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Abstract

The concept of semi-bounded generalized hypergroups (SBG hypergroups) is devel-
oped which are more special then generalized hypergroups introduced by Obata and
Wildberger and which are more general then discrete hypergroups or even discrete signed
hypergroups. The convolution of measures and functions is studied. In case of commu-
tativity we define the dual objects and prove some basic theorems of Fourier analysis.
Furthermore, we investigate the relationship between orthogonal polynomials and gener-
alized hypergroups. We discuss the Jacobi polynomials as an example.
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1 Introduction

Locally compact hypergroups were independently introduced around the 1970’s by Dunkl [4],
Jewett [7] and Spector [18]. They generalize the concepts of locally compact groups with the
purpose of doing standard harmonic analysis. Similar structures had been studied earlier in
the 1950’s by Berezansky and colleagues, and even earlier in works of Delsarte and Levitan.

Later on results of harmonic analysis on hypergroups were transferred to different applica-
tions. For example a Bochner theorem is used essentially in the context of weakly stationary
processes indexed by hypergroups, see [10] and [12]. Hypergroup structure is also heavily used
in probability theory, see the monograph [2], and in approximation with respect to orthogonal
polynomial sequences, see [5] and [11]. However, not the whole set of axioms (see [2]) is used in
these application areas. So concentrating on orthogonal polynomials, Obata and Wildberger
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studied in [13] a very general concept and called it “generalized hypergroups”. The purpose
of the present paper is to derive results of harmonic analysis for generalized hypergroups in
more detail than in [13]. Our main interest is to include all orthogonal polynomial systems
with respect to a compactly supported orthogonalization measure in our investigations.

2 Semi-bounded generalized hypergroups

The discrete structure of a generalized hypergroup was introduced by Obata and Wildberger
in [13]. Let us recall the basic definition.

Definition 2.1 A generalized hypergroup is a pair (K,A0), where A0 is a ∗-algebra over C

with unit c0 and K = {ck, k ∈ K} is a countable subset of A0 containing c0 that satisfies the
following axioms.

(A1) K∗ = K.

(A2) K is a linear basis of A0, i.e., every a ∈ A0 admits a unique expression of the form
a =

∑
n αncn with only finitely many nonzero αi ∈ C.

(A3) The structure constants or linearization coefficients g(n,m, k) ∈ C which are defined by

cncm =
∑

k

g(n,m, k)ck

satisfy the condition

g(n,m, 0)

{
> 0 if c∗n = cm,
= 0 if c∗n 6= cm.

A generalized hypergroup is called hermitian if c∗n = cn, commutative if cncm = cmcn, real if
g(n,m, k) ∈ R, positive if g(n,m, k) ≥ 0 and normalized if

∑
j g(n,m, j) = 1 for all n,m, k.

A bijection˜on K is defined by

cñ = c∗n. (1)

Further, let

h(n) = g(ñ, n, 0)−1. (2)

Due to (A3) we have h(n) > 0 for all n and h(0) = 1. If K is hermitian or commutative then
h(n) = h(ñ). In the following lemma some useful properties of the structure constants are
summarized.

Lemma 2.2 The structure constants fulfill the following equalities

g(n, 0, k) = g(0, n, k) = δnk, (3)

g(n,m, k) = g(m̃, ñ, k̃), (4)

h(m)g(n,m, k) = h(k)g(k̃, n, m̃) and (5)∑

k

g(n,m, k)g(k, l, j) =
∑

k

g(n, k, j)g(m, l, k) for all n,m, l, j. (6)
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Proof: For (3)–(5) see [13, Lemma 1.1]. Now, on the one hand we have (cncm)cl =∑
k,j g(n,m, k)g(k, l, j)cj and on the other hand cn(cmcl) =

∑
k,j g(m, l, k)g(n, k, j)cj . From

the associativity of A0 and from the linear independence of the set K follows (6).

We define translation operators Ln, Ln for complex valued functions f on K by

Lnf(m) =
∑

k

g(n,m, k)f(k) and Lnf(m) =
∑

k

g(n,m, k)f(k).

Given f the function f̃ is defined by f̃(n) = f(ñ).

Lemma 2.3 For f, g with finite support and all n ∈ K it holds that
∑

m

Lnf(m)g(m)h(m) =
∑

m

f(m)Lm̃g̃(n)h(m) =
∑

m

f(m)(Lñg)(m)h(m). (7)

Proof: We use (5) and (4) to obtain
∑

m

(Lnf)(m)g(m)h(m) =
∑

m,k

g(k̃, n, m̃)h(k)f(k)g(m) =
∑

k

f(k)Lk̃g̃(n)h(k)

=
∑

k,m

f(k)g(ñ, k,m)g(m)h(k) =
∑

k

f(k)(Lñg)(k)h(k).

We write ν(k) = ν({k}) for a discrete measure ν on K. Let ǫn denote the Dirac-measure
at n ∈ K, i.e., ǫn(k) = 1 if k = n and ǫn(k) = 0 else.

Definition 2.4 A positive discrete measure ω 6= 0 on K is called (left) Haar measure if for
all f with finite support and all n ∈ K it holds

∑

m

Lnf(m)ω(m) =
∑

m

f(m)ω(m).

Theorem 2.5 A Haar measure exists if and only if K is normalized. In that case all Haar
measures ω are determined by ω = αh, α > 0.

Proof: Let us assume that there exists a Haar measure ω. Due to (A3) we get

h(n)−1ω(n) =
∑

m

g(ñ,m, 0)ω(m) =
∑

m

Lñǫ0(m)ω(m) =
∑

m

ǫ0(m)ω(m) = ω(0),

which yields ω(n) = ω(0)h(n). Now, let ω = αh. It suffices to consider f = ǫk. By (5) we get
∑

m

Lnǫk(m)ω(m) =
∑

m

ω(k)g(k̃, n, m̃) =
∑

m

ǫk(m)ω(m)
∑

m

g(k̃, n,m).

Hence, ω is a Haar measure if and only if K is normalized.

In order to develop their theory further Obata and Wildberger took care of the functional
φ0 : A0 → C defined by

φ0

(∑

n

αncn

)
= α0,
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and focused on the following property. A generalized hypergroup (K,A0) is said to satisfy
property (B) if for all n there exists κ(n) ≥ 0 such that

|φ0(b
∗cnb)| ≤ κ(n)φ0(b

∗b) for all b ∈ A0.

We focus on a stronger property than Obata and Wildberger.

Definition 2.6 A generalized hypergroup (K,A0) is called a semi-bounded generalized hyper-
group (SBG hypergroup) if, additionally, the following axiom is valid.

(A4) For the structure constants it holds

γ(n) = sup
m

∑

k

|g(n,m, k)| < ∞ for all n. (8)

A generalized hypergroup is called bounded if it is semi-bounded and γ is bounded.

An SBG hypergroup is satisfying property (B) with κ(n) = γ(n), see [13, Theorem 4.1].
It holds

γ(n) ≥ max(h(ñ)−1, 1).

By simple arguments we have

γ(m̃) = sup
n

∑

k

|g(n,m, k)|. (9)

If K is hermitian or commutative then γ(ñ) = γ(n), and if K is positive and normalized then
γ(n) = 1 for all n.

3 Convolution of measures and functions

Clearly, both measures and functions on K can be identified with sequences indexed by
K. However, we make a distinction anyway, since the natural definition of a convolution is
different for measures and functions.

So for discrete complex measures µ, ν on K we define a convolution by

(µ ∗ ν)(k) =
∑

n,m

g(n,m, k)µ(n)ν(m) (10)

whenever the sum on the right hand side is finite for all k. A short calculation shows ǫ0 ∗µ =
µ ∗ ǫ0 = µ, i.e., ǫ0 is the unit element for this convolution. For two Dirac measures we get
ǫn ∗ ǫm =

∑
k g(n,m, k)ǫk, and supp ǫn ∗ ǫm is finite.

In order to investigate the convergence of the sum in (10) we introduce the spaces

M(K) =

{
µ measure on K, |µ|(K) =

∑

n

|µ(n)| < ∞
}

, ‖µ‖ = |µ|(K),

Mγ(K) =

{
µ ∈ M(K), |γµ|(K) =

∑

n

|µ(n)|γ(n) < ∞
}

, ‖µ‖γ = |γµ|(K).

The space Mγ̃(K) and the norm ‖µ‖γ̃ is defined analogously.
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Lemma 3.1 (i) If µ ∈ Mγ(K) and ν ∈ M(K) then µ ∗ ν ∈ M(K) and ‖µ ∗ ν‖ ≤ ‖µ‖γ‖ν‖.

(ii) If µ ∈ M(K) and ν ∈ Mγ̃(K) then µ ∗ ν ∈ M(K) and ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖γ̃ .

Proof: (i) We have by Fubini

‖µ ∗ ν‖ ≤
∑

n,m

∑

k

|g(n,m, k)||µ(n)||ν(m)| ≤
∑

n,m

γ(n)|µ(n)||ν(m)| = ‖µ‖γ‖ν‖.

The proof of (ii) is analogous additionally using (9).

Lemma 3.2 The convolution ∗ is associative, i.e., (µ ∗ ν) ∗ ρ = µ ∗ (ν ∗ ρ) whenever both
expressions exist in the sense of Lemma 3.1.

Proof: It suffices to proof the associativity for Dirac measures (ǫn ∗ ǫm) ∗ ǫl = ǫn ∗ (ǫm ∗ ǫl)
For that purpose use (6).

Lemma 3.3 (i) It holds that (ǫn ∗ ǫm)̃ = ǫm̃ ∗ ǫñ.

(ii) It holds 0 ∈ supp ǫn ∗ ǫm̃ if and only if n = m̃

(iii) If K is normalized then ǫn ∗ ǫm(K) = 1 for all n,m.

(iv) It holds ǫn ∗ ǫñ(0) = h(ñ)−1 > 0.

(v) It holds ‖ǫn ∗ ǫm‖ ≤ min(γ(n), γ(m̃)).

Proof: Using (5) we obtain (i), and application of axiom (A3) gives (ii). For (v) we have
by definition ‖ǫn ∗ ǫm‖ =

∑
k |g(n,m, k)| ≤ γ(n). The second inequality is achieved analo-

gously by using (9). The assertions (iii) and (iv) are clear.

Now, we are able to compare the concept of an SBG hypergroup with that of a discrete
hypergroup, see for example [5], or a discrete signed hypergroup, see [14]. Our previous
results give the following theorem.

Theorem 3.4 (i) If K is a real, normalized and bounded generalized hypergroup then its
index set K with convolution ∗ as defined in (10) and involution˜as defined in (1) is a
discrete signed hypergroup.

(ii) If K is a positive and normalized SBG hypergroup then its index set K with convolution
∗ and involution˜ is a discrete hypergroup.

(iii) Let (K, ⋆, )̃ be a discrete signed hypergroup. Put K = {ǫk, k ∈ K} and let A0 be the
vector space of all finite linear combinations of Dirac measures ǫk ∈ K. Further, let ⋆ be
the multiplication in A0 and put ǫ∗k = ǫk̃ as involution on K, which is linearly extended
to A0. Then (K,A0) is a real, bounded and normalized generalized hypergroup.



6 Lasser, Obermaier and Rauhut

(iv) If (K, ∗,˜) is a discrete hypergroup then the construction in (iii) yields a positive and
normalized SBG hypergroup.

Next let us introduce the convolution of functions.

Definition 3.5 Let f and g be functions on K with finite support. The convolution of those
functions is defined by

(f ⋆ g)(m) =
∑

n

f(n)(Lñg)(m)h(n). (11)

Lemma 3.6 If f and g have finite support then f ⋆ g has finite support.

Proof: By definition (f ⋆ g)(m) =
∑

n,k f(n)g(ñ,m, k)g(k)h(n). Hence, supp f ⋆ g ⊂⋃
n∈supp f,k∈supp g Mñ,k, with Mn,k = {m, g(n,m, k) 6= 0}. According [13, Lemma 1.2] the set

Mn,k = {m, g(n,m, k) 6= 0} is finite for all n, k.

For a function a and a discrete measure µ on K we denote the application of µ to a by
µ(a) =

∑
k a(k)µ(k) whenever the sum exists. Furthermore, for a function f and a measure

µ we form the measure fµ by fµ(a) = µ(fa) for all functions a on K.

Theorem 3.7 If f, g are functions on K with finite support then (f ⋆ g)h = (fh) ∗ (gh).

Proof: Let a be an arbitrary function on K. Application of Lemma 2.3 yields

(f ⋆ g)h(a) =
∑

m

a(m)(f ⋆ g)(m)h(m) =
∑

m

∑

n

a(m)f(n)(Lñg)(m)h(m)h(n)

=
∑

n

∑

m

f(n)(Lna)(m)g(m)h(m)h(n) =
∑

k

∑

m,n

g(n,m, k)f(n)h(n)g(m)h(m)a(k)

=
∑

k

(fh) ∗ (gh)(k)a(k) = (fh) ∗ (gh)(a).

If K is commutative, then ∗ is commutative and by the last lemma we see that then also
⋆ is commutative.

For a positive discrete measure σ on K and 1 ≤ p < ∞ we introduce the Banach spaces

lp(σ) =

{
f : K → C,

∑

n

|f(n)|pσ(n) < ∞
}

, ‖f‖p,σ =

(∑

n

|f(n)|pσ(n)

)1/p

,

l∞ =

{
f : K → C, sup

n
|f(n)| < ∞

}
, ‖f‖∞ = sup

n
|f(n)|.

Lemma 3.8 If f ∈ l∞ then Lnf ∈ l∞ for all n and ‖Lnf‖∞ ≤ γ(n)‖f‖∞.

Proof: For all n,m it holds

|Lnf(m)| =

∣∣∣∣∣
∑

k

g(n,m, k)f(k)

∣∣∣∣∣ ≤
∑

k

|g(n,m, k)||f(k)| ≤ γ(n)‖f‖∞ .



Generalized hypergroups 7

We now see that the sums in (7) converge if f ∈ l1(h), g ∈ l∞ or f ∈ l∞, g ∈ l1(h),
respectively, and Lemma 2.3 extends to these spaces.

Theorem 3.9 The convolution ⋆ in (11) extends to l1(γh)×l1(h) and ‖f⋆g‖1,h ≤ ‖f‖1,γh‖g‖1,h.

Proof: First, assume f, g to have finite support and a such that a(k)(f ⋆g)(k) = |(f ⋆g)(k)|.
Theorem 3.7 yields

‖(f ⋆ g)‖1,h =
∑

k

|(f ⋆ g)(k)|h(k) = (f ⋆ g)h(a) = |(fh) ∗ (gh)(a)|

≤
∑

n,m

γ(n)|g(m)||f(n)|h(n)h(m) = ‖f‖1,γh‖g‖1,h.

Hence, ⋆ is continuous on a dense subspace of l1(γh) × l1(h). Therefore, it can be uniquely
continued.

By using (9) the convolution extends quite analogous to l1(h) × l1(γ̃h) with ‖f ⋆ g‖1,h ≤
‖f‖1,h‖g‖1,γ̃h. If K is bounded, i.e., γ(n) ≤ M for all n, then the last theorem gives
‖f ⋆ g‖1,h ≤ M‖f‖1,h‖g‖1,h. For f ∈ l1(h) define Lfg = f ⋆ g. Clearly, Lf is then a
bounded operator on l1(h) and ‖Lf‖ ≤ M‖f‖1,h. With the norm ‖f‖′ = ‖Lf‖ it holds
‖f ⋆ g‖′ ≤ ‖f‖′‖g‖′. Hence, if K is bounded, then (l1(h), ‖ · ‖′, ⋆) is a Banach algebra.

Lemma 3.10 For all f ∈ l1(h) and all m,n ∈ K it holds

(Lnf)(m) = h(ñ)−1(ǫñ ⋆ f)(m) (12)

and ‖Lnf‖1,h ≤ γ(ñ)‖f‖1,h.

Proof: Since f ∈ l1(h) the right hand side of (12) exists by Theorem 3.9 and

h(ñ)−1(ǫñ ⋆ f)(m) = h(ñ)−1
∑

k

ǫñ(k)(Lk̃f)(m)h(k) = (Lnf)(m).

Using Theorem 3.9 we further deduce

‖Lnf‖1,h = h(ñ)−1
∥∥∥ǫñ ⋆ f

∥∥∥
1,h

≤ h(ñ)−1‖ǫñ‖1,γh‖f‖1,h

= h(ñ)−1
∑

k

ǫñ(k)γ(k)h(k) ‖f‖1,h = γ(ñ)‖f‖1,h.

Theorem 3.11 The convolution ⋆ in (11) extends to l1(γ̃h) × l∞. It holds

‖f ⋆ g‖∞ ≤ ‖f‖1,γ̃h‖g‖∞. (13)
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Proof: Assume f, g to have finite support. By using Lemma 3.8 we obtain

|(f ⋆ g)(m)| =

∣∣∣∣∣
∑

n

f(n)(Lñg)(m)h(n)

∣∣∣∣∣

≤
∑

n

|f(n)|γ(ñ)h(n)‖g‖∞ = ‖f‖1,γ̃h‖g‖∞.

Hence, ⋆ is bounded on a dense subspace of l1(γ̃h) × l∞ and can be extended.

By using (f ⋆ g)(m) =
∑

n(Lñf̃)(m)g̃(n)h(n) we prove quite analogously that the con-
volution extends to l∞ × l1(γh̃) with ‖f ⋆ g‖∞ ≤ ‖f‖∞‖g‖1,γh̃.

Theorem 3.12 For 1 ≤ p ≤ ∞, the convolution ⋆ in (11) extends to (l1(γh)∩l1(γ̃h))×lp(h).
With 1/p + 1/q = 1 it holds

‖f ⋆ g‖p,h ≤ ‖f‖1/p
1,γh‖f‖

1/q
1,γ̃h‖g‖p,h. (14)

If K is hermitian or commutative, then the inequality simplifies to ‖f ⋆g‖p,h ≤ ‖f‖1,γh‖g‖p,h.

Proof: For f ∈ l1(γh)∩ l1(γ̃h) put Lfg = f ⋆ g. By Theorem 3.9 it holds ‖Lf‖B(l1(h)) ≤
‖f‖1,γh where B(l1(h)) denotes the Banach space of bounded operators from l1(h) into l1(h).
Furthermore, by theorem 3.11 we have ‖Lf‖B(l∞) ≤ ‖f‖1,γ̃h. Hence, inequality (14) is a
consequence of the Riesz-Thorin interpolation theorem, see for example [21, p. 72]. If K is
commutative then h = h̃ and γ = γ̃.

By defining an operator Rgf = f ⋆ g we derive quite analogously that the convolution ⋆

extends to lp(h) × (l1(γ̃h) ∩ l1(γh̃)) with ‖f ⋆ g‖p,h ≤ ‖f‖p,h‖g‖1/p
1,γ̃h‖g‖

1/q

1,γh̃
.

Lemma 3.13 For 1 ≤ p ≤ ∞ and (1/p+1/q = 1) it holds ‖Lnf‖p,h ≤ γ(ñ)1/pγ(n)1/q‖f‖p,h.

Proof: The proof is done by using (12) and Theorem 3.12.

Theorem 3.14 Let 1/p + 1/q = 1. For f ∈ lp(h), g ∈ lq(h) it holds

|(f ⋆ g)(m)| ≤ γ(m̃)1/pγ(m)1/q‖f‖p,h‖g̃‖q,h. (15)

Proof: Applying Hölder’s inequality in the second equation yields

|(f ⋆ g)(m)| =

∣∣∣∣∣
∑

n

f(n)Lm̃g̃(n)h(n)

∣∣∣∣∣ = ‖f‖p,h‖Lm̃g̃‖q,h

≤ γ(m̃)1/pγ(m)1/q‖f‖p,h‖g̃‖q,h .

If K is hermitian or commutative inequality (15) becomes |(f ⋆g)(m)| ≤ γ(m)‖f‖p,h‖g‖q,h.
In this case we introduce the Banach space

l∞(γ) =

{
f : K → C, sup

n

|f(n)|
γ(n)

< ∞
}

, ‖f‖∞,γ = sup
n

|f(n)|
γ(n)

. (16)

Now, (15) becomes ‖f ∗ g‖∞,γ ≤ ‖f‖p,h‖g‖q,h.
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4 Dual objects

We say that a generalized hypergroup (K′,A′
0) is a function realization, if A′

0 is a dense
subalgebra of the space C(S), where S is a compact Hausdorff space. By using Gelfand
theory, Obata and Wildberger proved that for commutative generalized hypergroups (K,A0)
satisfying (B) there is an isomorphism a → a′ onto a function realization (K′,A′

0). Moreover,
there is a positive Radon measure µ on S with suppµ = S, µ(S) = 1 and

φ0(a) =

∫

S
a′(x)dµ(x) for all a ∈ A0,

and K′ is a complete orthogonal set for L2(S, µ), see [13, Theorem 5.1].

From now on, we assume (K,A0) to be commutative and A0 to be a dense subalgebra of
C(S) for some compact Hausdorff space S. The condition (B) now reads

∣∣∣∣
∫

S
cn(x)|b(x)|2dµ(x)

∣∣∣∣ ≤ κ(n)

∫

S
|b(x)|2dµ(x) = κ(n)‖b‖2

L2(S,µ) for all b ∈ C(S),

and therefore with

κ(n) = ‖cn‖∞ = sup
x∈S

|cn(x)| < ∞

condition (B) is satisfied. The next lemma states that κ(n) cannot be chosen smaller.

Lemma 4.1 Let (K,A0) satisfy condition (B) with constants κ(n). Then

sup
x∈S

|cn(x)| ≤ κ(n) for all n ∈ K.

In particular, it holds supx∈S |cn(x)| ≤ γ(n).

Proof: Let us first remark that L2(S, µ) is the completion of A0 with respect to ‖ · ‖2,µ

since K is a complete orthogonal set for L2(S, µ). The inequality

∣∣∣∣
∫

S
cn(x)|b(x)|2dµ(x)

∣∣∣∣ ≤ κ(n)

∫

S
|b(x)|2dµ(x) (17)

is hence valid even for all b ∈ L2(S, µ). Now, let x0 ∈ S and choose a family of neighborhoods
(Vi)i∈I of x0 such that Vi → {x0}. Further let bi = χVi

/‖χVi
‖2,µ where χVi

denotes the char-
acteristic function of the set Vi. Clearly limi

∫
S cn(x)|bi(x)|2dµ(x) = cn(x0). Since, x0 ∈ S is

arbitrarily chosen, inserting into (17) gives the assertion. Further, notice that κ(n) = γ(n) is
a valid choice by [13, Theorem 4.1].

Now, let us consider dual objects of commutative generalized hypergroups. Obata and
Wildberger already have defined characters [13, p. 74], but their definition seems to be too
weak in order to develop harmonic analysis.
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Definition 4.2 We define two dual spaces by

X b(K) = {α ∈ l∞(γ), α 6= 0, Lnα(m) = α(n)α(m)} ,

K̂ =
{
α ∈ X b(K), α(ñ) = α(n)

}
.

The elements of X b(K) are called characters and the elements of K̂ hermitian characters.

Consider now an element x of S. It is easily seen that αx(n) = cn(x) defines an element
of K̂. Hence K̂ 6= ∅. Since A0 is dense in C(S) and S is a compact Hausdorff space it follows
that for different x, y ∈ S we obtain different characters αx 6= αy, see also [13, Theorem 6.4].
Thus, we can identify S with a subset of K̂ and we get the following inclusion relations

S ⊂ K̂ ⊂ X b(K) . (18)

The latter relation is well known for hypergroups and signed hypergroups. In contrast to
the group case, these inclusions may be proper, as is illustrated by some known examples for
hypergroups.
From α(n) = L0α(n) = α(0)α(n) it follows α(0) = 1. Furthermore, since γ(0) = 1 it holds
‖α‖∞,γ ≥ 1. By Lemma 4.1 |cn(x)| ≤ γ(n), which implies ‖αx‖∞,γ = 1 for all x ∈ S.
For r ≥ 1 let us define the following subsets of the duals

X b
r (K) =

{
α ∈ X b(K), ‖α‖∞,γ ≤ r

}
,

K̂r =
{
α ∈ K̂, ‖α‖∞,γ ≤ r

}
.

If K is bounded then X b(K) = X b
R(K) and K̂ = K̂R, where R = supn γ(n) ≤ ∞. In fact, in

that case l∞(γ) = l∞ setwise and for a character α ∈ l∞ it holds

|α(n)|2 = |α(n)α(n)| = |Lnα(n)| ≤ γ(n)‖α‖∞ . (19)

Taking the supremum over all n ∈ K yields ‖α‖∞ ≤ supn γ(n). Since γ(n) ≥ 1 we further
deduce

1 ≤ ‖α‖∞,γ ≤ ‖α‖∞ ≤ R. (20)

We equip X b(K) with the topology of pointwise convergence and subsets of X b(K) with
the induced topologies. With these topologies the functions sn : X b(K) → C, sn(α) = α(n)
and their restrictions to the other duals are continuous. We only state without a proof that
the Gelfand topology on S is the topology induced by X b(K), i.e., the topology of pointwise
convergence.

5 Fourier transform

Now, due to our dual objects we are able to perform some Fourier analysis in the context of
commutative SBG hypergroups.



Generalized hypergroups 11

Definition 5.1 For µ ∈ Mγ(K) we introduce the following two versions of the Fourier-
Stieltjes-transform by

µ̂(α) =
∑

n

α(n)µ(n) for α ∈ K̂,

F(µ)(α) =
∑

n

α(n)µ(n) for α ∈ X b(K).

For x ∈ S ⊂ K̂ we write µ̂(x) = µ̂(αx) =
∑

n cn(x)µ(n).

The following lemma states that our definition makes sense.

Lemma 5.2 If α ∈ X b
r (K) then |F(µ)(α)| ≤ r‖µ‖γ and F(µ) is a continuous function from

X b
r (K) into C.

Proof: Let α ∈ X b
r (K), i.e., |α(n)| ≤ rγ(n) for all n. We obtain

|F(µ)(α)| ≤
∑

n

|α(n)||µ(n)| ≤ r
∑

n

|γ(n)||µ(n)| = r‖µ‖γ .

Since the functions sn(α) = α(n) are continuous on X b
r (K) for fixed n it follows that F(µ) is

continuous on X b
r (K).

Definition 5.3 For f ∈ l1(γh) we define two versions of the Fourier transform by

f̂(α) = (̂fh)(α) =
∑

n

f(n)α(n)h(n) for α ∈ K̂,

F(f)(α) = F(fh)(α) =
∑

n

f(n)α(n)h(n) for α ∈ X b(K).

For x ∈ S we write f̂(x) = f̂(αx) =
∑

n f(n)cn(x)h(n).

By interpreting measures on K as functions on K we clearly have l1(γh) = {f, fh ∈
Mγ(K)} and hence, Lemma 5.2 immediately implies that the Fourier transform is continuous
on X b

r (K) for all r ≥ 1 and for α ∈ X b
r (K) it holds

|f̂(α)| ≤ ‖f‖1,γh. (21)

In order to define the Fourier transform for f ∈ l2(h) we remark that {
√

h(n)cn, n ∈ K}
is a complete orthonormal set for L2(S, µ), see [13, Corollary 3.4]. Therefore, the series∑

n f(n)cnh(n) converges in L2(S, µ) by Parseval’s identity

∫

S
|
∑

n

f(n)cn(x)h(n)|2dµ(x) =

∥∥∥∥∥
∑

n

f(n)cnh(n)

∥∥∥∥∥

2

2,µ

=
∑

n

|f(n)|2h(n) = ‖f‖2
2,h. (22)

Hence, we define the Fourier transform of f ∈ l2(h) by

f̂ =
∑

n

f(n)cnh(n)

where convergence of the sum is understood in L2(S, µ). In (22) we already proved Plancherel’s
theorem.



12 Lasser, Obermaier and Rauhut

Theorem 5.4 The Fourier transform is an isometric isomorphism from l2(h) into L2(S, µ),
in particular for f ∈ l2(h) it holds ‖f̂‖2,µ = ‖f‖2,h.

As a consequence of Plancherel’s theorem we obtain a uniqueness theorem for the Fourier
transform on l1(γh).

Theorem 5.5 If f ∈ l1(γh) and F(f)|S = 0 then f = 0.

Proof: Let f ∈ l1(γh). Since γ(n) ≥ 1 we have f ∈ l1(h). Now denote N =
{n ∈ K, |f(n)| ≥ 1}. Since γ(n) ≥ h(n)−1 this set is finite. We obtain

∑

n∈K

|f(n)|2h(n) ≤
∑

n∈N

|f(n)|2h(n) + ‖f‖1,h < ∞,

which means f ∈ l2(h). The Fourier transform on l1(γh) coincides with the one on l2(h)
µ-almost everywhere and by Plancherel’s theorem ‖f‖2,h = ‖f̂‖2,µ = ‖F(f)|S‖2,µ = 0. We
therefore obtain f = 0.

Let us turn our attention now to the relation of Fourier transform and convolution.

Theorem 5.6 If f, g ∈ l1(γh) such that f ⋆ g ∈ l1(γh) then

F(f ⋆ g)(α) = F(f)(α)F(g)(α) for all α ∈ X b(K) . (23)

Proof: We use Lemma 2.3 and Fubini’s theorem to obtain

F(f ⋆ g)(α) =
∑

n

(f ⋆ g)(n)α(n)h(n) =
∑

n

∑

m

f(m)(Lm̃g)(n)h(m)α(n)h(n)

=
∑

m

∑

n

(Lmα)(n)g(n)h(n)f(m)h(m) =
∑

m

∑

n

g(n)α(n)h(n)f(m)α(m)h(m)

=
∑

n

g(n)α(n)h(n)
∑

m

f(m)α(m)h(m) = F(f)(α)F(g)(α).

Corollary 5.7 The convolution ⋆ extends to l1(γh) × l1(γh) → l2(h). It holds

‖f ⋆ g‖2,h ≤ ‖f‖1,γh‖g‖1,γh. (24)

Proof: First suppose f, g ∈ l1(γh) such that f ⋆ g ∈ l1(γh). Using Plancherel’s theorem 5.4,
Theorem 5.6 and (21) we obtain

‖f ⋆ g‖2,h = ‖f̂ ⋆ g‖2,µ = ‖f̂ ĝ‖2,µ ≤ ‖f̂‖∞,S‖ĝ‖∞,S ≤ ‖f‖1,γh‖g‖1,γh.

Hence, the convolution is continuous on C = {(f, g), f, g ∈ l1(γh), f ⋆ g ∈ l1(γh)}. Since
functions of finite support are dense in l1(γh) and the convolution of two such functions has
again finite support, we see that C is dense in l1(γh) × l1(γh). Thus ⋆ uniquely extends to
l1(γh) × l1(γh) and (24) holds.
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Note, that implicitly we used the commutativity of K in this proof. Immediately, we obtain
that the convolution Theorem 5.6 holds for all f, g ∈ l1(γh) with the slight adjustment that
in general (23) holds only for µ-almost all α ∈ X b(K).

An involution on l1(h) is given by f∗(n) = f(ñ), which is preserved by the Fourier
transform on K̂, i.e.,

f̂∗(α) =
∑

n

f(ñ)α(n)h(n) =
∑

n

f(ñ)α(ñ)h(n) = f̂(n) for all α ∈ K̂.

The inverse Fourier transform for F ∈ L1(S, µ) is defined by

F̌ (n) =

∫

S
F (x)cn(x)dµ(x), for all n ∈ K.

We can even extend this definition to a larger space. Let M(S) denote the space of complex
bounded Radon measures on S with the total variation as norm. For ρ ∈ M(S) we define
the inverse Fourier-Stieltjes transform by

ρ̌(n) =

∫

S
cn(x)dρ(x), for all n ∈ K.

Clearly, (Fµ)̌ = F̌ . Parseval’s identity immediately gives the following inversion theorem.

Theorem 5.8 (i) If f ∈ l2(h) then (f̂ )̌ = f .

(ii) If F ∈ L2(S, µ) then (̂F̌ ) = F µ-almost everywhere.

Theorem 5.9 For the inverse Fourier-Stieltjes transform the following is true.

(i) For ρ ∈ M(S) we have ρ̌ ∈ l∞(γ) and ‖ρ̌‖∞,γ ≤ ‖ρ‖.

(ii) For F ∈ L1(S, µ) it holds ‖F̌‖∞,γ ≤ ‖F‖1,µ.

(iii) For F ∈ L1(S, µ) we have F̌ ∈ c0(γ) where c0(γ) denotes the closure with respect to
‖ · ‖∞,γ of the set of all functions with finite support. Furthermore, the image of the
inverse Fourier transform of L1(S, µ) is dense in c0(γ).

Proof: (i) For ρ ∈ M(S) and n ∈ K we have

|ρ̌(n)| =

∣∣∣∣
∫

S
cn(x)dρ(x)

∣∣∣∣ ≤ ‖cn‖∞,S‖ρ‖ ≤ γ(n)‖ρ‖.

The statement (ii) is an easy consequence of (i) by observing (Fµ)̌ = F̌ and ‖F‖1,µ = ‖Fµ‖.
(iii) Let ǫ > 0 and choose G ∈ C(S) such that ‖F − G‖1,µ ≤ ǫ/2. Since C(S) ⊂ L2(S, µ) it
holds Ǧ ∈ l2(h). Hence, there exist φ with | suppφ| < ∞ such that ‖Ǧ − φ‖2,h ≤ ǫ/2. Using
γ(n) ≥ max{1, h(n)−1} we deduce for arbitrary f ∈ l2(h) that

|f(n)|2
γ(n)2

≤ |f(n)|2
γ(n)

≤ |f(n)|2h(n) ≤
∑

n

|f(n)|2h(n) = ‖f‖2
2,h ,
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yielding ‖f‖∞,γ ≤ ‖f‖2,h. Note that we hereby derived l2(h) ⊂ l∞(γ). Now, using this
estimation we obtain ‖Ǧ − φ‖∞,γ ≤ ‖Ǧ − φ‖2,h ≤ ǫ/2 and further

|F̌ (k) − φ(k)| ≤ |F̌ (k) − Ǧ(k)| + |Ǧ(k) − φ(k)|
≤ γ(k)(‖F − G‖1,µ + ǫ/2) ≤ ǫγ(k) ,

which is equivalent to ‖F̌ −φ‖∞,γ ≤ ǫ. Hence, F̌ can be approximated with respect to ‖·‖∞,γ

by functions with finite support. Since all function with finite support are contained in the
image of the inverse Fourier transform of L1(S, µ) the image of L1(S, µ) is dense in c0(γ).

Observe, that the last result generalizes the Riemann-Lebesgue lemma. We also have a
uniqueness theorem for the inverse Fourier transform.

Theorem 5.10 Let ρ ∈ M(S). If ρ̌ = 0 then ρ = 0.

Proof: Assume that ρ 6= 0 but ρ̌ = 0. By [13, Theorem 5.1] A0 = {f̂|S , | supp f | < ∞}
is a dense subalgebra of C(S). Hence, there is some f with finite support such that

∫

S
f̂(x)dρ(x) 6= 0.

However, we have
∫

S
f̂(x)dρ(x) =

∑

n

f(n)

∫

S
cñ(x)dρ(x)h(n) =

∑

n

f(n)ρ̌(ñ)h(n) = 0.

Denoting pn(x) = ǫn(x)/h(n) we have p̂n(x) = cn(x) and (p̂n)̌ = pn yielding

µ̌(n) =

∫

S
cn(x)dµ(x) = pñ(0) = ǫ0(ñ),

i.e., µ̌ = ǫ0. Another important property was shown in the proof of Theorem 5.10 above.
Suppose f has finite support and ρ ∈ M(S). Then

∫

S
f̂(x)dρ(x) =

∑

n

f(n)ρ̌(ñ)h(n). (25)

We can extend the uniqueness theorem to the following result.

Theorem 5.11 Let f ∈ l1(γh) and ρ ∈ M(S). It holds ρ̌ = f if and only if ρ = f̂µ.

Proof: For ρ = f̂µ we already know by Theorem 5.8 that ρ̌ = (f̂ )̌ = f . Now suppose
f = ρ̌ and let g have finite support. With (25) and (ĝ)̌ = g we obtain
∫

S
ĝ(x)f̂(x)dµ(x) =

∫

S
ĝ(x)

∑

n

f(n)cn(x)h(n)dµ(x) =
∑

n

f(n)

∫

S
ĝ(x)cn(x)dµ(x)h(n)

=
∑

n

f(n)

∫

S
ĝ(x)cñ(x)dµ(x)h(n)

=
∑

n

f(n)g(ñ)h(n) =
∑

n

g(n)ρ̌(ñ)h(n) =

∫

S
ĝ(x)dρ(x).
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Since {ĝ|S , | supp g| < ∞} is dense in C(S) we see that ρ = f̂µ.

A rewriting of the last result gives the inversion theorem.

Theorem 5.12 The following two inversion formulas hold.

(i) Let f ∈ l1(γh). Then for every n ∈ K it holds

f(n) =

∫

S
f̂(x)cn(x)dµ(x) .

(ii) Let F ∈ L1(S, µ) such that F̌ ∈ l1(γh). Then for µ-almost every x ∈ S it holds

F (x) =
∑

n

F̌ (n)cn(x)h(n) . (26)

If in addition F is continuous, then (26) holds for all x ∈ S.

Proof: (i) follows by Theorem 5.8(i). For (ii) put ρ = Fµ. Then ρ̌ = F̌ ∈ l1(γh). With
Theorem 5.11 it holds ρ = (F̌ )̂ µ which is equivalent to F = (F̌ )̂ in L1(S, µ). Since the right
hand side of (26) is continuous, equality holds for all x ∈ S if F is continuous.

6 Orthogonal polynomials on the real line

Let µ be a probability measure on the real line. We denote the support of µ by S and assume
card(S) = ∞. Furthermore, let (Pn)∞n=0 denote an orthogonal polynomial sequence with
respect to µ, that is

∫
PnPm dµ 6= 0 if and only if n = m. The polynomials Pn are assumed

to have real coefficients with deg(Pn) = n and P0 = 1. It is well known that the sequence
(Pn)n∈N0

satisfies a three term recurrence relation of the following type

P1(x)Pn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1, (27)

with P0(x) = 1 and P1(x) = (x − b)/a, where the coefficients are real numbers with c1 > 0,
cnan−1 > 0, n > 1. Conversely, if we define (Pn)∞n=0 by (27) there is a measure µ with the
assumed properties, see [3].
The linearization coefficients g(n,m, k) are uniquely defined by

PnPm =
∞∑

k=0

g(n,m, k)Pk =
n+m∑

k=|n−m|

g(n,m, k)Pk . (28)

The linearization coefficients are obtained recursively based on the coefficients of the tree
term recurrence relation.

Lemma 6.1 We have g(0,m,m) = 1. In case m ≥ 1 we get g(1,m,m−1) = cm, g(1,m,m) =
bm and g(1,m,m + 1) = am. In case m ≥ n ≥ 2 we get the recurrence relation:
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(i)

g(n,m, n + m) = g(n − 1,m, n + m − 1)
an+m−1

an−1
=

amam+1 · · · an+m−1

a1a2 · · · an−1
, (29)

g(n,m,m − n) = g(n − 1,m,m − n + 1)
cm−n+1

an−1
=

cmcm−1 · · · cm−n+1

a1a2 · · · an−1
, (30)

(ii)

g(n,m, n + m − 1) = g(n − 1,m, n + m − 1)
bn+m−1 − bn−1

an−1

+ g(n − 1,m, n + m − 2)
an+m−2

an−1
,

g(n,m,m − n + 1) = g(n − 1,m,m − n + 1)
bm−n+1 − bn−1

an−1

+ g(n − 1,m,m − n + 2)
cm−n+2

an−1
,

(iii) For k = 2, 3, . . . , 2n − 2 it holds

g(n,m,m − n + k) = g(n − 1,m,m − n + k − 1)
am−n+k−1

an−1

+ g(n − 1,m,m − n + k)
bm−n+k − bn−1

an−1

+ g(n − 1,m,m − n + k + 1)
cm−n+k+1

an−1

− g(n − 2,m,m − n + k)
cn−1

an−1
.

Proof: In case m ≥ n ≥ 2 we have

Pn =
1

an−1
P1Pn−1 −

bn−1

an−1
Pn−1 −

cn−1

an−1
Pn−2.

So

PnPm =
m+n−1∑

k=m−n+1

g(n − 1,m, k)

(
ak

an−1
Pk+1 +

bk

an−1
Pk +

ck

an−1
Pk−1

)

− bn−1

an−1

m+n−1∑

m−n+1

g(n − 1,m, k)Pk − cn−1

an−1

m+n−2∑

m−n+2

g(n − 2,m, k)Pk ,

which implies the recurrence formulas (i)-(iii). The second equations in (i) are proven by
induction.

We easily derive

h(n) = g(n, n, 0)−1 =

(∫
P 2

n(x) dµ(x)

)−1

=

∏n−1
i=1 ai∏n
i=1 ci

. (31)

Let K = {Pn, n ∈ N0}, A0 be the set of polynomials with complex coefficients in one real
variable and ∗ be the complex conjugation −.
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Theorem 6.2 We have the following classification.

(i) (K,A0) is a hermitian and commutative generalized hypergroup.

(ii) (K,A0) satisfies property (B) if and only if S is compact.
S is compact if and only if the sequences (cnan−1) and (bn) are bounded.

(iii) (K,A0) is an SBG hypergroup if and only if the sequences (an), (bn) and (cn) are
bounded.

Proof: For (i) and (ii) see [3] and [13].
If K is semi-bounded then there is a bound for g(1, n, n + 1) = an, g(1, n, n) = bn and
g(1, n, n − 1) = cn. Let |an|, |bn|, |cn| < B. It is sufficient to prove |g(n,m, k)| < Mn for all
m,k ∈ N0, which implies

∑n+m
k=|n−m| |g(n,m, k)| ≤ (2n + 1)Mn for all m ∈ N0. M0 = 1 and

M1 = B is a proper choice. Now let us assume that for n ≥ 2 exist proper M0,M1, . . . ,Mn−1.
According to the recurrence relation of the linearization coefficients, see Lemma 6.1, we get

|g(n,m, k)| ≤ 4B

|an−1|
Mn−1 +

B

|an−1|
Mn−2 = Mn.

Therefore we call K a generalized polynomial hypergroup or an SBG polynomial hyper-
group, respectively. In order to get normalized generalized hypergroups Obata and Wild-
berger have investigated renormalizations in [13]. The following lemma shows that there
always exist a renormalization of a generalized polynomial hpergroup K = {Pn;n ∈ N0} with
property (B) which is semi-bounded.

Lemma 6.3 Suppose µ to have compact support S. Then the monic polynomials Qn and
the orthonormal polynomials pn =

√
h(n)Pn with respect to µ constitute an SBG polynomial

hypergroup.

Proof: Let the monic polynomials be defined by Q0 = 1, Q1(x) = x − b′ and Q1Qn =
Qn+1 + b′nQn + c′nQn−1, n ≥ 1, where c′n > 0. Since µ has compact support, (b′n) and (c′n)
are bounded sequences. By Theorem 6.2 (iii) the corresponding generalized hypergroup is
semi-bounded. Now, it is simple to derive that the corresponding orthonormal polynomials

are defined by p0 = 1, p1 = (x − b′)/
√

c′1 and p1pn = a′′npn+1 + b′n/
√

c′1pn + a′′n−1pn−1, where

a′′n =
√

c′n+1/c
′
1. Since (c′n) is bounded again by Theorem 6.2 (iii) the corresponding general-

ized hypergroup is semi-bounded.

Now, we are looking for an OPS (Rn)n∈N0
with

∑
k gR(n,m, k) = 1 for all n,m ∈ N0,

which is equivalent to the existence of x0 ∈ R with Rn(x0) = 1 for all n ∈ N0.

Theorem 6.4 Suppose µ to have compact support and let (Pn)n∈N0
be an arbitrary orthogonal

polynomial sequence with respect to µ. Denote by [d, e] the smallest interval containing S.
Choose x0 ∈ R \ (d, e) and define Rn(x) = Pn(x)/Pn(x0), n ∈ N0. Then K = {Rk, k ∈ N0} is
a normalized SBG hypergroup.
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Proof: Let (Qn)n∈N0
be the monic orthogonal polynomials with respect to µ as in the

proof of Lemma 6.3. Then

R1Rn =
Qn+1(x0)

Q1(x0)Qn(x0)
Rn+1 +

b′n
Q1(x0)

Rn +
c′nQn−1(x0)

Q1(x0)Qn(x0)
Rn−1, n ≥ 1.

Let a′′′n = Qn+1(x0)
Q1(x0)Qn(x0)

, b′′′n = b′
n

Q1(x0)
and c′′′n = c′

n
Qn−1(x0)

Q1(x0)Qn(x0) . Since (b′n) is bounded (b′′′n )n∈N is

bounded, too. By [3, p. 110, Theorem 2.4] for x0 /∈ (d, e) we have

0 <
Qn+1(x0)

(x0 − b′n − b′)Qn(x0)
≤ 1, n ≥ 0.

Hence, |a′′′n | < |(x0 − b′n − b′)/Q1(x0)|, which shows the boundedness of (a′′′n ). Finally,
a′′′n + b′′′n + c′′′n = 1 yields the boundedness of (c′′′n ). By Theorem 6.2 (iii) the proof is complete.

Now, let us examine the duals of an SBG polynomial hypergroup. We define the sets

Dr = {z ∈ C, |Pn(z)| ≤ rγ(n) for all n ∈ N0}, D =
⋃

r≥1

Dr, (32)

Ds
r = Dr ∩ R and Ds =

⋃

r≥1

Ds
r. (33)

Furthermore we define for some z ∈ C the function αz(n) = Pn(z) for all n ∈ N0. Then the
following theorem holds.

Theorem 6.5 Let K = {Pn, n ∈ N0} be an SBG polynomial hypergroup.

(i) It holds X b(N0) = {αz , z ∈ D} and N̂0 = {αx, x ∈ Ds}.

(ii) The mappings

D → X b(N0), z 7→ αz and Ds → N̂0, x 7→ αx

are homeomorphisms.

(iii) X b(N0) and N̂0 are bounded.

Proof: (i) For z ∈ Dr it holds ‖αz‖∞,γ ≤ r, αz 6= 0, see [3, I Theorem 5.3], and
Lnαz(m) = αz(n)αz(m), hence {αz, z ∈ Dr} ⊂ X b

r (N0).
Now suppose α ∈ X b

r (N0) and put z = a0α(1) + b0. We obtain α(1)α(n) = L1α(n) =
anα(n+1)+bnα(n)+cnα(n−1). Since α(0) = 1 and α(1) = (z−b0)/a0, α(n) satisfies the same
recurrence relation as Pn(z), hence they must be equal. This yields X b

r (N0) ⊂ {αz, z ∈ Dr}
Note that Pn(z) = Pn(z) for all n ∈ N0 implies z ∈ R.

(ii) Let V (αz0
, ǫ, n1, . . . , nk) =

{
α ∈ X b(K), |α(ni) − αz0

(ni)| < ǫ, i = 1, . . . , k
}

. Clearly,

its inverse under the mapping z 7→ αz is the set
⋂k

i=1 {z ∈ D, |Pni
(z) − Pni

(z0)| < ǫ} , which
is open. Since X b(N0) is equipped with the topology of pointwise convergence the mapping
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X b(N0) → D, αz 7→ a0αz(1) + b0 is continuous, too . The second statement follows since N̂0

bears the induced topology.

(iii) Denote by B the bound of (|an|), (|bn|) and (|cn|), and choose M > 0 such that
the zeros zn,1, zn,2, . . . , zn,n of any Pn are elements of the interval [−M,M ]. We have
Pn(z) = αn

∏n
i=1(z − zn,i) with αn = (an∏n−1

i=1 ai)
−1. Choose z ∈ D and assume |z| > M .

Then there exists r ≥ 1 such that |αn|
∏n

i=1 |z − zn,i| ≤ rγ(n). Since |z − zn,i| ≥ |z| − M we
get (|z| − M)n ≤ rγ(n)/αn. By Lemma 6.1 we are able to deduce γ(n) = O(n(|a|B)n|αn|).
Therefore there exists C > 0 such that |z| − M ≤ |a|B n

√
rCn for all n ∈ N, which implies

|z| ≤ M + |a|B.

We would like to mention the the question wether the dual of an SBG polynomial hyper-
group is compact is still open.

7 Jacobi polynomials

The Jacobi polynomials P
(α,β)
n are orthogonal with respect to the measure

π(x) = (1 − x)α(1 + x)βdx, for all α, β > −1,

with suppπ = [−1, 1] = S. According to Theorem 6.4 they form a normalized SBG polyno-
mial hypergroup when normalizing at a point x0 /∈ (−1, 1).
In case x0 = 1 the three term recurrence relation coefficients are given by

a =
2(α + 1)

α + β + 2
, b =

β − α

α + β + 2
,

an =
(n + α + β + 1)(n + α + 1)(α + β + 2)

(2n + α + β + 2)(2n + α + β + 1)(α + 1)
,

bn =
α − β

2(α + 1)

[
1 − (α + β + 2)(α + β)

(2n + α + β + 2)(2n + α + β)

]
,

cn =
n(n + β)(α + β + 2)

(2n + α + β + 1)(2n + α + β)(α + 1)
,

see [9]. The corresponding normalized polynomials are denoted by R
(α,β)
n and we compute

h(0) = 1, h(n) =
(2n + α + β + 1)Γ(α + β + n + 1)Γ(α + n + 1)Γ(β + n + 1)

(n + 1)Γ(α + β + 2)Γ(α + 1)Γ(β + 1)
. n ∈ N,

By using Sterling’s formula we get

h(n) = O(n2α+1). (34)

If (α, β) ∈ V = {(α, β), α ≥ β > −1, α ≥ −1/2} then γ is bounded, see [1, Theorem 1],

i.e., (R
(α,β)
n )n∈N0

constitutes a discrete signed hypergroup. Furthermore, if (α, β) ∈ W =
{(α, β), α ≥ β, a(a + 5)(a + 3)2 ≥ (a2 − 7a− 24)b2} ⊃ {(α, β), α ≥ β > −1, α + β + 1 ≥ 0},
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where a = α + β + 1 and b = α− β, then (R
(α,β)
n )n∈N0

constitutes a discrete hypergroup, see
[6, Theorem 1].

By switching the normalization point x0 to −1 and denoting the corresponding polyno-

mials by S
(α,β)
n we have S

(α,β)
n (x) = R

(β,α)
n (−x), see also [6, p.585]. Hence, when (β, α) ∈ V

then S
(α,β)
n constitute a discrete signed hypergroup and when (β, α) ∈ W they form a discrete

hypergroup.
The remaining region is G = {(α, β), −1 < α, β < −1/2}. Making use of Theorem

6.4, (34) and γ(n) ≥ max(h(n)−1, 1) we deduce for (α, β) ∈ G both {R(α,β)
n , n ∈ N0} and

{S(α,β)
n , n ∈ N0} form an SBG polynomial hypergroup which is not bounded.

For the ultraspherical polynomials, i.e., α = β we will determine γ(n) explicitly for
−1 < α < −1/2.

Theorem 7.1 Let −1 < α < −1/2. For γ corresponding with R
(α,α)
n it holds γ(0) = γ(1) = 1

and for n ≥ 2

γ(n) =
∑

k

|g(n, n, k)| =
2

∏n−1
k=1 ak

(
2n−1∏

k=n

ak +
n∏

k=1

ck

)
− 1 < 4h(n)−1 − 1.

In particular there exist constants C1, C2 > 0 such that

C1n
−2α−1 ≤ γ(n) ≤ C2n

−2α−1. (35)

Proof: Make use of Theorem 6.4, (34) and γ(n) ≥ max(h(n)−1, 1) to show the correspon-
dence with an SBG hypergroup which is not bounded.
It is clear that γ(0) = γ(1) = 1. We use Lemma 6.1 to deduce for n ≥ m ≥ 2 that
g(n,m, n − m + 2j − 1) = 0, j = 1, 2, . . . ,m, g(n,m, n − m), g(n,m, n − m) > 0 and
g(n,m, n − m + 2j) < 0, j = 1, 2, . . . ,m − 1. Hence for all n,m ≥ 2

∑

k

|g(n,m, k)| = 2(g(n,m, |n − m|) + g(n,m, n + m)) − 1.

Let 2 ≤ m < n. Using (29) and (30) we derive

∑

k

g|(n,m, k)| <
∑

k

g|(n,m + 1, k)|.

Now suppose 2 ≤ n ≤ m and set rm =
∏m+n−1

k=m ak +
∏m

k=m−n+1 ck. Since
∑

k |g(n,m, k)| =

2rm

(∏n−1
k=1 ak

)−1
− 1, the inequality rm+1 < rm yields

∑

k

|g(n,m + 1, k)| <
∑

k

|g(n,m, k)|.

Finally, we derive

γ(n) =
∑

k

|g(n, n, k)| =
2

∏n−1
k=1 ak

(
2n−1∏

k=n

ak +
n∏

k=1

ck

)
− 1 for all n ≥ 2.
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By using
∏2n−1

k=n ak <
∏n

k=1 ck this yields h(n)−1 ≤ γ(n) < 4h(n)−1 − 1. With (34) we get the
last assertion.

Now it is easy to determine the dual objects of the generalized hypergroups generated by
ultraspherical polynomials.

Theorem 7.2 Let −1 < α. Then the duals of the generalized hypergroup {R(α,α)
n , n ∈ N0}

of ultraspherical polynomials coincide,

S = N̂0 = X b(N0) ≃ [−1, 1] .

Proof: We have to show S ⊃ X b(K). Assume z ∈ C \ [−1, 1]. From [16, (8.21.9)] we
deduce that Rn(z) grows exponentially with n. From (35) we know that γ(n) grows only
polynomially. Hence, there does not exist a constant r such that |Rn(z)| ≤ rγ(n) which
means αz /∈ X b(N0).

One might have the question what happens in the case (α, β) ∈ G when choosing the
normalization point c /∈ [−1, 1]. Surprisingly, [1, Theorem 2] immediately yields the following
theorem.

Theorem 7.3 Let (α, β) ∈ G and choose c ∈ R\ [−1, 1]. The Jacobi polynomials T
(α,β)
n nor-

malized at c (i.e., T
(α,β)
n (c) = 1) constitute a normalized and bounded generalized hypergroup,

i.e., a discrete signed hypergroup. The duals are given by

S = [−1, 1], N̂0 = [−|c|, |c|], X b(N0) = {z ∈ C, |z +
√

z2 − 1| ≤ |c| +
√

c2 − 1}.

Hereby, the branch of
√

z2 − 1 is chosen such that |z +
√

z2 − 1| ≥ 1.
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