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Abstract. The task of reconstructing a low rank matrix from incomplete linear measurements arises in

areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this

note, we study the particular setup that the measurements are taken with respect to rank one matrices
constructed from the elements of a random tight frame. We consider a convex optimization approach and

show both robustness of the reconstruction with respect to noise on the measurements as well as stability

with respect to passing to approximately low rank matrices. This is achieved by establishing a version of
the null space property of the corresponding measurement map.

1. Introduction

Compressed sensing [3] predicts that sparse vectors can be reconstructed stably from an incomplete and
possibly noisy set of linear (random) measurements via efficient algorithms including `1-minimization. This
theory has been extended to the reconstruction of low rank matrices from incomplete measurements. Initial
contributions [2] analyzed Gaussian random measurement maps having no structure at all. However, in
quantum state tomography, for instance, one does require structure. A particular setup considers mea-
surements with respect to rank-one matrices which makes the analysis more difficult because of a reduced
amount of (stochastic) independence. In [4] and [5], such rank one measurements consisting of projections
on random vectors drawn from a Gaussian distribution or from a complex projective 4-design are considered.
In this note, we extend this to the case that the measurements project onto the elements from a random
tight frame. In order to make this more precise we recall the setup of [5].

We consider rank one measurements of an (approximately) low-rank Hermitian matrix X ∈ Hn of the
form A(X), where the linear measurement map A is given as

A : Hn → Rm, Z 7→
m∑
j=1

tr(Zaja
∗
j )ej . (1)

Here, Hn denotes the space of n × n complex Hermitian matrices, e1, . . . , em denote the standard basis
vectors in Rm and a1, . . . , am ∈ Rn are measurement vectors. Taking into consideration the presence of
noise we write

b = A(X) + w, (2)

where w ∈ Rm is a vector of perturbations. We consider the following noise constrained nuclear norm
minimization problem

min
Z∈Hn

‖Z‖1 subject to ‖A(Z)− b‖`q ≤ η, (3)

where η denotes a known estimate of the noise level, i.e., ‖w‖`q ≤ η for some q ≥ 1 (including the case
q =∞). Here and in the sequel, we denote by ‖Z‖1 the nuclear norm of Z (the sum of its singular values).
Similarly, ‖Z‖2 denotes the Frobenius norm of Z (the `2-norm of the vector of singular values of Z), and
‖Z‖∞ denotes the maximal singular value of Z.

We are interested in choosing a minimal number m of measurements (ideally smaller than n2) that still
allows reconstruction of X of (approximately) rank r from b = A(X) + w. In this note, we choose the
measurement vectors a1, . . . , am from a tight frame, that is, the matrix M ∈ Rm×n whose rows are the
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vectors aj satisfies M∗M = id. In order to analyze this setup rigorously, we introduce randomness. To this
end we adopt the notation of [6], and denote by Vmn the Stiefel manifold consisting of the real valued m× n
matrices M with the property M∗M = id.

Definition 1. Let m ≥ n. A m×n random tight frame is the set of rows of a m×n matrix with orthonormal
columns which is drawn uniformly from the Stiefel manifold Vmn .

We also use the following notation. Given a complex valued n1×n2 matrix M and a non negative integer
r ≤ n1, n2, we denote by Mr the diagonal matrix whose diagonal entries are the r largest singular values of
M , and by Mr,c the diagonal matrix whose diagonal entries are the remaining singular values of M .

The following theorem concerning reconstruction with respect to rank one measurements corresponding
to the elements of a random tight frame is the main result of this note.

Theorem 2. Consider the above measurement process with m measurement vectors ai which are the (trans-
posed) elements of a random tight frame multiplied by

√
m. Let r ≤ n and suppose that

m ≥ C1nr. (4)

Then with probability at least 1−3e−C2m it holds that for any X ∈ Hn, any solution X] to the above convex
optimization problem with noisy measurements b = A(X) + w, where ‖w‖`q ≤ η, obeys

‖X −X]‖2 ≤
D1√
r
‖Xr,c‖1 +D2 ·

η

m1/q
. (5)

Here C1, C2, D1, D2 denote positive universal constants. (In particular, for η = 0 and X of rank at most r
one has exact reconstruction.)

This result is of similar nature as the main results of [5], where however different types of measurements
were analyzed. The bound (4) on the number of measurements is optimal. In the special case r = 1 it
implies that a vector x ∈ Rn (or in Cn) can be reconstructed robustly from noisy phaseless measurements
yj = |〈x, aj〉|2 + wj via the PhaseLift approach, see [1, 4, 5] for details.

The above result is shown via establishing a version of the null space property of the measurement map
A, namely the Frobenius-robust rank null space property with respect to `q. Let us recall from [5] this
notion (in the Hermitian case) which serves as a useful recovery criterion for the above measurement process
(1) via the minimization problem (3).

Definition 3. For q ≥ 1, we say that A : Hn → Rm satisfies the Frobenius-robust rank null space property
with respect to `q of order r with constants 0 < ρ < 1 and τ > 0 if for all M ∈ Hn, the singular values of
M satisfy

‖Mr‖2 ≤
ρ√
r
‖Mr,c‖1 + τ‖A(M)‖`q .

In [5, Theorem 3.1 and Remark 3.2], it is shown for the above measurement process (1) that if A satisfies
the Frobenius-robust rank null space property with respect to `q of order r (with constants 0 < ρ < 1 and
τ > 0) then any solution X] of (3) approximates X with error

‖X −X]‖2 ≤
C1(ρ)√

r
‖Xr,c‖1 + C2(ρ)τη.

Here C1(ρ) and C2(ρ) are explicit positive constants depending only on ρ.

Proof of Theorem 2. Let Q be the matrix whose rows q∗i are the elements of our random tight frame
multiplied by

√
m. Recall that an n× n Wishart matrix with m degrees of freedom is a random matrix of

the form AA∗, where A is an n ×m Gaussian matrix. Let W be 1/
√
m times the square root of an n × n

Wishart matrix with m degrees of freedom (i.e. W = 1√
m

√
AA∗, where A is as above), independent of Q.

Then G := QW is an m× n Gaussian matrix, cf. [6, Proposition 9]. Let g∗1 , . . . , g
∗
m be the rows of G. Then

gi = W ∗qi. We denote by A(G) the above measurement map A with measurement vectors ai = gi. Similarly,
we denote by A(Q) be the above map A with measurement vectors ai = qi. It follows that for any Hermitian
n× n matrix X

A(G)(X)i = tr(Xgig
∗
i ) = tr(XW ∗qiq

∗
iW ) = tr(WXWqiq

∗
i ) = A(Q)(WXW )i.
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Hence
A(Q)(X) = A(G)(W−1XW−1)

for all X.
Now [5, Lemma 8.1] tells us that if A(G) satifies the Frobenius robust rank null space property with respect

to `q of order r with constants ρ, τ , and if κ(W )2ρ < 1, then the map X 7→ A(G)(W−1XW−1) satisfies the
Frobenius robust rank null space property with respect to `q of order r with constants κ(W )2ρ, ‖W‖2∞τ .

(Here κ(W ) = λmax(W )
λmin(W ) is the quotient of the maximal and the minimal eigenvalue of W .) Assuming that

A(G) satifies the Frobenius robust rank null space property with respect to `q of order r with constants ρ, τ

such that κ(W )2ρ < 1, it follows that A(Q) satisfies the Frobenius robust rank null space property with
respect to `q of order r with constants κ(W )2ρ, ‖W‖2∞τ .

It remains to show that with high probability A(G) satifies the Frobenius robust rank null space property
with respect to `q with suitable constants 0 < ρ < 1 and τ > 0 such that κ(W )2ρ < 1.

It is shown in the proof of [5, Proposition 8.1] that for any c1 > 1 there are positive constants c2, c3 such
that for m ≥ c2n with probability at least 1− 2e−c3m we have

max(κ(W ), ‖W‖∞) ≤ c1.
Fix now ρ = 1/2. Then, as shown in the proof of [5, Theorem 1.2], there are positive constants c4, c5, c6 such
that, for m ≥ c4rn, with probabilty at least 1−e−c5m, the map A(G) satisfies the Frobenius robust rank null
space property with respect to `q of order r with constants ρ = 1/2, τ = c6/m

1/q. (This result makes heavy

use of Mendelson’s small ball method, [7, 8, 9].) Choose now 1 < c1 <
√

2. Then with probability at least
1− 2e−c3m we have κ(W )2ρ ≤ c21/2 < 1 and ‖W‖2∞ ≤ c21 < 2. It follows that for m large enough (as above)
with probability at least 1− 3e−C2m, the map A(Q) satisfies the Frobenius robust rank null space property
with respect to `q of order r with constants κ(W )2/2 < 1 and 2c6/m

1/q. Hence by the above mentioned
recovery result [5, Theorem 3.1], for m ≥ C1nr, with probability at least 1− 3e−C2m the recovery result of
the Theorem holds (where C1 = c4 and C2 = min{c3, c5} are universal positive constants). �

Remark 4. The multiplication of the qi by
√
m yields the correct normalization compared to Gaussian

measurements since the sum of the squared `2-norms of all m elements in the random tight frame is n, hence
on average each row vector has squared `2-norm equal to n/m, whereas for Gaussian measurement vectors
the squared `2-norm has expectation n.
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