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Abstract

It has previously shown that a trigonometric polynomial having at most M non-
vanishing coefficients can be recovered from N = O(M log(D)) random samples by the
greedy methods thresholding and orthogonal matching pursuit with high probability. In
this note we show that these results cannot be made uniform in the sense that a single
(random) sampling set cannot guarantee recovery of all such M -sparse trigonometric
polynomials simultaneously with high probability using the two greedy methods.

Key Words: random sampling, trigonometric polynomials, greedy algorithms, orthog-
onal matching pursuit, thresholding, sparse recovery, compressed sensing.
AMS Subject classification: 94A20, 42A05.

1 Introduction

The basic goal of the sparse recovery (compressed sensing) problem is to exactly recon-
struct a sparse signal c ∈ CD with at most M nonzero components, M � D, from

N = O(M logn(D)) (1.1)

nonadaptive linear measurements of c [7, 2, 13]. These measurements are given by the
vector Φc ∈ CN , where Φ is an N ×D matrix.

Basically two approaches for the reconstruction techniques have been proposed: `1-
minimization (Basis Pursuit) [2, 4, 5, 7] and greedy methods such as simple thresholding
and orthogonal matching pursuit (OMP) [10, 16]. Both types of methods are able to
reconstruct a sufficiently sparse signal c exactly with high probability if the measurement
matrix Φ is a random Gaussian or Bernoulli matrix [7, 4, 1, 9]. Moreover, if Φ is
partial random Fourier matrix then there are rigorous results of the same type for
`1-minimization and thresholding, while for OMP the claim is supported by partial
theoretical results and vast numerical experiments in [10, 12].

Despite recent progress on efficient solvers for `1-minimization, usually greedy algo-
rithms are still considered faster than Basis Pursuit. In particular, it is hard to beat
simple thresholding in terms of computation speed. However, `1-minimization has the
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advantage that recovery holds uniform in the sense that a single (random) measurement
matrix can guarantee exact reconstruction simultaneously of all sparse signals (in the
range of (1.1)) [3, 7, 12, 14]. In contrast, it is known that for the Gaussian ensemble
and in the range of (1.1) thresholding and OMP cannot recover all signals – even sup-
ported on one fixed set T – with high probability using the same matrix [8], and this
phenomenon easily extends to the Bernoulli ensemble. In this note we show that also
for partial Fourier matrices thresholding and OMP do not guarantee uniform recovery
if N is only linear in the sparsity M (i.e. in the range of (1.1)). More precisely, if
N ≤ CM2 then there exists an M -sparse signal depending on the (randomly chosen)
matrix Φ such that exact reconstruction fails for thresholding with high probability,
while the corresponding statement for OMP holds under the condition N ≤ CM3/2.
We note, however, that a recent variant called regularized orthogonal matching pursuit
does ensure uniform recovery [11].

Acknowledgement. I wish to express my gratitude to Roman Vershynin who
suggested the counterexample worked out in this note.

2 Notation and Previous results

For some finite subset Γ ⊂ Zd, d ∈ N, we let ΠΓ denote the space of all trigonometric
polynomials in dimension d whose coefficients are supported on Γ. An element f of ΠΓ

is of the form f(x) =
∑

k∈Γ cke2πik·x, x ∈ [0, 1]d, with Fourier coefficients ck ∈ C. The
dimension of ΠΓ will be denoted by D := |Γ|.

A trigonometric polynomial is called M -sparse if at most M coefficients ck are non-
zero and the set of all M -sparse trigonometric polynomials in ΠΓ is denoted by ΠΓ(M).
The goal is to reconstruct such a sparse trigonometric polynomial f ∈ ΠΓ(M) from
sample values f(x1), . . . , f(xN ), where the number N of sampling points x1, . . . , xN ∈
[0, 2π]d is small compared to the dimension D.

Given the sampling set X = (x1, . . . , xN ) we denote by FX the N×D matrix (recall
that D = |Γ|) with entries

(FX)j,k = e2πik·xj , 1 ≤ j ≤ N, k ∈ Γ. (2.1)

Then clearly f(xj) = (FXc)j if c is the vector of Fourier coefficients of f . Let φk denote
the k-th column of FX , i.e.,

φk =

e2πik·x1

...
e2πik·xN

 ,

then FX = (φk1 |φk2 | . . . |φkD
). By FTX we denote the restriction of FX to the columns

indexed by a subset T ⊂ Γ.
We use the following two probability models for x1, . . . , xN :

(1) The sampling points x1, . . . , xN are independent and uniformly distributed ran-
dom variable on the cube [0, 1]d.

(2) The sampling points x1, . . . , xN are independent and uniformly distributed on the
grid 1

mZd
m = {0, 1

m , . . . , m−1
m }d for some m ∈ N,m ≥ 2.

In both cases the matrix FX is a random partial Fourier matrix. More precisely, in the
first case it is a non-equispaced Fourier matrix, and in the second case it is a submatrix
consisting of random rows of the discrete Fourier matrix on Zd

m.
So far mainly `1-minimization (Basis Pursuit) [2, 4, 5, 8, 13, 12] and greedy algo-

rithms [9, 10, 12] were proposed as methods for reconstructing the vector c of Fourier
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coefficients of a sparse trigonometric polynomial and hence the polynomial itself. Denote
y = (f(xj))N

j=1 the vector of sample values. Basis Pursuit (BP) consists in determining
the solution of the minimization problem

min ‖c‖1 =
∑
k∈Γ

|ck| subject to FXc = y = (f(xj))N
j=1.

This problem can be solved with convex optimization techniques. The following recon-
struction theorem has been shown recently [12, 14, 15, 4].

Theorem 2.1. Let the sampling set X = (x1, . . . , xN ) be chosen according to the
probability model (1) or (2), and suppose

N

log(N)
≥ CM log2(M) log(D) log(ε−1). (2.2)

Then with probability at least 1− ε Basis Pursuit reconstructs every M -sparse trigono-
metric polynomial.

Since M,N ≤ D, relation (2.2) is satisfied in particular if N ≥ CM log4(D) log(ε−1).
Neglecting the log-factors the required number of samples N scales linear in the sparsity
M .

Presumably the simplest greedy algorithm is thresholding. It consists of the following
steps:

1. Determine the set T ⊂ Γ corresponding to the M largest correlations |〈y, φk〉|, k ∈
Γ.

2. Compute the coefficients corresponding to the orthogonal projection of y onto the
linear span of {φk, k ∈ T}, i.e., the non-zero coefficients of c are determined as the
minimizer of the least spares problem min ‖FTXc− y‖2.

Thresholding is much faster in practice than Basis Pursuit. In [10] the following recon-
struction theorems have been shown.

Theorem 2.2. Let f ∈ ΠΓ(M) with Fourier coefficients c. Define its dynamic range
by

R :=
maxk∈T |ck|
mink∈T |ck|

.

Choose the sampling points x1, . . . , xN according to the probability model (1) or (2). If
for some ε > 0

N ≥ CMR2 log(4D/ε) (2.3)

then with probability at least 1 − ε thresholding recovers f exactly. The constant C is
no larger than 17.89.

Apart from the dependence on the dynamic range R there is a subtle difference to
the recovery theorem for BP above. Recovery holds only for the given sparse poly-
nomial with high probability, while Theorem 2.1 states that a single sampling set can
recover all sparse polynomials with high probability. One can remove this drawback
for thresholding; however, at the cost of dramatically increasing the required number
of samples:

Theorem 2.3. Choose the sampling set X = (x1, . . . , xN ) according to the probability
models (1) or (2), and assume that

N ≥ CM2R2 log(D/ε).

Then with probability at least 1 − ε thresholding recovers all M -sparse trigonometric
polynomials for which the dynamic range of their coefficients is at most R.
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Explicit (and small) constants can be found in [10]. Below we will show that the
quadratic dependence of the number of samples N on the sparsity M cannot be improved
if one requires uniformity, i.e., recovery of all sparse trigonometric polynomials from a
single sampling set.

Orthogonal Matching Pursuit (OMP) is an iterative greedy algorithm, which adds a
new element of the support T in each step by maximizing the correlation of the current
residual with the remaining columns φk. Formally, it consists of the following steps.

• Initialize: Set current residual r0 := y and support set T0 := ∅.
• Iterate until a stopping criterion is met (iteration counter s):

– Determine ks := argmaxk∈T |〈rs−1, φk〉| and set Ts := Ts−1 ∪ {ks}.
– Update the residual by rs := y − PTs

y where PTs
denotes the orthogonal

projection of y onto the span of {φk, k ∈ Ts}.
• Set T = Ts; the non-zero coefficients of c are given by PT y =

∑
k∈T ckφk.

More details on the implementation of this algorithm can be found in [10]. In practice,
it is slower than thresholding but usually faster than BP. Moreover, numerical tests
indicate a higher recovery rate than thresholding and a similar (average) rate as BP
(despite the theoretical differences this paper is concerned with).

Due to stochastic dependency issues it seems difficult to analyze fully the perfor-
mance of OMP, but at least we can say something about the first step [10].

Theorem 2.4. Let f ∈ ΠΓ(M) with coefficients supported on T . Choose random
sampling points x1, . . . , xN according to one of our two probability models. If

N ≥ CM log(D/ε)

then with probability at least 1− ε OMP selects an element of the true support T in the
first iteration.

Compared to the corresponding result for thresholding (Theorem 2.2) the depen-
dence on the dynamic range is removed, and numerical experiments in [10] indicate
that this remains true also for the further iterations. However, again the above state-
ment is non-uniform, in the sense that a single sampling set X is good only for the
given polynomial but not necessarily for all sparse polynomials simultaneously. As for
thresholding one can remove this drawback at the cost of dramatically increasing the
required number of sampling points, and in this case we have a statement for the full
application of OMP.

Theorem 2.5. Let X = (x1, . . . , xN ) be chosen according to the probability model (1)
or (2). Assume that

N ≥ CM2 log(D/ε).

Then with probability at least 1 − ε OMP recovers every M -sparse trigonometric poly-
nomial in M steps.

We will show below that the above statement is close to optimal if one requires
uniformity. The number of required samples N increases at least faster than M3/2, so
Theorem 2.4 cannot be made uniform.

3 Main Results

The following result shows that Theorem 2.3 cannot be significantly improved if one
requires uniformity. For simplicity we restrict Γ to a particular set of basic frequencies,
although the statement holds also for more general sets (see also Remark 4).
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Theorem 3.1. Let Γ = Zd
m with m ≥ 2. Let X = (x1, . . . , xN ) be randomly chosen

according to the probability model (1) or (2). Suppose M ≤ |Γ|/4 = md/4 and

N ≤ 1
4σ

M2 − 7
2
(M − 1) (3.1)

for some σ > 2. Then with probability exceeding

1− 4
M

− 1
(σ − 1)2

there exists an M -sparse trigonometric polynomial (depending on X) which thresholding
fails to reconstruct.

The proof actually provides an explicit trigonometric polynomial (depending on X),
which thresholding fails to reconstruct with the stated probability.

A similar statement holds also for OMP.

Theorem 3.2. Let Γ = Zd
m with m ≥ 2. Let X = (x1, . . . , xN ) be randomly chosen

according to the probability model (1) or (2). Suppose M ≤ |Γ|/4 = md/4 and

N ≤ τ

5
M3/2 − 7

2
(M − 1) (3.2)

for some τ < 1. Then with probability exceeding 1 − 4
M − τ2 there exists an M -sparse

trigonometric polynomial (depending on X) which OMP fails to reconstruct in M steps.

The exponent 3/2 in (3.2) is probably not optimal, and we expect that (3.2) can
be improved to N ≤ CnM2−1/n for any n ≥ 2 with a constant Cn depending on n.
However, this seems to make the already technical proof even more tedious. Since the
present statement already shows that the recovery Theorem 2.4 for OMP cannot be
made uniform without spoiling the linear dependence N = O(M), we did not further
pursue this issue here.

We note that the above theorem does not exclude the possibility that the pathological
M -sparse trigonometric polynomial is reconstructed after M + 1 or more steps. The
proof of the theorem actually shows that OMP selects a wrong element in the first step.
However, if the reconstructed support set T ′ contains the true support set T (which
is possible if OMP does more than M steps) and if T ′ is not unreasonably large (say
|T ′| ≤ 2|T |) then it will usually happen that the coefficients on T ′ \ T will be set to
zero so that nevertheless the correct polynomial is recovered. This scenario was actually
observed in numerical experiments. Nevertheless we expect that a version of Theorem
2.4 holds, which shows an impossibility of uniform recovery even when OMP is allowed
to perform more than M steps.

4 Proofs

We develop the proofs of both Theorems 2.2 and 2.4 in parallel.
First note that by linear algebra necessarily N ≥ 2M if some method (in particular

OMP and thresholding) is able to recover all M -sparse trigonometric polynomials, see
also [6, Lemma 3.1]. Indeed, if N < 2M and |T | = 2M then FTX is not invertible,
i.e., there exists c supported on T with FTXc = 0. Split T into T1 and T2 with
|T1| = |T2| = M and T = T1 ∪ T2. Denote by ci the vector that coincides with c on
Ti and is zero outside (i = 1, 2), i.e., both c1 and c2 are M -sparse. Then c = c1 + c2,
but FXc = FX(c1 + c2) = 0, i.e., FX(c1) = FX(−c2). Hence, both c1 and −c2 provide
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the same measurements and no reconstruction method can distinguish between both
M -sparse vectors. Hence, from now on we assume N ≥ 2M in addition to (3.1) or
(3.2).

Both for Thresholding and OMP we choose the M -sparse trigonometric polynomial
as follows. Let T ⊂ Γ of size M be the support of its coefficients; and let ` ∈ Γ \ T .
Later we give some restrictions on T and `, which are not essential however. Then we
choose the non-zero components of c as

ck := 〈φ`, φk〉, k ∈ T.

Clearly, ck depends on the sampling set X. Let

y = FXc =
∑
k∈T

〈φ`, φk〉φk (4.1)

be the corresponding vector of sample values.
Thresholding fails to select the correct support T if

|〈y, φ`〉| > min
k∈T

|〈y, φk〉|.

Hence, fixing some k ∈ T and α > 0 the probability that thresholding succeeds can be
estimated from above by

P(|〈y, φk〉| > |〈y, φ`〉|) ≤ P(|〈y, φk〉| > α) + P(|〈y, φ`〉| < α).

Now we consider OMP. It selects a wrong element in the first step, and consequently
cannot recover c in M steps, if

|〈y, φ`〉| > max
k∈T

|〈y, φk〉|.

Similarly as above, the probability that OMP does not fail in the first step can be upper
bounded by

P(max
k∈T

|〈y, φk〉| > |〈y, φ`〉|) ≤ P(max
k∈T

|〈y, φk〉| > α) + P(|〈y, φ`〉| < α)

≤
∑
k∈T

P(|〈y, φk〉| > α) + P(|〈y, φ`〉| < α). (4.2)

Hence, both OMP and thresholding require an analysis of P(|〈y, φ`〉| < α) and P(|〈y, φk〉| >
α). Assuming α ≤ 1

2E|〈y, φ`〉| we can estimate the first term as

P(|〈y, φ`〉| < α) = P(E|〈y, φ`〉| − |〈y, φ`〉| > E|〈y, φ`〉| − α)

≤ E [E|〈y, φ`〉| − |〈y, φ`〉|]2

(E|〈y, φ`〉| − α)2
≤ 4

E
[
|〈y, φ`〉|2

]
− (E|〈y, φ`〉|)2

(E|〈y, φ`|)2
. (4.3)

Similarly, assuming α2 ≥ σE[|〈y, φk〉|2] for σ > 1 we can estimate

P(|〈y, φk〉| > α) = P(|〈y, φk〉|2 − E[|〈y, φk〉|2] > α2 − E[|〈y, φk〉|2])

≤
E

[
|〈y, φk〉|2 − E[|〈y, φk〉|2]

]2
(α2 − E[|〈y, φk〉|2])2

≤ E[|〈y, φk〉|4]− (E[|〈y, φk〉|2])2

(σ − 1)2(E[|〈y, φk〉|2])2
. (4.4)

An α satisfying the two assumed conditions exists if and only if

(E|〈y, φ`〉|)2 ≥ 4σE[|〈y, φk〉|2].

It remains to compute the expectations E|〈y, φ`〉|, E[|〈y, φ`〉|2], E[|〈y, φk〉|2] and E[|〈y, φk〉|4].
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Lemma 4.1. For ` /∈ T and y given by (4.1) it holds E|〈y, φ`〉| = MN.

Proof. We have

E|〈y, φ`〉| = E
∑
k∈T

|〈φ`, φk〉|2 =
∑
k∈T

E|〈φ`, φk〉|2.

Further,

E|〈φ`, φk〉|2 = E
N∑

j=1

N∑
j′=1

e2πi(`−k)·xj e−2πi(`−k)xj′

=
N∑

j,j′=1

E[exp(2πi(`− k) · (xj − xj′))]

Since the xj are independent and uniformly distributed on [0, 1]d or on the grid 1
mZd

m,
and since ` 6= k we have

E[exp(2πi(`− k) · (xj − xj′))] = δj,j′ .

Hence, E|〈φ`, φk〉|2 = N and E[|〈y, φk〉|] = MN .

Lemma 4.2. It holds E[|〈y, φ`〉|2] = N2M(M + 1)−MN.

Proof. We have

E[|〈y, φ`〉|2] = E

[∑
k∈T

|〈φ`, φk〉|2
]2

=
∑

k,k′∈T

E
[
|〈φ`, φk〉|2|〈φ`, φk′〉|2

]
.

Furthermore,

E
[
|〈φ`, φk〉|2|〈φ`, φk′〉|2

]
=

N∑
j1,j2,j3,j4=1

E
[
e2πi((`−k)·(xj1−xj2 )+(`−k′)·(xj3−xj4 ))

]
.

If k = k′ then the expectation in the above sum equals 1 if and only if {j1, j3} =
{j2, j4}, and vanishes otherwise. Hence, for j1, j2, j3, j4 ∈ {1, . . . , N} this happens
N + 2N(N − 1) = N(2N − 1) times. If k 6= k′ then the expectation equals 1 if
and only if j1 = j2 and j3 = j4 and vanishes otherwise. This happens N2 times for
j1, . . . , j4 ∈ {1, . . . , N}. Combining everything we obtain

E[|〈y, φ`|2] = MN(2N − 1) + M(M − 1)N2 = N2M(M + 1)−MN.

Lemma 4.3. For k0 ∈ T and y given by (4.1) we have

E[|〈y, φk0〉|2] = (M − 1)(M − 2)N + 3(M − 1)N2 + N3.

Proof. By definition of y

E[|〈y, φk0〉|2] = E

[∣∣∣ ∑
k∈T

〈φ`, φk〉〈φk, φk0〉
∣∣∣2]

=
∑

k,k′∈T

E [〈φ`, φk〉〈φk, φk0〉〈φk′ , φ`〉〈φk0 , φk′〉] .
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The expectation in the previous expression equals

E [〈φ`, φk〉〈φk, φk0〉〈φk′ , φ`〉〈φk0 , φk′〉]

=
N∑

j1,j2,j3,j4=1

E
[
e2πi[(`−k)xj1+(k−k0)·xj2−(`−k′)·xj3−(k′−k0)·xj4 ]

]
.

If k = k′ then the expectation in the above sum equals 1 if and only if j1 = j3 and
either k0 = k = k′ or j2 = j4. Hence, if k0 = k = k′ this leaves N3 possibilities for
j1, . . . , j4 ∈ {1, . . . , N}, while for k0 6= k there are N2 possibilities. Further, if k 6= k′

then the expectation equals 1 if and only if j1 = j2 = j3 = j4 (giving N possibilities) or
k′ = k0 and j1 = j2 = j3 (giving (M − 1)N2 possibilities for k and j1, . . . , j4) or k = k0

and j1 = j3 = j4 (resulting in (M − 1)N2 possibilities for k′ and j1, . . . , j4). Altogether
we obtain the stated expression for E[|〈y, φk0〉|2].

Lemma 4.4. Suppose `n ≡ 1 mod 4 for some component `n of ` ∈ Zd and k ≡ 0
mod 4 for all k ∈ T . Then for k0 ∈ T and y given by (4.1) it holds

E[|〈y, φk0〉|4]
≤ NM4 + N2(2M4 + 41M3) + N3(12M3 + 94M2 + 20M)

+ N4(14M2 + 36M + 6) + N5(4M + 25) + 2N6.

The proof of this lemma is elementary but quite tedious, and postponed to the next
section.

Equipped with these auxiliary results we turn to the proofs of our main results.
Choose T and ` as in Lemma 4.4. Since M ≤ |Γ|/4 this is certainly possible for our
choice of Γ. By Lemma 4.3

E[|〈y, φk〉|2]2 = N6 + N5(6M − 6) + N4(11M2 − 24M + 13) + N3(6M3 − 24M2 + 30M − 12)

+ N2(M4 − 6M3 + 13M2 − 12M + 4).

Then a calculation shows that for k ∈ T

E[|〈y, φk〉|4]− (E[|〈y, φk〉|2])2

≤ N6 −N5(2M − 31) + N4(3M2 + 60M − 7) + N3(6M3 + 118M2 − 10M + 12)

+ N2(M4 + 47M3 +−13M2 + 12M − 4) + NM4.

Since N ≥ 2M it is straightforward to verify that

E[|〈y, φk〉|2]2 ≥ E[|〈y, φk〉|4]− E[|〈y, φk〉|2]2 (4.5)

for all M ≥ 20 (say). Hence, under condition α2 ≥ σE[|〈y, φk〉|2] by (4.4) we have

P(|〈y, φk〉| > α) ≤ E[|〈y, φk〉|4]− (E[|〈y, φk〉|2])2

(σ − 1)2(E[|〈y, φk〉|2])2
≤ 1

(σ − 1)2
.

Further, by (4.3) and Lemmas 4.1 and 4.2 we get

P(|〈y, φ`〉| < α) ≤ 4
E

[
|〈y, φ`〉|2

]
− (E|〈y, φ`〉|)2

(E|〈y, φ`|)2
=

4(N − 1)
MN

≤ 4
M

under condition α ≤ 1
2E|〈y, φ`〉|. Summarizing, if

(E|〈y, φ`〉|)2 ≥ 4σE[|〈y, φk〉|2] (4.6)
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then the probability that thresholding succeeds can be upper bounded by

P(min
k∈T

|〈y, φk〉| > |〈y, φ`〉|) ≤
4
M

+
1

(σ − 1)2
.

By Lemmas 4.1 and 4.3 the condition (4.6) is equivalent to

M2N2 ≥ 4σ((M − 1)(M − 2)N + 3(M − 1)N2 + N3)).

Since N ≥ 2M this is satisfied under (3.1). Moreover, for M < 20 the maximal N
satisfying (3.1) is less than 1 and then the statement of the theorem becomes trivial.
Hence, for all valid M,N (4.5) is satisfied and the proof of Theorem 3.1 is finished.

By (4.2) the probability that OMP succeeds in M steps can be estimated from above
by

P(max
k∈T

|〈y, φk〉| > |〈y, φ`〉|) ≤
4
M

+
M

(σ − 1)2
.

We choose σ such that M
(σ−1)2 = τ2 < 1, i.e., σ =

√
Mτ−1+1. As above (4.6) is satisfied

under condition (3.1), which now reads

N ≤ 1
4
√

Mτ−1 + 1
M2 − 7

2
(M − 1).

This is certainly satisfied if

N ≤ τ

5
M3/2 − 7

2
(M − 1). (4.7)

Then the probability that OMP succeeds in M steps can be upperestimated by

4
M

+ τ2.

Moreover, if M < 20 then as above the minimal N satisfying (4.7) is less than 1, and
hence, again we can omit the condition M ≥ 20 ensuring (4.5). This completes the
proof of Theorem 3.2.
Remark.

• The proof shows that the conditions on Γ and M can be slightly relaxed in The-
orems 3.1 and 3.2. We only have to require the existence of ` and T as in Lemma
4.4. In particular, also Γ = {−q,−q +1, . . . , q}d is a valid choice corresponding to
spaces of trigonometric polynomials of degree at most q.

• In order to improve Theorems 3.1 and 3.2 with respect to the probability estimate
and the exponent 3/2 in (3.2) one might work with higher moments rather than
only the 4th moment as in Lemma 4.4. However, computing higher moments will
be even more tedious than the proof of Lemma 4.4.
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5 Proof of Lemma 4.4

We have

E[|〈y, φk0〉|4] = E

[∣∣∣ ∑
k∈T

〈φ`, φk〉〈φk, φk0〉
∣∣∣4]

=
∑

k1,k2,k3,k4∈T

E [〈φ`, φk1〉〈φk2 , φ`〉〈φ`, φk3〉〈φk4 , φ`〉×

×〈φk1 , φk0〉〈φk0 , φk2〉〈φk3 , φk0〉〈φk0 , φk4〉]

=
∑

k1,k2,k3,k4

E(k1, k2, k3, k4),

where

E(k1, k2, k3, k4) =
N∑

j1,...,j8=1

E
[
e2πi(∑4

i=1(−1)i[(`−ki)·xji
+(ki−k0)·xj4+i ])

]
.

Given (j1, . . . , j8) we let A = (A1, . . . , Ak) be a partition of {1, . . . , 8} into r disjoint
subsets (called blocks) such that i, i′ ∈ {1, . . . , 8} is contained in the same block A ∈ A
if and only if ji = ji′ =: jA. By B(r) we denote the collection of all such partitions of
{1, . . . , 8} into r blocks. Then by independence the previous sum can be written as

E(k1, k2, k3, k4)

=
8∑

r=1

∑
A∈B(r)

N !
(N − r)!

∏
A∈A

E
[
e2πi(∑

i∈A,i≤4(−1)i(`−ki)·xjA
+

∑
i∈A,i≥5(−1)i(ki−4−k0)·xjA)

]

=
8∑

r=1

∑
A∈B(r)

N !
(N − r)!

∏
A∈A

δ0

 ∑
i∈A,i≤4

(−1)i(`− ki) +
∑

i∈A,i≥5

(−1)i(ki−4 − k0)

 .

The product in the previous expression contributes to the sum if and only if∑
i∈A,i≤4

(−1)i(`− ki) +
∑

i∈A,i≥5

(−1)i(ki−4 − k0) = 0 for all A ∈ A. (5.1)

The condition k ≡ 0 mod 4 for all k ∈ T implies that the second sum above is always
0 modulo 4. Thus, if the sum above vanishes then necessarily also the first sum has to
be 0 mod 4. But due to the condition `n ≡ 1 mod 4 this can only happen if ` cancels
completely, which in turn implies that either the pairs {1, 2} and {3, 4} or the pairs
{1, 4} and {2, 3} are each contained in the same block of the partition A. Note that
this means as well that the partition A contains at most 6 blocks and we can write

E[|〈y, φk0〉|4] =
6∑

r=1

N !
(N − r)!

D(r)

where D(r) =
∑

A∈B(r) Cr(A) and

Cr(A) = #{(k1, k2, k3, k4) ∈ T 4 : (5.1) is satisfied}.
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Hence, we need to determine the coefficients D(r), r = 1, . . . , 6. For r = 6 we have to
consider only the partitions

A1 = {{1, 2}, {3, 4}, {5}, {6}, {7}, {8}} and A2 = {{1, 4}, {2, 3}, {5}, {6}, {7}, {8}}.

But (5.1) then means ki = k0 for all i = 1, . . . , 4, and we conclude that D(6) = 2. Now
consider r = 1. Then the only partition consists of the block A = {1, . . . , 8} and (5.1)
is satisfied for all possible choices of (k1, k2, k3, k4) ∈ T 4. Hence D(1) = |T |4 = M4.

Now consider r = 5. We have the following possible partitions:

• A = {{1, 2, 3, 4}, {5}, {6}, {7}, {8}}. As above (5.1) necessarily requires k1 = k2 =
k3 = k4 = k0, hence, C5(A) = 1.

• We take the two partitions {{1, 2}, {3, 4}} and {{1, 4}, {2, 3}} of the numbers
{1, . . . , 4} and then add one of the numbers 5, . . . , 8 to one of these blocks and
let the other 3 blocks of A consist of the remaining numbers each. This gives an
overall number of 16 possible partitions, and as above (5.1) requires k1 = k2 =
k3 = k4 = k0. Hence, C5(A) = 1 for each of those 16 partitions.

• We take again the two partitions {{1, 2}, {3, 4}} and {{1, 4}, {2, 3}}. Then we form
a partition of {5, . . . , 8} into 2 blocks of 1 elements and 1 block of 2 elements and
combine these into a partition of {1, . . . , 8}. In case the 2-element block is {5, 6}
then the single element blocks are {7}, {8} and (5.1) requires k3 = k4 = k0. Now, if
we form the combination with {{1, 4}, {2, 3}} then (5.1) requires also k2 = k3 = k0

and k1 = k4 = k0 and hence, C5(A) = 1 for the corresponding partition. If we
form the combination with {{1, 2}, {3, 4}} then (5.1) requires k1 = k2, and we
conclude C5(A) = M for A = {{1, 2}, {3, 4}, {5, 6}, {7}, {8}}. A similar situation
occurs for the 2-element blocks {5, 8}, {6, 7}, {7, 8}. Now, if the 2-element block is
{5, 7} then (5.1) for the remaining 1-element blocks requires k2 = k4 = k0. Now
for both {{1, 2}, {3, 4}} and {{1, 4}, {2, 3}} this implies that also k1 = k4 = k0,
and hence C5(A) = 1 for the corresponding partition A. The same occurs for the
2-element block {6, 8}. Counting all cases we have C5(A) = 1 for 8 partitions A
and C5(A) = M for 4 partitions.

Altogether we have
D(5) = 1 + 16 + 8 + 4M = 4M + 25.

Now let r = 4. Then we have the following possibilities.

• We take {1, 2, 3, 4} and add one of the numbers 5, . . . , 8 to it. Further, we choose
the remaining three numbers as single element blocks. Then (5.1) requires k1 =
k2 = k3 = k4 = k0 and, hence, C4(A) = 1 for each of the 4 of such partitions.

• We take {{1, 2}, {3, 4}}, add two of the numbers 5, 6, 7, 8 to one of these blocks, and
take the remaining numbers as single element blocks. Consider first the resulting
partition A = {{1, 2, 5, 6}, {3, 4}, {7}, {8}}. Then (5.1) is equivalent to k3 = k4 =
k0, hence, C4(A) = M2, and similarly for A = {{1, 2}, {3, 4, 7, 8}, {5}, {6}}. The
remaining 6 partitions constructed in this way satisfy C4(A) = M , as can easily
be seen. The same considerations hold, of course, if we start with {{1, 4}, {2, 3}}.
Counting cases we get 4 times C4(A) = M2 and 12 times C4(A) = M .

• We take {{1, 2}, {3, 4}}, add one of the numbers 5, 6, 7, 8 to {1, 2} and another
one to {3, 4}, and let the remaining numbers form a single element block each.
Assume first that the resulting partition isA = {{1, 2, 5}, {3, 4, 7}, {6}, {8}}. Then
(5.1) means k2 = k4 = k0, hence, C4(A) = M2, and similarly for the other
3 partitions where 5 or 6 is added to {1, 2} and 7 or 8 is added to {3, 4}. If
A = {{1, 2, 5}, {3, 4, 6}, {7}, {8}} then (5.1) is satisfied iff k2 = k3 = k4 = k0,
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hence, C4(A) = M , and as well for the other 3 partitions where either 5 and 6
or 7 and 8 are added to the first blocks. The same considerations apply if we
start with {{1, 4}, {2, 3}}. Counting cases yields 8 times C4(A) = M2 and 8 times
C4(A) = M .

• As one block of the partition we take {1, 2, 3, 4} and as the remaining three blocks
we take a partition of {5, 6, 7, 8} into two 1-element blocks and one 2-element
block. If the 1-element blocks are {5}, {6} then k1 = k2 = k0 and (5.1) applied
to {1, 2, 3, 4} yields also k3 = k4 and then (5.1) is also satisfied for the remaining
block {7, 8}. Hence, in this case C4(A) = M . The same appears for the 2-
element blocks {5, 6},{5, 8},{6, 7}. Now if the 1-element blocks are {5}, {7} then
k1 = k3 = k0. Further, (5.1) is satisfied for both A = {1, 2, 3, 4} and {6, 8} if and
only if k2 + k4 = 2k0. This is satisfied in particular if k2 = k4 = k0, but at most
for M pairs {k2, k4}, hence 1 ≤ C4(A) ≤ M for this partition. The same holds for
the 2-element block {5, 7}. Counting cases we get 4 times C4(A) = M and twice
1 ≤ C4(A) = M .

• We take {{1, 2}, {3, 4}} and as the remaining two blocks we take a partition of
{5, 6, 7, 8}. If the partition of {5, . . . , 8} is {{5, 6}, {7, 8}} then (5.1) is satisfied if
and only if k1 = k2 and k3 = k4, hence C4(A) = M2 in this case. If the added two
blocks are {5, 8} and {6, 7} then (5.1) is satisfied if and only if k1 = k2 = k3 = k4,
hence C4(A) = M . If we add {5, 7} and {6, 8} then (5.1) is satisfied if and only if
k1 = k2 = k3 = k4 = k0, hence C4(A) = 1. If the remaining blocks are {5} and
{6, 7, 8} then (5.1) is satisfied iff k1 = k2 = k0 and k3 = k4, hence, C4(A) = M ,
and this holds as well if the single element block is {6}, {7} or {8}. Clearly,
similar observations hold if we start with {{1, 4}, {2, 3}}. Counting cases yields
twice C4(A) = M2, 10 times C4(A) = M and twice C4(A) = 1.

We conclude that

D(4) ≤ 4+4M2 +12M +8M2 +8M +4M +2M +2M2 +10M +2 = 14M2 +36M +6,

(but also D(4) ≥ 14M2 + 34M + 8). Now let r = 3. We distinguish the following cases.

• We take {1, 2, 3, 4} and add two of the numbers 5, . . . , 8 to it and take the re-
maining two as single element blocks. Suppose first that these are {5}, {6}. Then
(5.1) is satisfied if and only if k1 = k2 = k0 and k3 = k4, hence C3(A) = M .
The same holds if the single element blocks are {5}, {8} or {6}, {7} or {7}, {8}
giving a total of 4 possibilities. Further, if the single element blocks are {5}, {7}
or {6}, {8} then (5.1) is satisfied if and only if k1 = k3 = k0 and k2 + k4 = 2k0,
hence 1 ≤ C3(A) ≤ M . Althogether, we have 4 times C3(A) = M and twice
1 ≤ C3(A) ≤ M .

• Take {1, 2, 3, 4} and add one of the numbers 5, . . . , 8 to it and form two blocks from
the remaining three numbers, i.e., one single element block and one two element
block. Suppose first that these blocks are {5}, {7, 8}. Then (5.1) is satisfied iff
k1 = k2 = 0 and k3 = k4, hence C3(A) = M . The same holds for {6}, {7, 8}
and {7}, {5, 6} and {8}, {5, 6}. Now suppose we have the blocks {5}, {6, 8}. Then
(5.1) is satisfied iff k1 = k3 = k0 and k2 + k4 = 2k0, hence 1 ≤ C3(A) ≤ M . This
holds as well for {6}, {5, 7}. Counting cases yields 4 times C3(A) = M and twice
1 ≤ C3(A) ≤ M .

• We start with {1, 2}, {3, 4} and take {5, 6, 7, 8} as third block. Then (5.1) is
satisfied iff k1 = k2 and k3 = k4, hence C3(A) = M2. The same holds for the
partition A = {{1, 4}, {2, 3}, {5, 6, 7, 8}}.
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• Take {1, 2}, {3, 4}, form a partition of {5, 6, 7, 8} into two blocks and add one these
two blocks to one of the sets {1, 2}, {3, 4}. Consider first the resulting partition
A = {{1, 2, 5, 6}, {3, 4}, {7, 8}}. Then (5.1) is satisfied iff k3 = k4, and hence,
C3(A) = M3. This holds as well for the partition {{1, 2}, {3, 4, 7, 8}, {5, 6}}. The
partition A = {{1, 2, 7, 8}, {3, 4}, {5, 6}} requires k1 = k2 and k3 = k4, hence
C3(A) = M2, and similarly for A = {{3, 4, 5, 6}, {1, 2}, {7, 8}}. If we have A =
{{1, 2, 5, 7}, {3, 4}, {6, 8}}} then (5.1) is satisfied iff k2 = k4 = 2k0 and k3 = k4

while k1 is free. Thus, M ≤ C3(A) ≤ M2, and similarly for the three partitions
{{1, 2, 6, 8}, {3, 4}, {5, 7}}, {{3, 4, 5, 7}, {1, 2}, {6, 8}}, {{3, 4, 6, 8}, {1, 2}, {5, 7}}. If
A = {{1, 2, 5, 8}, {3, 4}, {6, 7}} then (5.1) is satisfied iff k2 = k3 = k4, hence
C3(A) = M2, and similarly for the remaining three partitions consisting of one
4-element block and 2 two-element blocks.
If the resulting partition is A = {{1, 2, 5}, {3, 4}, {6, 7, 8}} then (5.1) is satisfied iff
k2 = k0 and k3 = k4, hence, C3(A) = M2, and similarly if 6 is added to {1, 2}, or
7 or 8 are added to {3, 4}, giving a total of 4 partitions with C3(A) = M2. Now
consider A = {{1, 2, 7}, {3, 4}, {5, 6, 8}}. Then (5.1) holds iff k3 = k4 = k0 and
k1 = k2, hence, C3(A) = M . Similarly, if 8 is added to {1, 2}, or 5 or 6 are added
to {3, 4}. Next, consider A = {1, 2, 5, 6, 7}, {3, 4}, {8}}. Then (5.1) is satisfied iff
k3 = k4 = k0, hence, C3(A) = M2. The same holds as well for the partitions
where 7 is a single element block and {5, 6, 8} is added to {1, 2}; and 5 or 6 are
single element blocks and the remaining numbers are added to {3, 4}. Finally,
consider A = {{1, 2, 6, 7, 8}, {3, 4}, {5}}. Then (5.1) is equivalent to k1 = k0 and
k3 = k4, thus, C3(A) = M2, and similarly if 6 is a single element block and the
remaining numbers are added to {1, 2}, or 7 or 8 are single element blocks and the
remaining numbers are added to {3, 4}. Counting cases yields twice C3(A) = M3,
18 times C3(A) = M2, 4 times M ≤ C3(A) ≤ M2 and 4 times C3(A) = M .
Similar considerations as above apply if we start with {1, 4}, {2, 3}, hence, we have
to take all the above quantities into account twice.

• Finally, take {1, 2}, {3, 4}, partition the remaining numbers {5, 6, 7, 8} into three
blocks and add one of them to {1, 2} and another one to {3, 4}. Suppose first
that we result in {{1, 2, 5, 6}, {3, 4, 7}, {8}}. Then (5.1) is satisfied iff k4 = k0,
thus, C3(A) = M3. The same holds if the role of 7 and 8 is interchanged,
or the 4-element block is {3, 4, 7, 8}, resulting in 4 possible partitions giving
C3(A) = M3. Now, suppose we have A = {{1, 2, 7, 8}, {3, 4, 5}, {6}}. Then (5.1)
requires k2 = k0 and k3 − k4 = k1 − k0, hence M ≤ C3(A) ≤ M2, and there
are three further partitions for which similar considerations hold. Next, consider
A = {{1, 2, 5, 7}, {3, 4, 6}, {8}}. This implies k4 = k0 and k2 + k3 = 2k0, hence,
M ≤ C3(A) ≤ M2, and the same holds for 7 further partitions. The partition
A = {{1, 2, 5}, {3, 4, 8}, {6, 7}} implies k2 = k3 = k0, hence, C3(A) = M2, and
the same holds if 5 is replaced by 6 and / or 8 by 7 (giving a total of 4 par-
titions). Consider A = {{1, 2, 7}, {3, 4, 8}, {5, 6}}. Then k3 = k0 and k1 = k2,
hence, C4(A) = M2, and similarly if 7 and 8 are interchaned, and as well if the
roles of 5, 6 and 7, 8 are exchanged (giving again a total of 4 partitions). Next,
take A = {{1, 2, 8}, {3, 4, 5}, {6, 7}}. Then (5.1) is equivalent to k2 = k3 and
k2−k4 = k1−k0, thus, M ≤ C3(A) ≤ M2, and similarly if both 8 is interchanged
with 7 and 5 with 6. Finally, consider A = {{1, 2, 8}, {3, 4, 6}, {5, 7}}. Then (5.1)
is satisfied iff k1 + k3 = 2k0 and k3 + k2 = k4 + k0, thus 1 ≤ C4(A) ≤ M2,
and similarly for A = {{1, 2, 7}, {3, 4, 6}, {6, 8}}. Counting cases gives 4 times
C3(A) = M3, 14 times M ≤ C3(A) ≤ M2, 8 times C3(A) = M2 and twice
1 ≤ C3(A) ≤ M2.
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Again, the same consideration as above are valid if we start from {1, 4}, {2, 3}.
Collecting all the above cases we conclude that

D(3) ≤ 4M + 2M + 4M + 2M + 2M2 + 2(2M3 + 18M2 + 4M2 + 4M)

+ 2(4M3 + 14M2 + 8M2 + 2M2)

= 12M3 + 94M2 + 20M,

(but D(3) ≥ 12M3 + 54M2 + 52M + 8). Finally, let r = 2. Then we distinguish the
following cases:

• Consider A = {{1, 2, 3, 4}, {5, 6, 7, 8}}. Then (5.1) is equivalent to k1 − k2 + k3 −
k4 = 0, and hence, M2 ≤ C2(A) ≤ M3.

• Take A = {1, 2, 3, 4}, form a partition of {5, 6, 7, 8} into two blocks and add the
elements of one these blocks to A. If a single element is added to A, say 5 then
k0 − k2 = k3 − k4, M2 ≤ C2(A) ≤ M3 and there are 4 possibilities of doing
this. If an element, say 5, is kept as a single element block then k1 = k0, hence,
C2(A) = M3 and again there are 4 possibilities for this. If {5, 6} is added to A
and {7, 8} remains as 2-element block then k3 = k4, hence, C2(A) = M3, and the
same holds with the roles of {5, 6} and {7, 8} interchanged, and furthermore if we
replace both blocks by {5, 8}, {6, 7}. Now, for A = {{1, 2, 3, 4, 5, 7}, {6, 8}} (5.1)
is equivalent to k2 + k4 = 2k0, and hence, M2 ≤ C2(A) ≤ M3, and similarly for
A = {{1, 2, 3, 4, 6, 8}, {5, 7}}. Altogether we have 6 times M2 ≤ C2(A) ≤ M3 and
8 times C2(A) = M3.

• Take {1, 2}, {3, 4}, form a partition of {5, 6, 7, 8} into two blocks and add one
block to {1, 2} and the other one to {3, 4}. If the resulting partition is A =
{{1, 2, 5, 6}, {3, 4, 7, 8}} then (5.1) is always satisfied, hence C2(A) = M4. If
A = {{1, 2, 7, 8}, {3, 4, 5, 6}} then (5.1) is equivalent to k1 − k2 = k3 − k4, hence
M2 ≤ C2(A) ≤ M3. For A = {{1, 2, 5, 8}, {3, 4, 6, 7}} (5.1) is equivalent to
k2 = k4, thus, C2(A) = M3, and similarly for A = {{1, 2, 6, 7}, {3, 4, 5, 8}}. If
A = {{1, 2, 5, 7}, {3, 4, 6, 8}} then k2 + k3 = 2k0 and M2 ≤ C2(A) ≤ M3; and
similarly for A = {{1, 2, 6, 8}, {3, 4, 5, 7}}.
If A = {{1, 2, 5}, {3, 4, 6, 7, 8}} then (5.1) means k2 = k0 and C2(A) = M3,
and similarly, if 6 is added to {1, 2}, or 7 or 8 is added to {3, 4}. If A =
{{1, 2, 7}, {3, 4, 5, 6, 8}} then (5.1) requires k1−k2 = k3−k0, hence M2 ≤ C2(A) ≤
M3, and the same holds if 8 is added to {1, 2}, or 5 or 6 is added to {3, 4}. Count-
ing cases yields once C2(A) = M4, 7 times M2 ≤ C2(A) ≤ M3 and 6 times
C2(A) = M3.
Clearly, the same considerations apply if we start with {1, 4}, {2, 3}.

Summing up all possibilities we obtain

D(2) ≤ M3 + 6M3 + 8M3 + 2(M4 + 7M3 + 6M3) = 2M4 + 41M3

(and D(2) ≥ 2M4 + 21M3 + 21M2). Finally, we obtain

E[|〈y, φk0〉|4] =
6∑

r=1

N !
(N − r)!

D(r) ≤
6∑

r=1

NrD(r)

≤ NM4 + N2(2M4 + 41M3) + N3(12M3 + 94M2 + 20M)

+ N4(14M2 + 36M + 6) + N5(4M + 25) + 2N6,

which is precisely the statement of Lemma 4.4.
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