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Abstract. Vector valued data appearing in concrete applications often possess sparse expansions with respect
to a preassigned frame for each vector component individually. Additionally, different components may also exhibit
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are interpreted as indicators of the sparsity pattern and are iteratively up-dated after each new application of the
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1. Introduction. Inverse problems. We address the problem of recovering an element u of
a Hilbert space K from the observed datum g = Tu in the Hilbert space H, where T : K → H is a
bounded linear operator, possibly non-invertible or with unbounded inverse. A simple approach to
this problem is to minimize the discrepancy

T (u) := ‖Tu− g|H‖2.

If ker(T ) = {0} then there exists a unique solution given by u∗ = (T ∗T )−1T ∗g. However, if T has
unbounded inverse, i.e., (T ∗T )−1 is unbounded then this approach is very unstable.

Thus, if T is non-invertible or has unbounded inverse (or an inverse with high norm) one has
to take into account further features of the expected solution. Indeed, a well-known way out is to
consider the regularized problem [26]

u∗α := argminu∈KT (u) + α‖u|K‖2.

for which the corresponding solution operator T †
α : g 7→ u∗α is bounded. Unfortunately, the minimal

norm constraint is often not appropriate. A recent approach is to substitute this particular constraint
with a more general one

u∗Φ := argminu∈KT (u) + Φ(u),

where Φ is a suitable sparsity measure.
Sparse frame expansions. A sparse representation of an element of a Hilbert space is a

series expansion with respect to an orthonormal bases or a frame that has only a small number of
large coefficients. Several types of signals appearing in nature admit sparse frame expansions and
thus, sparsity is a realistic assumption for a very large class of problems. For instance, images are
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well-represented by sparse expansions with respect to wavelets or curvelets, while for audio signals
a Gabor frame is a good choice.

Sparsity has had already a long history of successes. The design of frames for sparse repre-
sentations of digital signals has led to extremely efficient compression methods, such as JPEG2000
and MP3 [33]. Successively a new generation of optimal numerical schemes has been developed for
the computation of sparse solutions of differential and integral equations, exploiting adaptive and
greedy strategies [12, 38, 14, 15]. The use of sparsity in inverse problems for data recovery has been
the most recent step of this long career of “simplifying and understanding complexity”, with an
enormous potential in applications [2, 17, 18, 20, 22, 21, 35, 39, 10, 13, 16]. Another field, which
caught much attention recently, is the observation that it is possible to reconstruct sparse signals
from vastly incomplete information [9, 8, 23, 32, 36]. This line of research is called sparse recovery
or compressed sensing.

From sparsity to joint sparsity. Most of the contributions appearing in the literature
are addressed to the recovery of sparse scalar functions. Multi-channel signals (i.e., vector valued
functions) appearing in concrete applications may not only possess sparse frame expansions for
each channel individually, but additionally the different channels can also exhibit common sparsity
patterns. Recently, new sparsity measures have been introduced that promote such coupling of
the non-vanishing components through different channels [3, 29, 40]. These measures are typically
constructed as weighted `1 norms of channel `q norms with q > 1. We will use this concept for the
solution of vector valued inverse problems and combine it with another approach further promoting
the coupling of sparsity patterns along channels.

Our main results. We show how to compute solutions of linear inverse problems with joint
sparsity regularization constraints by fast thresholded Landweber algorithms, similar to those pre-
sented in [17, 35, 39]. We discuss the adaptive choice of suitable weights appearing in the definition of
the sparsity measures. The weights are interpreted as indicators of the sparsity pattern and are iter-
atively up-dated after each new application of the thresholded Landweber algorithm. The resulting
two-step algorithm is interpreted as a double-minimization scheme for a suitable target functional.
We prove that our algorithm converges to its minimizer. Since the functional is not smooth, this is
done by subdifferential inclusions [37]. We prove that the thresholded Landweber algorithm, which
constitutes the inner iteration of the double-minimization algorithm, converges linearly. This fea-
ture was not ensured by the versions in [17, 39]. The second step of the double-minimization has
actually a simple explicit solution. Finally, we show that the full exact double-minimization scheme
converges linearly and we provide an implementable version which is also ensured to converge.

Morphological analysis of signals and sparsity patterns. The use of sparseness measures
not only allows to reconstruct a signal. At the same time it gives information about (joint) sparsity
patterns which may encode morphological features of the signal. Well-known examples are the
microlocal analysis properties of wavelets [30, 31] for singularity and regularity detection, and the
characterization of edges and curves by curvelets for natural images [7]. For instance, the weight
sequences appearing in the sparsity measures we define, and interpreted as indicators of the sparsity
pattern, play a similar role as the discontinuity set is playing in the Mumford-Shah functional [34].
In fact, it is well-known that wavelet or curvelet coefficients have high absolute values at high scales
as soon as we are in the neighborhood of discontinuities. Even more illuminating and suggestive
is the parallel between the sparsity measure and its indicator weights with the Ambrosio-Tortorelli
[1] approximation of the Mumford-Shah functional. Here, the discontinuity set is indicated by an
auxiliary function which is 1 where the image is smooth and 0 where edges and discontinuities are
detected.

Joint sparsity patterns of vector valued (i.e., multi-channel) signals encode even finer properties
of the morphology which do not belong only to one channel but are a common feature of all the
channels. Here the parallel is with generalizations of the Mumford-Shah functional as appearing for
example in [5] where polyconvex functions of gradients couple discontinuity sets through different
color channels of images.
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Applications. We expect that our scheme can be applied in several different contexts. In
this paper we limit ourselves to an application in color image reconstruction, modeling a real-world
problem in art restoration. Indeed, color images have the advantage to be non-trivial multivariate
and multi-channel signals, exhibiting a very rich morphology and structure. In particular, discon-
tinuities (jump sets) may appear in all the channels at the same locations, which will be reflected
in their curvelet representation (for instance). For these reasons, color images are a good model to
test the effectiveness of our scheme promoting joint sparsity, also because the solution can be easily
checked just by a visual analysis. Of course, the range of applicability of our approach is not limited
to color image restoration. Neuroimaging (functional Magnetic Resonance Imaging, Magnetoen-
cephalography), distributed compressed sensing [3] and several other problems with coupled vector
valued solutions are fields where we expect that our scheme can be fruitfully used. The numerical
solution of differential and integral operator equations can also be addressed within this framework
and we refer for example to [14, 38, 15] for implementations by adaptive strategies.

Content of the paper. The paper is organized as follows. In Section 2 we introduce the
mathematical setting. We formulate our model of joint sparsity for multi-channel signals and the
corresponding functional to be minimized in order to solve a given linear inverse problem. The
functional depends on two variables. The first belongs to the space of signals to be reconstructed,
the second belongs to the space of sparsity indicator weights. Convexity properties of the functional
are discussed. Section 3 is dedicated to the formulation of the double-minimization algorithm and
to its weak-convergence. The scheme is based on alternating minimizations in the first and in the
second variable individually. In Section 4 we discuss an efficient thresholded Landweber algorithm
for the minimization with respect to the first variable. Its strong convergence is shown following
the analysis in [17]. The minimization with respect to the second variable has an explicit solution
and no elaboration is needed. We provide an implementable version of the full scheme in Section
5. To prove its convergence we develop an error analysis. As a byproduct of the results in this
section we show that the double–minimization scheme converges strongly. In Section 6 we present
an application in color image reconstruction. Numerical experiments are shown and discussed.

Nota on color pictures. This paper introduces methods to recover colors in digital images.
Therefore a gray level printout of the manuscript does not allow to appreciate fully the quality of
the illustrated techniques. The authors recommend the interested reader to access the electronic
version with color pictures which is available online.

2. The Functional.

2.1. Notation. Before starting our discussion let us briefly introduce some of the spaces we
will use in the following. For some countable index set Λ we denote by `p = `p(Λ), 1 ≤ p ≤ ∞, the
space of real sequences u = (uλ)λ∈Λ with norm

‖u‖p = ‖u|`p‖ :=

(
∑

λ∈Λ

|uλ|p
)1/p

, 1 ≤ p <∞

and ‖u‖∞ := supλ∈Λ |uλ| as usual. If (vλ) is a sequence of positive weights then we define the
weighted spaces `p,v = `p,v(Λ) = {u, (uλvλ) ∈ `p(Λ)} with norm

‖u‖p,v = ‖u|`p,v‖ = ‖(uλvλ)‖p =

(
∑

λ∈Λ

vp
λ|uλ|p)

)1/p

(with obvious modification for p = ∞). If the entries uλ are actually vectors in a Banach space X
with norm ‖ · ‖X then we denote

`p,v(Λ, X) := {(uλ)λ∈Λ, uλ ∈ X, (‖uλ‖X)λ∈Λ ∈ `p,v(Λ)}
3



with norm ‖u|`p,v(Λ, X)‖ = ‖(‖uλ‖X)λ∈Λ|`p,v(Λ)‖. Usually X will be RM endowed with the Eu-
clidean norm, or the M -dimensional space `Mq , i.e., RM endowed with the `q-norm. By R+ we denote
the non-negative real numbers.

2.2. Inverse Problems with joint sparsity constraints. Let K and Hj , j = 1, . . . , N , be
(separable) Hilbert spaces and A`,j : K → Hj , j = 1, . . . ,M , ` = 1, . . . , N , some bounded linear
operators. Assume we are given data gj ∈ Hj ,

gj =

M∑

`=1

A`,jf`, j = 1, . . . , N.

Then our basic task consists in reconstructing the (unknown) elements f` ∈ K, ` = 1, . . . ,M .

In practice, it happens that the corresponding mapping from the vector (f`) to the vector (gj) is
not invertible or ill-conditioned. Moreover, the data gj, j = 1, . . . , N , are often corrupted by noise.
Thus, in order to deal with our reconstruction problem we have to regularize it.

Our basic assumption throughout this paper will be that the ’channels’ f`, ` = 1, . . . ,M , are
correlated by means of joint sparsity patterns. Our aim is to model the joint sparsity within a
regularization term. In the following we develop this idea.

For the sake of short notation we resume the data vector into

g = (gj)j=1,...,M ∈ H :=

N⊕

j=1

Hj

where the Hilbert space H is equipped with the usual inner product 〈∑j gj,
∑

j hj〉 :=
∑

j〈gj , hj〉
with gj , hj ∈ Hj . We also combine the operators A`,j into one operator

A :
M⊕

`=1

K → H, A(f`)
M
`=1 =

(
M∑

`=1

A`,jf`

)N

j=1

.

In order to exploit sparsity ideas we assume that we have given a suitable frame {ψλ : λ ∈ Λ} ⊂ K
indexed by a countable set Λ. This means that there exist constants C1, C2 > 0 such that

C1‖f‖2
K ≤

∑

λ∈Λ

|〈f, ψλ〉|2 ≤ C2‖f‖2
K for all f ∈ K. (2.1)

Orthonormal bases are particular examples of frames. Frames allow for a (stable) series expansion
of any f ∈ K of the form

f = Fu :=
∑

λ∈Λ

uλψλ (2.2)

where u = (uλ)λ∈Λ ∈ `2(Λ). The linear operator F : `2(Λ) → K is called the synthesis map in
frame theory. It is bounded due to the frame inequality (2.1). In contrast to orthonormal bases, the
coefficients uλ need not be unique, in general. For more information on frames we refer to [11].

A main assumption here is that the f` to be reconstructed are sparse with respect to the frame
{ψλ}. This means that f` can be well-approximated by a series of the form (2.2) with only a small
number of non-vanishing coefficients uλ. This can be modelled by assuming that the sequence u is
contained in a (weighted) `1(Λ)-space. Indeed, the minimization of the `1(Λ) norm promotes that
only few entries are non-zero. Taking for instance a wavelet frame and a suitable weight, the `1
constraint implies that the element to be reconstructed lies in a certain Besov space Bs

1,1, see [17].
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Analogously as in [17] such considerations lead to the regularized functional

J (u) = ‖g − Tu|H‖2 + ‖u|`1,v(Λ
M )‖ =

N∑

j=1

∥∥∥∥∥gj −
M∑

`=1

A`,jFu
`

∥∥∥∥∥

2

Hj

+

M∑

`=1

∑

λ∈Λ

vλ|u`
λ|, (2.3)

which has to be minimized with respect to the vector of coefficients u = (u`
λ)`=1,...,M

λ∈Λ . The `1,v

norm in this functional clearly represents the regularization term. The numbers vλ, λ ∈ Λ, are some
suitable positive weights. Once the minimizer u = (u`

λ) is determined we obtain a reconstruction of
the vectors of interest by means of f` = Fu` =

∑
λ u

`
λψλ. The algorithm in [17] can be taken to

perform the minimization with respect to u.

The functional J (u) in the form stated, however, does not necessarily model any correlation
between the vectors (’channels’) f`, ` = 1, . . . ,M . A way to incorporate such correlation is the as-
sumption of joint sparsity, see also [29, 40]. By this we mean that the pattern of non-zero coefficients
representing f` is (approximately) the same for all the channels. In other words, for some finite set
of indexes Λ0 ⊂ Λ and for all ` = 1, . . . , N there is an expansion

f` ≈
∑

λ∈Λ0

u`
λψλ.

In particular, the same Λ0 can be chosen for all f`’s.

We propose two approaches (that can be combined) to model joint sparsity. The first one
assumes that the mixed norm

‖u|`1,v(Λ, `
M
q )‖ =

∑

λ∈Λ

vλ‖uλ‖q

of u = (u`
λ) is small. Hereby, uλ denotes the vector (u

(`)
λ )M

`=1 in RM . (Recall also that `Mq denotes

RM endowed with the `q-norm). Here, q > 1 and in particular, q = 2 or q = ∞, represent the
interesting cases, since for q = 1 the above norm reduces to the usual weighted `1,v norm. In fact

if q is large and some |u`
λ| is large then the channel entries |u`′

λ | are also allowed to be large for
`′ 6= `, without increasing significantly the norm ‖uλ|`Mq ‖. The minimization of the above norm
promotes that all entries of the ’interchannel’ vector uλ may become significant, once at least one
of the components |u`

λ| is large.

Introduce the operators T`,j = A`,jF : `2(Λ) → H` and

T : `2(Λ,R
M ) → H, Tu =

(
M∑

`=1

T`,ju
`

)N

j=1

=

(
M∑

`=1

A`,jFu
`

)N

j=1

.

The above reasoning leads to the functional

K(u) = K(q)
v (u) := ‖Tu− g|H‖2 + ‖u|`1,v(Λ, `

M
q )‖ (2.4)

=
N∑

j=1

∥∥∥∥∥

M∑

`=1

T`,ju
` − gj

∥∥∥∥∥

2

Hj

+
∑

λ∈Λ

vλ‖uλ‖q

to be minimized with respect to u. In Section 4 we will develop an iterative thresholding algorithm
similar as in [17] to perform this minimization.

The second approach to support joint sparsity is to encode the joint sparsity information in some
sort of indicator function. This can in fact be done by using the weight (vλ) as a second minimization
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variable. To this end we add an additional term to the original functional (2.3), punishing small
values of vλ. We obtain the functional

J0(u, v) := J
(1)
θ,ρ,0(u, v) := ‖Tu− g|H‖2 +

∑

λ∈Λ

vλ‖uλ‖1 +
∑

λ

θλ(ρλ − vλ)2

restricted to vλ ≥ 0. Here, (θλ)λ and (ρλ)λ are some suitable positive sequences.

Now the task is to minimize J0(u, v) jointly with respect to both u, v. (Again, once this minimizer
is determined we obtain f` = Fu`). Analyzing J0(u, v) we realize that for the minimizer (u, v) we

will have vλ = 0 (or close to 0) if ‖uλ‖1 =
∑M

`=1 |u`
λ| is large so that vλ‖uλ‖1 gets small. On the

other hand, if ‖uλ‖1 is small then the term θλ(ρλ − vλ) dominates and forces vλ to be close to ρλ.
Thus, vλ serves indeed as an indicator of large values of ‖uλ‖1. It has the effect, that if vλ is chosen
small due to one large u`

λ then also the other coefficients u`′

λ , `′ 6= ` can be chosen large without
making the functional considerably bigger.

Unfortunately, in contrast to the previous functionals, J(u, v) as stated above is no longer jointly
convex in (u, v) in general (although it is convex as functional of u and of v alone). Thus, it cannot
be ensured that a local minimum of the functional will be a global one, a property that is very
crucial for an efficient minimization method.

To overcome this problem we may add an additional suitable quadratic term. Moreover, we can,
of course, combine the second approach with the first one and use an `q-norm instead of an `1-norm
for the ’interchannel’ vectors uλ. This leads to the most general form of the regularized functional
considered in this paper,

J(u, v) = J
(q)
θ,ρ,ω(u, v) := ‖Tu− g|H‖2 +

∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖2
2 +

∑

λ∈Λ

θλ(ρλ − vλ)2. (2.5)

Here, ωλ is a suitably chosen sequence of positive numbers, and 1 ≤ q ≤ ∞.

We will provide a sufficient condition depending on θλ and ρλ in the next subsection ensuring
the strict joint convexity of J(u, v) in (u, v). Although there is an extra term, J(u, v) has similar
properties as J0(u, v). In particular, v can still be seen as a sort of indicator function.

Observe that in the minimum we will always have 0 ≤ vλ ≤ ρλ. Therefore, we can assume
the domain of J to be `2(Λ,R

M ) × `∞,ρ−1(Λ)+ where `∞,ρ−1(Λ)+ denotes the (convex) cone of all
non-negative sequences (vλ) ∈ `∞,ρ−1(Λ).

Our main contribution consists in providing an algorithm for the minimization of J(u, v). It
consists in alternately minimizing with respect to u and with respect v. The minimization with
respect to v can be done explicitly. For the minimization with respect to u we propose an efficient
iterative algorithm.

We will mainly study the problem in the real-valued case. The complex-valued case can be
treated with the same methods (in principle) by observing that CM is isomorphic to R2M , so
passing from M complex-valued channels to 2M real-valued channels. We note, however, that slight
complications may arise from the fact that an `q norm on C

M is not isometric to an `q-norm on
R2M if q 6= 2. (In particular, the thresholding operator on CM for q = ∞ will have a different form
than the one provided in the next Section for the real-valued case).

2.3. Convexity of the functional J. At several places in the following it will be convenient
to write

J(u, v) = T (u) + Φ(q)(u, v) (2.6)
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where

T (u) = ‖Tu− g‖2
H =

N∑

j=1

‖
M∑

`=1

T`,ju
` − gj‖2

Hj

Φ(q)(u, v) =
∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖2
2 +

∑

λ∈Λ

θλ(ρλ − vλ)2

= ‖(vλ‖uλ‖q)λ∈Λ‖1 +
∥∥u|`2,ω1/2(Λ, `M2 )

∥∥2
+ ‖ρ− v|`2,θ1/2(Λ)‖2,

are the discrepancy with respect to the data and the joint sparsity measure, respectively.
Also it is useful to observe that Φ(q) decouples with respect to λ, i.e.,

Φ(q)(u, v) =
∑

λ∈Λ

Φ
(q)
λ (uλ, vλ) (2.7)

where

Φ
(q)
λ (x, y) = y‖x‖q + ωλ‖x‖2

2 + θλ(ρλ − y)2 (2.8)

= y

(
M∑

`=1

|x`|q
)1/q

+ ωλ

M∑

`=1

x2
` + θλ(ρλ − y)2, x ∈ R

M , y ≥ 0

(with the usual modification for q = ∞).
In the following we give necessary and sufficient conditions for the (strict) convexity of the

functional Φ(q) for the most interesting cases q = 1, 2,∞. These imply sufficient conditions for the

(strict) convexity of J = J
(q)
θ,ρ,ω.

Proposition 2.1. Let q ∈ {1, 2,∞}. The sparsity measure Φ(q) is convex if and only if
ωλθλ ≥ κq

4 for all λ ∈ Λ, where κ1 = M and κ2 = κ∞ = 1. In particular, if ωλθλ ≥ κq

4 for all λ ∈ Λ
then J is convex. In case of a strict inequality ωλθλ >

κq

4 we can replace “convexity” by “strict
convexity” in all of these statements.

Proof. It is easy to see that Φ(q) is (strictly) convex if and only if all the Φ
(q)
λ , λ ∈ Λ, are

(strictly) convex.

Let us first consider q = 1. Observe that we can write Φ
(1)
λ (x, y) =

∑M
`=1 F

(1)
λ (x`, y) with

F
(1)
λ (z, y) = y|z|+ ωλ|z|2 +M−1θλ(ρλ − y)2 (2.9)

=
(
y|z|+ ωλ|z|2 +M−1θλy

2
)

+
(
ρ2

λ − 2θλy
)
, z ∈ R, y ≥ 0.

The function in the second bracket is obviously linear, hence convex. The function in the first
bracket can be written as the composition Gλ ◦ L with L(z, y) = (|z|, y) and

Gλ(z, y) = yz + ωλz
2 +M−1θλy

2 =
1

2
(z, y)H(1) (z, y)T , z, y ∈ R,

where

H(1) =

(
2ωλ 1
1 2θλM

−1

)
.

Since L is convex and has range R2
+, and Gλ is monotonically increasing in each coordinate on

R2
+ it suffices to show that Gλ(z, y) is convex if and only if θλωλ ≥ M/4, see e.g. [4, p. 86]. The

convexity of Gλ is equivalent to H(1) being positive semidefinite. The latter is clearly equivalent to
θλωλ ≥M/4. Strict convexity is equivalent to a strict inequality θλωλ > M/4.
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Now let q = 2. Observe that Φ
(2)
λ = F

(2)
λ ◦ L(2) where L(2) : RM × R+ → R2

+, L(2)(x, y) =
(‖x‖2, y) and

F
(2)
λ (z, y) = yz + ωλz

2 + θλ(ρλ − y)2 =
1

2
(z, y)H(2) (z, y)T + θλ(ρ2

λ − 2ρλy), z, y ∈ R (2.10)

with

H(2) =

(
2ωλ 1
1 2θλ

)
.

By a similar argument as above Φ
(2)
λ is convex if and only if H(2) is positive semi-definite. The latter

is the case if and only if ωλθλ ≥ 1/4, and strict convexity is equivalent to a strict inequality.
Finally, let q = ∞. Observe that

Φ
(∞)
λ (x, y) = max

`=1,...,M

{
y|x`| + ωλ

M∑

m=1

|xm|2 + θλ(ρλ − y)2

}
.

Since Φ
(∞)
λ is the pointwise maximum of M functions, it is sufficient (see [4, p. 80]) to investigate

the (strict) convexity of each of the functions

fλ,`(x, y) = yx` + ωλ

M∑

m=1

(x`)
2 + θλ(ρλ − y)2

=
1

2
(y, x)H

(∞)
` (y, x)T + θλ(ρ2

λ − 2yρλ), x ∈ R
M , y ≥ 0,

with

H
(∞)
` =




2ωλ 0 · · · 0 δ1,`

0 2ωλ · · · 0 δ2,`

...
...

. . .
...

...
0 0 · · · 2ωλ δM,`

δ1,` δ2,` · · · δM,` 2θλ



.

One can show by induction that

det(H
(∞)
` ) = 2M−1ωM−1

λ (4θλωλ − 1).

Thus, H
(∞)
` is positive semidefinite if and only if θλωλ ≥ 1/4, and the convexity of Φ

(q)
λ is equivalent

to the latter condition. Once again strict convexity is equivalent to the strict inequality.
We do not pursue the task to obtain conditions for the convexity of Φ(q) and J for general

q 6= 1, 2,∞, but rather assume that Φ(q) and hence J are always convex also in this case.

3. The Minimizing Algorithm and its Convergence. In this section we propose and
analyze an algorithm for the computation of the minimizer (u∗, v∗) of the functional J(u, v) =

J
(q)
θ,ρ,ω(u, v) defined in (2.5). The algorithm consists in alternating a minimization with respect to

u and a minimization with respect to v. More formally, for some initial choice v(0), for example
v(0) = (ρλ)λ∈Λ, we define

u(n) := argminu∈`2(Λ,RM ) J(u, v(n−1)),

v(n) := argminv∈`
∞,ρ−1 (Λ)+ J(u(n), v).

(3.1)
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The minimization of J(u, v(n−1)) with respect to u can be done by means of the iterative thresholding
algorithm that we will study in the next section. The minimizer v(n) of J(u(n), v) for fixed u(n) can
be computed explicitly. Indeed, it follows from elementary calculus that

v
(n)
λ =

{
ρλ − 1

2θλ
‖u(n)

λ‖q if ‖u(n)
λ‖q < 2θλρλ

0 otherwise .
(3.2)

We have the following result about the convergence of the above algorithm.
Theorem 3.1. Let 1 ≤ q ≤ ∞ and assume that Φ(q) and hence J are strictly convex (see

also Proposition 2.1). Moreover, we assume that `2,ω1/2(Λ,RM ) is embedded into `2(Λ,R
M ), i.e.,

ωλ ≥ γ > 0 for all λ ∈ Λ. Then the sequence (u(n), v(n))n∈N converges to the unique minimizer
(u∗, v∗) ∈ `2(Λ,R

M ) × `∞,ρ−1(Λ)+ of J . The convergence of u(n) is weak in `2(Λ,R
M ) and that of

v(n) holds componentwise.
For the most interesting cases q ∈ {1, 2,∞}, if in addition θλωλ ≥ σ > κq/4 for all λ ∈ Λ, where
κ1 = M and κ2 = κ∞ = 1 then the convergence of u(n) to u∗ is also strong in `2(Λ,R

M ) and
v(n) − v∗ converges to 0 strongly in `2,θ(Λ).

The rest of the section will be spent with the proof of the weak convergence of the algorithm.
The strong convergence and the full proof of the Theorem 3.1 will be established only in Subsection
5.3 later.

3.1. Subdifferential calculus. A main tool in the analysis of non-smooth functionals and
their minima is the concept of subdifferential. Recall that for a convex functional F on some
Banach space V its subdifferential ∂F (x) at a point x ∈ V with F (x) <∞ is defined as the set

∂F (x) = {x∗ ∈ V ∗, x∗(z − x) + F (x) ≤ F (z) for all z ∈ V },

where V ∗ denotes the dual space of V . It is obvious from this definition that 0 ∈ ∂F (x) if and only
if x is a minimizer of F . In the following we investigate the subdifferential of J . In order to have J
defined on the whole Banach space `2(Λ,R

M ) × `∞,ρ−1(Λ) rather than just for positive vλ’s (which
is needed to use subdifferentials) we simply extend J(u, v) by

J(u, v) = ∞ if vλ < 0 for some λ ∈ Λ

as usual. This extension preserves convexity and does not change the minimizer.
Recall that J can be written as J(u, v) = T (u) + Φ(q)(u, v), see (2.6). Since both T and Φ(q)

are convex we have, see e.g. [24, Proposition 5.6],

∂J(u, v) = ∂T (u) × {0} + ∂Φ(q)(u, v). (3.3)

Concerning the subdifferential of T we have the following result.
Lemma 3.2. The subdifferential of T at u ∈ `2(Λ,R

M ) consists of one element,

∂T (u) = {2T ∗(Tu− g)} .

Proof. Since T is convex and Gateaux-differentiable, by Proposition 5.3 [24] we have ∂T (u) =

{T ′(u)} , where its Gateaux-derivative is characterized by 〈T ′(u), z〉 = limh→0+
T (u+hz)−T (u)

h for all
z ∈ `2(Λ,R

M ). It is straightforward to check that the Gateaux derivative of a functional of the type
u→ ‖Tu− g‖2 (with linear T ) at u applied on z is given by 2〈Tu− g, T z〉 = 2〈T ∗(Tu− g), z〉. This
proves the claim.

Let us now consider the subdifferential of ∂Φ(q)(u, v). Recall its domain `2(Λ,R
M )× `∞,ρ−1(Λ).

Since the dual of `∞,ρ−1 is a bit inconvenient to handle we restrict the subdifferential to the predual

`1,ρ. This will be enough for our purposes. Moreover, recall that Φ(q) decouples into a sum of
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functionals Φ
(q)
λ depending only (uλ, vλ), see (2.7). It is straightforward to show the following

lemma.
Lemma 3.3. The subdifferential of Φ(q) at a point (u, v) ∈ `2(Λ,R

M )×`∞,ρ−1(Λ) with Φ(q)(u, v) <
∞ satisfies

DΦ(q)(u, v) := ∂Φ(q)(u, v) ∩ (`2(Λ,R
M ) × `1,ρ(Λ))

= {(ξ, η) ∈ `2(Λ,R
M ) × `1,ρ(Λ) : (ξλ, ηλ) ∈ ∂Φ

(q)
λ (uλ, vλ) for all λ ∈ Λ}.

We are left with investigating the subdifferential of the functional Φ
(q)
λ defined in (2.8). Similarly

as J we extend it to RM × R by Φ
(q)
λ (x, y) = ∞ for y < 0.

Lemma 3.4. Let 1 ≤ q ≤ ∞. Assume that Φ
(q)
λ is convex (see also Proposition 2.1). Then for

(x, y) ∈ R
M × R+ we have

∂Φ
(q)
λ (x, y) = {(ξ, η) ∈ R

M × R : ξ ∈ y∂‖ · ‖q(x) + 2ωλx, η ∈ ‖x‖q∂s
+(y) + 2θλ(y − ρλ)}. (3.4)

where s+(y) := y for y ≥ 0 and s+(y) = ∞ for y < 0. In particular, ∂s+(y) = {1} for y > 0 and
∂s+(0) = (−∞, 1].
Remark: We recall that the subdifferential of the q-norm on RM is given as follows. If 1 < q < ∞
then

∂‖ · ‖q(x) =






Bq′

(1) if x = 0,{(
|x`|

q−1 sign(x`)

‖x‖q−1
q

)M

`=1

}
otherwise,

where Bq′

(1) denotes the ball of radius 1 in the dual norm, i.e., in `q′ with 1/q + 1/q′ = 1.
If q = 1 then

∂‖ · ‖1(x) = {ξ ∈ R
M : ξ` ∈ ∂| · |(x`), ` = 1, . . . ,M} (3.5)

where ∂| · |(z) = {sign(z)} if z 6= 0 and ∂| · |(0) = [−1, 1].
If q = ∞ then

∂‖ · ‖∞(x) =

{
B1(1) if x = 0,
conv{(sign(x`)e` : |x`| = ‖x‖∞} otherwise,

(3.6)

where convA denotes the convex hull of a set A and e` the `-th canonical unit vector in R
M .

Proof. Recall that

Φ
(q)
λ (x, y) = s+(y)‖x‖q + ωλ‖x‖2

2 + θλ(ρλ − y)2.

Let y ≥ 0 so that Φ
(q)
λ (x, y) is finite. The subdifferential ∂(Φ

(q)
λ )x(x, y) of Φ(q)(x, y) considered as a

function of x alone (i.e. for fixed y) is clearly given by

∂(Φ
(q)
λ )x(x, y) = y∂‖ · ‖q(x) + 2ωλx (3.7)

while keeping y fixed gives

∂(Φ
(q)
λ )y(x, y) = ∂s+(y)‖x‖q + 2θλ(y − ρλ).

This shows the inclusion ’⊂’ in (3.4). Moreover, for all the points (x, y) ∈ RM × R+ where Φ
(q)
λ is

differentiable we even have equality in (3.4) since Φ
(q)
λ is convex and, thus, all the subdifferentials

appearing consist of precisely one point, i.e., the usual gradient.
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Let 1 < q < ∞. Then for x 6= 0, y > 0 the differentiability assumption is clearly satisfied. For

the other cases x = 0 or y = 0 we note that by convexity of Φ
(q)
λ we have (see [37, Corollary 10.11])

∂(Φ
(q)
λ )x(x, y) = {ξ : ∃η such that (ξ, η) ∈ ∂Φ

(q)
λ (x, y)} (3.8)

and the corresponding relation for ∂(Φ
(q)
λ )y(x, y). Now, if y > 0 then Φ

(q)
λ (x, y) is differentiable with

respect to y and thus, η in the right hand side of (3.8) is unique, indeed η = η0 := ∂
∂y Φ

(q)
λ (x, y). We

conclude that for y > 0

∂(Φ
(q)
λ )(x, y) = {(ξ, η0), ξ ∈ ∂(Φ

(q)
λ )x(x, y)}

In particular this holds for x = 0, even for general 1 ≤ q ≤ ∞. The same argument applies for the
case y = 0 and x 6= 0 (and 1 < q <∞), which shows (3.4) in these cases. Now let x = 0 and y = 0.
Then the right hand side of (3.4) contains precisely one point, i.e., (ξ, η) = (0,−2θλρλ). Since the

subdifferential Φ
(q)
λ (0, 0) contains at least one point by convexity, it must coincide with (ξ, η) by the

trivial inclusion ’⊂’. (It is easy to check also directly that (0,−2θλρλ) ∈ Φ
(q)
λ (0, 0)). Note that this

argument applies also for q = 1,∞.
It remains to treat the cases q = 1,∞ with x 6= 0 and arbitrary y ≥ 0. Let us start with q = 1.

In the proof of Proposition 2.1 it was noted that

Φ
(1)
λ (x, y) =

M∑

`=1

F
(1)
λ (x`, y)

with F
(1)
λ : R2 → R defined in (2.9). The subdifferential of Fλ can be obtained in the same way as

above (expressing e.g. formally the modulus as a 2-norm on R
1). For (z, y) ∈ R × R+ this yields

∂F
(1)
λ (z, y) = {(τ, η) : τ ∈ y∂| · |(z) + 2ωλz, η ∈ |z|∂s+(y) + 2M−1θλ(y − ρλ)}.

By convexity we have

∂Φ
(1)
λ (x, y) =

M∑

`=1

{
(e`z`, η) : (z`, η) ∈ ∂F

(1)
λ (x`, y)

}

where e` denotes the `-th unit vector in R
M . By the explicit form of the subdifferential of the

`1-norm (3.5) this gives (3.4) for q = 1.
Finally, let q = ∞. Similarly as in the proof of Proposition 2.1 we write

Φ
(∞)
λ (x, y) = max

`=1,...,M
F`(x, y)

with

F`(x, y) = y|x`| + ωλ‖x‖2
2 + θλ(ρλ − y)2.

If x` 6= 0 then F`(x, y) is differentiable with respect to x and

∂F`(x, y) = {(ξ, η) : ξ = y sign(x`)e` + 2ωλx, y ∈ ∂s+(y)|x`| + 2θλ(y − ρλ)},

where e` denotes the `-th canonical unit vector in RM . This even holds for y = 0 by an analogous

argument as above, see (3.8). The subdifferential of Φ
(∞)
λ (x, y) for x 6= 0 is then given by (see e.g.

[37, Exercise 8.31])

∂Φ
(∞)
λ (x, y) = conv{∂F`(x, y) : F`(x, y) = max

m=1,...,M
Fm(x, y)}.
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Since x 6= 0 we have x` 6= 0 if |x`| = ‖x‖∞ and the latter is the case iff F`(x, y) = maxm Fm(x, y).
Thus, we obtain

∂Φ
(∞)
λ (x, y)

= conv
⋃

`:|x`|=‖x‖∞

{(ξ, η) : ξ = y sign(x`)e` + 2ωλx, η ∈ ∂s+(y)|x`| + 2θλ(y − ρλ)}

=
{
(ξ, η) : ξ ∈ conv{y sign(x`)e`, |x`| = ‖x‖∞}, η ∈ ‖x‖∞∂s+(y)} + (2ωλx, 2θλ(y − ρλ)

}
.

By the characterization of the subdifferential of the ∞-norm in (3.6) we obtain the claimed equality
in (3.4) for q = ∞ and x 6= 0. This finishes the proof.

Combining the previous lemmas we obtain the following result.
Proposition 3.5. Let 1 ≤ q ≤ ∞. Assume that Φ(q) is convex and let (u, v) ∈ `2(Λ,R

M ) ×
`∞,ρ−1(Λ) such that Φ(q)(u, v) <∞. Then we have

DΦ(q)(u, v) = {(ξ, η) ∈ `2(Λ,R
M ) × `1,ρ(Λ), ξλ ∈ vλ∂‖ · ‖q(uλ) + 2ωλuλ,

ηλ ∈ ‖uλ‖q∂s
+(vλ) + 2θλ(vλ − ρλ), λ ∈ Λ}

⊂ ∂Φ(q)(u, v) (3.9)

and

DJ(u, v) = ∂J(u, v) ∩
(
`2(Λ,R

M ) × `1,ρ(Λ)
)

= (2T ∗(Tu− g), 0) +DΦ
(q)
λ (u, v) ⊂ ∂J(u, v).

3.2. Weak convergence of the double-minimization. Before we actually start proving the
weak convergence of the algorithm in (3.1) we recall the following definition [37].

Definition 3.6. Let V be a topological space and A = (An)n∈N a sequence of subsets of V .
The subset A ⊆ V is called the limit of the sequence A, and we write A = limnAn, if

A = {a ∈ V : ∃an ∈ An, a = lim
n
an}.

The following observation will be useful for us, see e.g. [37, Proposition 8.7].
Lemma 3.7. Assume that Γ is a convex function on R

M and (xn) ⊂ R
M a convergent sequence

with limit x such that Γ(xn),Γ(x) <∞. Then the subdifferentials satisfy

lim
n
∂Γ(xn) ⊆ ∂Γ(x).

In other words, the subdifferential ∂Γ of a convex function is an outer semicontinuous set-valued
function.

In the following we agree on the convention that the upper index n at u(n) ∈ `2(Λ,R
M ) always

denotes the n-th iterate and u
(n)
λ ∈ RM denotes the (vector-valued) entry at λ of the n-th iterate.

In the following proof we will never refer to the `-th component of the M -dimensional vector u
(n)
λ ,

so hopefully no confusion can arise. Also, we denote by (DJ(u, v))λ the restriction of DJ(u, v) ⊂
`2(Λ,R

M ) × `1,ρ(Λ) to the index λ. By the previous section it holds

(DJ(u, v))λ = (2T ∗T (u− g))λ, 0) + ∂Φ
(q)
λ (uλ, vλ). (3.10)

Now the proof is developed as follows. First, we recall that (u∗, v∗) = arg minJ(u, v) if and
only if 0 ∈ ∂J(u∗, v∗). Next, we show that there exist weakly convergent subsequences of (u(n), v(n))
(again denoted by (u(n), v(n))) which converge to (u(∞), v(∞)) and that

0 ∈ lim
n
DJ(u(n), v(n)) ⊆ ∂J(u(∞), v(∞)). (3.11)
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Due to the strict convexity of J we conclude that (u(∞), v(∞)) = (u∗, v∗). Now, let us detail the
argument.

By definition of u(n) and v(n) we have

J(u(n), v(n)) − J(u(n+1), v(n+1))

=J(u(n), v(n)) − J(u(n+1), v(n)) + J(u(n+1), v(n)) − J(u(n+1), v(n+1)) ≥ 0.

Thus, (J(u(n), v(n)))n is a nonincreasing sequence, and since J ≥ 0 this implies that (J(u(n), v(n)))n

converges. Moreover,

J(u(0), v(0)) ≥ J(u(n), v(n)) ≥
∑

λ∈Λ

ωλ‖u(n)
λ ‖2

2.

Therefore, (u(n))n is uniformly bounded in `2,ω1/2(Λ,RM ) and thus, there exists a subsequence

(u(nk))k that converges to u(∞) ∈ `2,ω1/2(Λ,RM ) weakly in both `2,ω1/2(Λ,RM ) and `2(Λ,R
M ), due

to our assumption ωλ ≥ γ > 0 for all λ ∈ Λ. For simplicity, let us denote again u(nk) = u(n).

First of all, observe that weak convergence implies componentwise convergence, so that u
(n)
λ →

u
(∞)
λ and [T ∗Tu(n)]λ → [T ∗Tu(∞)]λ for all λ ∈ Λ. By the explicit formula (3.2) for v

(n)
λ this implies

that v(n) converges pointwise to the limit

v
(∞)
λ := lim

n
v
(n)
λ =

{
ρλ − 1

2θλ
‖u(∞)

λ‖q if ‖u(∞)
λ‖q < 2θλρλ,

0 otherwise.
(3.12)

By definition of u(n) in (3.1) we have 0 ∈ ∂Ju(u, v(n)) (where ∂Ju(u, v) denotes the subdifferential
of J considered as a functional of u only). This means that

0 ∈
[
2T ∗(Tu(n) − g)

]

λ
+ v

(n−1)
λ ∂‖ · ‖q(u

(n)
λ ) + 2ωλu

(n)
λ for all λ ∈ Λ,

see also Lemma 3.2 and (3.7), in other words

0 =
[
2T ∗(Tu(n) − g)

]

λ
+ v

(n−1)
λ ζ

(n)
λ + 2ωλu

(n)
λ , (3.13)

for a suitable ζ
(n)
λ ∈ ∂‖ · ‖q(u

(n)
λ ). Now, let (ξ(n), η(n)) ∈ DJ(u(n), v(n)). By definition of DJ and by

(3.13) we have

ξ
(n)
λ ∈ [2T ∗(Tu(n) − g)]λ + v

(n)
λ ∂‖ · ‖q(u

(n)
λ ) + 2ωλu

(n)
λ = v

(n)
λ ∂‖ · ‖q(u

(n)
λ ) − v

(n−1)
λ ζ

(n)
λ ,

for a suitable ζ
(n)
λ ∈ ∂‖ · ‖q(u

(n)
λ ). Since v

(n)
λ converges it is possible to choose the sequence ξ(n) such

that limn→∞ ξ
(n)
λ = 0 for all λ ∈ Λ. From (3.12) it is straightforward to check that

0 ∈ ∂s+(v
(∞)
λ )‖u(∞)

λ ‖q + 2θλ(v
(∞)
λ − ρλ) for all λ ∈ Λ, (3.14)

and similarly

0 ∈ ∂s+(v
(n)
λ )‖u(n)

λ ‖q + 2θλ(v
(n)
λ − ρλ)

We can choose η(n) = 0 so that limn η
(n)
λ = 0 for all λ ∈ Λ. Altogether we conclude that 0 ∈

limn(DJ(u(n), v(n)))λ for all λ ∈ Λ. By continuity of T and Lemma 3.7 we conclude

0 ∈ lim
n

[
(2(T ∗T (u(n) − g))λ, 0) + ∂Φ

(q)
λ (u

(n)
λ , v

(n)
λ )

]

⊂ (2T ∗T (u(∞) − g)λ, 0) + ∂Φ
(q)
λ (u

(∞)
λ , v

(∞)
λ ) = DJ(u(∞), v(∞))λ
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for all λ ∈ Λ. It follows that 0 ∈ DJ(u(∞), v(∞)) ⊂ ∂J(u(∞), v(∞)), the latter inclusion by Propo-
sition (3.5). Hence, by strict convexity (u∗, v∗) = (u(∞), v(∞)). With this we have shown the weak
convergence of the sequence u(n) to u∗.

To establish the strong convergence we need to develop a more detailed analysis of the mini-
mization of J with respect to u. The next section is devoted to this end, and it will allow us to use
some further tools for the full proof of Theorem 3.1 in Subsection 5.3.

4. An Iterative Thresholding Algorithm for the Minimization with Respect to u.
One step of the minimization algorithm in the previous section consists in minimizing J(u, v) =

J
(q)
θ,ρ,ω(u, v) for some fixed v. Moreover, keeping v fixed is also interesting for its own – in particular,

if one is interested in minimizing the functional K = K
(q)
v defined in (4.2). Indeed, for ω = 0 and

ρ = v we have J
(q)
θ,v,0(u, v) = K

(q)
v (u). As we will describe in the following this minimization task

can be performed by a thresholded Landweber algorithm similar to the one analyzed by Daubechies
et al. in [17].

With v fixed our task is equivalent to minimizing

K(u) = K(q)
v,ω := ‖Tu− g‖2

H + Ψ(u) (4.1)

with respect to u ∈ `2(Λ,R
M ) where

Ψ(u) := Ψ(q)
v,ω(u) :=

∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖2
2. (4.2)

We assume that T is non-expansive, i.e., ‖T ‖ < 1, which can always be achieved by rescaling. Also
we suppose that K is strictly convex. This is ensured if e.g. the kernel of T is trivial or ωλ > 0 for
all λ ≥ 0.

We define a surrogate functional by

Ks(u, a) := K(u) − ‖Tu− Ta‖2
H + ‖u− a‖2

2 = ‖Tu− g‖2
H + Ψ(u) − ‖Tu− Ta‖2

H + ‖u− a‖2
2.

Since ‖T ‖ < 1 also Ks is convex, see [17] for a rigorous argument. Now starting with some u(0) ∈
`2(Λ,R

M ) we define a sequence u(m) by

u(m+1) = arg min
u∈`2(Λ,RM )

Ks(u, u(m))

The minimizer of Ks(u, a) (for fixed a) can be determined explicitly as follows. First, we claim that

arg min
u
Ks(u, a) = UΨ(a+ T ∗(g − Ta)),

where the “thresholding” operator UΨ is defined as

UΨ(u) := arg min
z∈`2(Λ,RM )

‖u− z‖2
2 + Ψ(z). (4.3)

Indeed, a direct calculation shows that

Ks(u, a) = ‖Tu− g‖2
H − ‖Tu− Ta‖2

H + ‖u− a‖2
2 + Ψ(u)

= ‖(a+ T ∗(g − Ta)) − u‖2
2 + Ψ(u) − ‖a+ T ∗(g − Ta)‖2

2 + ‖g‖2
H − ‖Ta‖2

H + ‖a‖2
2.

Since the last terms (after Ψ(u)) do not depend on u they can be discarded when minimizing with
respect to u, and the above claim follows. (The same argument works also for general ’sparseness
measures’ Ψ). Thus, the iterative algorithm reads

u(m+1) = UΨ(u(m) + T ∗(g − Tu(m))). (4.4)

In the following we give more details about UΨ and analyze the convergence of this algorithm.
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4.1. The thresholding operator. Let us derive more information about UΨ for our specific
Ψ = Ψv,ω in (4.2). We have the following lemma.

Lemma 4.1. Let 1 ≤ q ≤ ∞. It holds

(U (q)
v,ω(u))λ := (U

Ψ
(q)
v,ω

(u))λ = (1 + ωλ)−1S(q)
vλ

(uλ),

where

S(q)
v (x) = arg min

z∈RM
‖z − x‖2

2 + v‖z‖q, x ∈ R
M . (4.5)

Furthermore, S
(q)
v is given by

S(q)
v (x) = x− P q′

v/2(x), (4.6)

where P q′

v/2 denotes the orthogonal projection onto the norm ball of radius v/2 with respect to the

dual norm of ‖ · ‖q, i.e., the ‖ · ‖q′-norm with q′ denoting the dual index, 1/q + 1/q′ = 1. (The
analogous result holds also if the norm ‖ · ‖q is replaced by an arbitrary norm on RM).

Proof. For Ψv,ω the minimizing problem defining UΨ = U
(q)
v,ω decouples with respect to λ ∈ Λ.

Thus, we have

(U (q)
v,ω(x))λ = arg min

z∈RM
‖xλ − z‖2

2 + ωλ‖z‖2
2 + vλ‖z‖q.

If z minimizes the latter term then necessarily 0 ∈ 2(1+ωλ)z−2x+vλ∂‖·‖q(z) where ∂‖·‖q denotes
the subdifferential of the q-norm. In other words,

(1 + ωλ)z − x ∈ −vλ

2
∂‖ · ‖q(z).

Since ‖ · ‖q is 1-homogeneous we have ∂‖ · ‖q(z) = ∂‖ · ‖q((1 + ωλ)z). Setting y = (1 + ωλ)z gives
y − x ∈ − vλ

2 ∂‖ · ‖q(y), which is the above relation for ωλ = 0. From this we deduce the first claim.

Let us show the second claim, i.e., the explicit form of the operator S
(q)
v . We already know that

if z minimizes the left hand side of (4.5) then x − z ∈ ∂ v
2‖z‖q. Let ψ(z) = v

2‖z‖q and ψ∗ be its
Fenchel conjugate function defined by ψ∗(y) = supx(〈x, y〉 − f(x)). It is well-known [4, p. 93] that

ψ∗(y) = χBq′ (v/2)(y) :=

{
0 if ‖y‖q′ ≤ v/2
∞ otherwise

Here Bq′

(v/2) denotes the norm ball of radius v/2 with respect to the dual norm of ‖ · ‖q. It is a
standard result, see e.g. [37, Proposition 11.3], [24, Corollary 5.2], that w ∈ ∂ψ(y) if and only if
y ∈ ∂ψ∗(w) yielding z ∈ ∂ψ∗(x− z) in our case, and hence,

x ∈ x− z + ∂ψ∗(x− z) = x− z + ∂χBq′ (v/2)(x − z).

Now if y ∈ w + ∂χBq′ (v/2)(w) then it is straightforward to see that w must be the orthogonal

projection of y onto Bq′

(v/2), i.e., w = argminw′∈Bq′ (v/2) ‖w′ − y‖2, see also [37, Example 10.2 and

p. 20]. For our situation this means that x − z = P q′

v/2(x), i.e., z = x − P q′

v/2(x). This shows the

second claim.
Clearly, all arguments work also for a general norm rather than the q-norm. Let us give S

(q)
v

explicitly for q = 1, 2,∞.
Lemma 4.2. Let x ∈ RM and v ≥ 0.
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(a) For q = 1 we have S
(1)
v (x) = (s

(1)
v (x`))

M
`=1 where for y ∈ R

s(1)v (y) =

{
0 if |y| ≤ v

2 ,
sign(y)(|y| − v

2 ) otherwise.

(b) For q = 2 it holds

S(2)
v (x) :=

{
0 if ‖x‖2 ≤ v

2 ,
(‖x‖2−v/2)

‖x‖2
x otherwise.

(c) Let q = ∞. Order the entries of x by magnitude such that |xi1 | ≥ |xi2 | ≥ . . . ≥ |xiM |.
1. If ‖x‖1 < v/2 then S

(∞)
v (x) = 0.

2. Suppose ‖x‖1 > v/2. If |xi2 | < |xi1 | − v/2 then choose n = 1. Otherwise let n ∈
{2, . . . ,M} be the largest index satisfying

|xin | ≥
1

n− 1

(
n−1∑

k=1

|xik
| − v

2

)
. (4.7)

Then

(S(∞)
v (x))ij =

sign(xij )

n

(
n∑

k=1

|xik
| − v

2

)
, j = 1, . . . , n,

(S(∞)
v (x))ij = xij , j = n+ 1, . . . ,M.

Proof. (b) The projection P 2
v/2(x) of x onto an `2 ball of radius v/2 is clearly given by

P 2
v/2(x) =

{
x if ‖x‖2 ≤ v/2,
v/2
‖x‖2

x otherwise .

Since by the previous lemma S
(2)
v (x) = x− P 2

v/2(x) this gives the assertion.

(a) Although this is well-known we give a simple argument. For q = 1 the functional in (4.5)
defining S(1) decouples, i.e.,

S(1)
v (x) = arg min

z∈RM

M∑

`=1

(
|z` − x`|2 + v|z`|

)
.

Thus, S
(1)
v (x)` = argminz`∈R |z` − x`|2 + v|x`| for all ` = 1, . . . ,M . The latter can be interpreted as

the problem for q = 2 on R1 and hence, the assertion follows from (b).

(c) If ‖x‖1 ≤ v/2 then P 1
v/2(x) = x and by the previous lemma S

(∞)
v (x) = x−P 1

v/2(x) = 0. Now

assume ‖x‖1 > v/2. Let z = S
(∞)
v (x). This is equivalent to 0 being contained in the subdifferential

of the functional in (4.5) defining S
(∞)
v . This means

2(z − x) ∈ −v∂‖ · ‖∞(z). (4.8)

We recall that the subdifferential of the maximum norm is given by (3.6).
Now assume for the moment that the maximum norm of z is attained in zi1 , . . . , zin . We

will later check whether this was really the case. Further, we assume for simplicity that all the
entries xi1 , . . . , xin are positive. (The other cases can be carried through in the same way). Then
certainly also the numbers zi1 , . . . , zin are positive because choosing them with the opposite sign
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would certainly increase the functional defining S
(∞)
v . Then by (3.6) we obtain 2(zij − xij ) = 0 for

the entries zij not giving the maximum, i.e., zij = xij , j = n+ 1, . . . ,M.
Moreover, if n = 1 (i.e., the maximum norm of z is attained at only one entry) then 2(zi1−xi1) =

−v, in other words, zi1 = xi1 − v/2. Thus, the initial hypothesis that the maximum norm of z is
attained only at zi1 is true if and only if the second largest entry xi2 satisfies |xi2 | < |xi1 | − v/2.

So if the latter inequality is not satisfied then the maximum norm of z is at least attained at
two entries, i.e., n ≥ 2. In this case by (3.6) the entries zi1 = zi2 = · · · = zin = t satisfy

2t− 2xij = −vaj , j = 1, . . . , n− 1,

2t− 2xin = −v
(

1 −
n−1∑

k=1

ak

)

for some numbers a1, . . . , an−1 ∈ [0, 1] satisfying
∑

j aj ≤ 1. This is a system of n linear equations
in t and a1, . . . , an−1. Writing it in matrix form we get




1 v/2 0 0 · · · 0
1 0 v/2 0 · · · 0
...

...
...

...
...

...
1 −v/2 −v/2 −v/2 · · · −v/2







t
a1

...
an−1


 =




xi1
...

xin−1

xin − v/2


 .

Denoting the matrix on the left hand side by B, a simple computation verifies that

B−1 =
1

n




1 1 1 · · · 1
2(n−1)

v − 2
v − 2

v · · · − 2
v

− 2
v

2(n−1)
v − 2

v · · · − 2
v

...
...

. . .
...

...

− 2
v · · · − 2

v
2(n−1)

v − 2
v



.

This gives

zi1 = . . . = zin = t =
1

n




n∑

j=1

xij − v/2




and aj = 2
nv

(
v/2 + (n− 1)xij −

∑
k∈{1,...,n}\{j} xik

)
. Thus, all aj are non-negative if for all j ∈

{1, . . . , n− 1}

xij ≥ 1

n− 1




∑

k∈{1,...,n}\{j}

xik
− v/2


 .

Moreover, a simple calculation gives
∑n−1

j=1 aj = n−1
n + 2

nv

(∑n−1
j=1 xij − (n− 1)xin

)
. Thus, it holds

1 −∑n−1
j=1 aj ≥ 0 if and only if

xin ≥ 1

n− 1




n−1∑

j=1

xij − v/2


 .

Therefore, the initial assumption that the maximum norm of u is attained precisely at zi1 , . . . , zin

can only be true if xi1 , . . . , xin are the largest entries of the vector x and

zin+1 = xin+1 < t =
1

n




n∑

j=1

xij − v/2


 ,
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i.e., |xin+1 | < n−1(
∑n

j=1 |xij | − v/2). Pasting all the pieces together shows the assertion of the
lemma.

4.2. Weak convergence. In the following we will prove that u(m) converges weakly and
strongly to the unique minimizer of K. We first establish the weak convergence. Following the
proof of Proposition 3.11 in [17] one may extract essentially three conditions on a general sparsity
measure Ψ such that weak convergence is ensured. Let us collect them in the following Proposition.

Proposition 4.3. Assume K is given by (4.1) with a general sparsity measure Ψ and suppose
K is strictly convex. Let UΨ be the associated ’thresholding operator’ given by (4.3). Assume that
the following conditions hold

(1) UΨ is non-expansive, i.e. ‖UΨ(x) − UΨ(y)‖2 ≤ ‖x− y‖2 for all x, y ∈ `2(Λ,R
M ).

(2) It holds ‖f‖2 ≤ H(Ψ(f)) for all f ∈ `2(Λ,R
M ) and some monotonically increasing function

H on R+. (This ensures that a sequence fn satisfying Ψ(fn) ≤ C is bounded in `2(Λ,R
M )).

(3) For all x, h ∈ `2(Λ,R
M ) it holds

Ψ(UΨ(x) + h) − Ψ(UΨ(x)) + 2〈h, UΨ(x) − x〉 ≥ 0.

Then the sequence u(m) defined by (4.4) converges weakly to the minimizer of K independently of
the choice of u(0).

Proof. First we claim that the condition in (3) implies that the surrogate functional Ks satisfies

Ks(u + h, a) −Ks(u, a) ≥ ‖h‖2
2 (4.9)

for u = arg minu′ Ks(u′, a) = UΨ(a−T ∗(g−Ta)). Indeed, set x := a−T ∗(g−Ta), i.e., u = UΨ(x).
Then an elementary calculation yields

Ks(u+ h, a) −Ks(u) = ‖T (u+ h) − g‖2
2 + Ψ(u+ h) − ‖T (u+ h) − Ta‖2

2 + ‖u+ h− a‖2
2

− ‖Tu− g‖2
2 − Ψ(u) + ‖Tu− Ta‖2

2 − ‖u− a‖2
2

= 2〈h, u− a− T ∗(g − Ta)〉 + Ψ(u+ h) − Ψ(u) + ‖h‖2
2

= 2〈h, UΨ(x) − x〉 + Ψ(UΨ(x) + h) − Ψ(UΨ(x)) + ‖h‖2
2 ≥ ‖h‖2

2.

The relation in (3) was used in the last inequality.
Now with (4.9) and properties (1) and (2) one can justify that the proofs of the analogues of

Theorem 3.2 until Proposition 3.11 in [17] go through completely in the same way, which finally
leads to the statement of this proposition.

Let us now show that for our specific choice of Ψ = Ψ
(q)
v,ω properties (1) - (3) in the previous

Proposition hold, and thus, u(n) converges weakly to a minimizer of K.

Lemma 4.4. U
(q)
v,ω = U

Ψ
(q)
v,ω

is non-expansive.

Proof. Clearly, the map x 7→ (1 + ωλ)−1x is non-expansive. By (4.6) we have S
(q)
v = I − P q′

v/2.

Since P q′

v/2 is an orthogonal projection onto a convex set also S
(q)
v is non-expansive, see e.g. [39].

Hence, U
(q)
v,ω is non-expansive since on each component xλ, λ ∈ Λ, it is a composition of non-expansive

operators.
Lemma 4.5. If (vλ) or (ωλ) are bounded away from 0 then condition (2) in Proposition 4.3

holds.
Proof. This follows by a standard argument.
If we consider the problem of minimizing J(u, v) jointly over u and v then we certainly cannot

assume that v is bounded away from 0, but in this case we require that ωλ is bounded away from 0.
(By Proposition 2.1 this is needed anyway to ensure that J(u, v) is jointly convex in u and v). In
the case where we only minimize J(u, v) with respect to u (i.e., when minimizing Ψ(u) defined in
(4.2)) we may take ωλ arbitrary (and even ωλ = 0) but then we have to require a lower bound on
vλ.
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Now consider the third condition in the Proposition. The next lemma shows that it suffices to

prove it for S
(q)
v , i.e., for ωλ = 0.

Lemma 4.6. Assume that for all x, h ∈ RM it holds

v(‖S(q)
v (x) + h‖q − ‖S(q)

v (x)‖q) + 2〈h, S(q)
v (x) − x〉 ≥ 0.

Then condition (3) in Proposition 4.3 is satisfied.

Proof. By definition of Ψ
(q)
v,ω we need to show that for ω, v ≥ 0 and all x, h ∈ R

M

v(‖(1 + ω)−1S(q)
v (x) + h‖q − ‖(1 + ω)−1S(q)

v (x)‖q)

+ω(‖(1 + ω)−1S(q)
v (x) + h‖2

2 − ‖(1 + ω)−1S(q)
v (x)‖2

2) + 2〈h, (1 + ω)−1S(q)
v (x) − x〉 ≥ 0.

Setting h′ = (1 + ω)h we obtain for the left hand side of this inequality

(1 + ω)−1v
(
‖S(q)

v (x) + h′‖q − ‖S(q)
v (x)‖q

)

+(1 + ω)−2ω
(
‖S(q)

v (x) + h′‖2
2 − ‖S(q)

v (x)‖2
2

)
+ 2(1 + ω)−2〈h′, S(q)

v (x) − x〉

=(1 + ω)−1
[
v(‖S(q)

v (x) + h′‖q − ‖S(q)
v (x)‖q) + 2〈h′, S(q)

v (x) − x〉
]

+(1 + ω)−2ω
[
‖S(q)

v (x) + h′‖2
2 − ‖S(q)

v (x)‖2
2 − 2〈h′, S(q)

v (x)〉
]
≥ (1 + ω)−2ω‖h′‖2

2 ≥ 0.

This completes the proof.

Lemma 4.7. The condition in the previous lemma holds for S
(q)
v , 1 ≤ q ≤ ∞ (and even if the

`q norm is replaced by a general norm on RM ).
Proof. First note that by definition (4.5) and duality we have

‖S(q)
v (x)‖q = (v/2)−1 sup

k∈Bq′ (v/2)

〈k, x− P q′

v/2x〉

A characterization of the orthogonal projection tells us that 〈k − P q′

v/2x, x − P q′

v/2x〉 ≤ 0 for all

k ∈ Bq′

(v/2), see e.g. [39, Lemma 8]. This gives

‖S(q)
v (x)‖q = (v/2)−1 sup

k∈Bq′ (v/2)

(
〈k − P q′

v/2x, x− P q′

v/2(x)〉 + 〈P q′

v/2(x), S
(q)
v (x)〉

)

≤ (v/2)−1〈P q′

v/2(x), S
(q)
v (x)〉.

Using once more that S
(q)
v (x) − x = −P q

v/2(x) we further obtain

v(‖S(q)
v (x) + h‖q − ‖Sv(q)(x)‖q) + 2〈h, S(q)

v (x) − x〉
≥ v‖S(q)

v (x) + h‖q − 2〈P q′

v/2(x), S
(q)
v (x)〉 − 2〈P q′

v/2(x), h〉 = v‖S(q)
v (x) + h‖q − 2〈P q′

v/2(x), S
(q)
v (x) + h〉

≥ v‖S(q)
v (x) + h‖q − 2‖P q′

v/2x‖q′‖S(q)
v (x) + h‖q ≥ 0.

Hereby, we used that P q′

v/2 is a projection onto Bq′

(v/2), so ‖P q′

v/2x‖q′ ≤ v/2. This finishes the proof.

To summarize we have the following result about weak convergence.
Corollary 4.8. Let 1 ≤ q ≤ ∞ and assume that (vλ) or (ωλ) is bounded from below. Then the

sequence u(m) defined in (4.4) converges weakly to a minimizer of K, where Ψ = Ψ
(q)
v,ω is the sparsity

measure defined in (4.2). (The q-norm in (4.2) can be replaced by any other norm on RM ).
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4.3. Strong convergence. The next result establishes the strong convergence.
Proposition 4.9. Let 1 ≤ q ≤ ∞ and assume that (vλ) or (ωλ) are bounded away from 0. In

case (vλ) is not bounded away from 0 assume further that there is a constant c > 0 such that vλ < c
for only finitely many λ. Then u(m) converges strongly to a minimizer of K.

Proof. The analogues of Lemmas 3.15 and 3.17 in [17] are proven in completely the same way.
It remains to justify the analogue of [17, Lemma 3.18]: If for some a ∈ `2(Λ,R

M ) and some sequence

(h(m)) ⊂ `2(Λ,R
M ) converging weakly to 0 it holds limm→∞ ‖U (q)

v,ω(a+h(m))−U
(q)
v,ω(a)−h(m)‖2 = 0

then ‖h(m)‖2 → 0 for m→ ∞. To this end we mainly follow the argument in [17].
Let c be the constant such that vλ < c for λ ∈ Λ00 for Λ00 finite. Then let Λ01 be a finite set

such that
∑

λ∈Λ\Λ01
‖aλ‖q′ ≤ σ for some σ < c/2. (Such a set Λ01 exists since ‖ · ‖q′ and ‖ · ‖2 are

equivalent norms on RM and by assumption a ∈ `2(Λ,R
M )). Since Λ0 = Λ00 ∪Λ01 is also finite, we

have
∑

λ∈Λ0
‖h(m)

λ ‖2
2 → 0 for m→ ∞ by the weak convergence of h(m) to 0. Thus, we are left with

proving that
∑

λ∈Λ\Λ0
‖h(m)

λ ‖2
2 → 0 for m→ ∞.

For each m we split Λ1 := Λ \Λ0 into the subsets Λ1,m := {λ ∈ Λ1 : ‖h(m)
λ + aλ‖q′ < vλ/2} and

Λ̃1,m = Λ1 \Λ1,m. If λ ∈ Λ1 then U
(q)
v,ω(a+h(m))λ = U

(q)
v,ω(a)λ = 0 since ‖aλ +h

(m)
λ ‖q′ , ‖aλ‖q′ ≤ vλ/2.

Thus, ‖h(m)
λ − U

(q)
v,ω(a+ h(m))λ + U

(q)
v,ω(a)λ‖2

2 = ‖h(m)
λ ‖2

2 and by assumption,
∑

λ∈Λ1

‖h(m)
λ ‖2

2 ≤ ‖h(m) − U (q)
v,ω(a+ h(m)) + U (q)

v,ω(a)‖2
2 → 0 as m→ ∞.

Now let λ ∈ Λ̃1,m. We first consider the case that ωλ = 0, i.e., Uv,ωq(x)λ = S
(q)
v (x)λ. Since

‖aλ‖q′ ≤ σ < vλ/2 we have S
(q)
v (a) = 0, and thus,

‖h(m)
λ − S(q)

vλ
(h

(m)
λ + aλ)‖q′ = ‖h(m)

λ − (h
(m)
λ + aλ) + P q′

vλ/2(h
(m)
λ + aλ)‖q′

= ‖P q′

vλ/2(h
(m)
λ + aλ) − aλ‖q′ ≥ ‖P q′

vλ/2(h
(m)
λ + aλ)‖q′ − ‖aλ‖q′ ≥ vλ/2 − σ ≥ c/2 − σ.

Hereby, we used that ‖P q′

vλ/2(h
(m)
λ + aλ)‖q′ = vλ/2 (because ‖h(m)

λ + aλ‖q′ ≥ vλ/2). Since every

norm on a finite-dimensional space is equivalent there is a constant C such that

‖h(m)
λ − S(q)

vλ
(h

(m)
λ + aλ) + S(q)

vλ
(aλ)‖2

2 ≥ C2(c/2 − σ)2 > 0.

However, since by assumption
∑

λ∈Λ ‖h(m)
λ −S

(q)
vλ (h

(m)
λ + aλ)+S

(q)
vλ (a)‖2

2 → 0 as m→ ∞ there must

exist an m0 such that Λ̃1,m is empty for all m ≥ m0.
In the case that ωλ does not vanish we have

‖h(m)
λ − U (q)

v,ω(h(m) + a)λ + U (q)
v,ω(a)λ‖2 = ‖h(m)

λ − (1 + ωλ)−1S(q)
vλ

(h
(m)
λ + aλ)‖2

= (1 + ωλ)−1‖(1 + ωλ)h
(m)
λ − S(q)

vλ
(h

(m)
λ + aλ)‖2 (4.10)

We claim that

‖(1 + ωλ)h
(m)
λ − S(q)

vλ
(h

(m)
λ + aλ)‖2 ≥ ‖h(m)

λ − S(q)
vλ

(h
(m)
λ + aλ)‖2 (4.11)

so that we can apply the argument for ωλ = 0 to conclude that Λ̃1,m is empty for m sufficiently
large. Let us omit for the moment all indexes λ and m for the sake of simpler notation. We have

‖(1 + ω)h− S(q)
v (h+ a)‖2

2 − ‖h− S(q)
v (h+ a)‖2

2 = 2ω〈h, h− S(q)
v (h+ a)〉 + ω2‖h‖2

2 (4.12)

and furthermore,

〈h, h− S(q)
v (h+ a)〉 = 〈h, P q′

v/2(h+ a) − a〉

= −〈h+ a− P q′

v/2(h+ a), a− P q′

v/2(h+ a)〉 + ‖a− P q′

v/2(h+ a)‖2
2 ≥ 0. (4.13)
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Hereby, we used that a ∈ Bq′

(σ) ⊂ Bq′

(v/2) and the fact that 〈k − P q′

v/2(x), x− P q′

v/2(x)〉 ≤ 0 for all

k ∈ Bq′

(v/2) and x ∈ RM . Thus, the term in (4.12) is non-negative and therefore our claim (4.11)
holds.

Let us shortly comment on the condition that if vλ is not bounded from below there is at least
some c > 0 such that vλ > c except for a finite set of indexes λ. This condition is mainly relevant
when considering also a minimization over (vλ). Then the term

∑
θλ(ρλ − vλ)2 in the functional

J(u, v) ensures that the sequence (ρλ − vλ) is contained in `2,θ1/2. If θλ and ρλ are bounded from
below this implies that vλ can be less than 1/2 minλ ρλ, say, only for finitely many λ.

5. Numerical Implementation and Error Analysis. The scope of this section is twofold:
We want to formulate an implementable version of the double-minimization algorithm and show its
strong convergence. To this end we develop an error analysis.

5.1. Numerical implementation. Let us compose the two iterative algorithms described in
(3.1) and (4.4), respectively, into a unique scheme.

Algorithm 1. JOINTSPARSE
Input: Data vector (gj)

N
j=1, initial points u(0) ∈ `2(Λ,R

M ), v(0) with 0 ≤ v
(0)
λ ≤ ρλ,

number nmax of outer iterations,
number of inner iterations Ln, n = 1, . . . , nmax.

Parameters: q ∈ [1,∞], positive weights (θλ), (ρλ), (ωλ) with ωλ ≥ c > 0,

such that Φ(q) and hence J are convex, see Proposition 2.1

Output: Approximation (u∗, v∗) of the minimizer of J
(q)
θ,ρ,ω

u(0,0) := u(0);
for n := 0 to nmax do

for m := 0 to Ln do

u(n,m+1) := U
(q)

v(n),ω

(
u(n,m) + T ∗(g − Tu(n,m))

)
;

endfor

u(n+1,0) := u(n,Ln);

v(n+1) :=

({
ρλ − 1

2θλ
‖u(n+1,0)

λ‖q, ‖u(n+1,0)
λ‖q < 2θλρλ

0, otherwise .

)

λ∈Λ

;

endfor

u∗ := u(nmax,Lnmax);
v∗ := v(nmax).

Observe that each (inner) iteration of the above algorithm involves an application of T ∗T and

of the thresholding operator U
(q)
v,ω. The latter can be applied fast. So if there is also a fast algorithm

for the computation of T ∗T then each iteration can be done fast.

Our analysis ensures the (weak) convergence of this scheme only if the inner loop computes ex-
actly the minimizer of J(u, v(n)) for fixed v(n), i.e., if Ln = ∞. Of course, this cannot be numerically
realized, so we need to analyze what happens if the inner loop makes a small error in computing this
minimizer. In other words, how large do we have to choose nmax and Ln, n = 1, . . . , nmax in order to
ensure that we have approximately computed the minimizer u∗, v∗ within a given error tolerance?

5.2. Error analysis and strong convergence of JOINTSPARSE. First of all we want
to establish the convergence rate of the inner loop, i.e., the iterative thresholding algorithm of the
previous Section.

Proposition 5.1. Assume that ωλ ≥ γ > 0 for all λ ∈ Λ (implying that K(u) = K
(q)
v,ω(u) is

strictly convex) and ‖T ‖ < 1. Set α := (1 + γ)−1‖I − T ∗T ‖ < 1. Then the iterative thresholding
algorithm

u(n,m+1) := U
(q)

v(n),ω

(
u(n,m) + T ∗(g − Tu(n,m))

)
,
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converges linearly

‖u(n,∞) − u(n,m+1)‖2 ≤ α‖u(n,∞) − u(n,m)‖2. (5.1)

Proof. Note that

u(n,∞) := U
(q)

v(n),ω

(
u(n,∞) + T ∗(g − Tu(n,∞))

)
.

By non-expansiveness of S
(q)
v (see Lemma 4.4 and its proof) we obtain

‖u(n,∞) − u(n,m+1)‖2

= ‖U (q)

v(n),ω

(
u(n,∞) + T ∗(g − Tu(n,∞))

)
− U

(q)

v(n),ω

(
u(n,m) + T ∗(g − Tu(n,m))

)
‖2

=

(
∑

λ∈Λ

(1 + ωλ)−2‖S(q)
vλ

((u(n,∞) + T ∗(g − Tu(n,∞))λ) − S(q)
vλ

((u(n,m) + T ∗(g − Tu(n,m))λ)‖2
2

)1/2

≤ sup
λ∈Λ

(1 + ωλ)−1‖(I − T ∗T )(u(n,∞) − u(n,m))‖2 ≤ (1 + γ)−1‖I − T ∗T ‖ ‖u(n,∞) − u(n,m)‖2

=α‖u(n,∞) − u(n,m)‖2.

This establishes the claim.
Remark: Clearly, the error estimation in (5.1) holds also if one is only interested in analyzing the
iterative thresholding algorithm from the last section (i.e. without doing the outer iteration). Then
it might also be interesting to consider the case that ω = 0. According to what we have proven
in the previous section the algorithm still converges provided the weight v is bounded away from
zero. However, then the error estimation (5.1) has a useful meaning only if α = ‖I − T ∗T ‖ < 1. So
this applies if T ∗T is boundedly invertible. For a usual inverse problem, however, we will have a
non-invertible T or at least one with unbounded inverse resulting in ‖I − T ∗T ‖ = 1. So in this case
we only know that the algorithm converges, but an error estimate does not seem to be available.

For simplicity we restrict the following error analysis to the most interesting cases q ∈ {1, 2,∞}.
We first need the following technical result.

Lemma 5.2. For q ∈ {1, 2,∞} the projection P q
v onto the ball Bq(v) ⊂ RM is a Lipschitz

function with respect to v ∈ R+. In particular, we have

‖P q
v (x) − P q

w(x)|`M2 ‖ ≤ L|v − w| for all x ∈ R
M , (5.2)

where L = 1 for q ∈ {1, 2} and L = M1/2 for q = ∞.
Proof. Let us start with q = 2. By distinguishing cases it is not difficult to show that

‖P 2
v (x) − P 2

w(x)|`M2 ‖ ≤ |v − w|.

For q = ∞ we have P∞
v (x) = (p∞v (x`))

M
`=1 where for y ∈ R

p∞v (y) =

{
y if |y| ≤ v,
y − sign(y)(|y| − v) otherwise.

Since p∞v can be interpreted as a projection onto the `2 ball in dimension 1, we obtain that

|p∞v (y) − p∞w (y)| ≤ |v − w|,

and

‖P∞
v (x) − P∞

w (x)|`M2 ‖ =

(
M∑

`=1

|p∞v (x`) − p∞w (x`)|2
)1/2

≤M1/2|v − w|.

22



The case q = 1 requires a bit more effort. By Lemma 4.2 (c) we have the following. Let xik
denote

the reordering of the entries of x by magnitude as in Lemma 4.2. Let n ∈ {1, . . . ,M} be the largest
index satisfying

|xin | ≥
1

n− 1

(
n−1∑

k=1

|xik
| − v

)
.

Then

(P 1
v (x))ij = xij −

sign(xij )

n

(
n∑

k=1

|xik
| − v

)
, j = 1, . . . , n,

(P 1
v (x))ij = 0, j = n+ 1, . . . ,M.

Observe first that for all x ∈ RM there exists ε0 > 0 such that for all 0 < ε < ε0 the same
n ∈ {1, . . . ,M} is the largest index satisfying

|xin | ≥
1

n− 1

(
n−1∑

k=1

|xik
| − (v + ε)

)
.

For 0 < ε < ε0, a simple computation yields

(P 1
v+ε(x) − P 1

v (x))ij

ε
=

{
sign(xij

)

n for j = 1, . . . , n,
0 j = n+ 1, . . . ,M.

This means that the map v → P 1
v (x) is right-differentiable, i.e., the limit

(P 1
v (x))′+ = lim

ε→0+

P 1
v+ε(x) − P 1

v (x)

ε

exists in RM . Moreover, it also follows that

‖(P 1
v (x))′+‖2 =

1√
n
≤ 1. (5.3)

To conclude the proof we use the following standard result.
Lemma 5.3. Let f : R → RM and ϕ : R → R be two continuous and right differentiable

functions such that

‖f ′
+(v)‖ ≤ ϕ′

+(v),

for all v ∈ R. Then

‖f(v) − f(w)‖ ≤ ϕ(v) − ϕ(w), for all v ≥ w.

According to the notation of this latter lemma, let us set f(v) = P 1
v (x) and ϕ(v) = v. Since P 1

v (x)
is a continuous function with respect to v (in fact this is true for any projection onto convex sets,
see [37]), by (5.3) and an application of the lemma we conclude that ‖P 1

v (x) − P 1
w(x)‖ ≤ |v − w|.

Observe that the strict convexity of Φ(q)(u, v) is equivalent to θλωλ > κq/4, see Proposition 2.1.
In the following Proposition we require the slightly stronger condition that θλωλ is bounded strictly
away from κq/4.

Proposition 5.4. Let q ∈ {1, 2,∞}. Assume that θλωλ ≥ σ > κq/4 for all λ ∈ Λ, where
κ1 = M and κ2 = κ∞ = 1, implying that Φ(q)(u, v) and J(u, v) are strictly convex, see Proposition
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2.1. Moreover, let us assume that ωλ ≥ γ > 0 for all λ ∈ Λ. Suppose ‖T ‖ < 1 resulting in
‖I − T ∗T ‖ ≤ 1. Set

β := sup
λ∈Λ

κq

4θλωλ + 4θλ(1 − ‖I − T ∗T ‖) ≤ κq

4σ
< 1. (5.4)

Then for each n ∈ N one has the following error estimate

‖u(n,∞) − u∗|`2(Λ,RM )‖ ≤ β‖u(n,0) − u∗|`2(Λ,RM )‖.

Proof. Let us consider the n-th iteration of the outer loop. We have

u(n,∞) = U
(q)

v(n),ω
(u(n,∞) + T ∗(g − Tu(n,∞))︸ ︷︷ ︸

:=y(n)

).

By the weak convergence of the double-minimization algorithm, also the minimum solution u∗ sat-
isfies a similar relation,

u∗ = U
(q)
v∗,ω(u∗ + T ∗(g − Tu∗)︸ ︷︷ ︸

:=y∗

).

Recall that U
(q)
v,ω(y)λ := (1 + ωλ)−1S

(q)
vλ (yλ). By non-expansiveness of S

(q)
v (Lemma 4.4) we have

‖u(n,∞)
λ − u∗λ‖2 ≤ ‖U (q)

v(n),ω
(y(n))λ − U

(q)

v(n),ω
(y∗)λ‖2 + ‖U (q)

v(n),ω
(y∗)λ − U

(q)
v∗,ω(y∗)λ‖2

= (1 + ωλ)−1‖y(n)
λ − y∗λ‖2 + ‖U (q)

v(n),ω
(y∗)λ − U

(q)
v∗,ω(y∗)λ‖2

≤ (1 + ωλ)−1‖I − T ∗T ‖ ‖u(n,∞)
λ − u∗λ‖2 + ‖U (q)

v(n),ω
(y∗)λ − U

(q)
v∗,ω(y∗)λ‖2.

This implies

‖u(n,∞)
λ − u∗λ‖2 ≤

(
1 − (1 + ωλ)−1‖I − T ∗T ‖

)−1 ‖U (q)

v(n),ω
(y∗)λ − U

(q)
v∗,ω(y∗)λ‖2

= (1 + ωλ − ‖I − T ∗T ‖)−1 ‖S
v
(n)
λ

(y∗λ) − Sv∗

λ
(y∗λ)‖2.

Recall from Lemma 4.1 that S
(q)
v (x) = x − P q′

v/2(x) where P q′

v/2 denotes the orthogonal projection

of x onto the `q′ -ball of radius v/2. By Lemma 5.2 we have that for any z ∈ RM

‖S(q)

v
(n)
λ

(z) − S
(q)
v∗

λ
(z)‖2 = ‖P q′

v∗

λ/2(z) − P q′

v
(n)
λ /2

(z)‖2 ≤ L

2
|v(n)

λ − v∗λ|.

So S
(q)
v (z) is also Lipschitz in v. Let us recall that

v
(n)
λ :=

{
ρλ − 1

2θλ
‖u(n,0)

λ ‖q, ‖u(n,0)
λ ‖q < 2θλρλ

0, otherwise .

and

v∗λ :=

{
ρλ − 1

2θλ
‖u∗λ‖q, ‖u∗λ‖q < 2θλρλ

0, otherwise .

By distinguishing cases we can show that

|v(n)
λ − v∗λ| ≤

1

2θλ

∣∣∣‖u(n,0)
λ ‖q − ‖u∗λ‖q

∣∣∣ ≤ 1

2θλ
‖u(n,0)

λ − u∗λ‖q ≤ R

2θλ
‖u(n,0)

λ − u∗λ‖2,
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where R = 1 for q ∈ {2,∞} and R = M1/2 for q = 1. Pasting the pieces together and using RL = κq

yields

‖u(n,∞)
λ − u∗λ‖2 ≤ κq

4θλ (ωλ + 1 − ‖I − T ∗T ‖)‖u
(n,0)
λ − u∗λ‖2 ≤ β‖u(n,0)

λ − u∗λ‖2.

Summation over λ ∈ Λ completes the proof.
Let us combine the previous two results to obtain the error estimation for the finite algorithm,

i.e., for Ln <∞.
Theorem 5.5. Make the same assumptions as in Propositions 5.1 and 5.4. Choose Ln such

that

δn :=
(
αLn(1 + β) + β

)
≤ δ < 1 for all n ∈ N.

(This is possible since α, β < 1). Then we have linear convergence of our algorithm, i.e.,

‖u(n,0) − u∗‖2 ≤ δn‖u(n−1,0) − u∗‖2.

Proof. Using Proposition 5.1 and Proposition 5.4 we get

‖u(n,0) − u∗‖2 ≤ ‖u(n,0) − u(n−1,∞)‖2 + ‖u(n−1,∞) − u∗‖2

≤ αLn−1‖u(n−1,0) − u(n−1,∞)‖2 + β‖u(n−1,0) − u∗‖2

≤ αLn−1

(
‖u(n−1,0) − u∗‖2 + ‖u∗ − u(n−1,∞)‖2

)
+ β‖u(n−1,0) − u∗‖2

≤ αLn−1

(
‖u(n−1,0) − u∗‖2 + β‖u(n−1,0) − u∗‖2

)
+ β‖u(n−1,0) − u∗‖2

≤
(
αLn−1(1 + β) + β

)
‖u(n−1,0) − u∗‖2.

This concludes the proof.
Remark: The last theorem shows that it is possible to choose the number Ln of inner iterations
constant with respect to n.

5.3. Strong convergence of the double-minimization algorithm. Finally, we can estab-
lish the strong convergence of the double-minimization algorithm and conclude the full proof of
Theorem 3.1.

Corollary 5.6. Under the assumptions of Proposition 5.4, if the minimizer of J(u, v(n)) for
fixed v(n) could be computed exactly, i.e., Ln = ∞ for all n ∈ N, then the outer loop converges with
exponential rate, and we have

‖u(n) − u∗‖2 ≤ βn‖u(0) − u∗‖2,

where we have denoted here u(n) := u(n,∞). Moreover, the sequence v(n) converges componentwise
and v(n) − v∗ converges to 0 strongly in `2,θ(Λ).

Proof. The first part of the statement is a direct application of Proposition 5.4. It remains to
show that v(n) − v∗ converges to 0 strongly in `2,θ(Λ). Using that all norms on RM are equivalent
it follows that

4
∑

λ∈Λ

θ2λ|v(n) − v∗|2 =
∑

λ∈Λ

|‖u∗λ‖q − ‖u(n)
λ ‖q|2 ≤

∑

λ∈Λ

‖u∗λ − u
(n)
λ ‖2

q

≤ C
∑

λ∈Λ

‖u∗λ − u
(n)
λ ‖2

2 = C‖u∗ − u(n)|`2(Λ,RM )‖2.

Thus, v(n) − v(∞) converges also strongly in `2,θ(Λ).
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6. Color image reconstruction. With this section we illustrate the application of the algo-
rithms for color image recovery. The scope is to furnish a qualitative description of the behavior of
the scheme. In a subsequent work we plan to provide a finer quantitative analysis in the context of
distributed compressed sensing [3].

We begin by illustrating an interesting real-world problem occurring in art restoration. On 11th

March 1944, a group of bombs launched from an Allied airplane hit the famous Italian Eremitani’s
Church in Padua, destroying it together with the inestimable frescoes by Andrea Mantegna et al.
contained in the Ovetari Chapel. Details on “the state of the art” can be found in [28, 27]. In
1920 a collection of high quality gray level pictures of these frescoes has been made by Alinari.
The only color images of the frescoes are dated to 1940, but unfortunately their quality (i.e., the
intrinsic resolution of the printouts) is much lower, see Figure 7.1. Inspired by the fresco application,
we model the problem of the recovery of a high resolution color image from a low resolution color
datum and a high resolution gray datum. We will implement the solution to the model problem as
a non-trivial application of the algorithms we have presented in this paper.

6.1. Color images, curvelets, and joint sparsity. Let us assume that the color images are
encoded into YIQ channels. The Y component represents the luminance information (gray level),
while I and Q give the chrominance information. Of course, one may also choose a different encoding
system, e.g., RGB or CMYK. Clearly, the color image f = (f1, f2, f3) can be represented as a 3-
channel signal. In order to apply our algorithm, we need to fix a frame for which we can assume
color images being jointly sparse.

It is well-known that curvelets [7] are well-suited for sparse approximations of curved singulari-
ties. A natural image can in fact be modelled as a function which is piecewise smooth except on a
discontinuity set, the latter being described as the union of rectifiable curves. Moreover, there are
fast algorithms available for the computation of curvelet coefficients of digital images [6].

In the following, let us assume that a color image f is encoded into a vector of curvelet coefficients
(u`

λ)`=1,2,3
λ∈Λ . The image can be reconstructed by the synthesis formula

f = (Fu`)`=1,2,3 :=

(
∑

λ∈Λ

u`
λψλ

)

`=1,2,3

,

where {ψλ : λ ∈ Λ} is the collection of curvelets. The index λ consists of 3 different parameters,
λ = (j, p, k), where j corresponds to scale, p to a rotation, and k to the spatial location of the curvelet
ψλ. We do not enter in further details, especially of the discrete and numerical implementation, which
one can find in [7, 6].

Let us instead observe that significant curvelet coefficients uλ = (u1
λ, u

2
λ, u

3
λ) will appear simul-

taneously at the same λ ∈ Λ for all the channels, as soon as the corresponding curvelet overlaps with
a (curved) singularity (appearing simultaneously in all the channels), and is approximately tangent
to it. This justifies the joint sparsity assumption for color images with respect to curvelets.

6.2. The model of the problem. The datum of our problem is a three-channel signal g =
(g1, g2, g3) ∈ `2(Z

2
N0
,R3) where gi, i = 2, 3, are the low resolution chrominance channels I and Q,

and g1 is the high resolution gray channel Y. We assume that g was produced by g = Tu where
u = (u1, u2, u3) are the curvelet coefficients of the three channels of the high resolution color image
that we want to reconstruct. The operator T = (T`,j)`,j=1,2,3 can be expressed by the matrix

T =




F 0 0
0 AF 0
0 0 AF


 . (6.1)

Here, A is the linear operator that transforms the high-resolution image into the low resolution
image. In particular, A can be taken as a convolution operator (with a Gaussian for instance)
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Fig. 6.1. Left: The low-resolution color image is here presented after Gaussian filtering and downsampling.
In the numerical experiments the I and Q channels are used. Right: The high resolution gray level image encodes
several morphological information useful to recover the high resolution color image.

followed by downsampling. Eventually, we may assume a suitable scaling in order to make ‖T ‖ < 1,
and a different weighting of the gray channel and the I,Q channel in the discrepency term. Since
A is not invertible, also the operator T is not invertible, and the minimization of T (u) requires a
regularization. Clearly, for this task we use the functional K defined in (2.4) or J defined in (2.5).
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Fig. 6.2. The `2 error between the original color image and the iterations of the algorithm is shown for different
values of q = 1, 2,∞. We have considered Ln = 105 and nmax = 1, the numbers of inner and outer iterations
respectively. We have fixed here ωλ = 0, θλ = 10, and ρλ = 20 × 2−j.

6.3. On the choice of the parameters. What remains to clarify is the choice of the param-
eters ωλ, θλ, and ρλ. The parameter ωλ ≥ γ > 0 has been introduced for the sole purpose to make J
strictly convex. A large value of this parameter actually produces an image u which is significantly
blurred and no information about edges is recovered. Thus, we rather put ωλ = γ = ε > 0 small.
Due to the convexity requirements (see Subsection 2.3), we select θλ ∼ M

ε . The choice of ρλ requires
a deeper understanding of the information encoded by the curvelet coefficients.
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Fig. 6.3. The `2 error between the original color image and the iterations of the algorithm is shown for different
values of q = 1, 2,∞. We have considered Ln = 7 and nmax = 15, the numbers of inner and outer iterations
respectively. We have fixed here ωλ = 1/20, θλ = 10, and ρλ = 20 × 2−j.

Indeed, in [7] it was observed that those curvelets that overlap with a discontinuity decay like
‖uλ‖q . 2−3/4j while the others satisfy ‖uλ‖q . 2−3/2j (where j denotes the scale). Since we want
to recover joint discontinuities we may choose ρλ := ρj,p,k ∼ 2−js with s ∈ [3/4, 3/2]. By this choice
and by (3.2) the locations λ for which vλ = 0 will indicate a potential joint discontinuity.

Of course, this is just one possible choice of the parameters and further information might
be extracted from the joint sparsity pattern indicated by v, by the use of different parameters. We
believe that a deeper study of the characterization of the morphological properties of signals encoded
by frames (e.g., curvelets and wavelets) is fundamental for the right choice of these parameters. We
refer to [30, 31] for deeper insights in this direction, concerning fine properties of functions encoded
by the distribution of wavelet coefficients.

6.4. Numerical experiments. According to the previous subsections, we illustrate here the
application of JOINTSPARSE for the recovery of a high resolution color image from a low res-
olution color datum and a high resolution gray datum. In Figure 6.1 we illustrate the data of the
problem. In this case the resolution of the color image has been reduced by a factor of 4 in each
direction by using a Gaussian filter and a downsampling. We have conducted several experiments
for different choices of q ∈ {1, 2,∞}, with fixed parameters as indicated in Subsection 6.3. We have
chosen Ln = 105 and nmax = 1, as well as Ln = 7 and nmax = 15 (the numbers of inner and outer
iterations, respectively). In the first case, only the minimization of J(u, v(0)) with respect to u has
been performed, i.e., no iterative adaptation of the joint sparsity pattern indicated by v occurred.
In order to estimate the different behavior depending of the parameters above, we have evaluated
at each iteration the `2-error between the reconstructed I and Q color channels and the original I
and Q color channels. Figures 6.2 and 6.3 indicate that the error decreases for increasing values of
q. This means that the increased coupling due to the q-parameter is significant in order to improve
the recovery. Recall that the choice q = 1 does not induce any coupling between channels.

This coupling effect due to q > 1 is even more evident in Figure 6.3, where the adaptation
of the weight v occurs. The left and the central pictures in the second row of Figure 6.5 show a
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Fig. 6.4. The `2 error between the original color image and the iterations of the algorithm is shown for different
values of q = 1, 2,∞. We have considered Ln = 7 and nmax = 15, the numbers of inner and outer iterations
respectively. We have fixed here ωλ = 1/20, θλ = 10, and ρλ = 20× 2−j . Further iterations of TV minimization are
added in the outer loop to enforce edge enhancing.

reduced color distortion at edges, passing from the case q = 1 (without coupling) to the case q = ∞
respectively, and consequently a better edge resolution. Nevertheless, the differences are not so
remarkable. This is due to the fact that, although the functional J promotes coupling at edges, it
does not necessarily enforce a significant edge enhancement. Thus, we may modify the functional
by adding an additional total variation constraint on the I and Q channels:

JTV(u, v) := J(u, v) +
(
|Fu2|TV + |Fu3|TV

)
.

The effect of this modification is to promote edge enhancing together with their simultaneous cou-
pling through different channels. For the minimization of JTV we use a heuristic scheme as in [25], by
alternating iterations for the minimization of J and for the minimization of

(
|Fu2|TV + |Fu3|TV

)
,

compare also [19]. The corresponding results are shown in Figure 6.4 where the effect of the coupling
(for the cases q = 2,∞) is further enhanced. The right picture in the second row of Figure 6.5 shows
the result of the reconstruction in this latter case. The edges are perfectly recovered.

These numerical experiments confirm that the use of the joint sparsity measure Φ(q) associated
to the curvelet representation can improve significantly the quality of the reconstructed color image.
Better results are achieved by choosing q = ∞ and by the adaptive choice of weights as indicators
of the sparsity pattern. Further improvements can be achieved by channelwise edge enhancing, e.g.,
via total variation minimization. An application to the real case of the art frescoes is illustrated in
Figure 7.1.

7. Final Remarks. 1. If the index set Λ is infinite then T ∗T is represented as a biinfinite
matrix and thus its evaluation might not be exactly numerically implementable. In a subsequent
work we will consider the case #Λ = ∞ and the treatment of sparse (approximate) evaluations of
biinfinite matrices in order to realize fast and convergent schemes also in this situation, compare
also [38, 14, 15].

2. To exploit the optimal performance of the scheme, an extensive campaign of numerical
experiments should be conducted in order to further refine the choice of parameters. It is also
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Fig. 6.5. First row. Left: Portion of the low resolution color image. Center: Portion of the reconstructed color
image by Gaussian interpolation and substitution of the Y channel with the gray level datum. Evident color artifacts
appear at edges. Right: Portion of the original color image. Second row. Left: Portion of the reconstructed color
image for q = 1, Ln = 105, and nmax = 1. Center: Portion of the reconstructed color image for q = ∞, Ln = 7, and
nmax = 15. Right: Portion of the reconstructed color image for q = ∞, Ln = 7, nmax = 15, and TV minimization.

crucial to investigate the deeper relations among the parameter ρλ, the multifractal analysis as, e.g.,
in [30], and morphological image analysis. In particular, the parallel between the functional J and
the Γ-approximation of the Mumford-Shah functional by Ambrosio and Tortorelli [1, 5] is suggestive:

Fε(u, v) :=

∫

Ω

(u− g)2dx

︸ ︷︷ ︸
∼T (u)

+

∫

Ω

v2f(∇u)dx
︸ ︷︷ ︸

∼
∑

λ vλ‖u‖q

+

∫

Ω

ε|∇u|2dx
︸ ︷︷ ︸
∼
∑

λ ωλ‖u‖2
2

+

∫

Ω

(
ε|∇v|2 +

1

4ε
(1 − v)2

)
dx

︸ ︷︷ ︸
∼
∑

λ θλ(ρλ−vλ)2

,

where f is a suitable polyconvex function, e.g., f(∇u) = (|∇u|2 + |ux × uy|) = (|∇u|2 + |adj2(∇u)|),
adj2(A) is the matrix of all 2×2 minors of A. The minimization of this term enforces that derivatives
of different channels are large only in the same directions. According to the specific choices of
ρλ to indicate the discontinuity set of u, and for ωλ = ε and θλ = 1

4ε , we may investigate the
behavior of the functional J for ε → 0 and its relation with the Mumford-Shah functional. The
term

∑
λ

1
4ε (ρλ − vλ)2 essentially counts the number of curvelets that, from a certain scale j on such

that 2−j ∼ ε, do overlap with the discontinuity set and are nearly tangent to the singularity. We
conjecture that for ε → 0 and for a rectifiable curved discontinuity, this term estimates the length
of the discontinuity.

3. While we were finishing this paper, we have been informed by G. Teschke of the results in
[19]. In this manuscript the authors consider linear inverse problems where the solution is assumed
to fulfill some general 1-homogeneous convex constraint. They develop an algorithm that amounts
to a projected Landweber iteration and that provides an iterative approach to the solution of this
inverse problem. In particular for the case ω = (ωλ)λ = 0, some of our results stated in Section 4
can be reformulated in this more general setting and therefore derived from [19]. However, for ω 6= 0

the sparsity measure Ψ
(q)
v,ω as in (4.2) is not 1-homogeneous and the elaborations in Section 4 are

needed. Moreover, for the relevant cases q = 1, 2,∞, we express explicitly the projection P q′

v/2. Due

to their generality, the results in [19] do not provide concrete recipes to compute such projections.
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Fig. 7.1. Left: Low quality color image of the fresco dated to 1940. Center: High quality gray image of the
fresco dated to 1920. Some details are not visible in the color version. Right: The reconstructed image after 6 outer
iterations with 7 inner iterations each, for q = ∞. The final Y channel is substituted with the high resolution gray
level datum. The discountinuities are enhanced and no artifact colors appear.

8. Conclusion. We have investigated joint sparsity measures with respect to frame expansions
of vector valued functions. These sparsity measures generalize approaches valid for scalar functions
and take into account common sparsity patterns through different channels. We have analyzed linear
inverse problems with joint sparsity regularization as well as their efficient numerical solution by
means of a novel algorithm based on thresholded Landweber iterations. We have provided the con-
vergence analysis for a wide range of parameters. The role of the joint sparsity measure is twofold:
to tighten the characterization of solutions of interest and to extract significant morphological prop-
erties which are a common feature of all the channels. By numerical applications in color image
restoration, we have shown that joint sparsity significantly outperforms uncoupled constraints. We
have presented the results of an application to a relevant real-world problem in art restoration. The
wide range of applicability of our approach includes several other problems with coupled vector
valued solutions, e.g., neuroimaging and distributed compressed sensing.
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