|2 − |〈X`, z〉|2)2

)1/2

.

Then Dudley’s inequality [27, 26, 30, 17] implies that

Eε sup
x∈T s,Nω

|〈
m∑
`=1

ε`X`X
∗
`x,x〉| ≤ 4

√
2

∫ ∞
0

√
log(N (T s,Nω , d, u))du.

In order to continue we estimate the metric d using Hölder’s inequality with exponents
p ≥ 1 and q ≥ 1 satisfying 1/p + 1/q = 1 to be specified later on. For x, z ∈ T s,Nω , this
gives

d(x, z) =

(
m∑
`=1

(|〈X`,x〉|+ |〈X`, z〉|)2(|〈X`,x〉| − |〈X`, z〉|)2

)1/2

≤

(
m∑
`=1

(|〈X`,x〉|+ |〈X`, z〉|)2p

)1/(2p)( m∑
`=1

|〈X`,x− z〉|2q
)1/(2q)

≤ 2 sup
x∈T s,Nω

(
m∑
`=1

|〈X`,x〉|2p
)1/(2p)( m∑

`=1

|〈X`,x− z〉|2q
)1/(2q)

. (35)

In the standard analysis [33, 30, 17], this bound is applied for p = 1, q = ∞. Following
[9], we will achieve a slightly better log-factor by working with a different value of p to be
determined later.

For any realization of (X`), we have |(X`)j | ≤ ‖ψj‖∞ ≤ ωj . For x ∈ T s,Nω with
S = suppx we have

∑
j∈S ω

2
j ≤ s, resulting in

|〈X`,x〉| ≤
∑
j∈S

ωj |xj | ≤ (
∑
j∈S

ω2
j )

1/2‖x‖2 ≤
√
s. (36)

This gives

sup
x∈T s,Nω

(
m∑
`=1

|〈X`,x〉|2p
)1/(2p)

= sup
x∈T s,Nω

(
m∑
`=1

|〈X`,x〉|2|〈X`,x〉|2(p−1)

)1/(2p)

≤ s(p−1)/(2p)

(
sup

x∈T s,Nω

m∑
`=1

|〈X`,x〉|2
)1/(2p)

.
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Introducing the (semi-)norm

‖x‖X,q =

(
m∑
`=1

|〈X`,x〉|2q
)1/(2q)

and using basic properties of covering numbers, we obtain

Eε sup
x∈T s,Nω

|〈
m∑
`=1

ε`X`X
∗
`x,x〉|

≤ C1s
(p−1)/(2p)

(
sup

x∈T s,Nω

m∑
`=1

|〈X`,x〉|2
)1/(2p) ∫ ∞

0

√
log(N (T s,Nω , ‖ · ‖X,q, u))du, (37)

where C1 is a suitable constant. Next, we estimate the covering numbers appearing above
in two different ways.

Let us first derive a bound which is good for small values of u. It follows from (36)
that, for x ∈ T s,Nω ,

‖x‖X,q ≤

(
m∑
`=1

(
√
s‖x‖2)2q

)1/2q

=
√
sm1/(2q)‖x‖2. (38)

Denoting BS to be the `2 unit ball of vectors with support in S and applying the volumetric
covering number bound (see e.g. [30, Proposition 10.1]) gives

N (T s,Nω , ‖ · ‖X,q, u) ≤
∑

S⊂Λ:ω(S)≤s

N (BS ,
√
sm1/(2q)‖ · ‖2, u)

≤
(
N
s

)(
1 +

2
√
sm1/(2q)

u

)2s

≤ (eN/s)s

(
1 +

2
√
sm1/(2q)

u

)2s

,

where we have applied [17, Proposition C.3] (see also [30, p. 72]) in the last step.
We use Maurey’s lemma [8], see also [22, Lemma 4.2] for the precise form below, in

order to deduce a covering number bound which is good for larger values of u. Below,
conv(U) denotes the convex hull of a set U .

Lemma 5.3. For a normed space X, consider a finite set U ⊂ X of cardinality N , and
assume that for every L ∈ N and (u1, . . . ,uL) ∈ UL, Eε‖

∑L
j=1 εjuj‖X ≤ A

√
L, where ε

denotes a Rademacher vector. Then for every u > 0,

logN (conv(U), ‖ · ‖X , u) ≤ c(A/u)2 logN.

The constant c > 0 is universal.
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To apply this lemma, we first observe that T s,Nω ⊂
√

2s conv(U), where

U = {±ω−1
j ej ,±iω

−1
j ej , j ∈ Λ}.

Here, ej denotes the j-th canonical unit vector. For a Rademacher vector ε = (ε1, . . . , εL),
and u1, . . . ,uL ∈ U we have

Eε‖
L∑
j=1

εjuj‖X,q ≤

E‖
L∑
j=1

εjuj‖2qX,q

1/(2q)

=

E
m∑
`=1

|〈X`,
L∑
j=1

εjuj〉|2q
1/(2q)

=

 m∑
`=1

E

∣∣∣∣∣∣
L∑
j=1

εj〈X`,uj〉

∣∣∣∣∣∣
2q1/(2q)

≤ 2e−1/2
√

2q

(
m∑
`=1

‖(〈X`,uj〉)Lj=1‖
2q
2

)1/(2q)

.

In the last step, we have applied Khintchine’s inequality, see e.g. [30, Corollary 6.9]. Using
that |(X`)k| ≤ ‖ψk‖∞ ≤ ωk, we have, for any vector uj ∈ U , say uj = ω−1

k ek, that

|〈X`,uj〉| = |ω−1
k (X`)k| ≤ 1.

Therefore, ‖(〈X`,uj〉)Lj=1‖2 ≤
√
L for any L and

Eε‖
L∑
j=1

εjuj‖X,q ≤ 2e−1/2
√

2qm1/(2q)
√
L.

An application of Lemma 5.3 with A = 2e−1/2
√

2qm1/(2q) yields√
logN (T s,Nω , ‖ · ‖X,q, u) ≤

√
logN (conv(U), ‖ · ‖X,q, u/

√
2s) ≤ C2

√
qm1/qs log(4N)u−1

with C2 = 4e−1/2√c.
Observe that it is enough to choose the upper integration bound in the Dudley type

integral as
√
sm1/(2q) because for u >

√
sm1/(2q) we have N (T s,Nω , ‖ · ‖X,q, u) = 1 by (38).

Splitting then the Dudley integral into two parts and using the appropriate bounds for the
covering numbers, we obtain, for κ ∈

(
0,
√
sm1/(2q)

)
,∫ ∞

0

√
log(N (T s,Nω , ‖ · ‖X,q, u))du

≤
∫ κ

0

√
s log(eN/s) + 2s log(1 + 2

√
sm1/(2q)/u)du

+ C2

√
qm1/qs log(4N)

∫ √sm1/(2q)

κ
u−1du

≤ κ
√
s log(eN/s) +

√
2sκ

√
log(e(1 +

√
sm1/(2q))) + C ′

√
qm1/qs log(4N) log(

√
sm1/(2q)/κ).
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In the last step, we have applied [30, Lemma 10.3]. Choosing κ = m1/(2q) yields∫ ∞
0

√
log(N (T s,Nω , ‖ · ‖X,q, u))du ≤ C3

√
qsm1/q log(N) log2(s).

A combination with (37) and (34) gives

Eδω,s ≤
C3s

(p−1)/(2p)
√
qm1/qs log(N) log2(s)

m
E sup
x∈T s,Nω

(
m∑
`=1

|〈X`, x〉|2
)1/(2p)

≤
C3s

1/2+(p−1)/(2p)
√
q log(N) log2(s)

m1−1/(2q)m−1/(2p)
E

(
1

m

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
`=1

X`X
∗
` − Id

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
s

+ |||Id|||s

)1/(2p)

≤
C3s

1/2+(p−1)/(2p)
√
q log(N) log2(s)

m1/2

√
Eδω,s + 1.

Hereby, we have applied Hölder’s inequality and used that 1/q + 1/p = 1 as well as p ≥ 1.
Choosing p = 1+1/ log(s) and q = 1+log(s) gives s(p−1)/(2p) ≤ s(p−1)/2 = s1/(2 log(s)) = e1/2

and

Eδω,s ≤ C4

√
s log(N) log3(s)

m

√
Eδω,s + 1.

Completing squares finally shows that

Eδω,s ≤ C5

√
s log(N) log3(s)

m
(39)

provided the term under the square root is bounded by 1.

For the probability bound, we show that δω,s does not deviate much from its expec-
tation. By (39), Eδω,s ≤ δ/2 for some δ ∈ (0, 1) if

m ≥ C6δ
−2s log3(s) log(N) (40)

with C6 = 4C2
5 .

Similarly to [30, Section 8.6] we write

δω,s =
1

m
sup

(z,w)∈Qs,Nω,∗
<

〈
m∑
`=1

(X`X
∗
` − Id)z,ω

〉

where Qs,Nω,∗ denotes a dense countable subset of

Qs,Nω =
⋃

S⊂Λ,ω(S)≤s

QS , QS = {(z,w) : ‖z‖2 = ‖w‖2 = 1, supp z, suppw ⊂ S}
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With the functions fz,w(X) = <〈(XX∗ − Id)x,w〉 we can write δω,s as the supremum of
an empirical process

δω,s =
1

m
sup

(z,w)∈Qs,Nω,∗

m∑
`=1

fz,w(X`).

Since EX`X
∗
` = Id we have fz,w(X`) = 0 for all z,w. Further, for (x,w) ∈ QS with

ω(S) ≤ s and for any realization of X`, we have

|fz,w(X`)| ≤ max{1, max
x:suppx⊂S
‖x‖2=1

|〈X`X
∗
`x,x〉|} = max{1, max

x:suppx⊂S
‖x‖2=1

|〈X`,x〉|2} ≤ s.

Moreover,

E|fz,w(X`)|2 = E|〈(X`X
∗
` − Id)z,w〉|2

= E|〈X`X
∗
` z,w〉|2 − 2<(E[〈X`X

∗
` z,w〉]〈w, z〉) + |〈z,w〉|2

= E[|〈X`, z〉|2|〈X`,w〉|2]− |〈z,w〉|2 ≤ sE|〈X`, z〉|2 = s.

With these bounds for fz,w(X`) together with (40), the Bernstein inequality for the supre-
mum of an empirical process, see e.g. [30, Theorem 6.25], [4] or [17, Theorem 8.42], yields,
for δ ∈ (0, 1),

P(δω,s ≥ δ) ≤ P(δω,s ≥ Eδω,s + δ/2)

= P( sup
(z,w)∈Qs,Nω,∗

m∑
`=1

fz,w(X`) ≥ E sup
(z,w)∈Qs,Nω,∗

m∑
`=1

fz,w(X`) + δm/2)

≤ exp

(
− (δm/2)2/2

ms+ 2s(δm/2) + (δm/2)s/3

)
≤ exp

(
−δ

2m

C7s

)
, (41)

where C7 = 8(1 + 2 + 1/6) ≤ 26. The last term is bounded by γ ∈ (0, 1) if m ≥
C7δ

−2s log(1/γ). Altogether we have δω,s ≤ δ with probability at least 1− γ if

m ≥ C8δ
−2smax{log3(s) log(N), log(1/γ)},

where C8 = max{C6, C7}. This completes the proof.

6 Putting it all together: main results

Using the concepts of weighted null space and restricted isometry properties, and to-
gether with Theorem 5.2 concerning the ω-RIP for orthonormal systems, we now prove
Theorems 1.1 and 1.2 concerning interpolation via weighted `1 minimization, and a more
general result for functions with coefficients in weighted `p spaces. We first state a finite-
dimensional result which allows for noisy measurements.
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Theorem 6.1. Suppose (ψj)j∈Λ is an orthonormal system with |Λ| = N finite. Consider
weights ωj ≥ ‖ψj‖∞. For s ≥ 2 maxj |ωj |2 and γ ∈ (0, 1), fix a number of samples

m ≥ c0smax{log3(s) log(N), log(1/γ)}, (42)

suppose that t`, ` = 1, . . . ,m, are drawn independently from the orthogonalization measure
associated to the (ψj). Let A ∈ Cm×N be the sampling matrix with entries A`,k = ψk(t`).
Then with probability exceeding 1− γ, the following holds for all functions f =

∑
j∈Λ xjψj.

Given noisy samples y` = f(t`) + ξ`, ` = 1, . . . ,m, with ‖ξ‖2 ≤ η, let x] be the solution of

min ‖z‖ω,1 subject to ‖Az − y‖2 ≤ η

and set f ](t) =
∑

j∈Λ x
]
jψj(t). Then

‖f − f ]‖L∞ ≤ |||f − f ] |||ω,1 ≤ c1σs(f)ω,1 + d1

√
s/mη,

‖f − f ]‖L2 ≤ c2
σs(f)ω,1√

s
+ d2η/

√
m.

Above, c0, c1, d1, c2, and d2 are universal constants.

Proof. By Theorem 5.2, the normalized sampling matrix Ã = 1√
m
A ∈ Cm×N satisfies the

ω-RIP of order s with δω,s ≤ 1/3 with probability exceeding 1 − γ, at the stated number
of measurements in (42). Given that Ã satisfies the ω-RIP, Theorem 4.5 implies that Ã
satisfies the weighted null space property with constants ρ < 1 and τ > 0. The bounds
for |||f − f ] |||ω,1 and ‖f − f ]‖L2 follow by applying Corollary 4.3. To get the bound on
‖f − f ]‖L∞ , recall that because ‖ψj‖∞ ≤ ωj by assumption, the reconstruction error in
`ω,1 implies

‖f − f ]‖∞ ≤
N∑
j=1

|xj − x]j |‖ψj‖∞ ≤ ‖x− x
]‖ω,1

= |||f − f ] |||ω,1.

Remark 6.2. Theorem 1.1 in the introduction corresponds to the special case of Theorem
6.1 where there is no noise, η = 0, and with γ = N− log3(s) chosen to balance both terms in
the maximum in (42) so that m ≥ c0s log3(s) log(N) implies the stated error bounds with

probability at least 1−N− log3(s).
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6.1 Proof of Theorem 1.2

If the index set Λ is countably infinite then we first have to restrict to a suitable finite
subset Λ0 before applying weighted `1 minimization for reconstruction. The suitable fi-
nite subset we consider is Λ0 = {j : ω2

j ≤ s/2}. The basic idea is to treat the samples
of f =

∑
j∈Λ xjψj as perturbed or noisy samples of the finite-dimensional approximation

f0 =
∑

j∈Λ0
xjψj , decomposing Λ into Λ0 and ΛR, and f as f = f0 + fR, and treating

fR(tj) =
∑

j∈ΛR
xjψj(tj) as noise on the observed sampling in hopes of applying Theorem

6.1. The remainder of the proof is to show that the error
∑m

`=1 |fR(t`)|2 = η2 is small with
high probability. Since the sampling points t1, t2, . . . , tm are drawn i.i.d. from the orthogo-
nalization measure associated to (ψj), the random variables |fR(t`)|2 are independent and
identically distributed, with

E
(
|fR(t`)|2

)
=
∑
j∈ΛR

|xj |2. (43)

Since ω2
j ≥ s/2 for j ∈ ΛR by construction, we have∑

j∈ΛR

x2
j ≤

2

s

∑
j∈ΛR

x2
jω

2
j ≤

2

s

( ∑
j∈ΛR

|xj |ωj
)2

=
2

s
‖fR‖2ω,1.

We further have the sup-norm bound |fR(t`)| ≤ ‖fR‖L∞ ≤
∑

j∈ΛR
|xj |ωj = ‖fR‖ω,1. There-

fore, the variance of the mean-zero variable |fR(t`)|2 − E
(
|fR(t`)|2

)
is bounded by

E
(
|fR(t`)|2 − E

(
|fR(t`)|2

))2
≤ E

(
|fR(t`)|4

)
≤ ‖fR‖2ω,1E

(
|fR(t`)|2

)
≤ 2

s
‖fR‖4ω,1.

We now apply Bernstein’s inequality to certify the probability bound

P


∣∣∣∣∣∣ 1

m

m∑
`=1

|fR(t`)|2 −
∑
j∈ΛR

x2
j

∣∣∣∣∣∣ ≥ κ
 ≤ exp

{
− mκ2/2

2‖fR‖4ω,1/s+ κ‖fR‖2ω,1/3

}
.

Setting κ = 3
s‖fR‖

2
ω,1 in Bernstein’s inequality gives

P


∣∣∣∣∣∣ 1

m

m∑
`=1

|fR(t`)|2 −
∑
j∈ΛR

x2
j

∣∣∣∣∣∣ ≥ 3

s
‖fR‖2ω,1

 ≤ exp

{
−3m

2s

}
.

For the number of measurements m = c0s log3(s) log(N) stated in Theorem 1.2, we there-
fore have by (43)

P

{
1

m

m∑
`=1

|fR(t`)|2 ≥
1

s
‖fR‖2ω,1

}
≤ N− log3(s).

Note that σs(f)ω,1 = σs(f0)ω,1 + ‖fR‖ω,1 since the best weighted s-term approximations
to f and f0 are the same. Theorem 1.2 results then by application of Theorem 6.1 with
γ = N− log3(s).
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6.2 Interpolation estimates in weighted `p spaces, p ≤ 1

Theorem 1.2 is somewhat weak in the sense that for a random draw of the sampling points,
it gives guarantees with high probability only for a fixed function. In order to derive
uniform recovery bounds, or guarantees for all functions in a given class for a single set of
measurements, as opposed to guarantees for a particular function, we need to introduce a
positive weight vector v which dominates the weight vector ω in a suitable way. In order
to illustrate the idea we start by recalling the error bound

‖f − f ]‖L∞ ≤ c1σs(f)ω,1 + d1

√
sη/
√
m, (44)

valid in the finite-dimensional setting, where f =
∑

j∈Λ xjψj and the samples are per-

turbed,
∑m

`=1 |y`−f(t`)|2 ≤ η2. As in the probabilistic error analysis, we treat the samples
y` = f(t`) as perturbed samples of a finite-dimensional approximation f0 =

∑
j∈Λ0

xjψj
for some suitable Λ0 ⊂ Λ. For a parameter α > 0, the approximation error can then be
bounded using

‖f − f0‖L∞ ≤
∑
j /∈Λ0

|xj |‖ψj‖∞ ≤ max
j /∈Λ0

{‖ψj‖∞v−αj }
∑
j /∈Λ0

|xj |vαj ≤ max
j /∈Λ0

{wjv−αj } |||f ||| vα,1.

(45)
On the right hand side, we obtain the norm |||f ||| vα,1. Recall, however, that for our

compressive sensing approximation we can impose |||f ||| v,p to be small for a small value of
p < 1. The following estimate will be useful for comparing weighted p and 1-norms.

Lemma 6.3. For a weight ω and 0 < p < 1, set α = 2/p− 1. Then ‖x‖ωα,1 ≤ ‖x‖ω,p.

Proof. First observe that(
max
j∈Λ0

|xj |ω2/p−1
j

)p
= max

j
|xj |pω2−p

j ≤
∑
j∈Λ0

|xj |pω2−p
j = ‖x‖pω,p.

The claimed inequality follows then from

‖x‖ωα,1 =
∑
j∈Λ0

|xj |ωαj ≤
(

max
j
|xj |1−pωα−2+p

j

)∑
j

|xj |pω2−p
j

=

(
max
j
|xj |ω2/p−1

j

)1−p
‖x‖pω,p ≤ ‖x‖1−pω,p ‖x‖pω,p = ‖x‖ω,p.

Assuming that v ≥ ω and s ≥ 2 maxj∈Λ0 w
2
j , say, the first term in the finite-dimensional

error bound (44) with f replaced by f0 can be estimated using the Stechkin-type estimate
of Theorem 3.2 by

σs(f0)ω,1 ≤ cs1−1/p |||f0 |||ω,p ≤ cs1−1/p |||f ||| v,p. (46)
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We aim to provide a bound of the second term on the right-hand side of (44) of the same
order. Now η :=

√∑m
`=1 |f0(t`)− f(t`)|2 ≤

√
m‖f − f0‖L∞ , so by (45) and Lemma 6.3,

√
sη√
m
≤
√
smax
j /∈Λ0

{wjv−αj } |||f ||| vα,1 ≤
√
smax
j /∈Λ0

{wjv−αj } |||f ||| v,p,

where we have applied Lemma 6.3 with α = 2/p−1 in the last step. The choice Λ0 = Λ
(s,p)
0

with
Λ

(s,p)
0 := {j ∈ Λ : ωjv

1−2/p
j ≥ s1/2−1/p} (47)

therefore gives

η ≤
√
ms1/2−1/p |||f ||| v,p so that

√
sη√
m
≤ s1−1/p |||f ||| v,p,

and we have balanced the two error terms in (44) after applying (46). We still need to
choose the weight v so that Λs,p0 is a finite set (ideally with size polynomial in s) and such

that the technical assumption max
j∈Λ

(s,p)
0

w2
j ≤ s/2 is satisfied. The finiteness of Λ

(s,p)
0 is

ensured when (ωjv
1−2/p
j )j∈Λ is a sequence which converges to 0 as |j| → ∞. Moreover, if

v satisfies
v

2/p−1
j ≥ 21/p−1/2ω

2/p
j = 21/p−1/2ωj · ω2(1/p−1/2)

j , (48)

then we have for all j satisfying ω2
j ≥ s/2 that

v
2/p−1
j ≥ 21/p−1/2ωj(s/2)1/p−1/2 = ωjs

1/p−1/2.

Then, in light of (47), all j ∈ Λ
(s,p)
0 satisfy max

j∈Λ
(s,p)
0

ω2
j ≤ s/2. Inequality (48) is satisfied

if vj ≥ 2ω
1/(1−p/2)
j . In particular, the choice

vj = 2ω2
j

is valid for all values of p ∈ (0, 1]. In this case (ωjv
1−2/p
j )j∈Λ converges to 0 as |j| → ∞ if

and only if (ω−1
j )j∈Λ converges to 0 as |j| → ∞. We can now state the main result.

Theorem 6.4. Let p ∈ (0, 1] and let ω, v be weights satisfying ωj ≥ ‖ψj‖∞ and vj ≥
2ω

1/(1−p/2)
j . For given s ∈ N, let Λ

(s,p)
0 = Λ0 of size N (s,p) be the set of indices

Λ0 := {j ∈ Λ : ωjv
1−2/p
j ≥ s1/2−1/p}

Fix a number m of samples

m ≥ c0smax{log3(s) log(N (s,p)), log(1/γ)}. (49)
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Suppose that the sampling points t`, ` = 1, . . . ,m, are drawn independently at random
according to the orthogonalization measure for (ψj). Then with probability exceeding 1− γ
the following holds for all f with |||f ||| v,p <∞.

Let y` = f(t`), ` = 1, . . . ,m, and A be the m × N s,p sampling matrix with entries
Aj,` = ψj(t`), j ∈ Λ0. For τ ≥ 1, let x] be the solution to

min ‖z‖ω,1 subject to ‖Az − y‖2 ≤ τs1/2−1/p√m |||f ||| v,p (50)

and set f ] =
∑

j∈Λ0
x]jψj. Then ‖f − f ]‖∞ ≤ Cτs1−1/p |||f ||| v,p.

Proof. Consider f =
∑

j∈Λ xjψj , and associated f0 =
∑

j∈Λ
(s,p)
0

xjψj . We have

‖f − f ]‖L∞ ≤ ‖f − f0‖L∞ + ‖f0 − f ]‖L∞ .

Since with probability at least 1− γ under the stated assumption on m, the matrix A has
the ω-RIP and thereby the weighted null space property of order s, we have

‖f0 − f ]‖L∞ ≤ Cτs1−1/p |||f ||| v,p

by the observations preceding the statement of the theorem. Furthermore,

‖f − f0‖∞ ≤ s1/2−1/p |||f ||| v,p ≤ s1−1/p |||f ||| v,p

by (45), Lemma 6.3, and the definition of Λ
(s,p)
0 . This concludes the proof with Cτ =

Cτ + 1.
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