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Abstract. We study the convergence of gradient flows related to learning deep linear neural networks

(where the activation function is the identity map) from data. In this case, the composition of the network

layers amounts to simply multiplying the weight matrices of all layers together, resulting in an overparam-

eterized problem. The gradient flow with respect to these factors can be re-interpreted as a Riemannian

gradient flow on the manifold of rank-r matrices endowed with a suitable Riemannian metric. We show

that the flow always converges to a critical point of the underlying functional. Moreover, we establish that,

for almost all initializations, the flow converges to a global minimum on the manifold of rank k matrices for

some k ≤ r.

1. Introduction

Deep learning [10] forms the basis of remarkable breakthroughs in many areas of machine learning.

Nevertheless, its inner workings are not yet well-understood and mathematical theory of deep learning is

still in its infancy. Training a neural networks amounts to solving a suitable optimization problem, where

one tries to minimize the discrepancy between the predictions of the model and the data. One important

open question concerns the convergence of commonly used gradient descent and stochastic gradient descent

algorithms to the (global) minimizers of the corresponding objective functionals. Understanding this problem

for general nonlinear deep neural networks seems to be very involved. In this paper, we study the convergence

properties of gradient flows for learning deep linear neural networks from data. While the class of linear

neural networks may be not be rich enough for many machine learning tasks, it is nevertheless instructive and

still a non-trivial task to understand the convergence properties of gradient descent algorithms. Linearity
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2 LEARNING DEEP LINEAR NETWORKS

here means that the activation functions in each layer are just the identity map, so that the weight matrices

of all layers are multiplied together. This results in an overparameterized problem.

Our analysis builds on previous works on optimization aspects for learning linear networks [22, 12, 4, 3,

9, 21]. In [3] the gradient flow for weight matrices of all network layers is analyzed and an equation for the

flow of their product is derived. The article [3] then establishes local convergence for initial points close

enough to the (global) minimum. In [9] it is shown that under suitable conditions the flow converges to a

critical point for any initial point. We contribute to this line of work in the following ways:

• We show (see Corollary 17) that the evolution of the product of all network layer matrices can

be re-interpreted as a Riemannian gradient flow on the manifold of matrices of rank r, where r

corresponds to the smallest of the involved matrix dimensions. This is remarkable because it is

shown in [3] that the flow of this product cannot be interpreted as a standard gradient flow with

respect to some functional. Our result is possible because we use a non-trivial Riemannian metric.

• We show in Theorem 5 that the flow always converges to a critical point of the loss functional LN ,

see (2). This results applies under significantly more general assumptions than the mentioned result

of [9].

• We show that the flow converges to the global optimum of L1, see (4), restricted to the manifold of

rank k matrices for almost all initializations (Theorem 38), where the rank may be anything between

0 and r (the smallest of the involved matrix dimensions). In the case of two layers, we show in the

same theorem that for almost all initial conditions, the flow converges to a global optimum of L2,

see (2). Our result in the case of two layers again applies under significantly more general conditions

than a similar result in [9]. For the proof, we extend an abstract result in [15] that shows that

strict saddle points of the functional are avoided almost surely. Moreover, we give an analysis of the

critical points and saddle points of L1 and LN , which generalizes and refines results of [12, 21].

We believe that our results shed new light on global convergence of gradient flows (and thereby on gradient

descent algorithms) for learning neural network. We expect that the insights will be useful for extending

them to learning nonlinear neural networks.

Structure. This article is structured as follows. Section 2 describes the setup of gradient flows for learning

linear neural networks and collects some basic results. Section 3 shows convergence of the flow to a critical

point of the functional. Section 4 provides the interpretation as Riemannian gradient flow on the manifold

of rank-r matrices. For the special case of a linear autoencoder with two coupled layers and balanced

initial points, Section 5 shows convergence of the flow to a global optimum for almost all starting points

by building on [22]. Section 6 extends this result to general linear networks with an arbitrary number of
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(non-coupled) layers by first extending an abstract result in [15] that first order methods avoid strict saddle

points almost surely to gradient flows and then analyzing the strict saddle point property for our functional

under consideration. Section 7 illustrates our findings with numerical experiments. Appendices A and B

contain detailed proofs of Propositions 10 and 11; while Appendices C and D collect additional results on

flows on manifolds and on the autoencoder case with two (non-coupled) layers, respectively.

Acknowledgement. B.B., H.R. and U.T. acknowledge funding through the DAAD project Understanding

stochastic gradient descent in deep learning (project number 57417829). B.B. acknowledges funding by

BMBF through the Alexander-von-Humboldt Foundation.

2. Gradient flows for learning linear networks

Suppose we are given data points x1, . . . , xm ∈ Rdx and label points y1, . . . , ym ∈ Rdy . The learning task

consists in finding a map f such that f(xj) ≈ yj . In deep learning, candidate maps are given by deep neural

networks of the form

f(x) = fW1,...,WN ,b1,...,bN (x) = gN ◦ gN−1 ◦ · · · ◦ g1(x),

where each layer is of the form gj(z) = σ(Wjz + bj) with matrices Wj and vectors bj and an activation

function σ : R→ R that acts componentwise. The parameters W1, . . . ,WN , b1, . . . , bN are commonly learned

from the data via empirical risk minimization. Given a suitable loss function ` : Rdy×Rdy → R, one considers

the optimization problem

min
W1,...,WN ,b1,...,bN

m∑
j=1

`(fW1,...,WN ,b1,...,bN (xj), yj).

In this article, we are interested in understanding the convergence behavior of the gradient flow (as simpli-

fication of gradient descent) for the minimization of this functional. Since providing such understanding for

the general case seems to be hard, we concentrate on the special case of linear networks (with bj = 0 for all

j) and the `2-loss `(z, y) = ‖y − z‖22/2 in this article, i.e., the network takes the form

f(x) = WN ·WN−1 · · ·W1x, for N ≥ 2,

where Wj ∈ Rdj×dj−1 for d0 = dx, dN = dy and d1, . . . , dN−1 ∈ N. Clearly, f(x) = Wx with the factorization

W = WN · · ·W1, (1)

which can be viewed as an overparameterization of the matrix W . Note that the factorization imposes a

rank constraint as the rank of W is at most r = min{d0, d1, . . . , dN}. The `2-loss leads to the functional

LN (W1, . . . ,WN ) =
1

2

m∑
j=1

‖yj −WN · · ·W1xj‖22 =
1

2
‖Y −WN · · ·W1X‖2F (2)
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where X ∈ Rdx×m is the matrix with columns x1, . . . , xm and Y ∈ Rdy×m the matrix with columns

y1, . . . , ym. Here ‖ · ‖F denotes the Frobenius norm induced by the inner product 〈A,B〉F := tr(ABT ).

Empirical risk minimization is the optimization problem

min
W1,...,WN

LN (W1, . . . ,WN ), where Wj ∈ Rdj×dj−1 , j = 1, . . . , N. (3)

For W ∈ Rdy×dx , we further introduce the functional

L1(W ) :=
1

2
‖Y −WX‖2F . (4)

Since the rank of W = WN · · ·W1 is at most r = min{d0, d1, . . . , dN}, minimization of LN is closely related

to the minimization of L1 restricted to the set of matrices of rank at most r, but the optimization of LN

does not require to formulate this constraint explicitly. However, LN is not jointly convex in W1, . . . ,WN

so that understanding the behavior of corresponding optimization algorithms is not trivial.

The case of an autoencoder [10, Chapter 14], studied in detail below, refers to the situation where Y = X.

Here one tries to find for W a projection onto a subspace of dimension r that best approximates the data,

i.e., Wx` ≈ x` for ` = 1, . . . ,m. This task is relevant for unsupervised learning and only the rank deficient

case, where r := mini=0,...,N di < m is of interest then, as otherwise one could simply set W = Idx and there

would be nothing to learn.

The gradient of L1 is given as

∇WL1(W ) = WXXT − Y XT .

For given initial values Wj(0), j ∈ {1, . . . , N}, we consider the system of gradient flows

Ẇj = −∇WjL
N (W1, . . . ,WN ). (5)

Our aim is to investigate when this system converges to an optimal solution, i.e., one that is minimizing

our optimization problem (3). For W = WN · · ·W1 we also want to understand the behavior of W (t) as t

tends to infinity. Clearly, the gradient flow is a continuous version of gradient descent algorithms used in

practice and has the advantage that its analysis does not require discussing step sizes etc. We postpone the

extension of our results to gradient descent algorithms to later contributions.

Definition 1. Borrowing notation from [3], for Wj ∈ Rdj×dj−1 , j = 1, . . . , N , we say that W1, . . . ,WN are

0-balanced or simply balanced if

WT
j+1Wj+1 = WjW

T
j for j = 1, . . . , N − 1.

We say that the flow (5) has balanced initial conditions if W1(0), . . . ,WN (0) are balanced.

The following lemma summarizes basic properties of the flow which are well known; see [4, 3, 9].
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Lemma 2. With the notation above, the following holds:

(1) For j ∈ {1, . . . , N},

∇WjL
N (W1, . . . ,WN ) = WT

j+1 · · ·WT
N∇WL1(WN · · ·W1)WT

1 · · ·WT
j−1.

(2) Assume the Wj(t) satisfy (5). Then W = WN · · ·W1 satisfies

dW (t)

dt
= −

N∑
j=1

WN · · ·Wj+1W
T
j+1 · · ·WT

N∇WL1(W )WT
1 · · ·WT

j−1Wj−1 · · ·W1. (6)

(3) For all j = 1, . . . , N − 1 and all t ≥ 0 we have that

d

dt

(
WT
j+1(t)Wj+1(t)

)
=

d

dt

(
Wj(t)W

T
j (t)

)
.

In particular, the differences

WT
j+1(t)Wj+1(t)−Wj(t)W

T
j (t), j = 1, . . . , N − 1,

and the differences

‖Wj(t)‖2F − ‖Wi(t)‖2F , i, j = 1, . . . , N,

are all constant in time.

(4) If W1(0), . . . ,WN (0) are balanced, then

WT
j+1(t)Wj+1(t) = Wj(t)W

T
j (t)

for all j ∈ {1, . . . , N − 1} and t ≥ 0, and

R(t) :=
dW (t)

dt
+

N∑
j=1

(W (t)W (t)T )
N−j
N ∇WL1(W )(W (t)TW (t))

j−1
N = 0. (7)

Here and the sequel, by the p-th root of a symmetric and positive semidefinite matrix we mean the

principal p-th root, i.e. the p-th root is symmetric and positive semidefinite again. A concrete reference for

the statements of the lemma is [4, Theorem 1] together with its proof. For point (3), see also [9, Lemma 1].

Definition 3. For W,Z ∈ Rdy×dx and N ≥ 2 let

AW (Z) =

N∑
j=1

(WWT )
N−j
N · Z · (WTW )

j−1
N . (8)

Thus, if the Wj(0) are balanced (see Definition 1), then

dW (t)

dt
= −AW (t)

(
∇WL1

(
W (t)

))
. (9)

We will write this as a gradient flow with respect to a suitable Riemannian metric in Section 4.
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3. Convergence of the gradient flow

In this section we will show that the gradient flow always converges to a critical point of LN , also called

an equilibrium point in the following, provided that XXT has full rank. We do not assume balancedness of

the initial data. A similar statement was shown in [9, Proposition 1] and similarly as in loc. cit., our proof

is based on Lojasiewicz’s Theorem, but the technical exposition differs and we do not need the assumptions

dy ≤ dx and dy ≤ r = min{d1, . . . , dN−1} made in [9], which, for instance, exclude the autoencoder case and

imply that the set Mr of all admissible matrices appearing as a product W = WN · · ·W1, i.e., the variety of

matrices of rank at most r, coincides with the vector space Rdx×dy . Let us first recall the following corollary

of Lojasiewicz’s Inequality; see [1, 16, 9, 13, 20].

Theorem 4. If f : Rn → R is analytic and the curve t 7→ x(t) ∈ Rn, t ∈ [0,∞), is bounded and a solution

of the gradient flow equation ẋ(t) = −∇f(x(t)), then x(t) converges to a critical point of f as t→∞.

This result, sometimes called Lojasiewicz’s Theorem, follows from Theorem 2.2 in [1], for example (see

also Theorem 1 in [9]). Indeed it is shown in [1] that under our assumptions x(t) converges to a limit point

x∗. By continuity, it follows that also the time derivative ẋ(t) = −∇f(x(t)) converges to a limit point

z := −∇f(x∗). Then z = 0, i.e., x∗ is a critical point of f . Indeed, if z had a component zk 6= 0 then for

t0 large enough we would have |ẋk(t) − zk| ≤ |zk|2 for all t ≥ t0 and hence for t2 ≥ t1 ≥ t0 we would have

|xk(t2)− xk(t1)| = |
∫ t2
t1
ẋk(t)dt| ≥ (t2 − t1) |zk|2 , contradicting the convergence of xk.

Theorem 5. Assume XXT has full rank. Then the flows Wi(t) defined by (5) and W (t) given by (6) are

defined and bounded for all t ≥ 0 and (W1, . . . ,WN ) converges to a critical point of LN as t→∞.

Proof. Note that the right-hand sides of (5) and (6) are continuous functions so existence of solutions locally

in time follows from the Cauchy-Peano theorem. In order to show that the solutions exist for all times and

to be able to apply Lojasiewicz’s Theorem, we want to show that the ‖Wi(t)‖F are bounded. We will first

show that the flow W (t) given by (6) remains bounded for all t. We observe that for all t ≥ 0 for which

W (t) is defined we have L1(W (t)) ≤ L1(W (0)). To see this, note that

d

dt
L1(W (t)) =

d

dt
LN (W1(t), . . . ,WN (t)) =

N∑
i=1

DWiL
N ((W1(t), . . . ,WN (t))Ẇi(t)

= −
N∑
i=1

‖∇Wi
LN ((W1(t), . . . ,WN (t))‖2F ≤ 0.

Here the notation DWi
denotes the directional derivative w.r.t. Wi. Hence, for any t ≥ 0 we have

‖W (t)‖F = ‖W (t)XXT (XXT )−1‖F ≤ ‖W (t)X‖F ‖XT (XXT )−1‖F = ‖W (t)X − Y + Y ‖F ‖XT (XXT )−1‖F
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≤ (‖W (t)X − Y ‖F + ‖Y ‖F ) ‖XT (XXT )−1‖F =
(√

2L1(W (t)) + ‖Y ‖F
)
‖XT (XXT )−1‖F

≤
(√

2L1(W (0)) + ‖Y ‖F
)
‖XT (XXT )−1‖F .

In particular, ‖W (t)‖F is bounded. Recall that the Frobenius norm is submultiplicative.

Next, in order to show the boundedness of the ‖Wi(t)‖F , we show the following claim: For any i ∈

{1, . . . , N}, we have

‖Wi(t)‖F ≤ Ci‖W (t)‖1/NF + C̃i, (10)

for all t ≥ 0 (for which the Wi(t) and hence also W (t) are defined). Here Ci and C̃i are suitable positive

constants depending only on the initial conditions.

Before we prove the claim, we introduce the following notation.

Definition 6. Suppose we are given a set of (real valued) matrices {Xi, i ∈ I}, where I is a finite set. A

polynomial P in the matrices Xi, i ∈ I, with matrix coefficients is a (finite) sum of terms of the form

A1Xi1A2Xi2 · · ·AnXinAn+1. (11)

The Aj are the matrix coefficients of the monomial (11) (where the dimensions of the Aj have to be such

that the product (11) as well as the sum of all the terms of the form (11) in the polynomial P are well

defined). The degree of the polynomial P is the maximal value of n in the summands of the above form

(11) defining P (where n = 0 is also allowed).

In the following, the constants are allowed to depend on the dimensions di and the initial matrices Wi(0).

We will suppress the argument t.

To prove the claim, we observe that

WWT = WN · · ·W1W
T
1 · · ·WT

N .

Replacing W1W
T
1 by WT

2 W2 +A12, where A12 is a constant matrix (see Lemma 2 (3)), we obtain

WWT = WN · · ·W3W2W
T
2 W2W

T
2 W

T
3 · · ·WT

N +WN · · ·W2A12W
T
2 · · ·WT

N .

We now replace W2W
T
2 by WT

3 W3 +A23 and, proceeding in this manner, we finally arrive at

WWT = (WNW
T
N )N + P (W2, . . . ,WN ,W

T
2 , . . . ,W

T
N ), (12)

where P (W2, . . . ,WN ,W
T
2 , . . . ,W

T
N ) is a polynomial in W2, . . . ,WN ,W

T
2 , . . . ,W

T
N (with matrix coefficients)

whose degree is at most 2N − 2.

In the following, we denote by σN the maximal singular value of WN . Thus

σ2N
N ≤ ‖(WNW

T
N )N‖F ≤ ‖WWT ‖F + ‖P (W2, . . . ,WN ,W

T
2 , . . . ,W

T
N )‖F . (13)
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Since ‖WN‖2F and ‖Wi‖2F differ only by a constant (depending on i), there are suitable constants ai and

bi such that ‖Wi‖F ≤ aiσN + bi for all i ∈ {1, . . . , N}. It follows that

‖P (W2, . . . ,WN ,W
T
2 , . . . ,W

T
N )‖F ≤ PN (σN ),

where PN is a polynomial in one variable of degree at most 2N−2. Since the degree of PN is strictly smaller

than 2N , there exists a constant C, which depends on the coefficients of PN , such that |PN (x)| ≤ 1
2x

2N +C

for all x ≥ 0. Hence we obtain from (13)

σ2N
N ≤ BN‖WWT ‖F + B̃N , (14)

and therefore also

σN ≤ B′N‖W‖
1/N
F + B̃′N , (15)

for suitable positive constants BN , B̃N , B
′
N , B̃

′
N (we can choose BN = 2 by the discussion above). Since

‖Wi‖F ≤ aiσN + bi, estimate (10) for ‖Wi‖F follows.

The fact that all the ‖Wi‖F are bounded now follows from the fact that ‖W‖F is bounded as shown

above together with estimate (10). This ensures the existence of solutions Wi(t) (and hence W (t)) for all

t ≥ 0. The convergence of (W1, . . . ,WN ) to an equilibrium point (i.e., a critical point of LN ) now follows

from Lojasiewicz’s Theorem 4. �

4. Riemannian gradient flows

Recall that in order to define a gradient flow, it is necessary to also specify the local geometry of the

space. More precisely, suppose that a C2 manifold M is given, on which a C2-function x 7→ E(x) ∈ R is

defined for all x ∈ M. Then the differential dE(x) of E at the point x is a co-tangent vector, i.e., a linear

map from the tangent space TxM to R. On the other hand, the derivative along any curve t 7→ γ(t) ∈M is

a tangent vector. If now gx denotes a Riemannian metric on M at x, then it is possible to associate to the

differential dE(x) a unique tangent vector ∇E(x), called the gradient of E at x, that satisfies

dE(x)v =: gx(∇E(x), v) for all tangent vectors v ∈ TxM.

It is the tangent vector ∇E(x) that enters in the definition of gradient flow γ̇(t) = −∇E(γ(t)).

In this section, we are interested in minimizing the functional LN introduced in (2) over the family

of all matrices W1, . . . ,WN . This can be accomplished by considering the long-time limit of the gradient

flow of LN . Alternatively, we observe that we can equivalently lump all matrices together in the product

W := WN · · ·W1 and minimize the functional L1 defined in (4) over the set of all matrices W having this

product form.
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We consider the manifold Mk of real dy×dx matrices of rank k ≤ dx, dy. We regard Mk as a submanifold

of the manifold of all real dy × dx matrices, from which we inherit the structure of a differentiable manifold

for Mk. We denote by TW (Mk) the tangential space of Mk at the point W ∈Mk. We have

TW (Mk) = {WA+BW : A ∈ Rdx×dx , B ∈ Rdy×dy}; (16)

see [11, Proposition 4.1]. We will need the following result on the orthogonal projection onto the tangent

space, which is probably well-known. Below the notions self-adjoint, positive definite, and orthogonal com-

plement are understood with respect to the Frobenius scalar product, which we denote by 〈 , 〉F . Recall

that 〈A,B〉F = tr(ABT ).

Lemma 7. Let W ∈ Mk with full singular value decomposition W = USV T and reduced singular decom-

position W = ŪΣV̄ T , where U ∈ Rdy×dy and V ∈ Rdx×dx are orthogonal and Ū ∈ Rdy×k and V̄ ∈ Rdx×k

are submatrices consisting of the first k columns of U and V , respectively. Let QU = Ū Ū = UPkU
T denote

the orthogonal projection onto the range of Ū , where Pk = diag(1, . . . , 1, 0, . . . , 0) is the diagonal matrix

with k ones on the diagonal, and likewise define QV = V̄ V̄ T = V PkV
T . Then the orthogonal projection

PW : Rdy×dx → TW (Mk) onto the tangent space at W is given by

PW (Z) = QUZ + ZQV −QUZQV for Z ∈ Rdy×dx .

Proof. For convenience, we give a proof. For a matrix Z = WA + BW ∈ TW (Mk), a simple computation

using ŪT Ū = Ik = V̄ T V̄ gives

PW (Z) = Ū ŪT (ŪΣV̄ TA+BŪΣV̄ T ) + (ŪΣV̄ TA+BŪΣV̄ T )V̄ V̄ T − Ū ŪT (ŪΣV̄ TA+BŪΣV̄ T )V̄ V̄ T

= ŪΣV̄ TA+BŪΣV̄ T = Z.

Moreover, for an arbitrary Z ∈ Rdy×dx we have

PW (Z) = Ū ŪTZ(Idy −QV ) + ZV̄ V̄ T = ŪΣV̄ T V̄ Σ−1ŪTZ(Idy −QV ) + ZV̄ Σ−1ŪT ŪΣV̄ T

= WΣ−1ŪTZ(Idy −QV ) + ZV̄ Σ−1ŪTW

so that PW (Z) ∈ TW (Mk). We conclude that P 2
W = PW . Moreover, it is easy to verify that 〈PW (Z), Y 〉F =

〈Z,PW (Y )〉F for all Z, Y ∈ Rdy×dx so that PW is self-adjoint. Altogether, this proves the claim. �

Inspired by [8], we use the operator AW to define a Riemannian metric on Mk.

Lemma 8. For any given W ∈ Rdy×dx let k be the rank of W , so that W ∈Mk. Let N ≥ 2. Then the map

AW : Rdy×dx → Rdy×dx defined in (8) is a self-adjoint endomorphism. Its image is TW (Mk) and its kernel
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is (consequently) the orthogonal complement TW (Mk)⊥ of TW (Mk). The restriction of AW to arguments

Z ∈ TW (Mk) defines a self-adjoint and positive definite endomorphism

ĀW : TW (Mk)→ TW (Mk).

In particular, ĀW is invertible and the inverse Ā−1
W is self-adjoint and positive definite as well.

Proof. We split the proof into four steps.

Step 1. It is clear that AW defines an endomorphism of Rdy×dx . To see that it is self-adjoint, we

calculate, for Z1, Z2 ∈ Rdy×dx ,

〈AW (Z1), Z2〉F = tr

 N∑
j=1

(WWT )
N−j
N Z1(WTW )

j−1
N ZT2

 = tr

 N∑
j=1

Z1(WTW )
j−1
N ZT2 (WWT )

N−j
N


= tr

(
Z1AW (Z2)T

)
= 〈Z1,AW (Z2)〉F .

We conclude that AW is indeed self-adjoint.

Step 2. Next we show that the image of AW lies in TW (Mk); see (16). Let W = ŪΣV̄ T be a (reduced)

singular value decomposition of W in the following form: Σ = diag(σ1, . . . , σk) ∈ Rk×k is the diagonal

matrix containing the non-zero singular values of W and the columns of Ū ∈ Rdy×k and V̄ ∈ Rdx×k are

orthonormal, so that ŪT Ū = Ik = V̄ T V̄ . For any index 1 ≤ j < N , we observe the identity

(WWT )
N−j
N = ŪΣ2 N−j

N ŪT = ŪΣV̄ T V̄ Σ2 N−j
N −1ŪT = W (V̄ Σ2 N−j

N −1ŪT ). (17)

Note that the second factor on the right-hand side of (17) is well-defined even though the exponent 2N−jN −1

may be negative because the diagonal entries of Σ are all positive. Similarly, for 1 < j ≤ N we find

(WTW )
j−1
N = V̄ Σ2 j−1

N V̄ T = V̄ Σ2 j−1
N −1(ŪT Ū)ΣV̄ T = (V̄ Σ2 j−1

N −1ŪT )W.

We observe that every term in the sum (8) is of the form WA or of the form BW for suitable A ∈ Rdx×dx

or B ∈ Rdy×dy . Hence AW (Z) ∈ TW (Mk) for any Z ∈ Rdy×dx . It follows that the restriction of AW to

TW (Mk), denoted by ĀW , is a self-adjoint endomorphism. To prove that ĀW is injective, it therefore suffices

to show that all eigenvalues are non-zero. Since TW (Mk) is a finite-dimensional vector space, injectivity of

ĀW then implies bijectivity.

Step 3. We show that ĀW is positive definite. For Z ∈ TW (Mk), we need to establish that 〈AW (Z), Z〉F >

0 if Z 6= 0. We will first show that for all j ∈ {1, . . . , N}

tr
(

(WWT )
N−j
N Z(WTW )

j−1
N ZT

)
≥ 0.

Let again W = ŪΣV̄ T be a (reduced) singular value decomposition of W as in Step 2. If j = 1, then

tr
(

(WWT )
N−1
N ZZT

)
= tr

((
ŪΣ2 N−1

N ŪT
)
ZZT

)
= tr(R1R

T
1 ) ≥ 0,
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where R1 := Σ
N−1
N ŪTZ. Similarly, for j = N we get

tr
(
Z(WTW )

N−1
N ZT

)
= tr

(
Z
(
V̄ Σ2 N−1

N V̄ T
)
ZT
)

= tr(RNR
T
N ) ≥ 0,

where RN := ZV̄ Σ
N−1
N . Finally, if 1 < j < N , then

tr
(

(WWT )
N−j
N Z(WTW )

j−1
N ZT

)
= tr

((
ŪΣ2 N−j

N ŪT
)
Z
(
V̄ Σ2 j−1

N V̄ T
)
ZT
)

= tr(RjR
T
j ) ≥ 0,

where Rj := Σ
N−j
N ŪTZV̄ Σ

j−1
N . It follows that 〈AW (Z), Z〉F ≥ 0 for all Z ∈ TW (Mk).

Suppose now that 〈AW (Z), Z〉F = 0. Then ‖Rj‖2F = tr(RjR
T
j ) = 0, thus Rj = 0 for every j ∈ {1, . . . , N}.

Since Σ ∈ Rk×k is invertible this implies for j = 1 that ŪTZ = 0 and for j = N that ZV̄ = 0. By Lemma 7

we have

Z = PW (Z) = Ū ŪTZ + ZV̄ V̄ T − Ū ŪTZV̄ V̄ T = 0.

This proves that ĀW is strictly positive definite, therefore injective (bijective) as a map from TW (Mk) to

itself.

Step 4. It remains to prove that the kernel of AW is the orthogonal complement of TW (Mk). This

follows from the general fact that for any self-adjoint endomorphism f of an inner product space, the kernel

of f is the orthogonal complement of the image of the adjoint of f . �

Definition 9. We introduce a Riemannian metric g on the manifold Mk (for k ≤ dx, dy) by

gW (Z1, Z2) := 〈Ā−1
W (Z1), Z2〉F (18)

for any W ∈Mk and for all tangent vectors Z1, Z2 ∈ TW (Mk).

By Lemma 8, the map gW is well defined and defines indeed a scalar product on TW (Mk). We provide

explicit expressions for this scalar product in the next result.

Proposition 10. For N ≥ 2, the metric g on Mk defined in (18) satisfies

gW (Z1, Z2) =
sin(π/N)

π

∫ ∞
0

tr
(
(tIdy +WWT )−1Z1(tIdx +WTW )−1ZT2

)
t1/Ndt (19)

=
1

NΓ(1− 1/N)

∫ ∞
0

∫ t

0

tr
(
e−sWWT

Z1e
−(t−s)WTWZT2

)
ds t−(1/N+1)dt (20)

for all W ∈Mk and Z1, Z2 ∈ TW (Mk), where Γ denotes the Gamma function.

In the case N = 2, we additionally have

gW (Z1, Z2) =

∫ ∞
0

tr
(
e−t(WWT )

1
2 Z1e

−t(WTW )
1
2 ZT2

)
dt. (21)

Proof. The proof is postponed to Appendix A. �

The next result states that the Riemannian metric is continuously differentiable as a function of W ∈Mk.
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Proposition 11. The metric g on Mk given by (18) is of class C1.

Proof. The proof uses the representation (19). The main step consists in showing that the directional

derivates with respect to W of the corresponding integrand remain integrable so that Lebesgue’s dominated

convergence theorem can be applied to interchange integration and differentiation. The lengthy details are

postponed to Appendix B. �

For any differentiable function f : Rdy×dx → R, any W ∈Mk ⊂ Rdy×dx , and any Z ∈ TW (Mk), we have

gW
(
AW (∇f(W )), Z

)
=
〈
Ā−1
W

(
AW

(
∇f(W )

))
, Z
〉
F

= 〈∇f(W ), Z〉F = Df(W )[Z],

where Df denotes the differential of f (which can be computed from the derivative with respect to W ).

Note here that by Lemma 8, the two quantities Ā−1
W (AW (∇f(W ))) and ∇f(W ) differ only by an element in

TW (Mk)⊥, which is perpendicular to Z with respect to the Frobenius norm, as noticed above. This allows

us to identify AW (∇f(W )) with the gradient of f with respect to the new metric g. We write

AW (∇f(W )) =: ∇gf(W ). (22)

In particular, we have for all Z ∈ TW (Mk) that gW (∇gf(W ), Z) = Df(W )[Z]. Let now k ≤ min{d0, . . . , dN}

and recall that, in the balanced case, the evolution of the product W = WN · · ·W1 is given by (9).

We note that the solutions W1(t), . . . ,WN (t) of the gradient flow (5) of LN are unique (given initial

values), since (5) obviously satisfies a local Lipschitz condition. Therefore the tuple W1(t), . . . ,WN (t) gives

rise to a well defined product W (t) = WN (t) · · ·W1(t) which in the balanced case solves equation (9).

However, due to the appearance of N -th roots in (9), it is unclear at the moment whether there are also

other solutions of (9). The next proposition shows that in the balanced case (and for XXT of full rank) the

solution W (t) = WN (t) · · ·W1(t) of (9) stays in Mk for all finite times t provided that W (0) ∈Mk.

Proposition 12. Assume that XXT has full rank and suppose that W1(t), . . . ,WN (t) are solutions of the

gradient flow (5) of LN with balanced initial values Wj(0) and define the product W (t) := WN (t) · · ·W1(t).

If W (0) is contained in Mk for some k ≤ min{d0, . . . , dN} then W (t) is contained in Mk for all t ≥ 0.

Proof. It follows from Theorem 5 that for any given t0 ∈ R and initial values W1(t0), . . . ,WN (t0), a (unique)

solution W1(t), . . . ,WN (t) of (5) is defined for all t ≥ t0. By the Cauchy-Peano theorem, there also exists

ε > 0 such that the solution W1(t), . . . ,WN (t) is defined and unique on (t0 − ε, 0], hence on (t0 − ε,∞).

Since the initial values Wj(0) are balanced, for any t ≥ 0 the matrices W1(t), . . . ,WN (t) are balanced as

well, cf. Lemma 2. It follows that for any t ≥ 0, we have

W (t)W (t)T = (WN (t)WN (t)T )N and W (t)TW (t) = (W1(t)TW1(t))N .
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Both equations are directly verified for N = 2 and easily follow by induction for any N ≥ 2.

Let now P (t) = W1(t)TW1(t) and Q(t) = WN (t)WN (t)T . It follows that P (t) = (W (t)TW (t))1/N and

Q(t) = (W (t)W (t)T )1/N for all t ∈ [0,∞). Using ∇WL1(W ) = WXXT − Y XT together with the explicit

form of the gradient flow (5) for W1 and WN given by Lemma 2, point (1), and substituting P = (WTW )1/N

and Q = (WWT )1/N in the flow equation (7) for W , we obtain the following system of differential equations

for P,Q,W .

Ṗ = −WT (WXXT − Y XT )− (WXXT − Y XT )TW,

Q̇ = −(WXXT − Y XT )WT −W (WXXT − Y XT )T ,

Ẇ = −
N∑
j=1

QN−j(WXXT − Y XT )P j−1.

(23)

Since the right hand side of the system (23) is locally Lipschitz continuous in P,Q,W , it follows in particular

that W (t) (and also P (t) and Q(t)) is uniquely determined by any initial values P (t0), Q(t0),W (t0).

Assume now that the claim of the proposition does not hold. Then there are t0, t1 ∈ [0,∞) with

rank(W (t1)) > rank(W (t0)). Since W (t) = WN (t) · · ·W1(t), it follows that

min(d0, . . . , dN ) ≥ rank(W (t1)) > rank(W (t0)).

We define ` = rank(W (t0)) and distinguish the cases ` = 0 and ` > 0.

Case 1. ` = 0. Then W (t0) = 0 and hence also W1(t0) = 0. Due to balancedness it follows that

Wi(t0) = 0 for all i ∈ {1, . . . , N}. But then it follows that Wi(t) = 0 for all t ∈ [0,∞) and for all

i ∈ {1, . . . , N}, hence also W (t) = 0 for all t ∈ [0,∞), so the rank of W is constant.

Case 2. ` > 0. We assume first that t1 > t0 and will discuss the case t0 > t1 below.

We replace the first hidden layer (which has size d1) by a new hidden layer of size ` (all other layer

sizes remain as before) and define new initial values W̃1, . . . , W̃N (at t0) for our new layer sizes in such a

way that W̃1, . . . , W̃N are balanced and W̃ := W̃N · · · W̃1 = W (t0) and P̃ := W̃T
1 W̃1 = W1(t0)TW1(t0) and

Q̃ := W̃NW̃
T
N = WN (t0)WN (t0)T . For t ∈ [t0,∞), let W̃1(t), . . . , W̃N (t) be the corresponding solutions of the

gradient flow (5) for the new layer sizes with initial values at t0 given by W̃1(t0) = W̃1, . . . , W̃N (t0) = W̃N .

Similarly, let W̃ (t) = W̃N (t) · · · W̃1(t). Assuming that we can construct W̃1, . . . , W̃N as above, it follows

in particular that W̃ (t) = W (t) for all t ∈ [t0,∞), since, as discussed before, W (t) is uniquely determined

by P (t0) = P̃ , Q(t0) = Q̃,W (t0) = W̃ for all t ∈ [0,∞). But our new minimal layer size is `, so it

follows that the product W̃ (t) = W̃N (t) · · · W̃1(t) has rank at most ` for any t ∈ [t0,∞). In particular,

rank(W (t1)) = rank(W̃ (t1)) ≤ `. This contradicts our assumption rank(W (t1)) > rank(W (t0)) = `.

Assume now that t0 > t1. Here we cannot directly argue as above since backward in time we only have

local existence of solutions of (5). However, since the set {W ∈ Rdy×dx : rank(W ) < rank(W (t1))} is closed
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in Rdy×dx , it follows that the set {t ≥ t1 : rank(W (t)) < rank(W (t1)} has a minimum τ0, which is larger

than t1. Then for any ε > 0, there is a τ1 ∈ (τ0 − ε, τ0) with rank(W (τ1)) > rank(W (τ0)).

Now replace t0 by τ0, define as before ` = rank(W (t0)) = rank(W (τ0)) and assume that we can construct

W̃1, . . . , W̃N as above. Then for some ε > 0, the flows W̃1(t), . . . , W̃N (t) solving the gradient flow (5) for

the new layer sizes and with initial values at t0 given by W̃1(t0) = W̃1, . . . , W̃N (t0) = W̃N are defined (and

balanced) on the interval (t0 − ε,∞). Next we replace t1 by a suitable τ1 ∈ (τ0 − ε, τ0) with rank(W (τ1)) >

rank(W (τ0)) = `. Now we can argue as above: On the one hand, the rank of W̃ (t1) = W̃N (t1) · · · W̃1(t1) is

at most `, on the other hand, we have W̃ (t1) = W (t1), so the rank of W (t1) is also at most `, giving the

desired contradiction.

It remains to construct W̃1, . . . , W̃N as announced. First, we introduce some notation. Let d̃1 = ` and

for j ∈ {0, . . . , N} \ {1} let d̃j = dj . (Thus the d̃j are our new layer sizes.) Given integers a, b ≥ ` and

c1, . . . , c` ∈ R, we denote by Sa,b(c1, . . . , c`) ∈ Ra×b the a× b diagonal matrix whose first ` diagonal entries

are c1, . . . , c` and whose remaining entries are all equal to 0.

Now write W := W (t0) = USV T , where U ∈ O(dy) = O(dN ) and V ∈ O(dx) = O(d0) and S =

SdN ,d0(σ1, . . . , σ`), where σ1 ≥ . . . ≥ σ` > 0. Let WN = WN (t0) and W1 = W1(t0). Then since

WTW = (WT
1 W1)N , we can write W1 = U1Sd1,d0(σ

1/N
1 , . . . , σ

1/N
` )V T for some U1 ∈ O(d1). Similarly,

since WWT = (WNW
T
N )N , we have WN = USdN ,dN−1

(σ
1/N
1 , . . . , σ

1/N
` )V TN for some VN ∈ O(dN−1). Define

now W̃1 = Sd̃1,d̃0(σ
1/N
1 , . . . , σ

1/N
` )V T and W̃N = USd̃N ,d̃N−1

(σ
1/N
1 , . . . , σ

1/N
` ) and, for j ∈ {2, . . . , N − 1},

W̃j = Sd̃j ,d̃j−1
(σ

1/N
1 , . . . , σ

1/N
` ). Note that this construction is possible since min(d̃0, . . . , d̃N ) = `. (Com-

pare [3, Section 3.3] for a similar construction of balanced initial conditions.) Then obviously, the W̃i are

indeed balanced, and we have W̃T
1 W̃1 = WT

1 W1 and W̃NW̃
T
N = WNW

T
N and W̃N · · · W̃1 = W. This ends the

proof. �

Remark 13. Assume again the situation of Proposition 12. Then in the limit t → ∞, the rank of W

still cannot increase, i.e., if W (0) has rank k then the rank of lim
t→∞

W (t) is at most k. This follows from

Proposition 12 together with the fact that the set of matrices of rank at most k is closed in Rdy×dx . However,

it can happen that the rank of lim
t→∞

W (t) is strictly smaller than k, see Remark 41 for an explicit example.

Remark 14. Proposition 12 may fail if the initial values Wj(0), j = 1, . . . , N , are not balanced, i.e., the

rank of W (t) may then drop or increase in finite time. An example for such behaviour can be easily given

in the case N = 2, d0 = d1 = d2 = 1, X = Y = 1. Choosing W1(0) = 0 and W2(0) = 1 gives W (0) = 0.

Moreover d
dtW1(0) = W2(0) = 1 and d

dtW2(0) = W1(0) = 0. This means that for t 6= 0 and |t| sufficiently

small we have W1(t) 6= 0 and W2(t) 6= 0, hence rank W (t) = 1. In other words, for small enough ε > 0,
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when moving with t from −ε to 0 the rank of W (t) drops from 1 to 0 and when continuing from t = 0 to

t = ε the rank increases again to 1.

The statements of Lemma 15 and Corollary 16 below are probably well known, but we include them here

for completeness.

Lemma 15. Let M be a C2-manifold which carries a Riemannian metric g of class C1 and let L : M→ R

be a C2-map. Then −∇g(L) is a C1-vector field.

Proof. In local coordinates, we have −∇g(L) = −
∑
i,j g

i,j ∂L
∂xi

∂
∂xj

, compare [5, Lemma 4.3]. Since by

assumption the matrix with entries gi,j is C1, also the inverse matrix (gi,j)i,j is C1. Since also by assumption

L is a C2-map, the partial derivatives ∂L
∂xi

are C1. It follows that −∇g(L) is indeed a C1-vector field. �

Corollary 16. In the situation of Lemma 15, for any x0 ∈ M, there is a unique maximal integral curve

φ : J →M with φ(0) = x0 and

φ̇(t) = −∇g(L(φ(t))) ∀t ∈ J.

Here maximal means that the interval J is the maximal open interval containing 0 with this property.

Proof. This follows from Lemma 15 together with Theorem 43 in appendix C. For the existence of J , see

also appendix C or directly [14, Section IV, 2]. �

Corollary 17. Suppose that XXT has full rank and that W1(t), . . . ,WN (t) are solutions of the gradient

flow (5) of LN , with initial values Wj(0) that are balanced; recall Definition 1. Define the product W (t) :=

WN (t) · · ·W1(t). If W (0) is contained in Mk (i.e., has rank k), then W (t) solves for all t ∈ [0,∞) the

gradient flow equation

Ẇ = −∇gL1(W ) (24)

on Mk, where ∇g denotes the Riemannian gradient of L1 with respect to the metric g on Mk defined in

(18). Further this is the only solution of (24) in Mk.

Proof. Proposition 12 shows that W (t) ∈Mk for all t ∈ [0,∞). Lemma 8 and the discussion below it show

that W (t) solves indeed equation (24) with the particular choice of g as in (18) as the metric. (Note that

then (24) is a reformulation of (9).) By Corollary 16 there are no other solutions in Mk. �

Remark 18. Our Riemannian metric is (in the limit N → ∞) similar to the Bogoliubov inner product of

quantum statistical mechanics (when replacing A−1
W with AW ), which is defined on the manifold of positive

definite matrices; see [8].
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5. Linear Autoencoders with one hidden layer

In this section we consider linear autoencoders with one hidden layer in the symmetric case, i.e., we

assume Y = X and N = 2 and we impose that W2 = WT
1 . The nonsymmetric case with one hidden layer

will be discussed in Appendix D.

For V := W2 = WT
1 ∈ Rd×r (where we write d for dx = dy and r for d1), let

E(V ) = L2(V T , V ) =
1

2
‖X − V V TX‖2F .

We consider the gradient flow:

V̇ = −∇E(V ), V (0) = V0, (25)

where we assume that V T0 V0 = Ir. Computing the gradient of E gives

∇E(V ) = −(Id − V V T )XXTV −XXT (Id − V V T )V.

Thus the gradient flow for V is given by

V̇ = (Id − V V T )XXTV +XXT (Id − V V T )V, V (0) = V0, V
T
0 V0 = Ir. (26)

This can be analyzed using results by Helmke, Moore, and Yan on Oja’s flow [22].

Theorem 19. (1) The flow (26) has a unique solution on the interval [0,∞).

(2) V (t)TV (t) = Ir for all t ≥ 0.

(3) The limit V = limt→∞ V (t) exists and it is an equilibrium.

(4) The convergence is exponential: There are positive constants c1, c2 such that

‖V (t)− V ‖F ≤ c1e−c2t

for all t ≥ 0.

(5) The equilibrium points of the flow (26) are precisely the matrices of the form

V = (v1| . . . |vr)Q,

where v1, . . . , vr are orthonormal eigenvectors of XXT and Q is an orthogonal r × r-matrix.

Proof. In [22] it is shown that Oja’s flow given by

V̇ = (Id − V V T )XXTV

satisfies all the claims in the proposition provided that V (0)TV (0) = Ir. In particular, by [22, Corollary 2.2],

all V (t) in any solution of Oja’s flow with V (0)TV (0) = Ir fulfill V (t)TV (t) = Ir. It follows that under the
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initial condition V (0)TV (0) = Ir the flow (26) is identical to Oja’s flow because the term XXT (Id−V V T )V

then vanishes for all t if V is a solution to Oja’s flow.

Hence, (2) follows from [22, Corollary 2.2]. In [22, Theorem 2.1] an existence and uniqueness result on

[0,∞) is shown for Oja’s flow and thus implies (1). Statements (3) and (4) follow from [22, Theorem 3.1]

(which states that the solution to Oja’s flow exponentially converges to an equilibrium point). Point (5)

follows from [22, Corollary 4.1] (which shows that the equilibrium points V of Oja’s flow satisfying V TV = Ir

are of the claimed form). �

Remark 20. Choosing v1, . . . , vr orthonormal eigenvectors corresponding to the largest r eigenvalues of

XXT , we obtain (for varying Q) precisely the possible solutions for the matrix V in the PCA-problem.

In order to make this more precise and to see this claim, we recall the PCA-Theorem, cf. [17]. Given:

x1, . . . , xm ∈ Rd and 1 ≤ r ≤ d, we consider the following problem: Find v1, . . . , vr ∈ Rd orthonormal and

h1, . . . , hm ∈ Rr such that

L(V ;h1 . . . , hm) :=
1

m

∑
i

‖xi − V hi‖22 (27)

is minimal. (Here V = (v1| . . . |vr) ∈ Rd×r.)

Theorem 21 (PCA-Theorem [17]). A minimizer of (27) is obtained by choosing v1, . . . , vr as orthonormal

eigenvectors corresponding to the r largest eigenvalues of
∑
i xix

T
i = XXT and hi = V Txi.

The other possible solutions for V are of the form V = (v1| . . . |vr)Q, where v1, . . . , vr are chosen as above

and Q is an orthogonal r × r-matrix. Again hi = V Txi.

Let λ1 ≥ . . . ≥ λd be the eigenvalues of XXT and let v1, . . . , vd be corresponding orthonormal eigenvec-

tors.

Theorem 22. Assume that XXT has full rank and that λr > λr+1. Then limt→∞ V (t) = (v1| . . . |vr)Q for

some orthogonal Q if and only if V T0 (v1| . . . |vr) has rank r.

Proof. This follows from [22, Theorem 5.1] (where an analogous statement for Oja’s flow is made) together

with [22, Corollary 2.1]. �

Corollary 23. Under the assumptions of Theorem 22, for almost all initial conditions (w.r.t. the Lebesgue

measure), the flow converges to an optimal equilibrium, i.e., one of the form V = (v1| . . . |vr)Q in the

notation of Theorem 22.

Proof. This follows from Theorem 22, cf. also the analogous [22, Corollary 5.1]. �
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In Section 6 we extend this result to autoencoders with N > 2 layers using a more abstract approach.

The following theorem shows that the optimal equilibria are the only stable equilibria:

Theorem 24. Assume V = (vi1 | . . . |vir )Q, where the orthonormal eigenvectors vi1 , . . . , vir are not eigen-

vectors corresponding to the largest r eigenvalues of XXT . Then in any neighborhood of V there is a matrix

Ṽ with E(Ṽ ) < E(V ) (and Ṽ T Ṽ = Ir).

Proof. Let vij be one of the eigenvectors vi1 , . . . , vir whose eigenvalue does not belong to the r largest

eigenvalues of XXT . Let v be an eigenvector of XXT of unit length which is orthogonal to the eigenvectors

vi1 , . . . , vir and whose eigenvalue λ belongs to the r largest eigenvalues of XXT . Now for any ε ∈ [0, 1]

consider vij (ε) := εv +
√

1− ε2vij . Then V (ε) :=
(
vi1 | . . . |vij (ε)| . . . |vir

)
Q satisfies E(V (ε)) < E(V ) for

ε ∈ (0, 1] and V (ε)TV (ε) = Ir. To see that indeed E(V (ε)) < E(V ), we compute E(V ) = 1
2‖X−V V

TX‖2F =

1
2 tr(XXT −XXTV V T ) and E(V (ε)) = 1

2 tr(XXT −XXTV (ε)V (ε)T ). Writing XXT vik = λikvik , we note

that tr
(
XXTV V T

)
=
∑r
k=1 λik and tr

(
XXTV (ε)V (ε)T

)
= ε2λ+(1−ε2)λij +

∑r
k=1,k 6=j λik . Since λ > λij ,

the claim follows. �

6. Avoiding saddle points

In Section 3 we have proven convergence of the gradient flow (5) a to critical point of LN . (Together with

Proposition 33 below, this also implies that the product W converges to a critical point of L1 restricted to

Mk for some k ≤ r.) Since we will remain in a saddle point forever if the initial point is a saddle point, the

best we can hope for is convergence to global optima for almost all initial points (as in Corollary 23 for the

particular autoencoder case with N = 2).

We will indeed establish such a result for both LN and L1 restricted to Mr in the autoencoder case. We

note, however, that we can only ensure that the limit corresponds to an optimal point for L1 restricted to

Mk for some k ≤ r for almost all initialization. We conjecture k = r (for almost all initializations), but this

remains open for now.

We proceed by showing a general result on the avoidance of saddle points by extending the main result

of [15] from gradient descent to gradient flows. A crucial ingredient is the notion of a strict saddle point.

The application of the general abstract result to our scenario then requires to analyze the saddle points.

6.1. Strict saddle points. We start with the definition of a strict saddle point of a function on the

Euclidean space Rd.

Definition 25. Let f : Ω→ R be a twice continuously differentiable function on an open domain Ω ⊂ Rd.

A critical point x0 ∈ Ω is called a strict saddle point if the Hessian Hf(x0) has a negative eigenvalue.
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Intuitively, the function f possesses a direction of descent at a strict saddle point. Note that our definition

also includes local maxima, which does not pose problems for our purposes.

Let us extend the notion of strict saddle points to functions on Riemannian manifolds (M, g). To this

end, we first introduce the Riemannian Hessian of a C2-function f on M. Denoting by ∇ be the Riemannian

connection (Levi-Civita connection) on (M, g) the Riemannian Hessian of f at x ∈M is the linear mapping

Hess f(x) : TxM→ TxM defined by

Hessg f(x)[ξ] := ∇ξ∇gf.

Of course, if (M, g) is Euclidean, then this definition can be identified with the standard definition of the

Hessian. Moreover, if x ∈ M is a critical point of f , i.e., ∇gf(x) = 0, then the Hessian Hessg f(x) is

independent of the choice of the connection. Below, we will need the following chain type rule for curves γ

on M, see e.g. [18, Eq. (3.1)],

d2

dt2
f(γ(t)) = g (γ̇(t),Hessg f(γ(t))[γ̇(t)]) + g

(
D

dt
γ̇(t),∇gf(γ(t))

)
, (28)

where D
dt γ̇(t) is related to the Riemannian connection that is used to define the Hessian, see [2, Section 5.4].

We refer to [2] for more details on the Riemannian Hessian.

Definition 26. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇ and let f : M → R

be a twice continuously differentiable function. A critical point x0 ∈ M, i.e., ∇gf(x0) = 0 is called a strict

saddle point if Hess f(x) has a negative eigenvalue. We denote the set of all strict saddles of f by X = X(f).

We say that f has the strict saddle point property, if all critical points of f that are not local minima are

strict saddle points.

Note that our definition of strict saddle points includes local maxima, which is fine for our purposes.

6.2. Flows avoid strict saddle points almost surely. We now prove a general result that gradient flows

on a Riemannian manifold (M, g) for functions with the strict saddle point property avoid saddle point for

almost all initial values. This result extends the main result of [15] from time discrete systems to continuous

flows and should be of independent interest.

For a twice continuously differentiable function L : M→ R, we consider the Riemannian gradient flow

d

dt
φ(t) = −∇gL(φ(t)), φ(0) = x0 ∈M, (29)

where ∇g denotes the Riemannian gradient. When emphasizing the dependence on x0, we write

ψt(x0) = φ(t), (30)

where φ(t) is the solution to (29) with initial condition x0.
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Sets of measure zero on M (as used in the next theorem) can be defined using push forwards of the

Lebesgue measure on charts of the manifold M.

Theorem 27. Let L : M → R be a C2-function on a second countable finite dimensional Riemannian

manifold (M, g), where we assume that M is of class C2 as a manifold and the metric g is of class C1.

Assume that ψt(x0) exists for all x0 ∈M and all t ∈ [0,∞). Then the set

SL := {x0 ∈M : lim
t→∞

ψt(x0) ∈ X = X(L)}

of initial points such that the corresponding flow converges to a strict saddle point of L has measure zero.

The proof of this relies on the following result for iteration maps (e.g., gradient descent iterations) shown

in [15].

Theorem 28. Let h : M → M be a continuously differentiable function on a second countable differen-

tiable finite-dimensional manifold such that det(Dh(x)) 6= 0 for all x ∈ M (in particular, h is a local C1

diffeomorphism). Let

A∗h = {x ∈M : h(x) = x,max
j
|λj(Dh(x))| > 1},

where λj(Dh(x)) denote the eigenvalues of Dh(x), and consider sequences with initial point x0 ∈ M, xk =

h(xk−1), k ∈ N. Then the set {x0 ∈M : limk→∞ xk ∈ A∗h} has measure zero.

Proof of Theorem 27. By Lemma 15 and Theorem 44 in appendix C, the map

h : M→M, x0 7→ ψT (x0)

defines a diffeomorphism of M onto an open subset of M. In particular, Dh = DψT is non-singular, i.e.

det(Dh(x)) 6= 0 for all x ∈M.

Because of the semigroup property ψt+s(x0) = ψt(ψs(x0)) the sequence xk = ψkT (x0), k ∈ N, satisfies

xk = h(xk−1) and limt→∞ ψt(x0) ∈ X implies limk→∞ xk ∈ X.

By Theorem 28 the set

{x0 ∈M : lim
k→∞

ψkT (x0) ∈ A∗ψT
}

has measure zero. We need to show that if x̄ is a strict saddle point of L, then x̄ ∈ A∗ψT
for suitable (i.e.,

sufficiently small) T > 0. We will work with a sequence of parameters T = 1
n with n ∈ N.

Let x̄ ∈ X(L) be a strict saddle point of L. If we choose local coordinates giving rise to an orthonormal

basis with respect to the Riemannian metric at x̄, then it follows from (29) that, for all n ∈ N,

Dψ1/n(x̄) = I − 1

n
Hessg L(x̄) + o(1/n),
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where limt→0 o(t)/t = 0. Compare also [5, Lemma 4.4] for the fact that we can identify here the differential

of ∇gL(x̄) with Hessg L(x̄). (More precisely, it is shown in loc. cit. that the the differential of ∇gL(x̄)

coincides with the matrix ( ∂
2L(x̄)
∂xi∂xj

)i,j at the critical point x̄, if we assume that the local coordinates give

rise to an orthonormal basis at this point. Using again that x̄ is a critical point, we see that this matrix

is the Riemannian Hessian at x̄ in our local coordinates.) Since x̄ is a strict saddle point of L, the matrix

Hessg L(x̄) has at least one strictly negative eigenvalue. It follows that there exists N ∈ N such that for all

n ≥ N the differential Dψ1/n(x̄) has an eigenvalue larger than 1. Hence x̄ ∈ A∗ψ1/n
and

{x0 ∈M : lim
t→∞

ψt(x0) = x̄} ⊂ {x0 ∈M : lim
k→∞

ψk/n(x0) = x̄} ⊂ {x0 ∈M : lim
t→∞

ψk/n ∈ A∗ψ1/n
}

for all n ≥ N . It follows that

{x0 ∈M : lim
t→∞

ψt(x0) ∈ X(L)} ⊂
⋃
n∈N
{x0 ∈M : lim

k→∞
ψk/n(x0) ∈ A∗ψ1/n

}.

The set on the right hand side is a countable union of null sets and therefore has measure zero. This implies

the claim of the theorem and the proof is completed. �

Remark 29. The proof of Theorem 28 uses the center and stable manifold theorem, see, e.g., [19, Chapter

5, Theorem III.7]. If the absolute eigenvalues of Dh(x) are all different from 1, i.e., if all eigenvalues of

the Hessian Hessg f(x) are different from 0 at a saddle point x, then slightly stronger conclusions may be

drawn, including the speed at which the flow moves away from saddle points. We will not elaborate on this

point here.

6.3. The strict saddle point property for L1 on Mr. In this section we establish the strict saddle point

property of L1 on Mk by showing that the Riemannian Hessian HessL1 at all critical points that are not a

global minimizer has a strictly negative eigenvalue. We assume that XXT has full rank dx = d0 and start

with an analysis of the critical points. We first recall the following result of Kawaguchi [12].

Theorem 30. [12, Theorem 2.3] Assume that XXT and XY T are of full rank with dy ≤ dx and that the

matrix Y XT (XXT )−1XY T has dy distinct eigenvalues. Let r be the minimum of the di. Then the loss

function LN (W1, . . . ,WN ) has the following properties.

(1) It is non-convex and non-concave.

(2) Every local minimum is a global minimum.

(3) Every critical point that is not a global minimum is a saddle point.

(4) If WN−1 · · ·W2 has rank r then the Hessian at any saddle point has at least one negative eigenvalue.

Below we will remove the assumption that XY T has full rank and that Y XT (XXT )−1XY T has distinct

eigenvalues. Moreover, we will give more precise information on the strict saddle points.
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The following matrix, which is completely determined by the given matrices X,Y that define L1 and LN

(see (2) and (4)), will play a central role in our discussion. We define

Q := Y XT (XXT )−
1
2 (31)

and let q := rank(Q) be its rank. We will use a reduced singular value decomposition

Q = UΣV T =

q∑
i=1

σiuiv
T
i ,

of Q, where σ1 ≥ . . . ≥ σq > 0 are the singular values of Q and U ∈ Rdy×q, V ∈ Rdx×q have orthonormal

columns u1, . . . , uq and v1, . . . , vq, respectively. Clearly, it holds q ≤ n := min{dx, dy}.

Let k ≤ n and let g be an arbitrary Riemannian metric on the manifold Mk of all matrices in Rdy×dx

of rank k, for example it could be the metric induced by the standard metric on Rdy×dx or the metric g

introduced in Section 4 for some number of layers N .

The next statement is similar in spirit to Kawaguchi’s result, Theorem 30, and follows from [21].

Proposition 31. Let Q be defined by (31) and q = rank(Q).

(1) The critical points of L1 on Mk are precisely the matrices of the form

W =
∑
j∈J

σjujv
T
j (XXT )−

1
2 , (32)

where J ⊆ {1, . . . , q} consists of precisely k elements. Consequently, if k > q, then no such subset J

can exist and therefore L1 restricted to Mk cannot have any critical points.

(2) If W is a critical point of L (so that W has the form (32)), then

L1(W ) =
1

2

tr(Y Y T )−
∑
j∈J

σ2
j

 .

It follows that the critical point W is a global minimizer of L1 on Mk if and only if

{σj : j ∈ J} = {σ1, . . . , σk},

i.e., the set J picks precisely the k largest singular values of Q. In particular, if k = q, then there

cannot be any saddle points. Recall that there are no critical points if k > q because of (1).

Proof. For X = I see the proof of [21, Theorem 28]. To obtain the general case we observe that

L1(W ) =
1

2
‖WX − Y ‖2F =

1

2
‖W (XXT )

1
2 − Y XT (XXT )−

1
2 ‖2F + C =

1

2
‖W (XXT )

1
2 −Q‖2F + C,

where C := 1
2‖Y ‖

2
F − 1

2‖Q‖
2
F does not depend on W . Since XXT has full rank, the map W 7→W (XXT )

1
2 is

invertible (on any Mk). Therefore the critical points of the map W 7→ 1
2‖W (XXT )

1
2 −Q‖2F restricted to Mk

are just the critical points of the map W 7→ 1
2‖W −Q‖

2
F (restricted to Mk) multiplied by (XXT )−

1
2 . Now
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we substitute the results of [21, Theorem 28] on the critical points of the map W 7→ 1
2‖W −Q‖

2
F restricted

to Mk (which are just as claimed here in the case X = I) and we obtain the claim of the proposition. �

Proposition 32. The function L1 on Mk for k ≤ n satisfies the strict saddle point property. More precisely,

all critical points of L1 on Mk except for the global minimizers are strict saddle points.

Proof. If k ≥ q = rank(Q) then there are no saddle points by Proposition 31 so that the statement holds

trivially. Therefore, we assume k < q from now on. By Proposition 31, it is enough to show that the

Riemannian Hessian of L1 has a negative eigenvalue at any point of the form

W =
∑
j∈J

σjujv
T
j (XXT )−

1
2 ,

where J ⊆ {1, . . . , q} consists of precisely k elements and has the property that there is a j0 ∈ J with

σj0 < σk. Thus there is also a σj1 ∈ {σ1, . . . , σk} with σj1 > σj0 and j1 6∈ J . We define for t ∈ (−1, 1):

uj0(t) = tuj1 +
√

1− t2uj0 and vj0(t) = tvj1 +
√

1− t2vj0 .

Now consider the curve γ : (−1, 1)→Mk given by

γ(t) =

σj0uj0(t)vj0(t)T +
∑

j∈J,j 6=j0

σjujv
T
j

 (XXT )−
1
2 .

Obviously we have γ(0) = W . We claim that it is enough to show that

d2

dt2
L1(γ(t))

∣∣∣∣
t=0

< 0.

Indeed, by (28) it holds (for any Riemannian metric g) that

d2

dt2
L1(γ(t)) = g

(
γ̇(t),Hessg L1(γ(t))γ̇(t)

)
+ g

(
D

dt
γ̇(t),∇gL1(γ(t))

)
,

and since ∇gL1(γ(0)) = ∇gL1(W ) = 0, it follows that g
(
γ̇(0),Hessg L1(W )γ̇(0)

)
< 0 if d2

dt2L
1(γ(t))

∣∣∣
t=0

< 0

and hence that Hessg L1(W ) has a negative eigenvalue in this case. (Note that Hessg L1(W ) is self-adjoint

with respect to the scalar product g on TW (Mk) and that it cannot be positive semidefinite (wrt. g) if

g
(
γ̇(0),Hessg L1(W )γ̇(0)

)
< 0, hence it has a negative eigenvalue in this case.)

We note that

L1(γ(t)) =
1

2
‖γ(t)X − Y ‖2F =

1

2
tr(γ(t)T γ(t)XXT − 2γ(t)XY T + Y Y T ). (33)
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We compute σj0vj0(t)uj0(t)T +
∑

j∈J,j 6=j0

σjvju
T
j

σj0uj0(t)vj0(t)T +
∑

j∈J,j 6=j0

σjujv
T
j


=

∑
j∈J\{j0}

σ2
j vjv

T
j + σ2

j0vj0(t)vj0(t)T

so that

tr(γ(t)T γ(t)XXT ) = tr

(XXT )−
1
2

 ∑
j∈J\{j0}

σ2
j vjv

T
j + σ2

j0vj0(t)vj0(t)T

 (XXT )−
1
2XXT


=
∑
j∈J

σ2
j .

In particular, this expression is independent of t. Further,

tr(−2γ(t)XY T ) = −2 tr

σj0uj0(t)vj0(t)T +
∑

j∈J,j 6=j0

σjujv
T
j

 (XXT )−
1
2XY T


= −2 tr

σj0uj0(t)vj0(t)T +
∑

j∈J,j 6=j0

σjujv
T
j

QT


= −2 tr

σj0uj0(t)vj0(t)T +
∑

j∈J,j 6=j0

σjujv
T
j

 q∑
j=1

σjvju
T
j


= −2 tr

(
σj0uj0(t)vj0(t)T (σj0vj0u

T
j0 + σj1vj1u

T
j1)
)
− 2

∑
j∈J,j 6=j0

σ2
j

= −2(σ2
j0(1− t2) + t2σj0σj1)− 2

∑
j∈J,j 6=j0

σ2
j

= 2t2σj0(σj0 − σj1)− 2
∑
j∈J

σ2
j .

Together with equation (33) it follows that

d2

dt2
L1(γ(t))

∣∣∣∣
t=0

= 2σj0(σj0 − σj1) < 0.

This concludes the proof. �

We note that a construction similar to the curve constructed in the preceding proof is considered in the

proof of [21, Theorem 28]. However, it is not discussed there that this implies strictness of the saddle points.

6.4. Strict saddle points of LN . Before discussing the strict saddle point property, let us first investigate

the relation of the critical points of LN and the ones of L1 restricted to Mr, where

r = min{d0, d1, . . . , dN}.

Throughout this section we assume that XXT has full rank.
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Proposition 33. (a) Let (W1, . . . ,WN ) be a critical point of LN . Define W = WN · · ·W1 and let

k := rank(W ) ≤ r. Then W is a critical point of L1 restricted to Mk.

(b) Let W be a critical point of L1 restricted to Mk for some k ≤ r. Then there exists a tuple

(W1, . . . ,WN ) with WN · · ·W1 = W that is a critical point of LN .

Proof. For (a), let Z ∈ TW (Mk) be arbitrary, i.e., Z = WA + BW for some matrices A ∈ Rdx×dx and

B ∈ Rdy×dy . It suffices to show that for a curve γ : R → Mk with γ(0) = W and γ̇(0) = Z that

d
dtL

1(γ(t))
∣∣
t=0

= 0. We choose the curve

γ(t) = (WN + tVn) ·WN−1 · · ·W2 · (W1 + tV1), (34)

where V1 = W1A and VN = BWN . Then, indeed γ(0) = WN · · ·W1 = W and γ̇(0) = WNWN−1 · · ·W1A +

BWN · · ·W1 = Z. Next, observe that

d

dt
L1(γ(t))

∣∣∣∣
t=0

=
d

dt
LN (W1 + tV1,W2, . . . ,WN−1,WN + tVN )

∣∣∣∣
t=0

= 〈∇LN (W1, . . . ,WN ), (V1, 0, . . . , 0, VN )〉 = 0,

since (W1, . . . ,WN ) is a critical point of LN . Since Z was arbitrary, this shows (a).

For (b) we first note that by Lemma 2, for a point (W1, . . . ,WN ) to be a critical point of LN , it suffices

that

(WXXT − Y XT )WT
1 = 0 and WT

N (WXXT − Y XT ) = 0. (35)

This is equivalent to

WXXTWT
1 = Q(XXT )

1
2WT

1 and WT
NWXXT = WT

NQ(XXT )
1
2 . (36)

Since W is a critical point of L1 restricted to Mk, we can write

W =
∑
j∈J

σjujv
T
j (XXT )−

1
2 ,

where J ⊆ {1, . . . , q} consists of k elements, see Proposition 31. We write J = {ji1 , . . . , jik} to enumerate

the elements in J . For i, l ∈ N with i ≤ l we denote by e
(l)
i the i-th standard unit vector of dimension l (i.e.,

it has l entries, the i-th entry is 1 and all other entries are 0). Now we define

W1 : =

k∑
i=1

e
(d1)
i vTji(XX

T )−
1
2 ,

Wl : =

k∑
i=1

e
(dl)
i (e

(dl−1)
i )T for l = 2, . . . , N − 1,
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WN : =

k∑
i=1

σjiuji(e
(dN−1)
i )T .

Since k ≤ r this is well defined and one easily checks that

WN · · ·W1 =
∑
j∈J

σjujv
T
j (XXT )−

1
2 = W

and that the conditions in 36 are fulfilled (recall that Q =
∑q
i=1 σiuiv

T
i ). �

Let us now analyze the Hessian of LN in critical points.

Proposition 34. Let (W1, . . . ,WN ) be a critical point of LN such that W = WN · · ·W1 has rank(W ) = k.

If W is not a global optimum of L1 on Mk then (W1, . . . ,WN ) is a strict saddle point of LN .

Proof. Since (W1, . . . ,WN ) is a critical point of LN , the matrix W = WN · · ·W1 is a critical point of L1

restricted to Mk, by Proposition 33 (a). Since W is not a global optimum of L1 on Mk it must be a strict

saddle point of L1 on Mk, by Proposition 32. Therefore, there exists Z ∈ TW (Mk) such that (for some

Riemannian metric g) it holds g(Hessg L1(W )Z,Z) < 0. Write Z = WA+BW and choose again the curve

(34) with V1 = W1A and VN = BWN . Then

d2

dt2
L1(γ(t))

∣∣∣∣
t=0

= gW (Hessg L1(W )Z,Z) < 0.

On the other hand

0 >
d2

dt2
L1(γ(t))

∣∣∣∣
t=0

=
d2

dt2
LN (W1 + tV1,W2, . . . ,WN−1,WN + tVN )

∣∣∣∣
t=0

= 〈HessLN (W )(V1, 0, . . . , 0, VN ), (V1, 0, . . . , 0, VN )〉,

which implies that HessLN (W ) is not positive semidefinite, i.e., has a negative eigenvalue. In other words,

(W1, . . . ,WN ) is a strict saddle point. �

We note that the global minimizers of L1 restricted to Mk for some k < r are not covered by the above

proposition, i.e., the proposition does not identify the corresponding tuples (W1, . . . ,WN ) (such that the

product W = WN · · ·W1 is a global minimizer of L1 restricted to Mk) as strict saddle points of LN . (In

the language of [21] such points are called spurious local minima and they may lead to saddle points of LN ,

see also Propositions 6 and 7 in [21].) The above proposition does not exclude that such points correspond

to non-strict saddle points of LN . In fact, in the special case of k = 0, the point (0, . . . , 0) is indeed not a

strict saddle point if N ≥ 3 as shown in the next result, which extends [12, Corollary 2.4] to the situation

that XXT does not necessarily need to have distinct eigenvalues.
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Proposition 35. If XY T 6= 0, the point (0, . . . , 0) is a saddle point of LN , which is strict if N = 2 and not

strict if N ≥ 3.

Remark 36. Note that if XY T = 0, then (0, . . . , 0) is a global minimum of LN .

Proof. For convenience, we give a different proof than the one in [12, Corollary 2.4]. It is easy to see that

∇WjL
N (0, . . . , 0) = 0 for every j = 1, . . . , N so that (0, . . . , 0) is a critical point of LN . Consider a tuple

(V1, . . . , VN ) of matrices, set Z = VN · · ·V1 and

γ(t) = (tVN ) · (tVN−1) · · · (tV1) = tNZ.

Note that by (33)

LN (tV1, . . . , tVN )) = L1(γ(t)) =
1

2
tr(γ(t)T γ(t)XXT − 2γ(t)XY T + Y Y T )

=
1

2
t2N tr(ZTZXXT )− tN tr(ZXY T ) +

1

2
tr(Y Y T ).

Hence,

d2

dt2
LN (tV1, . . . , tVN )) =

d2

dt2
L1(γ(t)) = N(2N − 1)t2N−2 tr(ZTZXXT )−N(N − 1)tN−2 tr(ZXY T ).

Note that tr(ZTZXXT ) ≥ 0. Recall also that N ≥ 2. Since XY T 6= 0, there clearly exist matrices

(V1, . . . , VN ) such tr(ZXY T ) > 0 for Z = VN · · ·V1, so that LN (tV1, . . . , tVN ) < LN (0, . . . , 0) for small

enough t. Hence, (0, . . . , 0) is not a local minimum, but a saddle point. Moreover,

〈HessLN (0, . . . , 0)(V1, . . . , VN ), (V1, . . . , VN )〉 =
d2

dt2
L1(γ(t))

∣∣∣∣
t=0

=

 −2 tr(ZXY T ) if N = 2

0 if N ≥ 3

If N = 2, we can find matrices V1, V2 such that tr(ZXY T ) > 0 for Z = V2V1 so that (0, 0) is a strict saddle

for N = 2. If N ≥ 3 it follows that HessLN (0, . . . , 0) = 0 so that (0, . . . , 0) is not a strict saddle. �

In the case N = 2, the following result implies that all local minima of L2 are global and all saddle points

of L2 are strict.

Proposition 37. Let N = 2 and k < min{r, q}, where r = min{d0, d1, d2} and q = rank(Q). Let W be

a global minimum of L1 restricted to Mk, i.e., W =
∑
j∈J σjujv

T
j (XXT )−

1
2 , where |J | = k and {σj : j ∈

J} = {σ1, . . . , σk}. Then any critical point (W1,W2) ∈ Rd1×d0 × Rd2×d1 such that W2 ·W1 = W is a strict

saddle point of L2.
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Proof. For κ ∈ R \ {0} and u ∈ Rd2 , v ∈ Rd1 , w ∈ Rd0 with uTu = 1 and vT v = 1 we define the curve

γ(t) = (W2 + tκuvT ) · (W1 + tκ−1vwT ) = W + t(κuvTW1 + κ−1W2vw
T ) + t2uwT .

Then by (33)

L2(W1 + tκ−1vwT ,W2 + tκuvT ) = L1(γ(t)) =
1

2
tr(γ(t)T γ(t)XXT − 2γ(t)XY T + Y Y T ).

We compute

γ(t)T γ(t) = t2
(
WT

1 vu
TW2vw

T + (WT
1 vu

TW2vw
T )T + κ2WT

1 vv
TW1 + κ−2wvTWT

2 W2vw
T + wuTW

+WTuwT
)

+ terms which are not of order t2.

It follows that

d2

dt2
L1(γ(t))

∣∣∣∣
t=0

= tr
(
(WT

1 vu
TW2vw

T + (WT
1 vu

TW2vw
T )T + κ2WT

1 vv
TW1

+κ−2wvTWT
2 W2vw

T +wuTW +WTuwT )XXT − 2uwTXY T
)
.

Let us now choose the vectors u, v, w. Note that since (W1,W2) is a critical point of L2, we haveWT
2 (WXXT−

Y XT ) = 0 by Lemma 2, point 1, and hence

WT
2 (
∑
j∈J

σjujv
T
j −

q∑
j=1

σjujv
T
j )(XXT )

1
2 = 0.

Since XXT has full rank it follows that for any j0 ∈ {1, . . . , q} \ J we have WT
2 uj0 = 0. Since k < q such a

j0 exists. Thus we may choose j0 ∈ {1, . . . , q} \ J and define u = uj0 and w = (XXT )−
1
2 vj0 .

If the kernel of WT
1 is trivial then d1 ≤ d0 and W1 has rank d1. It follows that then the kernel of W2

cannot be trivial since otherwise W2 would be injective and the rank of W = W2W1 would be d1. But the

rank of W is k < r ≤ d1. Hence we may choose v as follows: We choose v to be an element of the kernel of

WT
1 with ‖v‖2 = 1 if such a v exists and otherwise we choose v to be an element of the kernel of W2 with

‖v‖2 = 1.

With these choices for u, v, w we have WT
1 vu

TW2vw
T = 0 and WTuwT = WT

1 W
T
2 uj0w

T = 0 so that

d2

dt2
L1(γ(t))

∣∣∣∣
t=0

= tr
(
(κ2WT

1 vv
TW1 + κ−2wvTWT

2 W2vw
T )XXT − 2uwTXY T

)
,

where at least one of the terms WT
1 vv

TW1 and wvTWT
2 W2vw

T vanishes. We have

tr(uwTXY T ) = wTXY Tu = vTj0(XXT )−
1
2XY Tuj0 = vTj0Q

Tuj0 = vTj0

q∑
j=1

σjvju
T
j uj0 = σj0 .

Hence

d2

dt2
L1(γ(t))

∣∣∣∣
t=0

= κ2 tr
(
WT

1 vv
TW1XX

T
)

+ κ−2 tr
(
wvTWT

2 W2vw
TXXT

)
− 2σj0 .
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Since σj0 > 0 and since at least one of the terms WT
1 vv

TW1XX
T and wvTWT

2 W2vw
TXXT vanishes, we

can always choose κ > 0 such that d2

dt2L
1(γ(t))

∣∣∣
t=0

< 0.

As in the proof of Propositon 32, this shows that (W1,W2) is a strict saddle point. �

6.5. Convergence to global minimizers. We now state the main result of this article about convergence

to global minimizers. Part (b) of Theorem 38 for two layers generalizes a result in [9, Section 4], where it is

assumed that dx ≥ dy and dy ≤ min{d1, . . . , dN−1} on top of some mild technical assumptions on matrices

formed with X and Y (see Assumptions 3 and 4 of [9]).

Theorem 38. Assume that XXT has full rank, let q = rank(Q), r = min{d0, . . . , dN} and let r̄ := min{q, r}.

(a) For almost all initial values W1(0), . . . ,WN (0), the flow (5) converges to a critical point (W1, . . . ,WN )

of LN such that W := WN · · ·W1 is a global minimizer of L1 on the manifold Mk of matrices in

RdN×d0 of rank k := rank(W ), where k lies between 0 and r̄ and depends on the initialization.

(b) For N = 2, for almost all initial values W1(0), . . . ,WN (0), the flow (5) converges to a global mini-

mizer of LN on Rd0×d1 × . . .× RdN−1×dN .

By “for almost all initial values” we mean that there exists a set N with Lebesgue measure zero in

Rd0×d1 × . . .× RdN−1×dN such that the statement holds for all initial values outside N .

Proof. By Theorem 5, under the flow (5), the curve (W1(t), . . . ,WN (t)) converges to some critical point

(W1, . . . ,WN ) of LN . Let k be the rank of W := WN · · ·W1. Then k ≤ r, by construction. But also k ≤ q

because, if (W1, . . . ,WN ) is a critical point of LN , then W as above is a critical point of L1 restricted to

Mk, by Proposition 33 (a). But we know that there are no critical points of L1 in Mk with rank larger than

q because of Proposition 31 (a). This proves that 0 ≤ k ≤ r̄.

If W is not a global minimizer of L1 restricted to Mk, then (W1, . . . ,WN ) must be strict a saddle point of

LN because of Proposition 34. By Theorem 27 only a negligible set of initial values W1(0), . . . ,WN (0) con-

verges to a strict saddle point of LN . All other initial values therefore converge to a limit point (W1, . . . ,WN )

for which W = WN · · ·W1 is a global minimizer of L1 restricted to Mk. This proves part (a) of Theorem 38.

Note that W being a minimizer of L1 restricted to Mk does not imply that the corresponding matrix tuple

(W1, . . . ,WN ) is a minimizer of LN . This happens only if the rank of W is as large as possible, i.e., if k = r.

In the case N = 2, Proposition 37 shows that if the limit (W1,W2) has the property that W = W2W1

is a global minimizer of L1 in Mk but k < r̄, then (W1,W2) is a strict saddle point of L2. But we already

know that the set of initial values W1(0),W2(0) that converge to a strict saddle point of L2 is negligible.

We conclude that generically the solution of (5) converges to a limit (W1,W2) for which W = W2W1 is a

global minimizer of L1 on Mk with k = r̄, which implies that (W1,W2) is a global minimizer of LN . �
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Balanced initial values (W1(0), . . . ,WN (0)) are of special interest as they give rise to a Riemannian

gradient flow on Mk. Unfortunately, Theorem 38 does not allow to make conclusions about the set of

balanced initial values because this is a set of Lebesgue measure zero in Rd1×d0 × · · · × RdN×dN−1 . We

are nevertheless able to derive the following convergence result by applying Theorem 27 to the Riemannian

gradient flow on Mk.

Theorem 39. Assume XXT has full rank and let N ≥ 2, q = rank(Q), r = min{d0, . . . , dN}, r̄ := min{q, r}

and k ≤ r.

(1) For any initialization W (0) ∈ Rdy×dx on Mk, there is a uniquely defined flow W (t) on Mk for

t ∈ [0,∞) which satisfies (24).

(2) For almost all initializations W (0) ∈ Rdy×dx on Mk, the above flow W (t) on Mk converges to a

global minimum of L1 restricted to Mk or to a critical point on some M`, where ` < k. Note that

for k > r̄ there is no global minimum of L1 on Mk so that then the second option applies. Here “for

almost all W (0)” means for all W (0) up to a set of measure zero.

Proof. Any W (0) ∈Mk can be written as a product W (0) = WN (0) · · ·W1(0) for suitable balanced Wi(0) ∈

Rdi×di−1 , i = 1, . . . N , where d0 = dx and dN = dy and the remaining di (i.e. for i ∈ {1, . . . , N − 1}) are

arbitrary integers greater than or equal to k; compare the proof of Proposition 12 or [3, Section 3.3]. If

W1(t), . . . ,WN (t) satisfy equation (5), then W (t) solves (24) on Mk; see Corollary 17. Since the Wi(t) are

defined for all t ≥ 0 by Theorem 5, the first claim follows (see again Corollary 17 for the fact that W is well

defined, i.e., there are no other solutions in Mk).

To show the second claim, we first note that since the tuple (W1(t), . . . ,WN (t)) satisfying (5) converges

to a critical point of LN by Theorem 5, the flow W (t) converges for all initial values to some W that is

a critical point of L1 on some M`, where ` ≤ k; see Proposition 33. Since by Proposition 32 all critical

points of L1 on Mk except for the global minimizers are strict saddle points, the second claim follows from

Theorem 27, whose assumptions are satisfied because of Proposition 11 and Corollary 17. �

The reason why we cannot choose k = r̄ in Theorem 38 (a), i.e., state that the flow for N ≥ 3 converges

to the global minimum of L1 on Mr̄ for almost all initializations is that not all saddle points of LN are

necessarily strict for N ≥ 3. Nevertheless, we conjecture a more precise version of the previous result in the

spirit of Theorem 22. Part (a) below is a strengthened version of the overfitting conjecture in [9], where

additional assumptions are made.

Conjecture 40. Assume that XXT has full rank.

(a) The statement in Theorem 38 (b) also holds for N > 2.
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(b) Consider the autoencoder case X = Y and let d = d0 = dN . Let r = mini=1,...,N di. Let λ1 ≥ . . . ≥

λd be the eigenvalues of XXT and let u1, . . . , ud be corresponding orthonormal eigenvectors. Let Ur

be the matrix with columns u1, . . . , ur. Assume that λr > λr+1. Assume further that W (0)Ur has

rank r and that for all i ∈ {1, . . . , r} we have

uTi W (0)ui > 0, (37)

where W (t) = WN (t) · · ·W1(t). Then W (t) converges to
∑r
i=1 uiu

T
i .

(c) In the second claim in Theorem 39, convergence to a critical point on some M`, where ` < k ≤ r̄

happens only for a set of initial values that has measure zero.

Remark 41. Without the condition that uTi W (0)ui > 0 for all i ∈ {1, . . . , r}, the above conjecture (b) is

wrong.

Proof. Indeed, in the autoencoder case with N = 2 and r = 1 with W1(0) = uT1 and W2(0) = −u1 (which is

a balanced starting condition and W (0)U1 has obviously rank 1), we show that W1,W2 and W all converge

to the zero-matrix of their respective size. Write W1 = (α1, . . . , αd) and W2 = (β1, . . . , βd)
T . We may

assume that XXT is a diagonal matrix with entries λ1 ≥ . . . ≥ λd > 0. (In particular, the ui are given by

the standard unit vectors ui = ei.) Then the system (5), see also (48), becomes

α̇j = −λjαj
d∑
i=1

β2
i + λjβj , αj(0) = δj1,

β̇j = −βj
d∑
i=1

λiα
2
i + λjαj , βj(0) = −δj1.

(38)

This system is solved by the following functions:

α1(t) =
1√

2e2λ1t − 1
, αj(t) = 0 for all j ≥ 2,

β1(t) =
−1√

2e2λ1t − 1
, βj(t) = 0 for all j ≥ 2.

(39)

Obviously, all αj and βj converge to 0 as t tends to infinity. From this the claim follows. (By Theorem 48,

this equilibrium is not stable, so this behavior may not be obvious in numerical simulations.) �

7. Numerical results

We numerically study the convergence of gradient flows in the linear supervised learning setting as a

proof of concept of the convergence results presented above in both the general supervised learning case and

the special case of autoencoders. Moreover, in the autoencoder case the experiments also computationally

explore the conjecture (Conjecture 40) of the manuscript.
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7.1. Autoencoder case. We study the gradient flow (5) in the autoencoder setting, where Y = X ∈ Rdx×m

in (3) for different dimensions of X (i.e., dx and m) and different values of the number N of layers, where we

typically use N ∈ {2, 5, 10, 20}. A Runge-Kutta method (RK4) is used to solve the gradient flow differential

equation with appropriate step sizes tn = t0 + nh for large n and h ∈ (0, 1). The experiments fall into two

categories based on initial conditions of the gradient flow: a) balanced – where the balanced conditions are

satisfied; and b) non-balanced – where the balanced conditions are not satisfied. Under a) we investigate

the general case in these balanced conditions where condition (37) of Conjecture 40 is satisfied, but also a

special case were the balanced conditions are satisfied but condition (37) of Conjecture 40 is not satisfied.

The results in summary, considering W = WN · · ·W1 as the limiting solution of the gradient flow, that

is W = limt→∞W (t), where W (t) = WN (t) · · ·W1(t): We show that with balanced initial conditions,

the solutions of the gradient flow converges to UrU
T
r , where the columns of Ur are the r eigenvectors

corresponding to the r largest eigenvalues of XXT . The convergence rates decrease with an increase in

either d or N or both. We see similar results for the non-balanced case.

7.1.1. Balanced initial conditions. In this section and Section 7.1.2 the data matrix X ∈ Rdx×m is generated

with columns drawn i.i.d. from a Gaussian distribution, i.e., xi ∼ N(0, σ2Idx), where σ = 1/
√
dx. Random

realization of X with sizes dx = d and m = 3d are varied to investigate different dimensions of the input

data, i.e., with 2N ≤ d ≤ 20N . For each fixed d, the dimensions dj of the Wj ∈ Rdj×dj−1 for j = 1, . . . , N

are selected as follows: We set d1 = r = [d/2], where [·] rounds to the nearest integer, and put dj =

[r + (d − r)(j − 1)/(N − 1)], j = 2, . . . , N (generating an integer “grid” of numbers between d1 = r and

dN = dx = d).

In the first set of experiments, we consider a general case of the balanced initial conditions, precisely

WT
j+1(0)Wj+1(0) = Wj(0)WT

j (0), j = 1, . . . , N − 1, where condition (37) of Conjecture 40 is satisfied. The

dimensions of the Wj and their initializations are as follows. Recall, Wj ∈ Rdj×dj−1 for j = 1, . . . , N where

dN = d0 = dx = d and d1 = r is the rank of W = WN · · ·W1. We randomly generate dj × dj orthogonal

matrices Vj and then form Wj(0) = VjIdjd1U
T
j−1 for j = 1, . . . , N , where Uj ∈ Rdj×d1 is composed of the d1

columns of Vj , and Iab is the (rectangular) a × b identity matrix. For all the values of N and the different

ranks of W considered, Figure 1 shows that the limit of W (t) as t → ∞ is UrU
T
r , where the columns of

Ur are r eigenvectors of XXT corresponding to the largest r eigenvalues of XXT . This agrees with the

theoretical results obtained for the autoencoder setting.

In addition, when W (t) converges to UrU
T
r then ‖X −W (t)X‖F converges to

√∑
i>r σ

2
i . This is also

tested and confirmed for N = 2, 5, 10, 20, but for the purpose of saving space we show results for N = 2
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Figure 1. Convergence of solutions for the general balanced case. Error between W (t)

and UrU
T
r for different r and d values. Top left panel: N = 2; top right panel: N = 5;

bottom left panel: N = 10; bottom right panel: N = 20.

Figure 2. Convergence of solutions for the general balanced case. Errors between X and

W (t)X for different r and d values. Left panel: N = 2; right panel: N = 20.

and N = 20 in Figure 2. This depicts convergence of the functional L1(W (t)) to the optimal error, which

is the square-root of the sum of the tail eigenvalues of XXT of order greater than r. Moreover, in the

autoencoder setting when N = 2 we showed in Lemma 45 that the optimal solutions are W2 = WT
1 . This

is also confirmed in the numerics as can be seen in the left panel plot of Figure 3.
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Figure 3. Difference between W1(t) and W2(t)T in the N = 2 settings, for left panel:

general balanced case; right panel: special balanced case.
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Figure 4. In the special balanced case, left panel: norm of W (t); right panel: errors

between W (t) and UrU
T
r for different r and d values.

In the second set of experiments, we attempt to test Conjecture 40 by constructing pathological examples,

where we have balanced initial conditions, but W (0) violates condition (37) of Conjecture 40. Precisely, in

the case N = 2 we take W1(0) = V Tr and W2(0) = −Vr, where the columns of Vr are the top r eigenvectors

of XXT . Such W (0) clearly violates the condition of the conjecture uTi W (0)ui > 0 for all i ∈ [r].

The hypothesis is that in such a setting the solution will not converge to the optimal solution pro-

posed in Conjecture 40. Remark 41 showed that in such a case the solution should converge to 0, that is

limt→∞W (t) = 0. This can be seen in the left panel plot of Figure 4. The dip in the left panel shows that

W (t) is approaching zero in a first phase. However, probably due to numerical errors the flow escapes the

equilibrium point at zero. In fact, zero is an unstable point (a strict saddle point), so that, numerically, the

flow will hardly converge to zero. The right panel plot of Figure 4 shows very slow convergence to UrU
T
r .

Moreover, the limiting solutions (despite slow convergence) satisfy W2 = WT
1 as shown in the right plot of

Figure 3.
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7.1.2. Non-balanced initial conditions. For Wj(0), j = 1, . . . , N , we randomly generate Gaussian matrices.

The two plots in Figure 5 and the left panel plot of Figure 6 show that W (t) converges to UrU
T
r . As in the

balanced case we can confirm that ‖X −W (t)X‖F converges to
√∑

i>r σ
2
i . On the other hand, for N = 2

in this case we see that W2(t) does not converge to W1(t)T in contrast to the balanced case, as can be seen

in the right panel plot of Figure 6.
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Figure 5. Convergence of solutions of the gradient flow – errors between W (t) and UrU
T
r

for different r and d values for left panel: N = 2, right panel: N = 5.

10 0 10 1 10 2 10 3 10 4
0

1

2

3

4

5

6

7

Figure 6. Left panel: Errors between W (t) and UrU
T
r for different r and d values for

N = 10. Right panel: Errors between W2(t) and W1(t)T .

7.1.3. Convergence rates. Here the data matrix X ∈ Rdx×m is generated with columns drawn i.i.d.from a

Gaussian distribution, i.e., xi ∼ N(0, σ2Idx), where σ = 1/
√
dx. Random realization of X with two different

values for dx (as in abovem = 3d) and different r, the rank ofW (t), are used. For each fixed d, the dimensions

dj of the Wj ∈ Rdj×dj−1 are selected using an arbitrarily chosen r and setting dj = [r+(d−r)(j−1)/(N−1)]

for j = 1, . . . , N . The value of r is stated in the caption of the figures. The experiments show very rapid
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convergence of the solutions but also the dependence of the convergence rate on N , dx, and r. We investigate

this for different values of N , dx and r, in both the balanced and non-balanced cases. Convergence plots

for the balanced initial conditions are shown in Figure 7, depicting smooth convergence. Similarly, we have

convergence rates of the non-balanced case in Figure 8. These plots also show a slightly faster convergence

for the balanced case than for the non-balanced case.
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Figure 7. Convergence rates of solutions of the gradient flow in the autoencoder case with

balanced initial conditions – errors between W (t) and W (T ) for different N values, where

T is the final time. Dimensions Left panel: dx = 20, r = 1; Right panel: dx = 200, r = 10.
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Figure 8. Convergence rates of solutions of the gradient flow in the autoencoder case with

non-balanced initial conditions – errors between W (t) and W (T ) for different N values,

where T is the final time. Dimensions Left panel: dx = 20, r = 1; Right panel: dx = 200,

r = 10.

7.2. General supervised learning case. Experiments were also conducted to test the results in the

general supervised learning setting to support theoretical results in Theorem 30 and Propositions 31 and



LEARNING DEEP LINEAR NETWORKS 37

32. We show results for N = 2, 5, 10, 20, and two sets of values for dx and r (rank of W (t) and W̃ ,

the true parameters). The data matrix X is generated as in the autoencoder case and Y = W̃X, where

W̃ = W̃N · · · W̃1, with W̃j ∈ Rdj×dj−1 for j = 1, . . . , N with dN = d0 = dx = d and d1 = r is the rank of

W̃ . The entries of W̃j are randomly generated independently from a Gaussian distribution with standard

deviation σ = 1/
√
dj . The dimensions dj×dj−1 of the Wj for j = 1, . . . , N , are again selected respectively in

an integer grid, i.e., dj = [r+ (dx− r)(j−1)/(N −1)], where r is arbitrarily fixed. The initial conditions are

generated as was done in the autoencoder case. We investigate the convergence rates for the balanced and

non-balanced initial conditions of the gradient flows. The results of the experiments are plotted in Figures

9 and 10. In these plots k is the rank of Q ∈ Rdy×dx defined in (31), and Q = UkΣkVk is the (reduced)

singular value decomposition, i.e., Uk ∈ Rdx×k and Vk ∈ Rdy×k have orthonormal columns and Σk ∈ Rk×k

is a diagonal matrix containing the non-zero singular values of Q.
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Figure 9. Convergence rates of solutions of the gradient flow of the general supervised

learning problem depicted by convergence to W in (1) of Proposition 31 with balanced

initial conditions for left panel: dx = 20, r = 2; right panel: dx = 200, r = 20.

With balanced initial conditions the plots of Figure 9 show convergence rates of the flow to W in (1)

of Proposition 31. With non-balanced initial conditions the plots of Figure 10 show convergence rates to

W in (1) of Proposition 31. These results show rapid convergence of the flow and the dependence of the

convergence rate on N , r and dx with either balanced or non-balanced initial conditions. Note that W in

(1) of Proposition 31 is the same as the true parameters W̃ . This can be seen by comparing the left panel

plot of Figure 9 to the left panel plot of Figure 11 and the left panel plot of Figure 10 to the right panel

plot of Figure 11.

Convergence is slower for larger N , and it seems not to depend on the initial conditions, balanced or

non-balanced, see the plots of Figures 9 and 10. Equivalently, this can be seen from the error of the
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Figure 10. Convergence rates of solutions of the gradient flow of the general supervised

learning problem depicted by convergence to W in (1) of Proposition 31 with non-balanced

initial conditions for left panel: dx = 20, r = 2; right panel: dx = 200, r = 20.

supervised learning loss shown in the plots of Figure 12 for balanced initial conditions. There is much

stronger dependence on N in this setting than in the autoencoder setting.
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Figure 11. Convergence to the true parameters W̃ for (dx = 20, r = 2) with left panel:

balanced initial conditions; right panel: non-balanced initial conditions.

7.3. Conclusion. To conclude the numerical section we summarise our results as follows. In the autoen-

coder case we confirmed that the solutions of the gradient flow converges to UrU
T
r , while in the general

supervised learning case we confirmed convergence of the flow to W in (1) of Proposition 31. Such con-

vergence occurs with either balanced or non-balanced initial conditions albeit a slight faster convergence in

the balanced than in the non-balanced. Secondly, in the autoencoder case we numerically confirmed the

hypothesis of Conjecture 40 and that W2(t) = W1(t)T as claimed for N = 2 with balanced initial conditions,

which does not necessarily hold with non-balanced initial conditions. Moreover, in both the autoencoder and

the general supervised learning setting we see that as the size (N, dx, r) of the problem instance increases
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Figure 12. General supervised learning errors with balanced initial conditions for dimen-

sions left panel: dx = 20, r = 2; right panel: dx = 200, r = 20.

the convergence rates decrease. In the autoencoder case we saw stronger dependence in dx and r than in

the general supervised learning case. On the other hand the dependence on N seems to be stronger in the

general supervised learning case than in the autoencoder case.
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Appendix A. Proof of Proposition 10

The proof is based on the next lemma, which follows from [7].

Lemma 42. Let A ∈ Rm×m, B ∈ Rn×n, be positive definite matrices and Y ∈ Rm×n. Then, for p ∈ N,

p ≥ 2, the solution X ∈ Rm×n of the matrix equation

Ap−1X +Ap−2XB + · · ·+AXBp−2 +XBp−1 = Y (40)

satisfies

X =
sin(π/p)

π

∫ ∞
0

(tIm +Ap)−1Y (tIn +Bp)−1t1/pdt (41)

=
1

pΓ(1− 1/p)

∫ ∞
0

∫ t

0

e−sA
p

Y e−(t−s)Bp

ds t−(1+1/p)dt. (42)

Proof. The first formula (41) is shown for n = m in [7], for matrices with eigenvalues in {z ∈ C : z 6=

0,−π/p < arg z < π/p}. Positive definite matrices clearly have their eigenvalues in this set. Formula (41)

extends to squares A,B of possibly different dimensions m,n. In fact, [7] first proves (41) for A = B, see

[7, eq. (8)] and then extends the solution by the “Berberian trick” which introduces the block matrices

Ã =

A 0

0 B

 , Ỹ =

0 Y

0 0

 , X̃ =

X11 X12

X21 X22

 .

If X̃ solves
∑p
i=1 Ã

p−iX̃Ãi−1 = Ỹ , then the submatrix X = X12 solves (40) and one obtains (41). This

argument works for general m,n so that (41) holds under the conditions of the lemma.

In the case that A = B, [7, eq. (15)] implies (42). The general case of possibly different A,B is then

established again by the Berberian trick as above. �
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Proof of Proposition 10. We aim at applying Lemma 42 for the matrices A = (WWT )1/N and B =

(WTW )1/N in order to obtain a formula for Ā−1
W . Unfortunately, in the rank deficient case, these ma-

trices are only positive semi-definite and not positive definite. We will overcome this problem by using an

approximation argument. For u > 0, the matrices (uIdy + WWT )1/N and (uIdx + WTW )1/N are positive

definite and hence, the linear operator

AW,u : Rdy×dx → Rdy×dx , AW,u(Z) =

N∑
j=1

(uIdy +WWT )
N−j
N Z(uIdx +WTW )

j−1
N

is invertible by Lemma 42 with inverse A−1
W,u : Rdy×dx → Rdy×dx ,

A−1
W,u(Z) =

sin(π/N)

π

∫ ∞
0

(
(t+ u)Idy +WWT

)−1
Z
(
(t+ u)Idx +WTW

)−1
t1/Ndt. (43)

Furthermore, AW,u maps TW (Mk) into TW (Mk) for all u ≥ 0. Indeed, let W = UΣV T be the full singular

value decomposition of W with U , V being (square) orthogonal matrices and Σ = diag(σ1, . . . , σk, 0, . . . , 0).

If Z = WA+BW ∈ TW (Mk) then for α, β ≥ 0,

(uIdy +WWT )αZ(uIdx +WTW )β

= U diag((u+ σ2
1)α, . . . , (u+ σ2

k)α, uα, . . . , uα))UTUΣV TA(uIdx +WTW )β

+ (uIdy +WWT )αBUΣV TV diag((u+ σ2
1)β , . . . , (u+ σ2

k)β , uβ , . . . , uβ))V T

= UΣ diag((u+ σ2
1)α, . . . , (u+ σ2

k)α, 0, . . . , 0)V TA(uIdx +WTW )β

+ (uIdy +WWT )αBUΣ diag((u+ σ2
1)β , . . . , (u+ σ2

k)β , 0, . . . , 0)V T

= WV diag((u+ σ2
1)α, . . . , (u+ σ2

k)α, 0, . . . , 0)V TA(uIdx +WTW )β

+ (uIdy +WWT )αBU diag((u+ σ2
1)β , . . . , (u+ σ2

k)β , 0, . . . , 0)UTW.

The last expression is clearly an element of TW (Mk) and by the formula for AW,u this implies that this

operator maps the tangent space TW (Mk) into itself. Let us denote ĀW,u : TW (Mk) → TW (Mk) the

corresponding restriction and by Ā−1
W,u : TW (Mk)→ TW (Mk) the restriction of the inverse map to TW (Mk).

Clearly, (43) still holds for the restriction Ā−1
W,u. Lemma 8 implies that the restrictions ĀW,u and Ā−1

W,u

are both well-defined also for u = 0 with ĀW,0 = ĀW and Ā−1
W,0 = Ā−1

W . Moreover, the map u 7→ ĀW,u is

continuous in u ≥ 0 and, hence, also u 7→ Ā−1
W,u is continuous in u ≥ 0. We claim that also the right hand

side of (43) with Z ∈ TW (Mk) is well-defined and continuous for all u ≥ 0, which will give an inversion

formula for Ā−1
W by setting u = 0.

In order to show continuity of the right hand side of (43) in u, we investigate uniform integrability of the

integrand for Z ∈ TW (Mk). By Lemma 7 we can write Z = PW (Z) = UPkU
TZ(Idy −V PkV T ) +ZV PkV

T ,

where Pk is the diagonal matrix from the lemma and W = UΣV T is the (full) singular value decomposition
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of W . In particular, the matrix Σ ∈ Rdy×dx has the singular values σ1 ≥ . . . ≥ σk > 0 on the diagonal, with

all other entries equal to zero. For simplicity we write E = Idx − V PkV T . Denoting

Λt,u := ((t+ u)Idy + ΣΣT )−1 = diag

(
1

t+ u+ σ2
1

, . . . ,
1

t+ u+ σ2
k

,
1

t+ u
, . . . ,

1

t+ u

)
∈ Rdy×dy ,

Λ̃t,u := ((t+ u)Idx + ΣTΣ)−1 = diag

(
1

t+ u+ σ2
1

, . . . ,
1

t+ u+ σ2
k

,
1

t+ u
, . . . ,

1

t+ u

)
∈ Rdx×dx ,

Kt,u := ((t+ u)Idy + ΣΣT )−1Pk = diag

(
1

t+ u+ σ2
1

, . . . ,
1

t+ u+ σ2
k

, 0, . . . , 0

)
∈ Rdy×dy ,

K̃t,u := Pk((t+ u)Idx + ΣTΣ)−1 = diag

(
1

t+ u+ σ2
1

, . . . ,
1

t+ u+ σ2
k

, 0, . . . , 0

)
∈ Rdx×dx

we have(
(t+ u)Idy +WWT

)−1
Z
(
(t+ u)Idx +WTW

)−1
= UKt,uU

TZEV Λ̃t,uV
T + UΛt,uU

TZV K̃t,uV
T .

Taking the spectral norm gives

‖
(
(t+ u)Idy +WWT

)−1
Z
(
(t+ u)Idx +WTW

)−1 ‖2→2 ≤ 2‖Z‖2→2σ
−2
k (t+ u)−1 ≤ 2‖Z‖2→2σ

−2
k t−1.

This estimate will be good enough for t→ 0, for any u > 0. For t→∞ we need a second estimate

‖
(
(t+ u)Idy +WWT

)−1
Z
(
(t+ u)Idx +WTW

)−1 ‖2→2

≤ ‖
(
(t+ u)Idy +WWT

)−1 ‖2→2‖Z‖2→2‖
(
(t+ u)Idx +WTW

)−1 ‖2→2

≤ ‖Z‖2→2(t+ u)−2 ≤ ‖Z‖2→2t
−2,

which holds uniformly in u > 0 and follows from the fact that WWT and WTW are positive semidefinite.

Altogether, for Z ∈ TW (Mk) the integrand in (43) satisfies

‖
(
(t+ u)Idy +WWT

)−1
Z
(
(t+ u)Idx +WTW

)−1
t1/N‖2→2 ≤ ‖Z‖2→2 min{σ−2

k t−1+1/N , t−2+1/N}.

The latter function is integrable over t ∈ (0,∞) since N ≥ 2, and hence, for all u ≥ 0, the integrand in

(43) is uniformly dominated by an integrable function. By Lebesgue’s dominated convergence theorem and

continuity of u 7→
(
(t+ u)Idy +WWT

)−1
Z
(
(t+ u)Idx +WTW

)−1
t1/N for all t ∈ (0,∞), the function

u 7→ Ā−1
W,u(Z) is continuous for all Z ∈ TW (Mk). Altogether, we showed that

Ā−1
W (Z) =

sin(π/N)

π

∫ ∞
0

(
tIdy +WWT

)−1
Z
(
tIdx +WTW

)−1
t1/Ndt, Z ∈ TW (Mk),

and this implies (19).

A similar argument based on (42) proves (20). In the case N = 2, it can be shown as in [6, Theorem

VII.2.3] and with the approximation argument above that

Ā−1
W (Z) =

∫ ∞
0

e−t(WWT )
1
2 Ze−t(W

TW )
1
2 dt,

which implies (21). �
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Appendix B. Proof of Proposition 11

Given a system {γ1, . . . , γn} of sufficiently smooth local coordinates on Mk, where n is the dimension of

Mk, the vectors ξj(W ) := ∂
∂γj

(W ), j = 1, . . . , n, form a basis of the tangent space TW (Mk). We need to

show that the maps

W 7→ Fi,j(W ) := gW (ξi(W ), ξj(W ))

are continuously differentiable for all i, j. Note that the vector fields ξj(W ) are smooth in W . We consider

the representation (19) and introduce the functions

Ki,j,t(W ) := tr
(
(t+WWT )−1ξi(W )(t+WTW )−1ξTj (W )

)
,

where we write (t + WWT ) for (tIdy + WWT ) and likewise (t + WTW ) = (tIdx + WTW ). For a function

f we denote the differential of f at A applied to Y by Df(A)[Y ]. Denoting φt(W ) = (t + WWT )−1 and

ψt(W ) = (t+WTW )−1 the product rule gives, for W ∈Mk and Y ∈ TW (Mk),

DKi,j,t(W )[Y ] = tr(Dφt(W )[Y ]ξi(W )ψt(W )ξTj (W )) + tr(φt(W )Dξi(W )[Y ]ψt(W )ξTj (W )) (44)

+ tr(φt(W )ξi(W )Dψt(W )[Y ]ξTj (W )) + tr(φt(W )ξi(W )ψt(W )DξTj (W )[Y ]). (45)

The differential of the function φ(A) = A−1 satisfies Dφ(A)[Y ] = −A−1Y A−1 so that

Dφt(W )[Y ] = −(t+WWT )−1(WY T + YWT )(t+WWT )−1,

Dψt(W )[Y ] = −(t+WTW )−1(WTY + Y TW )(t+WTW )−1.

Let W = UΣV T be the (full) singular value decomposition of W , i.e., U ∈ Rdy×dy , V ∈ Rdx×dx with

UTU = Idy , V TV = Idx and Σ = diag(σ1, . . . , σk, 0, . . . , 0) ∈ Rdy×dx with σ1 ≥ · · · ≥ σk > 0. The first term

on the right hand side of (44) satisfies

tr((Dφt(W )[Y ]ξi(W )ψt(W )ξTj (W ))

= − tr
(
(t+WWT )−1(WY T + YWT )(t+WWT )−1ξi(W )(t+WTW )−1ξTj (W )

)
.

Note that (t+WWT )−1(WY T + YWT )(t+WWT )−1 = Q+QT with

Q = (t+WWT )−1WY T (t+WWT )−1

= U diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
UT (UΣV TY T )U diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
UT

= U diag

(
σ1

t+ σ2
1

, . . . ,
σk

t+ σ2
k

, 0, . . . , 0

)
V TY TU diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
UT .

By Lemma 7 it holds

ξi(W ) = PW (ξi(W )) = UPkU
T ξi(W )(Idx − V PkV T ) + ξi(W )V PkV

T = ζ1
i (W ) + ζ2

i (W ). (46)
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where Pk = diag(1, . . . , 1, 0, . . . , 0) (with k ones on the diagonal), ζ1
i (W ) = UPkU

T ξi(W )(Idx − V PkV T )

and ζ2
i (W ) = ξi(W )V PkV

T . Note that also U and V are functions of W , which may be non-unique, but in

this case, we just fix one choice. Then we have

ξi(W )(t+WTW )−1ξTj (W ) =

=:E1︷ ︸︸ ︷
ζ1
i (W )(t+WTW )−1(ζ1

j (W ))T +

=:E2︷ ︸︸ ︷
ζ1
i (W )(t+WTW )−1(ζ2

j (W ))T

+ ζ2
i (W )(t+WTW )−1(ζ1

j (W ))T︸ ︷︷ ︸
=:E3

+ ζ2
i (W )(t+WTW )−1(ζ2

j (W ))T︸ ︷︷ ︸
=:E4

.

Using cyclicity of the trace, we obtain

tr(QE1) = tr

(
diag

(
σ1

t+ σ2
1

, . . . ,
σk

t+ σ2
k

, 0, . . . , 0

)
V TY TU diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
×UT ξi(W )(Idx − V PkV T )V diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
V T (Idx − V PkV T )ξTj (W )U

)
,

tr(QE2) = tr

(
diag

(
σ1

t+ σ2
1

, . . . ,
σk

t+ σ2
k

, 0, . . . , 0

)
V TY TU diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
×UT ξi(W )(Idx − V PkV T )V diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
V T ξTj (W )U

)
,

tr(QE3) = tr

(
diag

(
σ1

t+ σ2
1

, . . . ,
σk

t+ σ2
k

, 0, . . . , 0

)
V TY TU diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
×UT ξi(W )V diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
V T (Idx − V PkV T )ξTj (W )U

)
,

tr(QE4) = tr

(
diag

(
σ1

t+ σ2
1

, . . . ,
σk

t+ σ2
k

, 0, . . . , 0

)
V TY TU diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
×UT ξi(W )V diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
V T ξTj (W )U

)
.

Note that 1/(t + σ2
i ) ≤ min{1/t, 1/σ2

i } for all t > 0. Using Cauchy-Schwarz inequality for the Frobenius

inner product, the fact that ‖AB‖F ≤ ‖A‖2→2‖B‖F , and unitarity of U and V , we obtain

| tr(QE`)| ≤ ‖Y ‖F ‖ξi(W )‖F ‖ξj(W )‖Fσ−3
k t−1, ` = 1, 2, 3, 4.

By continuity of ξi and ξj , it follows that there exists a neighborhood U ⊂ Mk around a fixed W0 ∈ Mk

(in which σk(W ) ≥ c > 0 for some c > 0 and all W ∈ U) and a constant C > 0 (depending only on the

neighborhood) such that

| tr(Qξi(W )(t+WTW )−1ξTj (W ))| ≤ C‖Y ‖F t−1 for all t > 0 and W ∈ U.

In the same way, one shows the above inequality for Q replaced by QT and hence

| tr((Dφt(W )[Y ]ξi(W )ψt(W )ξTj (W ))| ≤ 2C‖Y ‖F t−1 for all t > 0 and W ∈ U.
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Moreover, by the Cauchy-Schwarz inequality for the Frobenius inner product and since WWT as well as

WTW are positive semidefinite, it holds

| tr((Dφt(W )[Y ]ξi(W )ψt(W )ξTj (W ))|

≤ ‖(t+WWT )−1(WY T + YWT )(t+WWT )−1‖F ‖ξi(W )(t+WTW )−1ξTj (W )‖F

≤ ‖(t+WWT )−1‖22→2‖(t+WTW )−1‖2→2‖WY T + YWT ‖F ‖ξi(W )‖F ‖ξj(W )‖F

≤ 2t−3‖WY T ‖F ‖ξi(W )‖F ‖ξj(W )‖F . (47)

Altogether, it holds, for a suitable constant C1 > 0,

| tr((Dφt(W )[Y ]ξi(W )ψt(W )ξTj (W ))| ≤ C1‖Y ‖F min{t−1, t−3} for all t > 0 and W ∈ U.

Let us now consider the second term on the right hand side of (44). As in (47), we obtain

| tr(φt(W )Dξi(W )[Y ]ψt(W )ξTj (W ))| ≤ t−2‖Dξi(W )[Y ]‖F ‖ξTj (W )‖F .

By Lemma 7 we can write ξj(W ) = PW (ξj(W )) = ζ1
j (W ) + ζ2

j (W ) with ζ1
j (W ) = UPkU

T ξj(W )(Idx −

V PkV
T ) and ζ2

j (W ) = ξj(W )V PkV
T as in (46). With E = Idx − V PkV T this gives

tr(φt(W )Dξi(W )[Y ]ψt(W )ξTj (W ))

= tr
(
(t+WWT )−1Dξi(W )[Y ](t+WTW )−1(ζ1

j (W ) + ζ2
j (W ))T

)
= tr

(
diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
UTDξi(W )[Y ]V diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
V TEξTj (W )U

)
+ tr

(
diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

,
1

t
, . . . ,

1

t

)
UTDξi(W )[Y ]V diag

(
1

t+ σ2
1

, . . . ,
1

t+ σ2
k

, 0, . . . , 0

)
V T ξTj (W )U

)
.

By the Cauchy-Schwarz inequality for the Frobenius inner product it follows that

| tr(φt(W )Dξi(W )[Y ]ψt(W )ξTj (W ))| ≤ 2‖Dξi(W )[Y ]‖F ‖ξj(W )‖Fσ−2
k t−1.

Since the ξi are continuously differentiable there exists C2 > 0 such that

| tr(φt(W )Dξi(W )[Y ]ψt(W )ξTj (W ))| ≤ C2‖Y ‖F min{t−1, t−2} for all t > 0 and W ∈ U.

The terms in (45) can be bounded in the same way as the ones in (44), hence

|DKi,j,t(W )[Y ]| ≤ C ′‖Y ‖F min{t−1, t−2} for all t > 0 and W ∈ U.

It follows that
∫∞

0
|DKi,j,t(W )[Y ]|t1/Ndt exists and is uniformly bounded in W ∈ U. By Lebesgue’s dom-

inated convergence theorem, it follows that we can interchange integration and differentiation, and hence,

all directional derivatives of Fi,j at W in the direction of Y exist and are continuous since DKi,j,t(W )[Y ] is
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continuous in W for all Y ∈ TW (Mk). Hence, by (19), Fi,j is (totally) continuously differentiable for all i, j

with

DFi,j(W )[Y ] =
sin(π/N)

π

∫ ∞
0

DKi,j,t(W )[Y ]t1/Ndt.

Hence, the metric is of class C1 as claimed.

Appendix C. Some results on flows on manifolds

Here we summarize some notions and results on flows on manifolds that can be found in [14, Chapter

IV,2] to which we also refer for more details.

Let p ≥ 2 be an integer or p =∞, let M be a (finite dimensional) Cp-manifold and let ξ be a vector field

of class Cp−1 on M. An integral curve for ξ with initial condition x0 ∈M is a Cp−1-curve

γ : J →M,

where J is an open intervall containing 0 such that

γ̇(t) = ξ(γ(t)) ∀t ∈ J and γ(0) = x0.

Theorem 43 (Theorem 2.1 in Chapter IV,2 in [14]). If γ1 : J1 → M and γ2 : J2 → M are integral curves

for ξ with the same initial condition then γ1 = γ2 on J1 ∩ J2.

Let D(ξ) ⊆ R×M be the set of all pairs (t, x0) such that for any x0 ∈M the set

J(x0) := {t ∈ R | (t, x0) ∈ D(ξ)}

is the maximal open existence interval of an integral curve for ξ with initial condition x0. For any x0 ∈M,

this interval is non-empty (locally one can argue as in the case M = Rn).

A global flow for ξ is a mapping

α : D(ξ)→M

such that for all x0 ∈ M the map t 7→ α(t, x0) for t ∈ J(x0) is an integral curve for ξ with initial condition

x0, i.e. α(0, x0) = x0 and α̇(t, x0) = ξ(α(t, x0)) for any t ∈ J(x0). Note that by Theorem 43 there is only

one such mapping α. For t ∈ R let

Dt(ξ) := {x ∈M | (t, x) ∈ D(ξ)}

and define the map αt : Dt(ξ)→M by αt(x) = α(t, x).

Theorem 44 (Theorems 2.6 and 2.9 in Chapter IV,2 in [14]).

(1) The set D(ξ) is open in R×M and α is a Cp−1-morphism.
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(2) For any t ∈ R, the set Dt(ξ) is open in M and (for Dt(ξ) non-empty) αt defines a diffeomorphism

of Dt(ξ) onto an open subset of M (namely αt(Dt(ξ)) = D−t(ξ)) and α−1
t = α−t).

Appendix D. The non-symmetric autoencoder case for N = 2

Here we consider the optimization problem (3) with N = 2 and the additional constraint that Y = X,

but we do not assume that W2 = WT
1 . We also assume balanced starting conditions, i.e., W2(0)TW2(0) =

W1(0)W1(0)T . In this special case, we can use a more direct approach than in Section 6 to establish some

additional explicit statements below.

We write again d for dx = dy and r for d1. The equations for the flow here are:

Ẇ1 = −WT
2 W2W1XX

T +WT
2 XX

T ,

Ẇ2 = −W2W1XX
TWT

1 +XXTWT
1 .

(48)

Next we analyze the equilibrium points of the flow (48) and of the product W = W2W1 again assuming

balanced initial conditions. We begin by exploring the equilibrium points of the flow (48) by setting the

expressions in (48) equal to zero:

−WT
2 W2W1XX

T +WT
2 XX

T = 0,

−W2W1XX
TWT

1 +XXTWT
1 = 0.

(49)

If W2 ∈ Rd×r is the zero matrix then (since XXT has full rank) it follows that (49) is solved if and only

if W1 is the r × d zero-matrix, hence W is the d × d zero-matrix. The following lemma characterizes the

non-trivial solutions. (The second part of the lemma is a special case of Proposition 31 below.)

Lemma 45. The balanced nonzero solutions (i.e. solutions with W2 6= 0) of (49) are precisely the matrices

of the form

W2 = UV T , W1 = WT
2 = V UT , W = W2W1 = UUT , (50)

where U ∈ Rd×k for some 1 ≤ k ≤ r and where the columns of U are orthonormal eigenvectors of XXT and

V ∈ Rr×k has orthonormal columns.

In particular, the equilibrium points for W = W2W1 are precisely the matrices of the form

W =

k∑
j=1

uju
T
j , (51)

where k ∈ {1, . . . , r} and u1, . . . , uk (the columns of U above) are orthonormal eigenvectors of XXT .

Remark 46. Note that W = 0 is also an equilibrium point of (48) which formally corresponds to taking

k = 0 in (51).
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Proof. Since W2 6= 0, the rank k of W2 is at least 1. The balancedness condition WT
2 W2 = W1W

T
1 implies

that W1 and W2 have the same singular values. Since XXT has full rank, the first equation of (49) yields

WT
2 = WT

2 W2W1. Again due to balancedness, this shows that WT
2 = W1W

T
1 W1. It follows that all positive

singular values of W1 and of W2 are equal to 1 and that W2 = WT
1 . The second equation of (49) thus gives

the equation

(Id −W2W
T
2 )XXTW2 = 0. (52)

(The equilibrium points of full rank r could now be obtained using [22, Propositon 4.1] again, but we are

interested in all solutions here.) Since the positive singular values of W2 are all equal to 1, it follows that

we can write

W2W
T
2 =

k∑
i=1

uiu
T
i ,

where the ui are orthonormal. We extend the system u1, . . . , uk to an orthonormal basis u1, . . . , ud of

Rd. From (52) we obtain (Id − W2W
T
2 )XXTW2W

T
2 = 0, hence

∑d
j=k+1 uju

T
j XX

T
∑k
i=1 uiu

T
i = 0 and

consequently

d∑
j=k+1

k∑
i=1

(uTj XX
Tui)uju

T
i = 0.

It follows that for all j ∈ {k + 1, . . . , d} and for all i ∈ {1, . . . , k} we have uTj XX
Tui = 0. This in turn

implies that XXT maps the span of u1, . . . , uk into itself and also maps the span of uk+1, . . . , ud into itself.

This implies that we can choose u1, . . . , ud as orthonormal eigenvectors of XXT . Thus we can indeed write

the (reduced) singular value decomposition of W2 as W2 = UV T , where the columns u1, . . . , uk of U are

orthonormal eigenvectors of XXT and where V is as in the statement of the lemma. Since W1 = WT
2 and

W = W2W1, it follows that W1 = V UT and W = UUT as claimed. Altogether, we have shown that the

equations (50) are necessary for having a balanced solution of (49). One easily checks that W1,W2 defined

by (50) also satisfy (49), which shows sufficiency. This completes the proof. �

Corollary 47. Consider a linear autoencoder with one hidden layer of size r with balanced initial conditions

and assume that XXT has eigenvalues λ1 ≥ . . . ≥ λd > 0 and corresponding orthonormal eigenvectors

u1, . . . , ud.

(1) The flow W (t) always converges to an equilibrium point of the form W =
∑
j∈JW uju

T
j , where JW

is a (possibly empty) subset of {1, . . . , d} of at most r elements.

(2) The flow W2(t) converges to UV T =: W2, where the columns of U are the uj , j ∈ JW and V ∈ Rr×k

has orthonormal columns (k = |JW |) . Furthermore W1(t) converges to WT
2 .

(3) If L1(W (0)) < 1
2

∑d
i=r,i 6=r+1 λi then W (t) converges to the optimal equilibrium W =

∑r
j=1 uju

T
j .
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(4) If λr > λr+1, then there is an open neighbourhood of the optimal equilibrium point in which we have

convergence of the flow W (t) to the optimal equilibrium point.

Proof. The first and the second point follow from Lemma 45 together with Theorem 5. (Note that if

(W1,W2) is an equilibrium point to which the flow converges then W1,W2 are balanced since we assume

that the flow has balanced initial conditions.) To prove the third point, note that the loss of an equilibrium

point W =
∑
j∈JW uju

T
j is given by L1(W ) = 1

2

∑
i∈KW

λi, where KW = {1, . . . , d} \ JW . This sum

is minimal for JW = {1, . . . , r}. Among the remaining possible JW , the value of L1(W ) is minimal for

JW = {1, . . . , r + 1} \ {r}, i.e., KW = {r, . . . , d} \ {r + 1}. Since the value of L1(W (t)) monotonically

decreases as t increases (as follows e.g. from equation (24)), the claim now follows from the first point. The

last point follows from the third point. �

The following result is an analogue to Theorem 24.

Theorem 48. If k ≤ r and u1, . . . , uk are orthonormal eigenvectors of XXT which do not form a system

of eigenvectors to the r largest eigenvalues of XXT (in particular for k < r), in any neighborhood of the

equilibrium point W =
∑k
j=1 uju

T
j there is some W̃ of rank at most r for which L1(W̃ ) < L1(W ). In

particular, the equilibrium in W is non-stable.

Proof. If k < r and W =
∑k
j=1 uju

T
j for orthonormal eigenvectors uj of XXT then for any additional

eigenvector uk+1 orthonormal to the uj and for any ε > 0, we can choose W̃ = W + εuk+1u
T
k+1 to obtain

L1(W̃ ) < L1(W ). Let now k = r. This case can be treated analogously to the proof of Theorem 24: let

ui be one of the eigenvectors u1, . . . , ur whose eigenvalue does not belong to the r largest eigenvalues of

XXT . Let v be an eigenvector of XXT of unit length which is orthogonal to the eigenvectors u1, . . . , ur

and whose eigenvalue belongs to the r largest eigenvalues of XXT . Now for any ε ∈ [0, 1] consider ui(ε) :=

εv+
√

1− ε2ui. Then W (ε) := ui(ε)ui(ε)
T +

∑r
j=1,j 6=i uju

T
j satisfies L1(W (ε)) < L1(W ) for ε ∈ (0, 1]. From

this the claim follows. �

Remark 49. With the notation

V =

WT
1

W2

 ∈ R2d×r and C = XXT ∈ Rd×d

and assuming that C has full rank, the flow (48) can be written as the following Riccati-type-like ODE.

V̇ =

I2d +

−C 0

0 0

V V T

 0 0

C−1 0

+

0 0

0 −Id

V V T

0 Id

0 0

0 C

C 0

V. (53)


	1. Introduction
	Structure
	Acknowledgement

	2. Gradient flows for learning linear networks
	3. Convergence of the gradient flow
	4. Riemannian gradient flows
	5. Linear Autoencoders with one hidden layer
	6. Avoiding saddle points
	6.1. Strict saddle points
	6.2. Flows avoid strict saddle points almost surely
	6.3. The strict saddle point property for L1 on Mr
	6.4. Strict saddle points of LN
	6.5. Convergence to global minimizers

	7. Numerical results
	7.1. Autoencoder case
	7.2. General supervised learning case
	7.3. Conclusion

	References
	Appendix A. Proof of Proposition ??
	Appendix B. Proof of Proposition ??
	Appendix C. Some results on flows on manifolds
	Appendix D. The non-symmetric autoencoder case for N=2

