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Abstract

We study the recovery of sparse vectors from subsampled random convolutions via ¢;-
minimization. We consider the setup in which both the subsampling locations as well as
the generating vector are chosen at random. For a subgaussian generator with indepen-
dent entries, we improve previously known estimates: if the sparsity s is small enough,
ie. s < y/n/log(n), we show that m 2 slog(en/s) measurements are sufficient to recover
s-sparse vectors in dimension nm with high probability, matching the well-known condi-
tion for recovery from standard Gaussian measurements. If s is larger, then essentially
m > slog?(s) log(log(s))log(n) measurements are sufficient, again improving over previous
estimates. Moreover, we also provide robustness estimates for measurement errors that are
bounded in ¢, for ¢ > 2 — in particular, allowing the case ¢ = oo which is important for
quantized compressive sensing. All these results are shown via ¢,-robust versions of the
null space property and for ¢ > 2 they represent the first non-trivial bounds for structured
random matrices. As a crucial ingredient, our approach requires to lower bound expressions
of the form inf,cy, [|Tv€||4, where I', is a set of matrices indexed by unit norm r-sparse
vectors and £ is a subgaussian random vector. This involves the combination of small ball
estimates with chaining techniques.

1 Introduction

Compressive sensing [6, 13, 17| considers the recovery of (approximately) sparse vectors from
incomplete and possibly perturbed linear measurements via efficient algorithms such as ¢-
minimization. Provably optimal bounds for the minimal number of required measurements in
terms of the sparsity have been shown for Gaussian and, more generally, subgaussian random
matrices [4, 9, 13, 14, 17, 28, 29, 39].

Practical applications demand for structure in the measurement process which is clearly
not present in Gaussian random matrices with independent entries. Several types of structured
random matrices have been studied, including random partial Fourier matrices [6, 7, 39, 34, 37,
5], partial random circulant matrices (subsampled random convolutions) [24, 33, 34, 36, 38|,
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time-frequency structured random matrices [24, 35, 32], and more [2, 20]. In this article, we
improve known recovery results for partial random circulant matrices.
In mathematical terms, linear measurements of a signal (vector) x € R™ can be written as

y=Ax with A € R™*",

and we are particularly interested in the case m < n. Compressive sensing predicts that this
system can be solved for = using efficient algorithms if x is sparse enough, say in the sense
that [|z|lo = [{¢ : z¢ # 0} is small. While {p-minimization is NP-hard [17], several tractable
algorithms have been introduced as alternatives, most notably ¢;-minimization (basis pursuit)
[6, 10, 13, 17] which produces a minimizer of

min ||z||1 subject to Az = y.
z€R™

If A € R™" is a random draw of a Gaussian matrix, i.e., all entries are standard normal
random variables, then with probability at least 1 — e~ “", any s-sparse vector x € R", (i.e.,
lz|lo < s), can be reconstructed in a stable way (see below) using ¢;-minimization from the
given data y = Ax, provided that

m > Csln(en/s) (1.1)

for some absolute constant C' > 0. This bound is optimal [13, 16, 17] in the sense that
the combination of any recovery algorithm with any measurement matrix requires at least
(1.1) many measurements in order to achieve stable reconstruction, i.e., for any x € R™ (not
necessarily s-sparse), the reconstruction z? obtained from y = Az, satisfies

|z — 2|y < Cog(x), == Cinf{||lz — 2|1 : ||z]o < s}, (1.2)

see [16, Theorem 2.7] for details. Moreover, ezact s-sparse recovery via ¢;-minimization neces-
sarily requires (1.1), see [16, Lemma 2.4].

Unfortunately, Gaussian random matrices are not suitable for many applications of com-
pressive sensing — because of their lack of structure. In fact, structure is required in order to
model realistic measurement scenarios and also to speed up the matrix-vector-multiplications
that have to be applied many times in known ¢;-minimization algorithms.

An important example of structured random matrices are m x n matrices that are generated
from the nxn discrete Fourier (more generally, from a Hadamard type matrix, see Definition 2.6
below), by randomly subsampling m rows. This corresponds to taking m random samples of
the discrete Fourier transform of a vector. Again, /1-minimization successfully recovers s-sparse
vectors with probability at least 1 — ¢ provided that

m > Csmax{log?(s)log(n), log(¢ ™)},

see, for example, [7, 39, 34, 5, 19].
In this article we will be concerned with subsampled random convolutions. The circular
convolution on R” is defined for two vectors z,& € R™ as

n
(m*f)k:ijfk,jmodnJrl, ]{321,...,77,.
j=1



For a subset Q C {1,...,n} =: [n] of cardinality m, let P : R™ — R™ be the projection onto
the coordinates indexed by €, i.e., (Pox); = x; for j € . A subsampled convolution is defined
as

Bx = Po(z % ¢) (1.3)

and the corresponding matrix is a partial circulant matrix generated by £. Subsampled random
convolutions find applications in radar and coded aperture imaging [3, 18, 38, 42|, as well as in
fast dimensionality reduction maps [25].

It was shown in [24] that if £ is a (standard) Gaussian vector and (2 is an arbitrary (de-
terministic) subset of cardinality m, then with probability at least 1 — ¢, every s-sparse vector
can be reconstructed from Bz via ¢;-minimization if

m > Csmax{log?(s)log?(n),log(¢ ™)} (1.4)

Moreover, stability in the sense of (1.2) holds for such matrices, and the results are robust
when the given measurements are corrupted by noise (see more details below). Moreover, the
recovery result can be extended to circulant matrices generated by a subgaussian random vector
— an object of central importance to our discussion which will be defined later.

Our focus is on sparse recovery via subsampled random convolutions, where the set Q is
chosen at random via independent selectors: let (0;)I; be independent, {0, 1}-valued random
variables with mean 6 = m/n € (0,1], and set Q@ = {i : §; = 1}. Then the expected size of  is
E|Q2] = m and it follows from Bernstein’s inequality that m/2 < |Q| < 3m/2 with probability
at least 1 — 2exp(—m/9).

For the sake of simplicity of this exposition, we shall first formulate our main theorem for
a standard Gaussian generator, i.e., a random vector with independent, mean zero, variance
one, normally distributed coordinates. However, the proof we present holds for more general L-
subgaussian random vectors with independent coordinates and a more general type of random
matrices (see Theorem 2.5).

Theorem 1.1 Let £ € R™ be a random draw of a standard Gaussian random vector and let
Q C [n] be chosen at random, using independent selectors of mean § = m/n. Let B be the

corresponding partial random circulant matriz defined in (1.3). Let s < ¢q ﬁgff(n) and assume
that
m > cgslog(en/s) if s < ey [ 1oatmy
. (1.5)
m > cgslog(en/s)a? log(a) if c2 % <s< Clma

where ag = log (% max{log(en/s), log(s)}). Then with probability at least

1—2exp (-Co min {%, slog(en/s)})

the following holds. For all x € R", all e € R™ with |le|l2 < n and y = Bx + e, the minimizer
zt of
min [|z]|;  subject to |Bz —yll2 <7 (1.6)



satisfies

V81
\/>

| — 2]y < C \([) +D\/% (1.8)

Our estimates indicate a phase-transition that occurs when s is roughly of the order of
v/n. Below this level, the partial circulant matrix exhibits the same behavior as the Gaussian
matrix (which is the optimal scaling of the number of measurements m as a function of the
sparsity parameter s) — it requires C'slog(en/s) measurements to recover an s sparse vector.
Above that level, more measurements are required; for example, if s = n® for 1/2 < a < 1
then c(L, a)n®log® n - loglog n measurements are needed.

As we will see later, the phase transition at y/n/log(n) is not a coincidence — the analysis
required in the low-sparsity case is truly different from the one needed to deal with the high-
sparsity one. However, it is presently not clear whether the analysis for the high-sparsity case
can be improved in order to remove the additional logarithmic factors.

In both cases (low and high sparsity) we improve the estimates from [24], though it should
be noted that (1.4) applies to any set Q C [n]| of cardinality m, while (1.5) applies only to
randomly chosen Q. A random selection {2 has been considered in [38], but the estimates
there require m > Cslog®(n). On the other hand, [38] applies to vectors that are sparse in an
arbitrary (fixed) orthonormal basis and not only in the canonical basis; our proof technique
does not seem to extend to this case in a simple way.

Moreover, we stress that (1.1) provides a uniform recovery guarantee in the sense that
a single random draw of the partial circulant matrix is able to recovery all s-sparse vectors
simultaneously. This is in contrast to other previous so-called nonuniform results found in the
literature [33, 34, 21] that only imply recovery of a fixed sparse vector from a random draw
of the matrix. Moreover, these nonuniform results give no or weaker stability estimates than
(1.7) and (1.8), see e.g. [17, Theorem 4.33] or [15].

Another improvement on known estimates is that our results hold for noisy measurements
when the noise is bounded in ¢, for ¢ > 2 and the ¢>-constraint in (1.6) is replaced by an
{,-constraint (and the error estimates scale with the ¢, norm of the noise), see Theorem 6.1
for details. This allows us, for example, to explore quantized compressive sensing (see, e.g.,
[12]), when the quantization error has a natural £o.-bound. In contrast, all the recovery results
mentioned above were derived via the restricted isometry property (RIP), and applying the
RIP, knowing only that the noise is bounded in ¢, for ¢ > 2, leads to a poor scaling of the
number of required measurements in terms of the degree of sparsity (see [12] for a detailed
discussion on this issue). The reason why we can handle bounded noise in ¢, for ¢ > 2 is
that the proof we present is not based on the (two-sided) RIP, but rather on suitable versions
of the null-space property, which we define in the next section. Our new bound provides the
first rigorous proof of the ¢,-robust null space for structured random matrices for ¢ > 2 with
an optimal scaling of the number of measurements in the sparsity up to possibly logarithmic
factors, see Theorem 6.1 for details.

We note that for a few other constructions of structured random matrices (with fast matrix-
vector multiplication), recovery results with the optimal number of measurements (1.1) have

|z — 2*|, < Cog(x) + DY and (1.7)




been shown under similar size restrictions on the sparsity as in our main theorem above [1, 2].
However, it seems that our construction is the simplest one and is arguably the only one among
these which models a physically realizable measurement device. In contrast to these previous
results, we are able to extend our bounds to the near-linear sparsity regime at the cost of some
additional logarithmic factors.

Independently of our main results themselves, we believe that our proof techniques should
be of interest as well. In fact, the crucial ingredient in our proof is a probabilistic lower bound
on terms of the form inf,cy, ||I'y€||q, where I', are matrices indexed by a set of unit norm
r-sparse vectors and ¢ is subgaussian random vector with independent coordinates. We use a
combination small ball estimates, covering number bounds and chaining techniques. We are
not aware that our proof technique was used before in a similar way and context. We remark
that our main ingredient can be generalized to random vectors with heavier tails and less
independence assumptions, for instance, log-concave random vectors. Details will be presented
in a future contribution.

The article is structured as follows. Section 2 discusses preliminaries such as the null space
property, subgaussian random vectors, states the main result and gives a brief explanation of
its proof. Section 3 introduces the small ball estimates required for the proof as well as moment
estimates for norms of subgaussian random vectors. It further provides some covering number
estimates required in the sequel. Section 4 provides the main technical ingredient of the proof
of our main results which consists in a lower bound for inf,cy, [|[T',€||2. Section 5 provides an
upper bound over the one-sparse vectors, which is required for completing the proof of the null
space property, see also Theorem 2.3. Finally, Section 6 provides the extension of our recovery
result to robustness in ¢, for ¢ > 2.
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2 Preliminaries and main result

2.1 The null space property

Our analysis is based on a robust version of the null space property which is a sufficient and
necessary condition for sparse recovery via £1-minimization. This version is stable when passing
to approximately sparse vectors, and is robust when the measurements are noisy. We begin
with several standard facts on this.

Given v € R" and S C [n] = {1,...,n}, let vg € R™ with entries (vs); = vj for j € S and
(vg); =0 for j ¢ S. Further, S¢ = [n] \ S denotes the complement of S.

Definition 2.1 For 1 < g < oo, a matriz A satisfies the £y-robust null-space property of order
s with constants v € (0,1) and T > 0 if

v
[osll2 < ﬁ\lvsv«!h + 7| Avllg



for every v € R™ and every S C [n] of cardinality at most s.

The following result is standard by now (see, e.g., [17, Theorem 4.22]). It uses the notion
of the error of best s-term approximation, defined as

os(x); = min ||z — z||1;
(@ =_min_ e 2|

that is, os(z); is the ¢; distance between z and the set of s-sparse vectors.

Theorem 2.2 Let 1 < g < oo and let A satisfy the {4-robust null space property of order s
with constants v € (0,1) and 7 > 0. Let |le|l; < n, v € R" and put y = Ax +e. Then a
minimizer z* of

min ||z|[;  subject to [|[Az —yll; <7

z€R™
satisfies
lz = 2*ll1 < Cou(x)1 + Dv/sn (2.1)
C
|z — xﬂHQ < %Us(x)l + Dn, (2:2)
where the constants are given by C' = (11411;)2 and D = (i’fz)T.

Roughly speaking, even if x is not s-sparse, but only approximated by an s-sparse vector, and
if one receives linear measurements of = (i.e., Az) that are corrupted by the “noise” e, then a
solution to the minimization problem still yields a good approximation of x if A possesses the
null space property. In particular, if = is s-sparse then os(z); = 0, and if = 0 (no noise),
then the reconstruction via equality constrained ¢;-minimization is exact.

In order to show the /,-robust null-space property, we will proceed in the following way.
Let

v
Towim {v € R s uslls = Zefoselh }.

One may show (see, e.g., [12, 22]) that if

1
inf |Az|l; > —,
z€T,,sNS—1 T

then A satisfies the £,-robust null space property with constants v and 7. Moreover, if we set
Vi={z e R": [[zflo < s, [[xfl2 = 1}
to be the set of s-sparse vectors in the unit sphere, then (][22, Lemma 3], see also [39])
Tos N e (2+ V_l) conv Vi, (2.3)

allowing one to study conv V; instead of 7, s, where conv S denotes the convex hull of the set
S, that is, the set of all convex combinations of finite subsets of S.

It turns out that one may replace convVy with V, for r sufficiently large by adding a
condition on one-sparse vectors. This was observed for ¢ = 2 in [31, Lemma 5.1] (see also [26,
Theorem B]). We will extend this result to ¢ > 2 in Theorem 6.2, which however comes with
worse constants for ¢ = 2 than the statement below.



Theorem 2.3 Let A € R™*" satisfy

inf ||A > 71 d Aeqillo < M. 2.4
;QVTII rlle>77" an jrr%?ﬁll ejlla < (2.4)

If c(v) = v?/(2v +1)? and
s < C@)i)
M?2r2 -1
then
inf [ Az]s > ——.

2€To,s V2r

Proof. By (2.3), it suffices to show that the conditions in (2.4) imply that

inf Az|ls > 1/(V27).
z€(2+v—1) conv VsNSn—1 H ||2 - /( )

Applying [26, Lemma 2.6] (see also the proof of Lemma 6.2 specialized to ¢ = 2), it follows
from (2.4) that for any y € R"

- 1 - -

14yl13 > 72 lwlE — — | Iyl D_ llAe;l31ys] — 7 IlyllF
j=1

Let B} be the unit ball in ¢} and observe that conv Vg C /sB}. Thus, if ¢;(v) =2+ 1/v and

y € S" ey (v) conv Vs,

lylla=1 and [yl < e1(¥)Vs.

Therefore,
2 -2 HyH% 2 -2 C%(V)S 29 72 1
||Ay||2 >T (1_7“—1(7- lrgjaSXnHAejHQ_l) >T 1_7"—71(7- M —1) > 2—7_2
by our choice of s. [ |

With Theorem 2.3 at hand, we will take the following course of action: we will show that
inf ||PoAz|j2 2 v/m and max|PoAejlls < vm (2.5)
€V, JEn]

for a partial circulant matrix PoA, whose rows are chosen using iid selectors.

2.2 Subgaussian random vectors

Just as in [24] we will focus on generators £ that are isotropic, L-subgaussian and have inde-
pendent coordinates.

Definition 2.4 A centered random vector & = (&), is L-subgaussian if for every x € R",

1K€ 2) 1, < LIS )l s



Assume that &,...,&, are independent, mean-zero, variance 1, L-subgaussian random vari-
ables. In other words, for every p > 1,

1€illL, < Lv/pll&llL, = Lyv/p-

Then £ is an isotropic random vector on R™: for every x € R", E<£,aj>2 = ||z||3, and it is
standard to verify that it is L-subgaussian as well (see, e.g., [43]). Is it straightforward to show
that if £ is an L-subgaussian random vector, then for every x € R™ and u > 1,

Pr([{¢,2)| > uL||(&,2)|1,) < 2exp(—cu?),

for a suitable absolute constant c. If, in addition, £ is isotropic, then

Pr (|<£,x>| > uL||x||2) < Qexp(—cu2).

2.3 Main result

Our main result provides a bound for the null-space property of partial random circulant
matrices. It implies Theorem 1.1 via Theorem 2.2.
Recall that

e ¢ is a random vector whose coordinates are independent, mean-zero, variance 1, L-subgaussian
random variables;

e A is the complete circulant matrix generated by &;
e (6;)1 , are independent selectors of mean 6 = m/n, and Q = {i: §; = 1}.

Theorem 2.5 There exist constants cy, ..., cg that depend only on L, p and T for which the
following holds. With probability at least

1—2exp (—comin{ﬁ,rlog <%> }) ,
r r

the partial circulant matriz PoA satisfies the lo-robust null-space property of order r with
constants p € (0,1) and 7/\/m, where

on = c3rlog <%) if r<ey r ,

r \/ logn
5n:03r10g(@>~aflogar if ¢y L<r§cs n4 .
r logn log®n

The constant «,- satisfies

2
a, < log (66; max {log <%) ,log(er)}> )

The result will actually be shown for a more general class of random matrices, see Defini-
tion (2.6) and the remarks following it.

and




2.4 The heart of the argument

The proof of Theorem 2.5 has two main components. We will begin by analyzing the way a
complete circulant matrix A : R™ — R"™ generated by £ acts on V,., and then apply a random
“selector projection” Pq to the image AV,.. Our primary goal is to obtain a lower bound on

inf |[PoAv|2 = inf S 6;(Av, e;)>. 2.6
Jnf || PpAvl; vlgw; (Av,€;) (2.6)

Thanks to the nature of circulant matrices, there is a standard representation of {Awv :
v € V;.} via the Fourier transform. Let F be the (un-normalized) Fourier transform, i.e.,
Fik = e~ 2migk/n (which we treat as a “real operator” from R™ onto the image of R™ in order
to avoid working with C") and set © = Fv. If D, = diag(x1,...,z,) then

Av = F 1Dy F¢.
We will consider a more general set of matrices:

Definition 2.6 An orthogonal matriz O is of Hadamard type with constant B if for every
i,j € [n], [0i3] < B/vn.

In what follows we will fix three matrices, U, W and O, all of which are of Hadamard type with
constant 3, and for z € R™ we set

T, = v/nU Dy ,0, (2.7)

where Dy, = diag((<Wi, x>)?:1) Clearly, the representation of Av is precisely of this form: if A
is the complete circulant matrix with the generator £ then for every v € R, Av = \/nU Dy, O&
for the choice of U = n=Y/2F 1 and W = O = n~Y/2F; in this case 8 = 1.

From here on, for V. .C R" set

'y = {v/nUDw,O : v e V};

naturally, the set of matrices we will be interested in is I'y;.
Observe that if £ is an isotropic random vector then for every v € S"~! E||,¢||3 = n, and
at least on average, for a single vector v € V;, one expects to have |T,¢||2 ~ /n.
Unfortunately, showing that inf,cy,. [|[T'w€||2 > ¢y/n does not lead to a nontrivial lower bound
on (2.6). To see why, set

' =(v/n,0,...,0) and z%=(1,...,1).

Both 2! and 22 have a Euclidean norm of /n, but any attempt of selecting a random subset of
coordinates of cardinality m < n fails miserably for 2! and succeeds for 22: typically, Poz! = 0
while || Poz?||2 = v/m. We will be looking at this type of “good behavior”, exhibiting a (one
sided) standard shrinking phenomenon. The term “one-sided standard shrinking” used in this
context usually refers to a random projection operator T of rank m, for which, with high
probability,

|Tv||2 > cy/m/nllv]l2  for all vectors of interest.



The operator we are interested in is indeed random, and of the form T = Py — a random
coordinate projection — but as the example of z! shows, Po may map x to 0 even if  has a
large norm — unless one imposes some additional condition on .

The condition we will focus on here is that = has a regular coordinate structure, that is, for
suitable constants o and 6,

{istoit 2 lola-5 4| = o0, (2.5)

The notion of regularity in (2.8) implies that |z;| is at least ~ ||z|l2/+/n for a large subset of
coordinates — of cardinality that is proportional to the dimension n. That set of coordinates
contributes at least a proportion of the Euclidean norm of x, and moreover, for a random choice
of Q C [n], ||Pazl|l2 > c||x||2 - /|| /n with high probability.

Thus, in addition to showing that inf,ey. [|Ty€|l2 > ¢y/n, we will prove that each of the
vectors I',¢ is regular in the sense of (2.8). We will do so by representing a typical realization
of the set {I',¢ : v € V,.} as a subset of the Minkowski sum of two (random) sets 77 + T defined
in the following way: Let H C V, be a fine enough net with respect to the Euclidean distance
and set 71 = {I';¢{ : * € H}. For each v € V;,, choose x = m(v) € H minimizing ||z —v||2. Then
Ty = {Ty_r@w)€ : v € Vi }. We will show the following properties of the sets T1, T»:

e Every t € T} satisfies ||t||2 2 y/n and has regular coordinate structure in the sense of (2.8).
As a consequence, a random coordinate projection Py will not shrink the fso-norm of
elements in T} by more than a factor of ~ v/§, and therefore, with high probability,

inf ||Pol'z€||2 > eVion.
zeH

e The set of “random oscillations” Ty has Euclidean diameter smaller than (¢/2)v/dn. Thus,
its effect is negligible.

What may still appear mysterious is the claim that there is a phase transition in the choice
of § — and thus in the required number of measurements. The origin of the phase transition
lies in a gap between the cardinality of the net H and the probability estimate one is likely
to have for each I',. Indeed, for reasons that will be clarified later, the probability that I',¢ is
“well behaved” can be estimated by exp(—cn/r). In contrast, as a nontrivial Euclidean net in
Vi, |H| > exp(cirlog(en/r)). In the low-sparsity case, when n/r 2 rlog(en/r), the individual
probability estimate is strong enough to allow uniform control on all the vectors in the net
H. In the high-sparsity case that is no longer true, and an additional argument is required to
bridge the gap between n/r and rlog(en/r). Specifically, we will show how one may “transfer
information” from a set of cardinality exp(cn/r) to the net H whose cardinality is much larger
— of the order of exp(erlog(en/r)).

2.5 Notation

Throughout this article, absolute constants are denoted by ¢, c1,C, etc. The notation ¢(L)
refers to a constant that depends only on the parameter L; a ~ b implies that there are
absolute constants ¢ and C' for which ca < b < Ca; and a ~, b means that the constants ¢ and
C depend only on L. The analogous one-sided notation is a < b and a <y, b. Constants whose
values remain unchanged throughout the article are denoted by k1, k2, etc. .

10



For 1 < p < oo let £ be the normed space (R™, ]| |,) and set B to be its unit ball. $"~*
is the Euclidean unit sphere in R™. The expectation is denoted by E and Pr denotes the
probability of an event. The L,-norm of a random variable X is denoted || X/, = (E[X |P)1/p.
We also recall that [n] = {1,...,n}.

3 Small ball estimates and chaining

3.1 The random generator

Recall that the random vector { we are interested in has independent coordinates (§;)7_; that
are mean-zero, variance 1 and L-subgaussian. In particular, £ is an isotropic, L-subgaussian
random vector.

A simple observation is that the &;’s satisfy a small-ball property: there are positive con-
stants ¢; and co that depend only on L for which

sup Pr(|& —u| > ¢1) > ca. (3.1)
ueR

a suitable absolute constant c¢z. The small-ball property (3.1) is an immediate outcome of the
Paley-Zygmund inequality (see, e.g., [17, Lemma 7.16]) applied to each X, = & — u].

The small-ball property (3.1) tensorizes, leading to a vector small-ball property for £ =
(&)i~,. To formulate this property, let ||I'||zs and ||I'||2—2 denote the Hilbert-Schmidt (Frobe-
nius) and operator norms of a matrix I', respectively, and set

r 2
i ([Elns Y
[T ll2-2
Theorem 3.1 [/0] There exists an absolute constant ¢ for which the following holds. Let
X1, ..., X, be independent random variables that satisfy for somet >0 and 0 <p <1

Indeed, for any u € R, ||& — ul|z, ~ max{||&]|L,, |u|}, and thus ||& — ||z, < e3L||& — u||L, for

sup Pr(|X; —u| <t) <p.
u€eER

Then, for X = (X1,...,Xy) and every matriz T : R™ — R™,

1 cdr
Pr(Irxle < tiPlas) < (3)

The small-ball property for individual &’s from (3.1) and Theorem 3.1 imply that the random
vector & satisfies a small-ball estimate.

Corollary 3.2 There exist constants k1 and ko that depend only on L such that, for any matriz
r':R*» - R™,

Kodr
Pr(irelz < sl < (5) - (3.2

11



It should be noted that a subgaussian vector with independent coordinates is not the only
random vector that satisfies a small-ball estimate like (3.2). Moreover, such small-ball estimates
can be used to extend our main result to a larger class of generators — a direction we will not
explore further in this work.

The other type of bound we require deals with the way the moments of [|{|| grow, for
an arbitrary norm || || on R™. Unlike Corollary 3.2, this feature does not require £ to have
independent coordinates, and it holds for any (isotropic) subgaussian random vector (see, for
example, [24, Theorem 2.3)).

Theorem 3.3 There exists an absolute constant ¢ for which the following holds. Let & be
an isotropic, L-subgaussian random vector in R™ and set G = (g1,...,gn) to be the standard
gaussian vector in R™. Let || || be a norm on R™ and set B° to be the unit ball of its dual norm.
Then for every p > 1,

(E[EIP)? < cL(E|G] + VP Sup I£1]2)-

We will consider two families of norms associated with the non-increasing rearrangement of
the coordinates of a vector.

Definition 3.4 Let (z])_, denote the non-increasing rearrangement of (|x;|)j—,. For k € [n],

set
k
lzllpy = max(3" 22)"? = (32?2

When k = n, the norm || [/ is simply the Euclidean norm, and the unit ball of the dual norm
is just the standard Euclidean unit ball. When 1 < k < n, the dual unit ball consists of the set
of unit-fo-norm k-sparse vectors, that is:

Vi ={veS" ! |v|lo <k}
To apply Theorem 3.3 to || |[jx) one has to control E||G||) = E(Zle(g;‘)2)l/2
result for subgaussian random variables does not require independence.

. The following

Lemma 3.5 [23] Let Zy,...,Z, be mean-zero and L-subgaussian random variables such that
maxie[n] HZZHLQ < M. Then

k
IE(E:(Z;")Q)U2 < cLM+/klog(en/k).

i=1

Proof. Since the proof of this result is not provided in [23], we give it here for convenience.
Since the Z; are L-subgaussian, there exist constants cg, ¢; > 0 such that (see e.g. [17, Propo-

sition 7.23])
72
Eexp|cg—5—"2—5 ] <eci1.
< L7Z3,

12



By Jensen’s inequality and concavity of the logarithm

k 2 k k
[E(; Y2 B S (Z) < 6 MPLPEL S loglexpleol 2/ (L2 12.))
i=1 i=1 i=1
—17,272 1 (Z;)? —177272 1 ¢ z;
< ¢y M*“L"log (k‘ ;Eexp (col%)) < ¢y M“L"log <k;Eexp <60%>>
< cg ' M?L*log(cin/k).
Rearranging this inequality and adjusting constants yields the claim. [ |

For the choice Z; = &;, it follows from Lemma 3.5 and Theorem 3.3 that for every p > 1
and k € [n],

EIIElf) 7 < L (v/Elog(en/k) + Vi) - (33)

The second family of norms we require is a generalization of the first one. Let I be a matrix

and set
k

1/2
]| = Tzl = O (T, e:)")?) 2= sup (1),
i=1 tel'* Vi
where the last equality follows from [|z|j5) = sup,ey; (2, t).

Lemma 3.6 Let & be an isotropic, L-sugaussian random vector. Then for every matriz I' and
any p 2 1,

(EITEll)? < oL | \/klog(en/k) max |T*e;]l + /b sup [T*t]l2
1<i<n teVi

Proof. By Theorem 3.3, it suffices to estimate Esupycpey, (z,t) = E(Zle«(}, I‘*ei>*)2)1/2
for the standard gaussian vector G. This expectation may be controlled using Lemma 3.5 for
the choice of Z; = (G,I'*e;) and that fact that M = max;epy || Zil|z, = max;ep, [[T*es|2. |

The following standard relation between moments and tails is recorded for convenience as it
will be used frequently in the sequel. Its proof is follows immediately from Markov’s inequality.

Lemma 3.7 Assume that a random variable Z satisfies (E|Z[P)Y/? < A for some p > 0 and
A >0. Then
Pr(|Z| > eA) <e® and Pr(|Z] > 2A) <27P.

As noted above, the matrices we will be interested in are of the form
Iy = vnUDw, 0,
where U, W and O are Hadamard type matrices with constant $ and v € R™. Thus,

1/2
ITullzs = vallolla, Tullzoe < ValWolleo < Blollg”,

13



and for every i € [n],
* - 2 1/2
IT5eills = V(> (We,0)* - UZ) 2 < Bllv]lo.
/=1

Combining Corollary 3.2, Lemma 3.6 and Lemma 3.7, one has the following:
Corollary 3.8 There exist constants k1, ko and k3 that depend only on L and B for which the
following holds. If v € V,. then

f-cgn/,82r
1) , (3.4)

Pr(ITutlle < mav/alloll2) < <2

and if v € R™ and then with probability at least 1 — exp(—p),

ITuglipy < ss(llvll2v/klogen/k) + /b - vl Wolloo). (3.5)

Remark 3.9 In what follows, (3.4) and (3.5) are the key features of & that we will use. To
establish those two facts we used rather special properties of &, but while those special properties
(for example, that & is stochastically dominated by a gaussian vector) are highly restrictive,
(3.4) and (3.5), or even further relazations of the two, actually hold for a wider variety of
random vectors. We will pursue this direction in a future contribution.

3.2 Definitions and basic facts

Let (T,d) be a metric space. A subset 7" C T is called e-separated if for every z,y € T7,
d(z,y) > €. By a standard comparison of packing and covering numbers, see e.g. [17, Lemma
C.2], if T' is a maximal e-separated subset of T', it is also an e-cover: that is, for every z € T
there is some y € T” for which d(z,y) < e.

In what follows we denote by N(T,d,¢) the cardinality of a minimal e-cover of T. Note
that if 7" C R™ and d is a norm on R™ whose unit ball is B, then N(7,d,¢) is the minimal
number of translates of eéB needed to cover 1. Therefore, we will sometimes abuse notation
and write N(T,eB) instead of N(T,d,¢).

We will also use the language of Generic Chaining [41] extensively.

Definition 3.10 Given a metric space (T,d), an admissible sequence (Ts)s>0 is a sequence of
subsets of T, with |Ty| = 1 and |Ty| < 2%°. Together with an admissible sequence one defines a
collection of maps ms : T — Ts. Usually, mst is chosen as a nearest point to t in Ts with respect
to the metric d. For s > 0 set

Agt = g1t — et

Let us define several parameters that will be used throughout the proof of Theorem 2.5.

Definition 3.11 Forr € [n] set

1
p= 1010g26-max{1 og(er)}'

"log(en/r)

14



Using the notation introduced earlier, put
| ke K (3.7)
K4 =miN4q —, ———— o, .
4 232" 64K2L2 32

and observe that kg depends only on L and B. Moreover, without loss of generality, k1 < 1,
and k3, L, 3 > 1.

Set sg and s1 to satisfy
gs0 = M ond 9 = prlog(en/r)
r

and without loss of generality we will assume that so and s1 are integers. Finally, let
prlog(en/r) 51—
= 1 l —_— = 1 l 2 1 Y .
Q max{ , og( () max{1, log( )}

A key part in the proof of Theorem 2.5 requires a different argument when 2% > 2% and
when the reverse inequality holds. As we indicated earlier, we will call the former the “low-
sparsity” case, and the latter the “high-sparsity” case. It is straightforward to verify that in
the low-sparsity case (20 > 2%1)  this corresponds to

/2 n
log(cn/ky)

12 | n
> .
"= log(cn/kq)’

if r < y/n then p = 10log, e, and otherwise, p = 10log, e - 152%6(22)' Thus,

rﬁcmi , p=10logye, and o, =1,

while in the “high-sparsity” case,

2
a, = log <W-log<?>) if r<+/n,

Kamn

and

2
a, = log (/Zn . log(er)> otherwise.

Let us mention that ki, k2, k3 and k4 are all constants that depend only on L and § — an
observation that will be used throughout this article.

3.3 Covering of V,
Let us begin by constructing (a part of) an admissible sequence for V.

Lemma 3.12 Let 1 <r <n/2 and s; as above. There exists an admissible sequence (V;.5)s>s,
for which

C
sup (v + v/r2°?)|| Agv]l < =7
’UEVT 5251 n

where wsv is the nearest point to v in V. s with respect to the Euclidean norm, Asv = T 10—
and c is an absolute constant.

15



We note that the exponent 3/2 above is rather arbitrary. We could easily replace it by a larger
one by adjusting constants.

Proof. Let V; , be a maximal ¢, separated subset of V. with respect to the Euclidean norm
and of cardinality 22°. Thus it is also an e,-cover of V,. and

[Asv]l2 < [[msp1v = vll2 + [[msv — vf]2 < 2es.

To estimate &g, observe that by a standard volumetric estimate, see e.g. [17, Proposition C.3],
and summing over all (f) possible support subsets of [n] of cardinality r, for any 0 < e < 1/2,
the cardinality of a maximal e-separated subset of V,. is at most

()02 =() ) = ()

Hence,
o< 22N <3€”> :
r
and )
sup > 22 Az <230 2% < e () - Y 22
vEV, $>581 s>s1 r ol

It is straightforward to verify that for every s > s,
2°%/r > 2(s/2). (3.8)

This follows for s; because 2! = prlog(en/r) and

51

2" = (10logy €) - max {log (%) ,log(er)} > s1,

r

and for s > s; because s — 2°/s is increasing. Therefore,

n —95 /(9
sup Z 2S/QHASUHQ < co- Z 2-2/(2r)

veVr $>581 §>81
which is dominated by a geometric series with power 272°1/2r = 2=(p/2)log(en/r) < 1 /4. There-
fore,

n Z 9—2%/2r < IV o-2%1/(2r) o1 (L) Thogge |

r ~or - '

en
s$>51

Note that

r 210@2&71 1
— < . 3.9
(en) ~ (en)? (39)

Indeed, if r < n/r, ie., if r < y/n, then p/logye > 10 and

<

= (&)4 = <e¢11>2;

( r )(p/Qlogz e)—1

en



otherwise, v/n <r <n/2 and p/logy e = 10log(er)/log(en/r) so that

g ( (<) 7777 ) =t (1) [ S0 1 > o (),

r/ |log(en/r)
so that (3.9) holds also in this case. Therefore,

(&
sup 3 (v + V2 )| Awlls < —75

Ue‘/r 8251

for an absolute constant c;j. [ ]

4 The structure of a typical {I',{ : v € V,}

The main component in the proof of Theorem 2.5 is a structural result on a typical realization
of the random set {I',{ : v € V. }.

Theorem 4.1 There exist constants cg,...,c3 that depend only on L and B for which the
following holds. With probability at least 1 — 2o min{2°0,2°1}

{Ty:v eV} C Ty + Ty,

where
Ty < 2*' and Tp C eyn™/2BY.

Moreover, for every t € Ty, there is a (random) set I = I1(t) C [n] of cardinality at least

n
Il >co——
| ‘*Czaglogar’

for which
Z(Ft§, ei>2 > (k1/4)*n and r?eaIXKFtﬁ,eiM < cgapry/log(ear).
el
Theorem 4.1 implies that a typical realization of {I',¢ : v € V,.} is just a perturbation of
the (random) set 77, and that 77 consists of vectors with a regular coordinate structure.
Let us examine Theorem 4.1 in the two cases: when sy > s1 and when sy < s1. In the former
(the low-sparsity case), o, = 1, and the claim is that with probability at least 1 —27F" log(en/r)
for every t € T1, there is I C [n] of cardinality |I| > can for which

”Pﬂf”g > (ﬂ1/4)\/ﬁ and ||P[t||oo < cs.

This forces I to contain at least ~ con coordinates that are larger than a constant, and thus,
each one of the vectors t € T} has a regular coordinate structure in the sense of (2.8).

When s1 > sg, a similar type of claim holds, but with probability at least 1 — 2
and the regularity condition on the coordinates of ¢t € T} is slightly weaker: one no longer has
a subset of cardinality that is proportional to n consisting of coordinates that are larger than
a constant, but rather a (marginally) smaller set I; each Pjt has a large 2 norm and a small
{~ norm.

Thanks to this information on the structure of a typical {I',{ : v € V;.}, one may establish
the required lower bound on inf,cy, || Pol'v&||2-

—cokan/r
M
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Corollary 4.2 There exist constants cg, c1 and co that depend only on L and 3 for which the
following holds. Let

51 > col02logay) - prlog(en/r),
with p defined in (3.6) and set (0;)i=1 to be independent selectors with mean 6. Then with
probability at least 1 — 2~ c1min{2°0,2°1}

n
. 2
JQ& z; 51<I‘v§, ei> > coon.
1=
Proof. Let £ be a realization of the event from Theorem 4.1 — which holds with probability
at least 1 — 270 min{20.2°1} yelative to &, and let (6;)7; be independent selectors with mean §
that are also independent of &.
Using the notation of Theorem 4.1, let I'y§ =t +y for t € T1 and y € Ts; hence

" 1/2 n 1/2 1/2 n 1/2
2 . : ¢
(Z (5i<Fv§, €i> ) > tlenifl (Z 5215?) — Sup (Z 5zyl> > tlenigl (Z (517512) - n31/2
i=1 =1

i=1 velz \i=1

for an absolute constant ¢;. It suffices to show that

inf Zdt > coln,

teT 4

the right hand being larger than 2c; /n3, where c3 is a suitable constant. Fixt € T}, let I = I(t)
be the set identified by Theorem 4.1 and put x = Prt. Thus,

lzll2 = (k1/4)v/n, and [lz]le < cs(L, B)ary/log(ear). (4.1)

By a straightforward application of Bernstein’s inequality,
2

Pr(‘Z(&i — 5)%2} > w) < 2€Xp<—04 min{521j€[ e maxil p })

el
Observe that Y., 2} < ||z|% 3,c; 27, and thus, for w = (6/2) >",.; 27, the probability esti-
mate becomes

on
2exp(—cad |3/ z]3%) < 2exp(—05(Lvﬁ)m>'

By a union bound, with probability at least

on
1— 2|72 (— 7)
[Ta[2exp —cs a2 log(eay)

relative to (0;);,, this implies that, for every t € T7,

Z(St2>25t2 Za:fz

i€l(t zeI

=N

C»O‘?s

The claim follows by setting
5n > 5102 log(ear)) - 21%1 = cr(L, ) - a2 log(ear) - prlog(en/r).
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The proof of Theorem 4.1 is based on the following idea: (V; s)s>s, will be selected as an
maximal eg-separated subset of V. and T7 = {I'y,{ : v € V.5, }. We will show that for every
veV,v—mgv=> Agv is small enough to ensure that with high probability,

$>581

/
c
sup ||[T'y— < Al < —=
sup ITo—r,,0€ll2 < S;l 1Asvll2 < —575
for ¢’ that depends on L and . Then, we will turn to the more difficult part of the argument
— that with high probability, for every v € V;. 4,

ITEll > ev/ and [Tutllon < (¢/2V (4.2)
for well-chosen ¢ and
cl for r < coy [ imrat
o log(can/ra) (4.3)

e [ kan can
a? log(ayr) for ca log(can/k4) <7< log*(n)

where all constants ¢, ¢1, ¢, ¢3, ¢4 only depend on L and 8 and k4 is defined in (3.7), see (4.8)
and the following remarks as well as Lemma 4.10. Moreover, here and in the following, we
assume for simplicity that 6n is an integer. (The general case may need slightly different
constants.) Then, for ¢t = I',£, one has

n on

1 1/2 c
t5)? > (c/4 d th, < (=) )?) <——.
D0tz and 4, < (g3 0) <5

The set I = I(t) of indices corresponding to t. . ,,...,t, fulfills the properties claimed in
Theorem 4.1, i.e., T1 consists of vectors with a regular coordinate structure.
We begin the proof with its simpler part: a high probability estimate on sup, ¢y, [|U'v—x,, v€]l2-

Lemma 4.3 There exist constants c and c1 that depend only on L and B for which the following
holds. If (V;s)s>s, is an admissible sequence of V., then with probability at least 1 — 272 for
every v € V, and s > s1,

ITawélle < e (Vi + 272 1A, (4.4)

In particular, if (V;5)s>s, is a maximal separated subset of V., then with probability at least
1—2-2" -
| .
su _ —.
Ue‘g v—msv6 |12 S 7’L3/2

Proof. The first part of the proof is a straightforward outcome of (3.5). Indeed, if we set
k =n and p = 2573, then by Lemma 3.7, with probability at least 1 — exp(—2~(13)),

ITall2 < drs (Vi Asvllz +2°% -/l W Asv]lo0).
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Since v is r-sparse, Agv = mg41v — Wev is 2r-sparse, and since W is a Hadamard type matrix
with constant j3,

VAW Al = Vimasx (W, A)] < 88wl < Bl Al - A0l

Therefore,

T2 < 8r3(V + Bvr2*/?) | Asvll2. (4.5)

There are at most 22° -2 < 22 vectors of the form Asv, and thus, by a union bound, with
probability at least 1 — 2_2S+2, (4.5) holds for every v € V,. for that choice of s. Summing the

2s+1

probabilities for s > s1, one has that with probability at least 1 — 2_251“, for every v € V,.,
(L, B
IPumrolle = I Y Tanlls < 3 ITantll < 8x38 3 (Vi 4 vi2+2) el < )
§2s81 s2s1 52581 "
where the last inequality is just Lemma 3.12. [ |

Lemma 4.3 shows that if we set Ty = {Fv_mlvﬁ : v € V;.}, then with probability at least
1— 272" super, [[tl2 = sup,ey; ITv—r, ofll2 < ¢(L, B)/n/?, as required in Theorem 4.1.
Therefore, all that is left is to study the structure of T7 = {lev& :v € V. }, and to show
that with high probability, it consists of vectors with a regular coordinate structure. To that
end we shall split the argument into two cases: the low-sparsity case, when sg > s; and the
high-sparsity one, in which the reverse inequality holds. The analysis in both cases is based on
Corollary 3.8.

The low-sparsity case

Assume that 2% > 2°1. Then #4" > prlog(en/r) and in particular, by the choice of k4,

Ko n en
Sz priog (). 4.6
3= priog (“ (4.

Fix v € V;.4,. It follows from (3.4) that with probability at least 1 — 27%2"/ pr.
Tty > w1V (47)

Let 0 < 6 < 1 to be named later. Observe that by (3.5) for k = On and p = 2prlog(en/r) =
_251+1

251F1 with probability at least 1 — 2 ,
Tl <2m3([l0ll2v/klog(en/k) + v/ prlog(en/r)v/nl|Wol|w)
<2ns(viy/BTog(e]B) + B/ prIog(enyr) - V), (48)

because [|v]|2 = 1 and /n||Wvl|s < B/T.
Recall that |V, 5, | < 22" and thus, by (4.6) and the union bound, with probability at least
1—272"(4.7) and (4.8) hold for every v € V,.5,. All that remains is ensure that

2f<c35\/m\/H < %\/ﬁ and 2r38T - \/WS %\/ﬁ
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The first condition holds for the right choice of the constant § = (L, 5). For the second, note
that by the definition of k4 in (3.7)

log(en/r) = 251 < 2% < A
T 10glen/r) = 555 " .
prios = = 6422y

Therefore,

K n _ K
2k BV/r -/ priog(en/r) < 2k3B/r - 8&31L[3 /s le/ﬁ,

because L > 1.
This concludes the proof of Theorem 4.1 in the low sparsity case. [ |

The high-sparsity case

Now consider the case 2% < 2%1; that is kqn/r < prlog(en/r), and there is a substantial gap
between the individual probability estimate (3.4) and the cardinality of V, 4, so that a simple
union bound does not give a non-trivial probability estimate. The difficulty one faces here is
bridging this gap, and the key to the proof in the high-sparsity case is the following result.

Theorem 4.4 There exist constants c¢1 and co that depend only on L and (B for which the
following holds. If r < cin/log* n then with probability at least 1 — 2exp(—can/r),

. K1
£l > 2L
dnt ITwE |2 > 5

For the proof of Theorem 4.4, one has to ‘transfer’ the lower bound on infyev, ,, [[Tv€ll2,
which may be obtained directly from (3.4) and the union bound, to the much larger set V; ;.
Thus, it suffices to show that with high probability,

2 2 K
sup [|[Tuglz = [Trolz| < o, (4.9)

’UEVr,sl

for an approximating mv € V,. 4.

To address (4.9), we proceed along the lines of [24] and consider the following, more general
situation: let A be a class of matrices, |A| < 22" and set (As)s>s, to be an admissible sequence
of A; that is, A, is of cardinality at most 22°. Let m,A to be the nearest point to A in A with
respect to the || |22 norm, set AgA = 7511 A — 7, A, and put

s1—1

Vso,s1 (A) = sup Z 25/2”ASAH2—>2'

AeA 5=50

Lemma 4.5 Let & be an isotropic, L-subgaussian random vector and set £ to be an independent
copy of €. Let N(§) = sup e 4 | A&ll2 and put Z = sup e [(AE AL) — (s, A)E, (15, A)E)|-
Then, for everyp > 1,
12|z, < L sup vsg,s, (A)[|Na(€)llz,-
AcA

for an absolute constant c.
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Since the proof of Lemma 4.5 is contained in the proof of Lemma 3.3 in [24], it will not be
presented here.
We will be interested in the specific class of matrices A = {I', : v € V;.4, }:

Theorem 4.6 There exists constants ¢y and co that depend only on L and 3 for which the
following holds. Let A = {T', : v € V,.5, } and set (Ag)s>s, to be an admissible sequence of A.
Then, with probability at least 1 — 2~"/"

sup IAEN3 — [17so AEN3| < 275,51 (A) (Ysg,50 (A) + V) - (4.10)
Before proving Theorem 4.6, let us recall a standard fact that can be established using tail

integration.
Lemma 4.7 Let Z be a nonnegative random variable and assume that

Pr(Z > Ay +uds) < 2exp(—u?/2)  for every u > As.
Then, for every p > 1, ||Z||r, < c(A1 + A - max{As, /p}), and c is an absolute constant.
Proof of Theorem 4.6. Denote by A7, j € [n], the columns of the matrix A and observe that

9 9 , A
||A§”% - Hﬂ—soAgH% = <A£7 A§> - <7T50A§77TSOA§> = Zéjgk (<Aja Ak> - <(7TSOA)]7 (WSOA)k>> .
g,k

Since each A is of the form T, for some v € S"!, (49, A7) = ||v||3 = 1, and the same holds
for 75, A. Therefore, (A7, A7) — ((ms,A)?, (75, A)7) = 0 and all that remains is to control the
“off-diagonal” terms,

gt (47, 4) = ((may AV, (g A)F)) = Fa

J7#k
Applying a standard decoupling argument (see, for example, [24, Theorem 2.4] or [11]) and
Lemma 4.5

(E sup |Fa|P)"/? =|| sup (*)allz, < c1|[sup Zéﬂf;f <<Aj,Ak> _ <(7rSOA)J', (ﬂ'SOA)k>)
AecA AcA AcA ik .
P

=c1 ||sup ‘<A§, A§'> — <7TSOA§, ﬂ'soA§I>|
A€eA Ly

s1—1

<eaL(sup D0 22180 Al2) - INAG) 2, = e2L7an0 (A) - INAE) 1,

€ s=s0
Moreover,
I(NAE))? |, < ||sup [[[AE]15 — Ims AEIB| ||+ || sup [I7s, AE[3

AcA Ly AcA Ly

2 L%0,01 (A) - [INAWE) 2, + || suD s, AE]I3
S

Ly
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By (3.5) for k = n and p = u? > 2%07F3 it follows that with probability at least 1—2 exp(—u?/2),

sup [ AGll = sup [Pl < ma(v +un/mlWoiloe) < es(L, B)(vn +uv),

ve T,50

where we used that ||[Wv|e < B4/r/n. Thus, the random variable Z = sup ¢4 |75, AE]|2
satisfies the conditions of Lemma 4.7 for A1 = c3y/n, A2 = c3/r and Ag =4 - 250/2 implying
that for every p > 1,

< (BZ%)'7 < ea(L, B) (v + Vi max {272, \/p})%

sup ||ms, AE3
AcA Ly

Setting p = 2% = k4n/r we obtain

< cs(L, B)n;

sup ||ms, AE[3
AcA Ly

therefore,
I(NAE))? 2, < e6(Ls B) (s, (AN |1, + 1) ,

implying that
INA(E)z, < er(L, B) max{ysy,s, (A), v}

and
1/p
(= sup 1418 ~ Imsu ACIBI") ™ < es(Ls B)to050 (A) (. (A) + V).
The claim now follows from Lemma 3.7 and the definition of p = kan/r. ]

The next step is to estimate 7y, 5, (A) for our choice A = {I', : v € V; 5, }. We will construct
the admissible sequence A; = {I', : v € V;.;} for sp < s < s1 based on the fact that

[AsAll2—2 = ||F7rs+1v - F7r5+17)||2_>2 = \/EHWASUHOOa

for Agv = msy1v — msv. Hence,

s1—1

Yoousr (A) = sup D297 /0| WAoo,

vEVr s s=50

and the admissible sequence will be constructed as maximal separated subsets of V. ;, with
respect to the norm /n||W(+)||oo-
We will require a well-known fact, due to Carl [8].

Lemma 4.8 There is an absolute constant ¢ for which the following holds. Letws,...,w, € R™
that satisfy ||wille < K, put ||z]| = max;ep) [(z,w;)| and set B to be the unit ball with respect

to that norm. Then for every t > 0,

K?r

log N(v/rB},tB) < C 2

log?(nt?/r).
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In the case we are interested in, w; = /nW; and ||w;|« < . Moreover, V,.;, C V, C /rB};
therefore,
Bor

log N(V,.s,,tB) < log N(y/rB},tB) < Cg log?(nt? /7). (4.11)

Corollary 4.9 There is an admissible sequence of V;.s,, for which, for every v € V, 5, ,

Vl|[WAw]se < 82752/ log(en/2°)

for an absolute constant c. Therefore,
s1—1

sup  » 22 \/n||[WAw|e < e18Vray log(er /). (4.12)

’UEVT,SI s=50

Corollary 4.9 follows from (4.11), a straightforward computation and the definition of sy and
s1. We omit the details.

Proof of Theorem 4.4. Combining the individual small ball estimate in (3.4), Theorem 4.6
and Corollary 4.9, one has that with probability at least 1 — 2=t (LAn/7 for every v € Vst

Iy oéll2 = K1v/m,

and
[ITwE]13 = T o€l13] < ca(L, B)v/n - v/ray log(cor).

It is straightforward verify that the latter term is bounded by (k2/4)n provided that r <
cs(L, B)n/log* n. [ ]

The more difficult step consists in exposing the regular coordinate structure of vectors in a
typical {I',€ : v € V.5, }, and we will do that by finding a suitable upper bound on

v\ 1/2
sgp T¢Ik = sup (Z(<F”£’ei> )2) ) (4.13)

r,81 vEVr g i<k

Specifically, the next result identifies the largest possible k for which (4.13) is smaller than

(k1/4)v/n.

Lemma 4.10 Let 2% < 2% and r < ¢yn/log*(n). Assume that

kE<cp—ss——.
= “aZlog(ar)

Then with probability at least 1 — 276327

K
sup [|Tw¢ || < le/ﬁ- (4.14)

ve r,81

The constants c1, co, c3 only depend on L and (.
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Remark 4.11 One should note that an upper bound on the supremum in (4.14) cannot be
obtained via an individual estimate and the union bound. The subgaussian property of £ is
enough to ensure that for a fived v,

EITE )7 < L (|[v]l2v/kloglen/k) + v/pv/nlWolls)

However, because one only knows that for v € V., /n|Wvllee < By/r|v|l2, individual tail
estimates suffice for a uniform bound in V,,, but not in the much larger set V, s, .

Proof. Observe that

sup ITutlig = sup sup (& Tha).
'UEV:,"S1 z€Vy ’UEVTYSl

We will study the supremum of the linear process w — <§ , w> indexed by the set
{Thx:veVig, ve Vil

Let (Vk,s)s>s, be an admissible sequence of Vj, which will be specified later on. For x € V, we
consider 75, € Vs, , whose cardinality is 22™, and mg,z € V4., whose cardinality is 22 and
write, for v € V. 4,,

Cx =Tz — 7))+ (Chms,x — F;SOvﬂ'SOl‘) + P;SOUTI'SOLU . (4.15)
—_————
=:H =:Ho =:Hs

While Hjs corresponds to the “starting points” of every chain, the difference between H; and
Hy lies in the “balance” between the contribution of Vi, and V, 5, to each one of them. For Hy,
there are ~ 22" points v € Vrs,, but for an admissible sequence for Vj, one has

Ti(x—mo2) = Y Di(repz —mr) = > (TAx),

$>81 $>51

and for s > s1, [{Asz : x € Vi }| > 22" = |V, |. Hence, it is possible to treat Hy for each
v € V., separately. In contrast, the situation for Hy is “more balanced”, and requires a
different argument.

To deal with Hy in (4.15) let us fix v € V;.5, and recall that by Lemma 3.5,

k Lo\ 1/2
E sup (G,t) =E[IT.G| =E<Z(<G,F§6i> )2>

tEF: Vi i=1

<cy/klog(en/k) mex [Tyeill2 < cy/klog(en/k).
€n

By the Majorizing Measures Theorem [41], there exists an admissible sequence of Vj, for which

sup 225/2HF;ASJUH2 ~E sup (G,t) < cy/klog(en/k).

eV s=0 tel's Vi,

25



Let us consider a part of that admissible sequence, namely, (Vi s)s>s,. As § is an isotropic, L-
subgaussian random vector, it follows that for every s > s; and every x € V, with probability
at least 1 — 2_2s+3,

(€, TEA )| < cL2/?||T5Agfo.

Summing for s > s1, one has that with probability at least 1 — 2_251”7 for every x € Vi,

(6To( o))l < 3 [ETIA)] < eL Y 22|TA]s < cLy/Kloglen/R).  (4.16)

s$>51 s>81

Repeating this argument for every v € V.5, and applying the union bound, one has that with
probability at least 1 — 272" (4.16) holds for every v € Vis:-

Next, let us turn to Hy in (4.15). We will construct approximating subsets in the following
way: let (V;.s)sL,, be the admissible sequence of V., used earlier, consisting of maximal
separated subsets with respect to the norm /n||W(:)||, and put vs to be the mesh width of
the net V, 5. For every sp < s <s; and z € V.5, let || || be the ellipsoid norm

n
|2l|2 = [|Dw-U"z|3 = n Yy (W, 2)*(U", )7,
(=1

and set Ts(z) to be a maximal separated subset in Vj, with respect to || ||, of cardinality 2%".
Denote its mesh width by e4(z). Thus, for sp < s < s1, v € V541 and = € Vi,

Lyr=T)_ o+ (zx—2a)+Tha (4.17)

with respect to the norm || ||/, and fulfills

where v' € Vj, satisfies /n||W(v — v')||oc < vs, and 2’ € Vi belongs to Ts(v') — the net of Vj,

T3 (z = 2)]|2 = [lz — 2'[lo < e5(v). (4.18)

Moreover, the cardinality of [, cy,  T5(v') is at most 22" . 92° < 2271

The required estimate on Hs follows once we bound v — that is, establish a covering number
estimate for V; 5, with respect to the norm /n||W(-)||«c — and control e4(z) with respect to
each one of the || ||, norms. Indeed,

€T30 < E Tyl + €. Tl — )| + (6, Ty
for v € Vg1, v € Vig, € Tsy1(v) and 2’ € T5(v'). Since £ is isotropic and L-subgaussian,
we have with probability at least 1 — 223+2, for every v € V. 511 and x € Tsyq(v),
e T3] <eL (22T alla + 22T (e — ') 2) + (6, T3
<eL (22 - /nl|W (v = o')[|2 + 2%2|lz — /||r) + (€, Ta')|

SCL(25/2VS +25/2 sup es(2)) + [(&, Tha')l,
ZEVT

for v/ € V; s and 2’ € Uwsev., Ts(v"), hence,

(&, Ty —Tya’)| < cL(2S/21/S +25/2 sup es(2)). (4.19)
2€V,
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Iterating (4.19), summing for sp < s < s; and recalling that 2°° = k4n/r, it follows that with
probability at least 1 — 2= LA/ for every v € Vs, and every z € Vj,

s1—1 s1—1
(€ Timsyx — T ymso2))| < ca(L <Z 252y, + Z 2s/2 su‘l/) es(z > (4.20)
s=s0 s=s0 z€

and m4,v € Vy g, T € UveVr,SO Ts(v).
The first sum in (4.20) has been estimated earlier, in (4.12). In particular,

s1—1

2 > 2°%u, < egv/ray -log(esr) < (k1/16)v/n

s=S0

for c3 = c3(L, B) and as long as r < ¢4(L, B)n/ log* n.
To bound the second sum in (4.20) we require another covering estimate.

Theorem 4.12 There exists an absolute constant ¢ for which, for every z € S™ 1,
log N(Vi, | [1+:) < cBe~2klog(en/k).

Proof. The proof of Theorem 4.12 is an outcome of Sudakov’s inequality. Fix z € S~ and
define the linear operator S : R — R™ by Se; = U'. Observe that for i € [n] and t € R

<\/HDWZS*t, €i> = \/H<S*t,DWz6i> = \/E<Wi,z><S*t,ei> = \/E<WZ,Z><UZ,t>

Therefore, |[\/nDw.S*t||2 = ||t||. and log N (Vg, || ||2,¢) = log N (v/nDyw ,S*Vi,eBY).
Set T = /nDy.S*V} and let G be the standard Gaussian vector in R™. By Sudakov’s
inequality (see, e.g., [27]), there is an absolute constant ¢ for which

ce*log N(T,eB3) < Esup(G, t),
teT

where G is a standard Gaussian vector in R", and

Esup(G.t) = E sup (G, iDyw.5") = viE sup 3 gu(We, 2)(UF, v) = B ()"

teT vEV), veVi ;4 i<k

for Z; = /n ", gi<Wi, z><Ui, ej>. Each one of the Z;’s is a Gaussian variable, and since U
is a Hadamard type matrix with constant g3,

EZ? =nY (Wi, z) (Ul e;)? < 52
=1

Finally, by Lemma 3.5,

k 1/2
E(Z(Z;F) / < ¢fBy/klog(en/k).

Jj=1
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Invoking Theorem 4.12, it follows that for every z € V;, es(2) < 82752 /klog(en/k).

Hence,
sup £5(2) < 827%/2\/klog(en/k),

ZEVT
and the second sum in (4.20) is bounded by

(L, B)(s1 — s0)y/Flog(en/k) < ex(L, B)ary/Floglen/k) < (x1/16)v/n

provided that
n

k< (L, B) (4.21)

a2log oy
This concludes the required estimate on Ho and leads to the condition on k.
The final and easiest component is to control Hs in (4.15). Indeed,

7%, o msoll2 < vVl Wa vl < BT,
and there are at most 22 . 220 = 220" pairs (ms,v, Ts,z). Since £ is isotropic and L-
subgaussian, one has that with probability at least 1 — 2 exp(—u?/2),

(6.5, ymaa)| < LullT, myalls < Luyr.

Let uw = 2(50+2)/2 and by the union bound, with probability at least 1 — 2 exp(—c2%0),

* K1 n K1
sup I mex)| < 2000218 fr < 2. \/> -LBVT < —+/n,

’UEVr,sl eV, ’<§ TsqV " S0 >‘ 8/4',3[//6 r 1
because k3, L, 8 > 1. Taking the union bound over the events in which the bounds for Hy, Hs
and Hj apply, we deduce that

sup [[Toéllim < w1v/n

vGVmsl

with probability at least 1 — 27¢1/T — 2e=e22%0 _ 9=2171 5 1 _ 9-¢/2°0 g1 5 qyitable constant
/

¢, under condition (4.21) on k. This completes the proof of Lemma 4.10 after relabelling
constants. ]

5 The upper bound on one-sparse vectors

To complete the proof of Theorem 2.5 one has to show that with high probability,
max || Pal¢,£ll2 < cVon,
1€[n]

for a suitable constant ¢ and Q = {i : §; = 1}, see also Theorem 2.3.

Theorem 5.1 There exist constants cg,c1 and co that depend only on L and 3 for which the
following holds. If § > co™5™ | then with probability at least 1 — 2 exp(—c16n),

n

1/2

max Zéj@’eif,ej)z < coVon.
1

i€[n] iz
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The proof of Theorem 5.1 is based on the fact that for every i € [n], T'¢; has a regular
coordinate structure, in the sense that is clarified in the following lemma.

Lemma 5.2 There exist an absolute constant ¢1 and a constant co that depends on B and L for
which the following holds. Let & be an isotropic, L-subgaussian random vector and let m € [n].
Then for every i € [n], with probability at least 1 — exp(—cimlog(en/m)), I'e,& = x +y, where

|z[l2 < car/mlog(en/m) and max Yi

——— < .
ic[n] /log(en/i) — 2
Proof. Let i € [n] and set z = I'¢,. Let I be the (random) set of the m largest coordinates
of z and define
x = szej and y = Z zje;. (5.1)
Jel Jele

Observe that [|z|l2 = ||T¢;&||(m)- By (3.5) for p = mlog(en/m), and noting that [[We;w <
B/+/n, one has

Pr(llzlls > (L, B)\/mIog(enjm)) < exp(—m log(en,/m)).
Repeating this argument for m < ¢ < n, it follows that with probability at least
1- Z exp(—llog(en/f)) > 1 — exp(—cymlog(en/m)),
l=m

for every m < ¢ < n,

5 < jzuzm < 2¢(8, L) /log(en/0),

and the claim follows. ]

The coordinate structure of I'c,£ comes into play thanks to a fact from [30].

Lemma 5.3 Let a € R", set ||aflyp = maxi<j<, a}/log(en/j) and put 0 <t < ||al|yp /2. Then
n
Pr(}Z(dj —8)a;| > tén) < 2exp(—ct2(5n/Hawa)
j=1

where ¢ is an absolute constant and (6;)7_, are independent selectors with mean 6.
In particular, if a; =log(en/j) then with probability at least 1 — 2 exp(—c16n),

Z d;log(en/j) < 5on.
i=1

Proof of Theorem 5.1. Let m = dn/log(e/d) and consider the decomposition of I'¢;{ =
x + y established in Lemma 5.2. Conditioned on the event from that lemma which holds with
probability at least 1 — 2 exp(—codn),

(i 5jw§)1/2 = <Z x?>1/2 < c1(L, B)v/mlog(en/m) < ca(L, B)Von.
=1

29



Also, by Lemma 5.3, with probability at least 1 — 2 exp(—c3dn),

Zajy] < es(L Za log(en/j) < es(L, B)on.

=1

Hence, with probability at least 1 — 2 exp(—cgdn) with respect to both & and (6;)
that

7y, one has

(Z 6j<rei§v €j>2> v < C7(L, 5)\/%
j=1

Recalling that én > cglogn for a well chosen cg, it follows from the union bound that with
probability at least 1 — 2nexp(—cgdn) > 1 — 2exp(—cgdn),

mcﬁ(z 0j(Te.é, ej>2) e c7(L, B)Von.
e|n )
7=1

6 The /,-robust null space property for ¢ > 2

We will now extend from the ¢>-robustness to £,-robustness for general 2 < g < co. We state
our main result for the general type of matrices as used before, i.e., for three Hadamard type
matrices U, W, O with constant (3,

Av =T,¢ = \/HUDWUO§7

where £ is a random vector with independent mean-zero, variance one, L-subgaussian coordi-
nates. Clearly, random circulant matrices fall into this class of random matrices A.

Theorem 6.1 Let 2 < g < oo and A be a draw of an n X n random matrixz as described above.
Let (6:)ie[n) be a sequence of independent selectors with mean 0, set Q2 = {i € [n] : 6; = 1} and

put B = PoA. Forv € (0,1), set o, = log ( max {log (e” ”) log(v 28)}),

c1 if8<021/$,
((s) =
cs3 log Q1) lfCZ‘/logn— < CBiggitn 4 )

and p(s) = max{1,log(ev=2r)/log(en/s)}. Assume, for 2 < q < oo,

on > cav2slog(en/s)p(s)C(s) max{q? qlog' %% (en)} and n > cs5(q/2)”Y?1log? 2 (en)
(6.1)
and, for ¢ = o
on > crv2slog(en/s)p(s)C(s) log? (en). (6.2)
Then with probability at least 1 — n~ the following holds: For all x € R™, all e € R™ with
lellq < n and y = Bz + e, the minimizer z* of

min ||z|;  subject to ||[Bz —yll, <7
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satisfies

C V'sn
[ IS CIRE
C as(x)1+ D n
AN A )k

IN

and

|l — 2#

IA

lz — 2|12

where we set 1/q =0 for ¢ = co. All constants cy, . ..,cs only depend on L and 5.

Remark.

a)

b)

d)

In the theorem above, it suffices to restrict ¢ to the range [2,log(en)] because for g >
log(en) = qo, || - |l; and || - ||4, are equivalent up to absolute constants.

For ¢ > 2, the conditions (6.1), (6.2) on the required number of measurements on have
more logarithmic factors than the one for ¢ = 2. It is presently not clear whether this is
an artefact of the proof and one can work with only one logarithmic factor as in the case
of matrices with i.i.d. entries [12].

The case ¢ = oo is important for quantized compressive sensing, where one would like to
work with consistent reconstruction methods such as £, .,-constraint ¢1-minimization,

min ||z||;  subject to ||Bz — ylleo <.

Our result represents the first near-optimal bound for structured random matrices in this

context. We refer to [12] for a detailed discussion of connections to quantized compressive

n

sensing. In the low sparsity case s < ca, /{5 o

the condition of the required number of

samples reads
on > v 2slog(en/s)log®(en).

The logarithmic factors of log(en) may actually be slightly improved to log(edn), but for
convenience we stated the theorem in the above way.

We first provide an extension of Theorem 2.3 in order to reduce the £,-null space property
to a lower bound of || Bz||, over z € V.

Theorem 6.2 Let 2 < g < co. Assume that, for B € R™*",

inf |Bz|, > 7' d Be:ll, < M,.
;gVTH 33||q—7q an ?é?ﬁ” ejllg < My

If r > 10(2 + l/_l)QTqQMqQL] s, then

1
inf |Bz|lq > —.
z€T,,sNS"~1 27,
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Proof. For a vector z € R™\ {0}, we introduce the (discrete) random vector W on R"™ defined
via | |

Then EW = z. We take r independent copies W71,...,W, of W and define Z = %Z;Zl W,

so that EZ = z and Z/||Z||2 € V; for every realization of Z so that by assumption ||BZ||, >
1z d

74 1Z]]2 an

P(W = sign(z))||z[lie;) =

E|BZ|; > 7, *El|Z|3-
By the triangle inequality,
_ 1/2 1
|Bzll, > (E|BZ|2)? — (B|BZ - Bz|)Y? > 7, (EI|Z|3)"* - (EI|BZ — Bz||9)"/".
The expectation in the first term can be computed as

[l
EHZH2— ) E E(W;, W;) <WW 2 E E(W;, W;) = 7“1 H H2
4,j=1 1#£j

Denoting by (€;)7_; a Rademacher vector independent of (W;), symmetrization and Khint-
chine’s inequality yields

1/q 1/q
1 e 2 -
(E|BZ - Bz|9)"" = [EIIF ' S (BZ ~EBZ)||} | < - E| Y e;BW;¢
i=1 i=1
1/q a/2\ /4
m T 20
SR e (BW))il? < \[ EZ ZyBW )il
k=1 j=1 k=1 \j=1
1/2
2C./q [ < 2C 2C\/qM,
e D I T e It

where C' = 23/8¢71/2 (see e.g. [17, Corollary 8.7]). Hereby, we have also used that ¢ > 2 and
that || Be;jl|l; < M,. Altogether, we obtain

0= j- e > Jr
Now for z € T, s N S"1 C (24 v~1) conv V; we have ||z[|1 < (2 +v71)4/s, so that
1Bz, > ot 2OVAM 2V TVE 1
1= "4q T — 27
q
provided that
r> CT 2+v )2Mq2qs
with C = 1602 = 16 - 23/%¢~! ~ 9.899 < 10. m
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Remark. The same proof strategy can also be applied for 1 < ¢ < 2. However, since £, is of
type ¢ for 1 < ¢ < 2, see e.g. [27, Chapter 9], one only obtains E||BZ — Bz||; < %/Mqu/qHzHl
in this case, leading to the condition r1~/¢ > CTgy/s or

q
r 2 Cqs2@-1D

for 1 < g < 2, hence, a polynomial scaling of r in s and as a result also polynomial scaling of
the number of measurements in s in the end. It is presently not clear whether a different proof
strategy may mend this problem.

Let us now consider the lower bound over V.. The following result generalizes Corollary 4.2
and holds for any 1 < ¢ < oco.

Theorem 6.3 Let 1 < q < oo. There exist constants cg, . ..,cs that depend only on L and 3
for which the following holds. Let

. o, if r < e/ gternn (6.3)
- . .
oflog(ar), if o1 gty <7 < oy

and assume that
on > c3p¢,rlog(en/r),

with p defined in (3.6). Set (d;)i=1 to be independent selectors with mean 6 and Q = {i : §; = 1}.
Then with probability at least 1 — 27 min{2°0,2°1}

inf || Polwélly > es(6n/¢)Ye. (6.4)
veV,

Proof. According to Theorem 4.1, with probability at least 1 — 27c2min{2°0.2"1} we haye
{Tw:veV,} Ty +Th

with |T7] < 22°! and Ty C cm_?’/QBg. We assume in the following to be in that event. For
v €V, we write I',é =t +y with £ € T} and y € T5 and conclude that

n 1/q n 1/q n 1/q
. g > i 4. 19 _ NPT
(;wvs, e ) > inf (Zw ) sup <Z 5ilyil )

YeT2 \i=1

=1
1/q

n 1/q n N
> inf 8ilyi|? — sup y;| > inf 8ilyild _pl/2 sup [lyllz
teh <; o ) yeT2;’ il teT ; ilvil s [yl
n 1/p
> inf Silu: 12 _ -1

- tlenTl <Zl Z‘yz‘ ) cn

1=

It remains to estimate infier, (3o 6Z-|yi|‘1)1/ ? from below. Recall from the proof of Theo-
rem 4.1 that 71 = V,,, and for a suitable constant ¢, on the event of probability at least
1 — 2-amin{20.2°1} "o overy ¢ = D¢ € T,

Itllo > ey and [t < ev/n/2, (6.5)
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see (4.2) as well as (4.8) and Lemma 4.10, where 6 is defined in (4.3) and the constant ¢ only
depends on L, 3. Now, for t € T1, we choose I = I(t) to be the index set corresponding to the
On largest absolute coefficients of ¢, and consider x = Prt. Then

" 1/2 1/2
> (u_e)nz w) = (g (113 1)
1/2 .
> <i(c2nc2n/4)> :\/23 = c1.

For Q = {i:6; =1} let K = K(t) = I(t)N <. Then the cardinality of K satisfies |K| > 16[I| >
c206n with probability at least 1 — e~¢39%", On this event,

1/q

1Patllg > | D[t = calcafbn)'/e
jeK

By the union over all ¢ € Ty we conclude that infier, || Pat|l, > c3(60n)'/ with probability at
least

1 — 2|T| exp(—c360n) = 1 — 2 - 2% exp(—c366n).
Hence, by definition of s1, see Definition 3.11, if
én > CO L prlog(en/r)

then (6.4) holds with probability at least 1 —27%2""  completing the proof by setting ¢, = 7.
|

As the next step, we provide an upper bound for ||Pol'c,£||,.

Theorem 6.4 Let 2 < g < oo. There are constants cy,...,c4 > 0 such that if on >
colog(n) max{1,log?=2(e/d), (¢/2)~9/?} then with probability at least 1 —n~°', it holds

ma | Pal'€ll < ea(om)!/y/max{g, log(n)~2/1),
€|n

where Q = {i € [n] : §; = 1}. Moreover, if dn > colog(en), then

max | Pale,€]loo < c3v/log(en), (6.6)
1€

with probability at least 1 — n~%,

Proof. We proceed similarly to Section 5. For fixed i € [n], let z =TI'¢,£ and, for m € [n] let
I be the random set of m largest absolute coordinates of z. We define x and y as in (5.1). As
in the proof of Lemma (5.2) we conclude that

Pr(l[z)gm) = c(L, B)v/mlog(en/m)) < exp(—mlog(en/m))
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and
*

z
max ——— < ¢
il \/log(en/i)

with probability at least 1 — exp(—cymlog(en/m)). In conclusion

<y flog [ ———
Vo= \mri—1)

Moreover, by (3.5) for k =1 and p = (o + 1) log(n),
[2lloo = l2lloo = ITe;élloe < el 4 1)y/log(en), (6.7)

with probability at least 1 — e~ (@tDlos(n) — 1 _ p=e—1 Tt follows that

en
lally < l2ll3 21527 < cala+ 1)~/ T10gH 20 (£2) 10g!/271/20) (en)

«

with probability at least 1 — n™® — exp(—camlog(en/m)). In order to apply Lemma 5.3 for

en
m—+j—1

- g\ /2
Sz (37
7j=1

and [|a[yp < log?/?~1 (<%). Lemma 5.3 implies that

Z?zl d;|yj|? we note that the sequence a; = log?/? satisfies

n dn(g/2)1/?
2
Pr( > 6;ly;|" > 2c5(q/2)7?0n | < 2exp <_6610g‘1_2(6n/m) '

j=1
Now choose m = dn/log(e/d). Then

n 1/q
pREZIE < |lzlly < es(a+ 1)1 7#(5n) "9 1og>1/9) (en)
j=1

with probability at least 1 — n=%"! — exp(—c7dn) and

|Poyllg < csv/a/2(6n)"4

with probability at least 1 — exp(—codn(q/2)%/?/log?2(e/d)). Taking the union bound over
the events for z and y and then over ¢ € [n] while using that

dn > comax{log(n),log?"%(e/8)(q/2)"*}

we obtain

ma || Pale €]l < esy/masc{g, log'~2/9(en))} (n) /2
1€

with probability at least 1 — n=® — n=¢7¢%+l _ p=cocotl For suitable ¢y and « this proves the

claim for 2 < ¢ < co. For ¢ = oo, the claim follows by taking the union over the events for
i € [n] which ensure (6.7). |
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We are now in the position to conclude the proof of the main result of this section.
Proof of Theorem 6.1. The constants M, and 7, of Theorem 6.2 can be chosen according
Theorems 6.3 and 6.4 as

T, = a(On/m)V4 and M, = cz(5n)1/q\/max{q,log(en)l_z/q}

under the condition
on > c3p(,rlog(en/r),

where ¢, is defined in (6.3). With r = 10(2 4+ v~ 1)*72M2q s, Theorems 6.3-6.4 yield

inf Paly€ll, > ca(s 1/a
L [Palzllq = ca(dn/¢r)

with probability at least 1 — n~% provided that
on > cgr2pCrqs max{q,log' ~*4(en)} log(en/s).

Since it suffices to consider 2 < ¢ < log(en) = qop by equivalence of ||- |4, and ||- ||, for ¢ > qo, the
quantity ¢, is equivalent to ((s) defined in Theorem 6.1 and p turns into p(s). By Theorem 2.2,
this concludes the proof for the case ¢ < oc.

The case ¢ = oo is proven in the same way by using (6.6) and observing that for ¢y = log(en),
the norms || - |4, and || - [ are equivalent. ]
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