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Abstract

We study the convergence of gradient flows related to learning deep linear neural
networks from data. In this case, the composition of the network layers amounts
to simply multiplying the weight matrices of all layers together, resulting in an
overparameterized problem. The gradient flow with respect to these factors can
be re-interpreted as a Riemannian gradient flow on the manifold of rank-r matri-
ces endowed with a suitable Riemannian metric. We show that the flow always
converges to a critical point of the underlying functional. Moreover, we establish
that, for almost all initializations, the flow converges to a global minimum on the
manifold of rank k matrices for some k ≤ r.

1 Introduction

Training a deep neural network amounts to solving an empirical risk minimization problem. One
commonly uses gradient descent methods for this task. While this is the work horse of current deep
learning technology and works very well in practice, the theoretical understanding of this approach is
lacking to a large extent, mainly due to the nonconvexity of the underlying optimization problem.
In this work, see [1] for all technical details, we study convergence to the (global) minimizers of
the corresponding objective functional. In the context of general nonlinear networks this problem
seems to be very involved and therefore we focus on the simpler case of linear networks, building on
previous work in e.g. [5, 3, 2, 4, 7]. While the class of linear neural networks may not be rich enough
for many machine learning tasks, it is nevertheless instructive and still a non-trivial task to understand
the convergence properties of gradient descent algorithms.
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Our contributions can be summarized as follows:

• We show that in the balanced case (see definition 2) the evolution of the product of all
network layer matrices can be re-interpreted as a Riemannian gradient flow on the manifold
of matrices of some fixed rank. This reveals an unexpected connection of deep learning to
Riemanian geometry.

• We show that the flow always converges to a critical point of the loss functional LN , see (2).
This results applies under significantly more general assumptions than results in [4].

• We show that the flow converges to the global optimum of the loss functional L1, see (4),
restricted to the manifold of rank k matrices for almost all initializations (Theorem 5), where
the rank may be anything between 0 and r (the smallest of the involved matrix dimensions).
In the case of two layers, we show in the same theorem that for almost all initial conditions,
the flow converges to a global optimum of L2, see (2). For the proof, we extend an abstract
result in [6] from gradient descent to gradient flows establishing that strict saddle points of
the functional are avoided for almost all initializations.

2 Gradient flows for learning linear networks

We consider the regression problem where we are given m data points x1, . . . , xm ∈ Rdx and label
points y1, . . . , ym ∈ Rdy and would like to find a map f such that f(xj) ≈ yj . In deep learning,
candidate maps are given by deep neural networks of the form

f(x) = fW1,...,WN ,b1,...,bN (x) = gN ◦ gN−1 ◦ · · · ◦ g1(x),

where each layer is of the form gj(z) = σ(Wjz + bj) with matrices Wj and vectors bj and an
activation function σ : R → R that acts componentwise. Here, we concentrate on the simplified
setting of linear networks of the form

f(x) = WN ·WN−1 · · ·W1x, for N ≥ 2,

where Wj ∈ Rdj×dj−1 for d0 = dx, dN = dy and d1, . . . , dN−1 ∈ N. Then f(x) = Wx with the
factorization

W = WN · · ·W1, (1)

which can be viewed as an overparameterization of the matrix W . Note that the factorization imposes
a rank constraint as the rank of W is at most r = min{d0, d1, . . . , dN}.
In order to fit the linear network to the data, we consider minimizing the squared loss, i.e., the
functional

LN (W1, . . . ,WN ) =
1

2

m∑
j=1

‖yj −WN · · ·W1xj‖22 =
1

2
‖Y −WN · · ·W1X‖2F (2)

where X ∈ Rdx×m is the matrix with columns x1, . . . , xm and Y ∈ Rdy×m the matrix with columns
y1, . . . , ym. Here ‖ · ‖F denotes the Frobenius norm induced by the inner product 〈A,B〉F :=
tr(ABT ).

Empirical risk minimization is the optimization problem

min
W1,...,WN

LN (W1, . . . ,WN ), where Wj ∈ Rdj×dj−1 , j = 1, . . . , N. (3)

For W ∈ Rdy×dx , we further introduce the functional

L1(W ) :=
1

2
‖Y −WX‖2F . (4)

Since the rank of W = WN · · ·W1 is at most r = min{d0, d1, . . . , dN}, minimization of LN is
closely related to the minimization of L1 restricted to the set of matrices of rank at most r, but the
optimization of LN does not require to formulate this constraint explicitly. However, LN is not
jointly convex in W1, . . . ,WN so that understanding the behavior of corresponding optimization
algorithms is not trivial.
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The gradient of L1 is given as

∇WL1(W ) = WXXT − Y XT .

For given initial values Wj(0), j ∈ {1, . . . , N}, we consider the system of gradient flows

Ẇj = −∇Wj
LN (W1, . . . ,WN ), j = 1, . . . , N, (5)

i.e., these flows run in a synchronous way. In this work we investigate when this system converges to
an optimal solution, i.e., one that is minimizing our optimization problem (3). For W = WN · · ·W1

we also want to understand the behavior of W (t) as t tends to infinity. Clearly, the gradient flow is
a continuous version of gradient descent algorithms used in practice and has the advantage that its
analysis does not require discussing step sizes.

Our first main result [1, Theorem 5] establishes convergence of the gradient flow.

Theorem 1. Assume XXT has full rank. Then the flows Wi(t) defined by (5) are defined and
bounded for all t ≥ 0 and (W1(t), . . . ,WN (t)) converges to a critical point of LN as t→∞.

3 Riemannian gradient flows

It turns out that the product matrix W (t) = WN (t) · · ·W1(t) formed with the individual matrices of
the gradient flow satisfies an interesting relation that can be connected to a Riemannian gradient flow
in the case that the W1, . . . ,WN are balanced as defined next, cf. [2].

Definition 2. We say that W1, . . . ,WN with Wj ∈ Rdj×dj−1 , j = 1, . . . , N , are balanced if

WT
j+1Wj+1 = WjW

T
j for j = 1, . . . , N − 1.

We say that the flow (5) has balanced initial conditions if W1(0), . . . ,WN (0) are balanced.

If the Wj(0) are balanced and the Wj(t) satisfy the flow (5), then one easily checks that
W1(t), . . . ,WN (t) are balanced for any t ≥ 0, cf. [3]. It was first established in [3] that then
the flow for the product W (t) = WN · · ·W1(t) is given by

dW (t)

dt
= −AW (t),N

(
∇WL1

(
W (t)

))
, (6)

where for W,Z ∈ Rdy×dx and N ≥ 2 the operator AW,N is defined as

AW,N (Z) =

N∑
j=1

(WWT )
N−j
N · Z · (WTW )

j−1
N . (7)

The product matrix W (t) clearly is of rank at most r := min{di : i = 0, . . . , N}. Therefore, we
introduce the (differentiable) manifold Mk of real dy × dx matrices of rank k ≤ min{dx, dy} and
denote by TW (Mk) the tangential space of Mk at the point W ∈Mk. The operator AW,N induces a
Riemannian metric on Mk as outlined in the next main result [1].

Theorem 3. The map AW,N is self-adjoint with image TW (Mk) and the restriction of AW,N to
arguments Z ∈ TW (Mk) defines a self-adjoint and positive definite map

ĀW,N : TW (Mk)→ TW (Mk).

In particular, ĀW,N is invertible and the inverse Ā−1W,N is self-adjoint and positive definite as well.
Hence,

gW (Z1, Z2) := 〈Ā−1W,N (Z1), Z2〉F , W ∈Mk, Z1, Z2 ∈ TW (Mk), (8)

is well-defined. It is a Riemannian metric of class C1 on Mk, which is explicitly given by the
expression

gW (Z1, Z2) =
sin(π/N)

π

∫ ∞
0

tr
(
(tIdy

+WWT )−1Z1(tIdx
+WTW )−1ZT

2

)
t1/Ndt.
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It is not clear at the moment whether the metric is also C2.

Given a Riemannian metric g on Mk we can introduce the Riemannian gradient∇g of a differentiable
function f on Mk at W ∈Mk via

gW (∇gf(W ), Z) = df(W )[Z] for all Z ∈ TW (Mk),

where df(W ) : TW (Mk)→ R denotes the standard differential of f at W . In view of (8) we have

∇gf(W ) = AW,N (∇f(W )),

where ∇f is the standard (Euclidean) gradient of f (which satisfies 〈∇f(W ), Z〉 = df(W )[Z] with
the Frobenius scalar product 〈·, ·〉). With this we can express W (t) as the solution of a Riemannian
gradient flow equation as stated next.

Theorem 4. 1. Assume that XXT has full rank and suppose that W1(t), . . . ,WN (t) are
solutions of the gradient flow (5) of LN with balanced initial valuesWj(0). For t ≥ 0 define
the product W (t) := WN (t) · · ·W1(t) and let k ≤ min{d0, . . . , dN} be the rank of W (0).
Then W (t) is contained in Mk for all t ≥ 0 and uniquely solves the gradient flow equation

Ẇ = −∇gL1(W ) on Mk for all t ∈ [0,∞). (9)

2. Assume that XXT has full rank and let N ≥ 2. Then for any initialization W (0) ∈ Rdy×dx ,
denoting by k the rank of W (0), there is a uniquely defined flow W (t) on Mk for t ∈ [0,∞)
which satisfies (9).

4 Convergence to global minimizers

While convergence to critical points of the gradient flow has been established in Theorem 1, it is not
clear at this point whether we can expect convergence to a global minimizer of LN . The next main
result [1, Theorem 39] provides some insights to this question.

Theorem 5. Assume that XXT has full rank, let q = rank(Y XT (XXT )−
1
2 ),

r = min{d0, . . . , dN} and let r̄ := min{q, r}.

(a) For almost all initial values W1(0), . . . ,WN (0), the flow (5) converges to a critical point
(W1, . . . ,WN ) of LN such that W := WN · · ·W1 is a global minimizer of L1 on the
manifold Mk of matrices in RdN×d0 of rank k := rank(W ), where k lies between 0 and r̄
and depends on the initialization.

(b) For N = 2, for almost all initial values W1(0) and W2(0), the flow (5) converges to a
global minimizer of LN on Rd0×d1 × Rd1×d2 .

Here, “for almost all” means for all up to a set of measure zero. We conjecture that also for N ≥ 3
the flow converges to a global minimizer of LN for almost all initializations.

The next result [1, Theorem 40] directly analyzes the corresponding Riemannian gradient flow (9) on
Mk. This corresponds to balanced initial conditions for the flow (W1(t), . . . ,WN (t)), but since the
balanced tuples of matrices (W1, . . . ,WN ) form a set of zero themselves, the result below cannot be
deduced directly from the previous theorem.

Theorem 6. Assume that XXT has full rank and let N ≥ 2. Then for almost all initializations
W (0) ∈ Rdy×dx on Mk, the flow W (t) on Mk solving (9) (cf. Theorem 4) converges to a global
minimum of L1 restricted to Mk or to a critical point on some M`, where ` < k. Note that for
k > rank((Y XT (XXT )−

1
2 )) there is no global minimum of L1 on Mk so that then the second

option applies. Here again, “for almost all W (0)” means for all W (0) up to a set of measure zero.

Both results are established by characterizing the strict saddle points of the functionals LN , and L1,
see [1, Section 6.4] and [5, 7], which are defined as critical points, where the (Riemannian) Hessian
has a negative eigenvalue, and by showing that Riemannian gradient flows avoid strict saddle points
for almost all initializations, see [1, Theorem 28]. The latter result extends a corresponding result in
[6] from gradient descent iterations to the case of gradient flows.
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APPENDIX: Experimental results

We numerically study the convergence of gradient flows in the linear supervised learning setting as a
proof of concept of the convergence results presented above in both the general supervised learning
case and the special case of autoencoders.

A General supervised learning case

We start with experiments to test the results in the general supervised learning setting to support
theoretical results in Theorems 5 and 6. We show results for N = 2, 5, 10, 20, and two sets of
values for dx and r (rank of W (t) and W̃ , the true parameters). The data matrix X is generated
as in the autoencoder case and Y = W̃X , where W̃ = W̃N · · · W̃1, with W̃j ∈ Rdj×dj−1 for
j = 1, . . . , N with dN = d0 = dx = d and d1 = r is the rank of W̃ . The entries of W̃j are randomly
generated independently from a Gaussian distribution with standard deviation σ = 1/

√
dj . The

dimensions dj × dj−1 of the Wj for j = 1, . . . , N , are again selected respectively in an integer
grid, i.e., dj = [r + (dx − r)(j − 1)/(N − 1)], where r is arbitrarily fixed. The initial conditions
are generated as was done in the autoencoder case. We investigate the convergence rates for the
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Figure 1: Convergence rates of solutions of the gradient flow of the general supervised learning prob-
lem depicted by convergence to critical points UkΣkVk(XXT )−

1
2 with balanced initial conditions

for left panel: dx = 20, r = 2; right panel: dx = 200, r = 20.

balanced and non-balanced initial conditions of the gradient flows. The results of the experiments
are plotted in Figures 1 and 2. In these plots k is the rank of Q := Y XT (XXT )−

1
2 ∈ Rdy×dx , and

Q = UkΣkVk is the (reduced) singular value decomposition of Q, i.e., Uk ∈ Rdx×k and Vk ∈ Rdy×k

have orthonormal columns and Σk ∈ Rk×k is a diagonal matrix containing the non-zero singular
values of Q.
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Figure 2: Convergence rates of solutions of the gradient flow of the general supervised learning
problem depicted by convergence to critical points UkΣkVk(XXT )−

1
2 with non-balanced initial

conditions for left panel: dx = 20, r = 2; right panel: dx = 200, r = 20.

With balanced initial conditions the plots of Figure 1 show convergence rates of the flow to critical
points UkΣkVk(XXT )−

1
2 (as explicitly stated in [1, Proposition 32]). Similaryly, with non-balanced

initial conditions the plots of Figure 2 show convergence rates to these critical points. These results
show rapid convergence of the flow and the dependence of the convergence rate on N , r and dx with
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either balanced or non-balanced initial conditions. Note that to critical points UkΣkVk(XXT )−
1
2 (as

explicitly stated in [1, Proposition 32]) are the same as the true parameters W̃ . This can be seen by
comparing the left panel plot of Figure 1 to the left panel plot of Figure 3 and the left panel plot of
Figure 2 to the right panel plot of Figure 3.

Convergence is slower for larger N , and it seems not to depend on the initial conditions, balanced or
non-balanced, see the plots of Figures 1 and 2. Equivalently, this can be seen from the error of the
supervised learning loss shown in the plots of Figure 4 for balanced initial conditions. There is much
stronger dependence on N in this setting than in the autoencoder setting.
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Figure 3: Convergence to the true parameters W̃ for (dx = 20, r = 2) with left panel: balanced
initial conditions; right panel: non-balanced initial conditions.
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Figure 4: General supervised learning errors with balanced initial conditions for dimensions left
panel: dx = 20, r = 2; right panel: dx = 200, r = 20.

B Autoencoder case

The results of this paper (precisely Theorems 5 and 6) also hold for the autoencoder setting, where
Y = X ∈ Rdx×m in (3). We thus study here the gradient flow (5) in the autoencoder setting, for
different dimensions of X (i.e., dx and m) and different values of the number N of layers, where
we typically use N ∈ {2, 5, 10, 20}. A Runge-Kutta method (RK4) is used to solve the gradient
flow differential equation with appropriate step sizes tn = t0 + nh for large n and h ∈ (0, 1). The
experiments fall into two categories based on initial conditions of the gradient flow: a) balanced –
where the balanced conditions are satisfied; and b) non-balanced – where the balanced conditions are
not satisfied.

The results in summary, considering W = WN · · ·W1 as the limiting solution of the gradient flow,
that is W = limt→∞W (t), where W (t) = WN (t) · · ·W1(t): we show that with balanced initial
conditions, the solutions of the gradient flow converges to UrU

T
r , where the columns of Ur are the r

eigenvectors corresponding to the r largest eigenvalues of XXT . The convergence rates decrease
with an increase in either d or N or both. We see similar results for the non-balanced case.

B.1 Balanced initial conditions

In this section and Section B.2 the data matrix X ∈ Rdx×m is generated with columns drawn
i.i.d. from a Gaussian distribution, i.e., xi ∼ N(0, σ2Idx

), where σ = 1/
√
dx. Random realization of
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X with sizes dx = d and m = 3d are varied to investigate different dimensions of the input data, i.e.,
with 2N ≤ d ≤ 20N . For each fixed d, the dimensions dj of the Wj ∈ Rdj×dj−1 for j = 1, . . . , N
are selected as follows: We set d1 = r = [d/2], where [·] rounds to the nearest integer, and put
dj = [r+ (d− r)(j − 1)/(N − 1)], j = 2, . . . , N (generating an integer “grid” of numbers between
d1 = r and dN = dx = d).

In the first set of experiments, we consider a general case of the balanced initial conditions, precisely
WT

j+1(0)Wj+1(0) = Wj(0)WT
j (0), j = 1, . . . , N − 1. The dimensions of the Wj and their

initializations are as follows. Recall, Wj ∈ Rdj×dj−1 for j = 1, . . . , N where dN = d0 = dx = d
and d1 = r is the rank of W = WN · · ·W1. We randomly generate dj × dj orthogonal matrices Vj
and then form Wj(0) = VjIdjd1

UT
j−1 for j = 1, . . . , N , where Uj ∈ Rdj×d1 is composed of the d1

columns of Vj , and Iab is the (rectangular) a × b identity matrix. For all the values of N and the
different ranks of W considered, Figure 5 shows that the limit of W (t) as t→∞ is UrU

T
r , where

the columns of Ur are r eigenvectors of XXT corresponding to the largest r eigenvalues of XXT .
Experiments were ran for N = 2, 5, 10, 20, but for the purpose of space we show results for N = 2
and N = 20. This agrees with the theoretical results in Theorems 5 and 6 for the autoencoder setting.
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Figure 5: Convergence of solutions for the general balanced case. Error between W (t) and UrU
T
r

for different r and d values. Left panel: N = 2; right panel: N = 20.

Figure 6: Convergence of solutions for the general balanced case. Errors between X and W (t)X for
different r and d values. Left panel: N = 2; right panel: N = 20.

In addition, when W (t) converges to UrU
T
r then ‖X −W (t)X‖F converges to

√∑
i>r σ

2
i . This

is also tested and confirmed for N = 2, 5, 10, 20, but for the purpose of space we show results for
N = 2 and N = 20 in Figure 6. This depicts convergence of the functional L1(W (t)) to the optimal
error, which is the square-root of the sum of the tail eigenvalues of XXT of order greater than r.

B.2 Non-balanced initial conditions

For Wj(0), j = 1, . . . , N , we randomly generate Gaussian matrices. As in the balanced case we see
that W (t) converges to UrU

T
r . This is also tested and confirmed for N = 2, 5, 10, 20, but for the

purpose of saving space we show results for N = 2 and N = 20 in Figure 7.
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Figure 7: Non-balanced case convergence of solutions of the gradient flow. Errors between W (t) and
UrU

T
r for different r and d values for left panel: N = 5, right panel: N = 10.

B.3 Convergence rates

In order to better understand convergence rates we modify the previous experiments slightly. Here
the data matrix X ∈ Rdx×m is generated with columns drawn i.i.d.from a Gaussian distribution,
i.e., xi ∼ N(0, σ2Idx), where σ = 1/

√
dx. Random realization of X with two different values

for dx (as in above m = 3d) and different r, the rank of W (t), are used. For each fixed d,
the dimensions dj of the Wj ∈ Rdj×dj−1 are selected using an arbitrarily chosen r and setting
dj = [r + (d− r)(j − 1)/(N − 1)] for j = 1, . . . , N . The value of r is stated in the caption of the
figures. The experiments show very rapid convergence of the solutions but also the dependence of the
convergence rate on N , dx, and r. We investigate this for different values of N , dx and r, in both the
balanced and non-balanced cases. Convergence plots for the balanced initial conditions are shown in
Figure 8, depicting smooth convergence. Similarly, we have convergence rates of the non-balanced
case in Figure 9. These plots also show a slightly faster convergence for the balanced case than for
the non-balanced case.
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Figure 8: Convergence rates of solutions of the gradient flow in the autoencoder case with balanced
initial conditions – errors between W (t) and W (T ) for different N values, where T is the final time.
Dimensions Left panel: dx = 20, r = 1; Right panel: dx = 200, r = 10.

Conclusion
In conclusion, in the autoencoder case we confirmed that the solutions of the gradient flow converges
to UrU

T
r , while in the general supervised learning case we confirmed convergence of the flow to

critical points explicitly defined in [1, Proposition 32]. Such convergence occurs with either balanced
or non-balanced initial conditions albeit a slight faster convergence in the balanced than in the
non-balanced. Moreover, in both the autoencoder and the general supervised learning setting we see
that as the size (N, dx, r) of the problem instance increases the convergence rates decrease. In the
autoencoder case we saw stronger dependence in dx and r than in the general supervised learning
case. On the other hand the dependence on N seems to be stronger in the general supervised learning
case than in the autoencoder case.
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Figure 9: Convergence rates of solutions of the gradient flow in the autoencoder case with non-
balanced initial conditions – errors between W (t) and W (T ) for different N values, where T is the
final time. Dimensions Left panel: dx = 20, r = 1; Right panel: dx = 200, r = 10.
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